Please use this identifier to cite or link to this item:
Title: A simple two-layer zone model on mechanical exhaust in an atrium
Authors: Yi, L
Chow, WK 
Li, YZ
Huo, R
Keywords: CFD simulations
Make-up air positions
Mechanical exhaust
Zone model
Issue Date: 2005
Publisher: Pergamon Press
Source: Building and environment, 2005, v. 40, no. 7, p. 869-880 How to cite?
Journal: Building and environment 
Abstract: Provision of make-up air is essential in designing mechanical exhaust system in a compartment. There are always problems in determining the inlet positions for supplying make-up air. In this paper, a zone model for studying the effect of different positions of make-up air supply on the performance of a mechanical exhaust system in an atrium will be developed. Traditional two-layer approach with an upper smoke layer and a lower air layer will be assumed. Three scenarios of extraction with different relative positions of the air inlet are studied. These are scenarios with the smoke layer interface lying above, within, and below the air inlet. Conservation of mass and energy are considered for each scenario to study the smoke filling process. Transient variations of smoke layer temperature and interface height will be predicted under different fire sizes, exhaust rates and make-up air conditions. Full-scale burning tests in an atrium were conducted to justify the predicted results. In addition, results predicted by this zone model will also be compared with those predicted by Computational Fluid Dynamics (CFD) with the software Fire Dynamics Simulator FDS version 3.1; and another zone model CFAST version 5.0.1. It is observed that the predicted results from this new zone model agreed well with experiments and CFD results. However, results predicted by CFAST deviated from experiments for the scenario with the smoke layer interface lying below the air inlet.
ISSN: 0360-1323
EISSN: 1873-684X
DOI: 10.1016/j.buildenv.2004.08.018
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Dec 8, 2018


Last Week
Last month
Citations as of Dec 15, 2018

Page view(s)

Last Week
Last month
Citations as of Dec 10, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.