Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/16055
Title: Broadband photodetectors based on graphene-Bi2Te3heterostructure
Authors: Qiao, H
Yuan, J
Xu, Z
Chen, C
Lin, S
Wang, Y
Song, J
Liu, Y
Khan, Q
Hoh, HY
Pan, CX
Li, S
Bao, Q
Keywords: Broadband
Graphene
Heterostructure
Photodetector
Photoresponsivity
Sensitivity
Issue Date: 2015
Publisher: American Chemical Society
Source: ACS nano, 2015, v. 9, no. 2, p. 1886-1894 How to cite?
Journal: ACS nano 
Abstract: Recently, research on graphene based photodetectors has drawn substantial attention due to ultrafast and broadband photoresponse of graphene. However, they usually have low responsivity and low photoconductive gain induced by the gapless nature of graphene, which greatly limit their applications. The synergetic integration of graphene with other two-dimensional (2D) materials to form van der Waals heterostructure is a very promising approach to overcome these shortcomings. Here we report the growth of graphene-Bi2Te3heterostructure where Bi2Te3is a small bandgap material from topological insulator family with a similar hexagonal symmetry to graphene. Because of the effective photocarrier generation and transfer at the interface between graphene and Bi2Te3, the device photocurrent can be effectively enhanced without sacrificing the detecting spectral width. Our results show that the graphene-Bi2Te3photodetector has much higher photoresponsivity (35 AW-1 at a wavelength of 532 nm) and higher sensitivity (photoconductive gain up to 83), as compared to the pure monolayer graphene-based devices. More interestingly, the detection wavelength range of our device is further expanded to near-infrared (980 nm) and telecommunication band (1550 nm), which is not observed on the devices based on heterostructures of graphene and transition metal dichalcogenides.
URI: http://hdl.handle.net/10397/16055
ISSN: 1936-0851
EISSN: 1936-086X
DOI: 10.1021/nn506920z
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

72
Last Week
2
Last month
2
Citations as of Aug 19, 2017

WEB OF SCIENCETM
Citations

74
Last Week
2
Last month
4
Citations as of Aug 22, 2017

Page view(s)

63
Last Week
1
Last month
Checked on Aug 20, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.