Please use this identifier to cite or link to this item:
Title: Tunable multicolor upconversion emissions and paramagnetic property of monodispersed bifunctional lanthanide-doped NaGdF4 nanorods
Authors: Ren, G
Zeng, S
Hao, J 
Issue Date: 2011
Source: Journal of physical chemistry C, 2011, v. 115, no. 41, p. 20141-20147
Abstract: In this paper, highly monodispsered ultrasmall hexagonal phase NaGdF4 nanorods were synthesized via a hydrothermal method using oleic acid as a stabilizing agent. The tunable multicolor upconversion (UC) emissions, including green, yellow, blue, and white emissions, can be readily achieved from lanthanide (Ln)-doped NaGdF4 nanorods under the excitation of a 980 nm diode laser. The calculated chromaticity coordinates (CIE-X = 0.346, CIE-Y = 0.357) are close to those of the standard white light (CIE-X = 0.33, CIE-Y = 0.33), and the white UC emissions can be tuned from blue-white to white by adjusting the doped contents of Ho3+ in the Yb3+/Tm3+/Ho3+ triply doped NaGdF4 nanorods. In addition, the ultrasmall NaGdF4 nanocrystals also exhibit paramagnetic properties at 293 K. The measured magnetizations of the NaGdF4:20%Yb3+/0.2% Er3+ and NaGdF4 nanocrystals were about 1.49 and 1.86 emu/g at 20 kOe, respectively, which were close to the reported values of other nanoparticles for bioseparation. Moreover, the NaGdF4 nanocrystals can be readily attracted by a small magnet, which shows it has potential application in cell isolating. It is expected that these multifunctional ultrasmall NaGdF4 nanorods including tunable UC colors and intrinsic paramagnetic properties may have potential applications in color displays, biolables, bioseparation, and magnetic resonance imaging.
Publisher: American Chemical Society
Journal: Journal of physical chemistry C 
ISSN: 1932-7447
EISSN: 1932-7455
DOI: 10.1021/jp2064529
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Aug 18, 2020


Last Week
Last month
Citations as of Sep 18, 2020

Page view(s)

Last Week
Last month
Citations as of Sep 22, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.