Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/15214
Title: Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation
Authors: Wang, Y
Huang, Y
Ho, W
Zhang, L
Zou, Z
Lee, S 
Keywords: Doped TiO2 nanocrystals
l-Cysteine
NO
Photocatalysis
Removal
Issue Date: 2009
Publisher: Elsevier
Source: Journal of hazardous materials, 2009, v. 169, no. 1-3, p. 77-87 How to cite?
Journal: Journal of hazardous materials 
Abstract: In this study, C-N-S-tridoped titanium dioxide (TiO2) nanocrystals were synthesized by using a facile hydrothermal method in the presence of a biomolecule l-cysteine. This biomolecule could not only serve as the common source for the carbon, sulfur and nitrogen tridoping, but also could control the final crystal phases and morphology. The resulting materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption and UV-vis diffuse reflectance spectroscopy. XPS analysis revealed that S was incorporated into the lattice of TiO2 through substituting oxygen atoms, N might coexist in the forms of N-Ti-O and Ti-O-N in tridoped TiO2 and most C could form a mixed layer of carbonate species deposited on the surface of TiO2 nanoparticles. The photocatalytic activities of the samples were tested on the removal of NO at typical indoor air level in a flow system under simulated solar light irradiation. The tridoped TiO2 samples showed much higher removal efficiency than commercial P25 and the undoped counterpart photocatalyst. The enhanced visible light photocatalytic activity of C-N-S-tridoped TiO2 nanocrystals was explained on the basis of characterizations. The possible formation process of the monodispersed C-N-S-tridoped anatase TiO2 nanocrystals was also proposed. This study provides a new method to prepare visible light active TiO2 photocatalyst.
URI: http://hdl.handle.net/10397/15214
ISSN: 0304-3894
EISSN: 1873-3336
DOI: 10.1016/j.jhazmat.2009.03.071
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

90
Last Week
0
Last month
0
Citations as of Aug 12, 2017

WEB OF SCIENCETM
Citations

86
Last Week
1
Last month
3
Citations as of Aug 12, 2017

Page view(s)

50
Last Week
4
Last month
Checked on Aug 14, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.