Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/14834
Title: Multi-hazard performance assessment of a transfer-plate high-rise building
Authors: Zhou, X
Xu, YL 
Keywords: High-rise building
Moderate seismicity
Multi-hazard
Performance-based design
Pushover analysis
Seismic
Transferplate
Wind
Issue Date: 2007
Source: Earthquake engineering and engineering vibration, 2007, v. 6, no. 4, p. 371-382 How to cite?
Journal: Earthquake Engineering and Engineering Vibration 
Abstract: Many urban areas are located in regions of moderate seismicity and are subjected to strong wind. Buildings in these regions are often designed without seismic provisions. As a result, in the event of an earthquake, the potential for damage and loss of lives may not be known. In this paper, the performance of a typical high-rise building with a thick transfer plate (TP), which is one type of building structure commonly found in Hong Kong, is assessed against both earthquake and wind hazards. Seismic-and wind-resistant performance objectives are first reviewed based on relevant codes and design guidelines for high-rise buildings. After a brief introduction of wind-resistant design of the building, various methodologies, including equivalent static load analysis (ESLA), response spectrum analysis (RSA), pushover analysis (POA), linear and nonlinear time-history analysis (LTHA and NTHA), are employed to assess the seismic performance of the building when subjected to frequent earthquakes, design based earthquakes and maximum credible earthquakes. The effects of design wind and seismic action with a common 50-year return period are also compared. The results indicate that most performance objectives can be satisfied by the building, but there are some objectives, such as inter-story drift ratio, that cannot be achieved when subjected to the frequent earthquakes. It is concluded that in addition to wind, seismic action may need to be explicitly considered in the design of buildings in regions of moderate seismicity.
URI: http://hdl.handle.net/10397/14834
ISSN: 1671-3664
DOI: 10.1007/s11803-007-0780-9
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

2
Last Week
0
Last month
0
Citations as of May 26, 2017

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
Citations as of May 22, 2017

Page view(s)

24
Last Week
0
Last month
Checked on May 28, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.