Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/13632
Title: A theoretical study of the mechanism of the atmospherically relevant reaction of chlorine atoms with methyl nitrate, and calculation of the reaction rate coefficients at temperatures relevant to the troposphere
Authors: Ng, M
Mok, DKW 
Lee, EPF
Dyke, JM
Issue Date: 2015
Publisher: Royal Society of Chemistry
Source: Physical chemistry chemical physics, 2015, v. 17, no. 11, p. 7463-7476 How to cite?
Journal: Physical chemistry chemical physics 
Abstract: The reaction between atomic chlorine (Cl) and methyl nitrate (CH3ONO2) is significant in the atmosphere, as Cl is a key oxidant, especially in the marine boundary layer, and alkyl nitrates are important nitrogen-containing organic compounds, which are temporary reservoirs of the reactive nitrogen oxides NO, NO2 and NO3 (NOx). Four reaction channels HCl + CH2ONO2, CH3OCl + NO2, CH3Cl + NO3 and CH3O + ClNO2 were considered. The major channel is found to be the H abstraction channel, to give the products HCl + CH2ONO2. For all channels, geometry optimization and frequency calculations were carried out at the M06-2X/6-31+G∗∗ level, while relative electronic energies were improved to the UCCSD(T∗)-F12/CBS level. The reaction barrier () and reaction enthalpy (ΔHRX298K) of the H abstraction channel were computed to be 0.61 and -2.30 kcal mol-1, respectively, at the UCCSD(T∗)-F12/CBS//M06-2X/6-31+G∗∗ level. Reaction barriers () for the other channels are more positive and these pathways do not contribute to the overall reaction rate coefficient in the temperature range considered (200-400 K). Rate coefficients were calculated for the H-abstraction channel at various levels of variational transition state theory (VTST) including tunnelling. Recommended ICVT/SCT rate coefficients in the temperature range 200-400 K are presented for the first time for this reaction. The values obtained in the 200-300 K region are particularly important as they will be valuable for atmospheric modelling calculations involving reactions with methyl nitrate. The implications of the results to atmospheric chemistry are discussed. Also, the enthalpies of formation, ΔHf,298K, of CH3ONO2 and CH2ONO2 were computed to be -29.7 and 19.3 kcal mol-1, respectively, at the UCCSD(T∗)-F12/CBS level.
URI: http://hdl.handle.net/10397/13632
ISSN: 1463-9076
EISSN: 1463-9084
DOI: 10.1039/c4cp06007e
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
Citations as of Aug 14, 2017

Page view(s)

41
Last Week
2
Last month
Checked on Aug 13, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.