Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/12889
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorQi, L-
dc.creatorDai, HH-
dc.creatorHan, D-
dc.date.accessioned2014-12-19T06:54:10Z-
dc.date.available2014-12-19T06:54:10Z-
dc.identifier.issn1673-3452-
dc.identifier.urihttp://hdl.handle.net/10397/12889-
dc.language.isoenen_US
dc.publisherHigher Education Pressen_US
dc.subjectElasticity tensoren_US
dc.subjectM-eigenvalueen_US
dc.subjectStrong ellipticityen_US
dc.subjectZ-eigenvalueen_US
dc.titleConditions for strong ellipticity and M-eigenvaluesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage349-
dc.identifier.epage364-
dc.identifier.volume4-
dc.identifier.issue2-
dc.identifier.doi10.1007/s11464-009-0016-6-
dcterms.abstractThe strong ellipticity condition plays an important role in nonlinear elasticity and in materials. In this paper, we define M-eigenvalues for an elasticity tensor. The strong ellipticity condition holds if and only if the smallest M-eigenvalue of the elasticity tensor is positive. If the strong ellipticity condition holds, then the elasticity tensor is rank-one positive definite. The elasticity tensor is rank-one positive definite if and only if the smallest Z-eigenvalue of the elasticity tensor is positive. A Z-eigenvalue of the elasticity tensor is an M-eigenvalue but not vice versa. If the elasticity tensor is second-order positive definite, then the strong ellipticity condition holds. The converse conclusion is not right. Computational methods for finding M-eigenvalues are presented.-
dcterms.bibliographicCitationFrontiers of mathematics in China, 2009, v. 4, no. 2, p. 349-364-
dcterms.isPartOfFrontiers of mathematics in China-
dcterms.issued2009-
dc.identifier.isiWOS:000270372800008-
dc.identifier.scopus2-s2.0-63949087720-
dc.identifier.eissn1673-3576-
dc.identifier.rosgroupidr44036-
dc.description.ros2008-2009 > Academic research: refereed > Publication in refereed journal-
Appears in Collections:Journal/Magazine Article
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

41
Last Week
0
Last month
0
Citations as of Aug 28, 2020

WEB OF SCIENCETM
Citations

40
Last Week
1
Last month
0
Citations as of Oct 27, 2020

Page view(s)

167
Last Week
6
Last month
Citations as of Oct 25, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.