Please use this identifier to cite or link to this item:
Title: An audit environment for outsourcing of frequent itemset mining
Authors: Wong, WK
Cheung, DW
Hung, E
Kao, B
Mamoulis, N
Issue Date: 2009
Publisher: Association for Computing Machinery
Source: Proceedings of the VLDB Endowment, 2009, v. 2, no. 1, p. 1162-1172 How to cite?
Journal: Proceedings of the VLDB Endowment 
Abstract: Finding frequent itemsets is the most costly task in association rule mining. Outsourcing this task to a service provider brings several benefits to the data owner such as cost relief and a less commitment to storage and computational resources. Mining results, however, can be corrupted if the service provider (i) is honest but makes mistakes in the mining process, or (ii) is lazy and reduces costly computation, returning incomplete results, or (iii) is malicious and contaminates the mining results. We address the integrity issue in the outsourcing process, i.e., how the data owner verifies the correctness of the mining results. For this purpose, we propose and develop an audit environment, which consists of a database transformation method and a result verification method. The main component of our audit environment is an artificial itemset planting (AIP) technique. We provide a theoretical foundation on our technique by proving its appropriateness and showing probabilistic guarantees about the correctness of the verification process. Through analytical and experimental studies, we show that our technique is both effective and efficient.
ISSN: 2150-8097
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Nov 12, 2018

Page view(s)

Last Week
Last month
Citations as of Nov 18, 2018

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.