Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/12211
Title: Signal detection for MIMO-ISI channels: an iterative greedy improvement approach
Authors: Wu, Y
Kung, SY
Issue Date: 2004
Publisher: Institute of Electrical and Electronics Engineers
Source: IEEE transactions on signal processing, 2004, v. 52, no. 3, p. 703-720 How to cite?
Journal: IEEE transactions on signal processing 
Abstract: In this paper, we consider the signal detection for multiple input-multiple output intersymbol interference (MIMO-ISI) channels with diverse assumptions on the channel knowledge: perfect, blind, trained, etc. This general problem is cast into a unifying Bayesian statistics framework. With this formulation, the optimal detector is the one maximizing the posterior signal density [marginal maximum a posteriori (MAP)]. Since the marginal MAP is hard to deal with, a joint MAP formulation is proposed as a reasonable substitute that maximizes the posterior joint signal and channel density. It is also shown that for independent and identically distributed (i.i.d.) signals, the two formulations will lead to very close results. The joint MAP formulation leads to an iterative projection algorithm that alternates between the optimization over channel parameters and signaling matrices. The bottleneck of iterative projections is on the finite-alphabet constrained quadratic minimization. We show that the notion of error decomposition can be bridged with greedy optimizations to construct iterative greedy search algorithms and examine their performance. A particularization, called full greedy search, is shown to be able to reach the global optimum (maximum likelihood solutions) starting with any initialization. Since potential constraints in computational complexity may prohibit the application of this version of greedy search, we explore the performance (loss) for greedy search implementations with complexity constraints, arriving at deterministic performance bounds and a bit-error rate (BER) upper bound. The effect of model imprecision is also theoretically characterized. Based on the theoretical development, an iterative local optimization with interference cancellation (LOIC) algorithm is proposed to achieve low complexity and exploit the finite alphabet constraint. Motivated by the Sylvester structure, it approximates the full greedy search by focusing on local error sequences. It can also be regarded as a flexible interference cancellation strategy with noncausal information and iterative computations. An empirical comparison of detectors with perfect channel knowledge demonstrated that the proposed LOIC algorithms can offer very attractive BER/complexity tradeoffs.
URI: http://hdl.handle.net/10397/12211
ISSN: 1053-587X
EISSN: 1941-0476
DOI: 10.1109/TSP.2003.822288
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

9
Last Week
0
Last month
Citations as of Oct 16, 2017

WEB OF SCIENCETM
Citations

7
Last Week
0
Last month
0
Citations as of Oct 17, 2017

Page view(s)

32
Last Week
1
Last month
Checked on Oct 15, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.