Please use this identifier to cite or link to this item:
Title: Step acceleration based training algorithm for feedforward neural networks
Authors: Li, Y
Wang, K
Zhang, DD 
Keywords: Computation theory
Computer simulation
Convergence of numerical methods
Feedforward neural networks
Issue Date: 2002
Publisher: IEEE Computer Society
Source: 16th International Conference on Pattern Recognition : August 11-15, 2002, Québec City, Québec, Canada : proceedings, v. 2, p. 84-87 How to cite?
Abstract: This paper presents a very fast step acceleration based training algorithm (SATA) for multilayer feedforward neural network training. The most outstanding virtue of this algorithm is that it does not need to calculate the gradient of the target function. In each iteration step, the computation only concentrates on the corresponding varied part. The proposed algorithm has attributes in simplicity, flexibility and feasibility, as well as high speed of convergence. Compared with the other methods, including the conventional BP, the conjugate gradient (CG), and the BP based on weight extrapolation (BPWE), many simulations have confirmed the superiority of this algorithm in terms of converging speed and computation time required.
ISBN: 0-7695-1695-X
ISSN: 1051-4651
Rights: © 2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Appears in Collections:Conference Paper

Files in This Item:
File Description SizeFormat 
step-acceleration_02.pdf154.23 kBAdobe PDFView/Open
View full-text via PolyU eLinks SFX Query
Show full item record
PIRA download icon_1.1View/Download Contents


Last Week
Last month
Citations as of Jul 31, 2018

Page view(s)

Last Week
Last month
Citations as of Aug 14, 2018


Citations as of Aug 14, 2018

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.