Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/10993
Title: A fast and low memory image coding algorithm based on lifting wavelet transform and modified SPIHT
Authors: Pan, H
Siu, WC 
Law, NF 
Keywords: Lifting wavelet transform
Listless SPIHT
Low bit rate image compression
Issue Date: 2008
Publisher: Elsevier
Source: Signal processing. Image communication, 2008, v. 23, no. 3, p. 146-161 How to cite?
Journal: Signal processing. Image communication 
Abstract: Due to its excellent rate-distortion performance, set partitioning in hierarchical trees (SPIHT) has become the state-of-the-art algorithm for image compression. However, the algorithm does not fully provide the desired features of progressive transmission, spatial scalability and optimal visual quality, at very low bit rate coding. Furthermore, the use of three linked lists for recording the coordinates of wavelet coefficients and tree sets during the coding process becomes the bottleneck of a fast implementation of the SPIHT. In this paper, we propose a listless modified SPIHT (LMSPIHT) approach, which is a fast and low memory image coding algorithm based on the lifting wavelet transform. The LMSPIHT jointly considers the advantages of progressive transmission, spatial scalability, and incorporates human visual system (HVS) characteristics in the coding scheme; thus it outperforms the traditional SPIHT algorithm at low bit rate coding. Compared with the SPIHT algorithm, LMSPIHT provides a better compression performance and a superior perceptual performance with low coding complexity. The compression efficiency of LMSPIHT comes from three aspects. The lifting scheme lowers the number of arithmetic operations of the wavelet transform. Moreover, a significance reordering of the modified SPIHT ensures that it codes more significant information belonging to the lower frequency bands earlier in the bit stream than that of the SPIHT to better exploit the energy compaction of the wavelet coefficients. HVS characteristics are employed to improve the perceptual quality of the compressed image by placing more coding artifacts in the less visually significant regions of the image. Finally, a listless implementation structure further reduces the amount of memory and improves the speed of compression by more than 51% for a 512×512 image, as compared with that of the SPIHT algorithm.
URI: http://hdl.handle.net/10397/10993
ISSN: 0923-5965
DOI: 10.1016/j.image.2008.01.004
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

25
Last Week
0
Last month
0
Citations as of Aug 14, 2017

WEB OF SCIENCETM
Citations

13
Last Week
0
Last month
1
Citations as of Aug 24, 2017

Page view(s)

37
Last Week
1
Last month
Checked on Aug 20, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.