Please use this identifier to cite or link to this item:
Title: A new damage index for detecting sudden change of structural stiffness
Authors: Chen, B
Xu, YL 
Keywords: Acceleration response
Damage detection
Damage index
Empirical mode decomposion
Signal discontinuity
Sudden damage
Wavalet transform
Issue Date: 2007
Publisher: Techno Press
Source: Structural engineering and mechanics, 2007, v. 26, no. 3, p. 315-341 How to cite?
Journal: Structural engineering and mechanics 
Abstract: A sudden change of stiffness in a structure, associated with the events such as weld fracture and brace breakage, will cause a discontinuity in acceleration response time histories recorded in the vicinity of damage location at damage time instant. A new damage index is proposed and implemented in this paper to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. The proposed damage index is suitable for online structural health monitoring applications. It can also be used in conjunction with the empirical mode decomposition (EMD) for damage detection without using the intermittency check. Numerical simulation using a five-story shear building under different types of excitation is executed to assess the effectiveness and reliability of the proposed damage index and damage detection approach for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also examined. The results from this study demonstrate that the damage index and damage detection approach proposed can accurately identify the damage time instant and location in the building due to a sudden loss of stiffness if measurement noise is below a certain level. The relation between the damage severity and the proposed damage index is linear. The wavelet-transform (WT) and the EMD with intermittency check are also applied to the same building for the comparison of detection efficiency between the proposed approach, the WT and the EMD.
ISSN: 1225-4568
EISSN: 1598-6217
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Nov 12, 2018


Last Week
Last month
Citations as of Nov 16, 2018

Page view(s)

Last Week
Last month
Citations as of Nov 12, 2018

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.