
Preference-Wise Testing of Android Apps via Test

Amplification

MINXUE PAN and YIFEI LU, Nanjing University, China
YU PEI, The Hong Kong Polytechnic University, China
TIAN ZHANG and XUANDONG LI, Nanjing University, China

Preferences, the setting options provided by Android, are an essential part of Android apps. Preferences allow
users to change app features and behaviors dynamically, and therefore their impacts need to be considered
when testing the apps. Unfortunately, few test cases explicitly specify the assignments of valid values to
the preferences, or configurations, under which they should be executed, and few existing mobile testing
tools take the impact of preferences into account or provide help to testers in identifying and setting up the
configurations for running the tests. This paper presents the Prefest approach to effective testing of Android
apps with preferences. Given an Android app and a set of test cases for the app, Prefest amplifies the test
cases with a small number of configurations to exercise more behaviors and detect more bugs that are related
to preferences. In an experimental evaluation conducted on real-world Android apps, amplified test cases
produced by Prefest from automatically generated test cases covered significantly more code of the apps and
detected 7 real bugs, and the tool’s test amplification time was at the same order of magnitude as the running
time of the input test cases. Prefest’s effectiveness and efficiency in amplifying programmer-written test
cases was comparable with that in amplifying automatically generated test cases.

CCS Concepts: • Software and its engineering → Software testing and debugging.

Additional Key Words and Phrases: Android apps, Android testing, preference-wise testing

1 INTRODUCTION

The last decade has witnessed a rapid growth in Android apps, drawing attention from both
academia and industry. To enable prompt response to user feedback and market changes, Android
app developers have to work in short development cycles, causing a growing need for cost-effective
testing approaches. For example, the automatic generation of test inputs [3, 7, 10, 21, 36] aiming at
fully automatic testing of Android apps has attracted considerable attention in the past few years.

Most mobile apps allow some level of customization by having settings that enable users to tailor
the apps’ features and/or behaviors, and such settings are usually modeled using preferences [16]
on the Android platform. Since an app may exhibit distinct behaviors when its preferences take
different values, to thoroughly test the app becomes a more challenging task as it would require
exercising the app not only with different user inputs but also under various assignments of valid
values to preferences, or configurations. We call mobile testing with the impact of preferences taken
into account preference-wise testing.
Despite the important role preferences play in apps, few mobile test cases explicitly specify

the configurations under which they should be executed and few existing tools support effective
preference-wise testing. On the one hand, some preferences cause minor or no differences to the

This research is supported by the Leading-edge Technology Program of Jiangsu Natural Science Foundation (No. BK20202001)
and the National Natural Science Foundation of China (Nos. 61972193 and 62032010). This work is also supported in part by
the Hong Kong RGC General Research Fund (GRF) PolyU 152002/18E.
Authors’ addresses: M. Pan (corresponding author), mxp@nju.edu.cn; Y. Lu, lyf@smail.nju.edu.cn, State Key Laboratory for
Novel Software Technology and the Software Institute, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu Province,
China, 210093; Y. Pei (corresponding author), csypei@comp.polyu.edu.hk, Department of Computing, The Hong Kong
Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, China; T. Zhang, ztluck@nju.edu.cn; X. Li,
lxd@nju.edu.cn, State Key Laboratory for Novel Software Technology and the Department of Computer Science and
Technology, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu Province, China, 210023.

© 2023 Association for Computing Machinery. This is the author's version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in ACM Transactions on Software Engineering
and Methodology, https://doi.org/10.1145/3511804.

This is the Pre-Published Version.

2 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

appearance of apps, therefore they can be easily missed by black-box testing techniques that mainly
derive the states of apps from their GUIs. On the other hand, it is challenging for existing white-box
testing techniques to handle preferences effectively. Since preferences are often stored in the form
of key-value pairs and apps usually access their preference values by the corresponding keys via
method invocations, techniques like symbolic execution are needed to keep track of which and
how preference values are actually utilized at runtime. Off-the-shelf symbolic execution techniques,
however, can hardly work at the app level, partly because of the scalability issues it suffers from [24],
and partly because of the event-driven nature as well as the underlying application development
framework (ADF) [40] of the apps. As a result, although remarkable progress has been made in
mobile testing recently, there is little tool support for helping testers effectively identify and set up
differentiating configurations for Android apps in preference-wise testing.

In this paper, we propose the Prefest approach to effective preference-wise testing for Android
apps. Prefest takes an Android app and a set of test cases for the app as the input and automatically
amplifies each test case with a small group of configurations to exercise more behaviors and detect
more bugs that are related to preferences. In practice, developers and testers are often not the same
group of people, which makes the burden of identifying and applying appropriate configurations
before running test cases even more overwhelming for testers. Being fully automatic, Prefest can
be of great help in easing the burden.

Prefest is motivated by two key observations. The first observation is that each test case typically
interacts with just a few preferences defined in the app. In view of that, Prefest identifies for each
test case a group of relevant preferences (i.e., preferences on which at least one branch condition
executed by the test case has data-dependence) and focuses on altering the values of those relevant,
instead of all, preferences when amplifying the test case. The second observation is that, even
if we only consider the preferences relevant to a test case, exhaustively executing the test case
under all possible value combinations of those preferences is often still prohibitively expensive
and uneconomical, in terms of the testing time, the amount of code covered and the number of
bugs detected. In light of this observation, the target mode of Prefest drastically reduces the cost
of preference-wise testing by aiming to execute each preference-related code branch at least once
under some configuration, instead of exhausting all possible combinations of preference values.
We have implemented the Prefest approach into a tool with the same name. To evaluate the

effectiveness and efficiency of Prefest, we applied Prefest to amplify automatically generated test
cases for 45 Android apps. The amplified test cases covered 9.3% and 15.3% more instructions and
branches of the app code, respectively, and detected 7 real bugs. Prefest’s running time was at the
same order ofmagnitude as the running time of its input test cases, suggesting the tool’s performance
was compatible with offline usage scenarios. Compared with test amplification based on another
strategy where each test case is amplified with all configurations covering 2-way combinations
of relevant preference values, preference-wise testing with Prefest was able to achieve 70.2% and
73.7% of the additional instruction and branch coverage and detect the same bugs, while reducing
the testing costs in the number of test executions involved and testing time required to 1.8% and
6.0%, respectively. Prefest’s effectiveness and efficiency in amplifying programmer-written test
cases was comparable with that in amplifying automatically generated test cases.

This work significantly extends our previous work [35] in the following important aspects. First,
we perform a study on the prevalence of preferences and preference related bugs in Android apps
to strengthen the motivation for preference-wise testing. Second, we revise the description of
the approach to include a formal presentation of the amplification process. Third, we extend the
Prefest tool to handle more types of preferences and make test case amplification with Prefest

Preference-Wise Testing of Android Apps via Test Amplification 3

more systematic. Fourth, we conduct larger scale experiments on Prefest and carry out more
detailed analyses of the experimental results.

The main contributions this paper makes are as the following:
(1) We identify the problem of preference-wise testing, which is an important aspect of Android

testing but has been largely overlooked by existing work in the area.
(2) We propose the Prefest approach to effective preference-wise testing for Android apps. The

approach has been implemented into a tool with the same name.
(3) We conduct an experimental evaluation on 45 real-world apps to assess the effectiveness and

efficiency of Prefest. Amplification helped the input test cases exercise more app behaviors
and detect real bugs. The tool and the experimental data are available for download at
https://github.com/Prefest2018/Prefest.

The rest of this paper is organized as follows. Section 2 illustrates how Prefest amplifies test
cases from a user’s perspective. Section 3 introduces background knowledge about preferences
on the Android platform. Section 4 describes the study we conduct to assess the prevalence of
preferences and preference-related bugs in Android apps. Section 5 explains in detail the techniques
employed by Prefest and how Prefest works step by step. Section 6 reports on the experimental
evaluation we carried out and presents the findings from the experiments. Section 7 reviews related
work. Section 8 concludes the paper.

2 PREFEST IN ACTION

In this section, we use a real-world app called good-weather to demonstrate how Prefest can amplify
test cases to detect a bug that causes the app to crash only under specific configurations.
The good-weather app is a weather application and it can be customized to show weather

information for selected locations. The app also features a widget that can deck out the home
screen with up-to-date weather reports. To allow users to customize how the widget looks and
works, the app offers a list of preferences as shown in Figure 1a.

(a) The preferences for the good-weather widget. (b) The app crashes when changing the location.

Fig. 1. A preference-related crash in good-weather.

Some of these preferences affect the widget’s behaviors. For instance, preference Update location

determines whether or not to start a service to synchronize the location used by the widget with the
one set in the good-weather app. Other preferences, e.g., preference Widget theme, affect the widget’s

https://github.com/Prefest2018/Prefest

4 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

appearance. Nevertheless, all features and functionalities of both the app and the widget should
work as expected under all possible configurations. For example, a user should always be able to
change the location used by the app for showing weather information, no matter whether the
widget is enabled or how it is configured. This, however, is not the case with Version 4.4 of the app.
Particularly, if preference Update location is set to true for the widget, a crash, as shown in Figure
1b, would occur when the user tries to change the location in the app. To reproduce this crash, a
test case needs to set preference Update location to true first—the default value of the preference is
false—and then try to change the location in the app. However, since there is no clear connection
between the widget’s preference and the behavior of the main app, it is less likely that the two
actions are tested together, making the bug hard to discover.

The good-weather example suggests that, for the testing of an app to be systematic and thorough,
it is critical to take the app’s preferences into account. However, cost-effective preference-wise
testing can be challenging. Since some errors only occur when executing certain operations under
specific configurations and the connection between those operations and preferences may be
buried in the code, to intentionally reveal, rather than accidentally bump into, preference related
bugs, human testers often need to run test cases repeatedly under a large number of different
configurations, which can be prohibitively expensive. The need for a cost-effective approach to
preference-wise testing is pressing.
Taking the good-weather app and a test case for the app that changes the location as the input,

Prefest automatically discovers that preference Update location is relevant to the test case and
amplifies the test case with another configuration where the preference is set to true. Running the
test case under the new configuration soon triggers the bug mentioned above.
In the following sections, we first explain how preferences are utilized in Android apps and

why preference-wise testing is crucial for Android apps, and then describe in detail how Prefest
amplifies test cases to facilitate effective and efficient preference-wise testing.

3 BACKGROUND

On Android, the recommended way to integrate user configurable settings into apps is to use the
AndroidX Preference Library (APL), where class Preference is devised to model the key-values pairs
of settings while activities and fragments showing lists of preferences are called settings screens.

To construct a settings screen based on the APL, a programmer needs to first define a hierarchy
of preferences—either statically using a resource file in the XML format or programmatically by ma-
nipulating corresponding preference objects, then prepare the screen for displaying the preferences,
and in the end link the preference hierarchy to the screen during the screen’s initialization. In this
work, we focus on apps that define preference hierarchies statically since using resource files is the
most popular way to define preference hierarchies on Android. For example, the preference hierar-
chy of the good-weather app was defined using a resource file, and the snippet shown in Listing 1
is excerpted from the resource file. The snippet defines three preferences: 1) a CheckboxPreference

that stores a boolean value and will be rendered as a checkbox widget; 2) a ListPreference that
stores a string value and will be rendered as a list of all possible values for that preference; and 3)
a PreferenceScreen that groups multiple preferences and will be associated with a specific settings
screen. All these three preference types are defined in the APL and the library also defines other
types of preferences like SwitchPreference and EditTextPreference.

Besides of stipulating the types of the preferences, a preference resource file usually also provides
the following essential information about each preference defined in it: (1) key: a unique key that
can be used to access the preference value; (2) title: a piece of text to be shown on the settings
screen when the preference is displayed; (3) defaultValue: the initial value of the preference; and
(4) entryValues: a list of possible values that the preference may take. Note that attribute entryValues

Preference-Wise Testing of Android Apps via Test Amplification 5

<PreferenceScreen >
<CheckBoxPreference

key="widget_update_location_pref_key"
title="Update Location"
defaultValue="false"/>

<ListPreference
key="widget_theme_pref_key"
title="Widget theme"
defaultValue="Light"
entryValues ={"Dark", "Light"}/>
...

</PreferenceScreen >

Listing 1. Excerpt from the preference resource file of app good-weather.

of a CheckBoxPreference is typically omitted in such definitions, since it always contains two values
true and false, and that we sometimes refer to preferences simply by their titles or keys when the
meaning is clear from the context.
We identify in total four common patterns, namely patterns APA, APF, SPF, and LHA, that

programmers often follow when instantiating settings screens based on preference hierarchies
defined by resource files. Patterns APA, APF and LHA [5, 22, 26] were recommended by the Android
official guidance website [16] before 2019 but SPF has been the recommended pattern to adopt
afterwards. In all the four patterns, a preference hierarchy is essentially linked to its corresponding
settings screen(s) during the creation of an activity, which is referred to as the anchor activity of
the hierarchy.

Particularly, in pattern APA (Adding Preferences to an Activity) a preference hierarchy is linked to
its anchor activity by using the resource file as the parameter to invokemethod addPreferencesFromRes-
ource on the activity in the activity’s onCreatemethod; In both patterns APF (Adding Preferences to a
Fragment) and SPF (Setting Preferences to a Fragment), a preference hierarchy is linked to a fragment
and the fragment is instantiated in method onCreate of the hierarchy’s anchor activity. The difference
between the two patterns is that, in pattern APF the preference hierarchy is linked to the fragment by
using the resource file as the parameter to invokemethod addPreferencesFromResource on the fragment
in method onCreate of that fragment, while the preference hierarchy is linked to the fragment in
pattern SPF by using the resource file as the parameter to invoke method setPreferencesFromResource

on the fragment in method onCreatePreferences of that fragment. In patterns APA, APF, and SPF, if
the parameter resource file contains nested PreferenceScreen elements, multiple settings screens will
be instantiated by the APL to render the preferences, with each screen showing only the preferences
directly contained by a specific PreferenceScreen. Particularly, in such a case, the title of a child
PreferenceScreenwill be shown on the settings screen for its parent PreferenceScreen, and tapping the
text will cause the settings screen for the child PreferenceScreen to be displayed. The LHA pattern
(Loading Headers to an Activity) describes another common way to organize preferences into
different settings screens. In pattern LHA, a preference hierarchy with a root element of type
preference-headers is linked to its anchor activity by using the resource file as the parameter to
invoke method loadHeadersFromResource on the activity in method onCreate of that activity. Here, a
preference-headers element may contain a list of header elements, while each header element has a
textual description stored in its attribute title and is associated with a fragment that is linked to
a preference hierarchy as in pattern APF or SPF. At runtime, the anchor activity will show the
titles of those header elements, and tapping the title of a particular header will cause the fragment
associated with that header to be displayed.

6 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

String key = "widget_update_location_pref_key";
SharedPreferences sp = SharedPreferences.getDefaultSharedPreferences (...)
boolean val = sp.getBoolean(key , ...); // to get
sp.setBoolean(key , ...); // to set

Listing 2. To get or set a preference value via SharedPreferences.

The APL also defines APIs that enable Android apps to easily access preference values by keys
at runtime. For example, to get and set the value of preference Update location defined in app
good-weather, methods getBoolean and setBoolean from the APL can be invoked, respectively, on
the singleton SharedPreferences object. The code snippet in Listing 2 demonstrates the use of these
methods.
It is worth noting that not all implementations of app settings in Android are based on the

APL. For example, some developers may decide to implement their app settings by programming
from scratch their own settings classes. In the rest of this paper, we refer to app settings that are
implemented based on the APL as APL preferences and the settings implemented in other ways as
non-APL preferences.

4 MAGNITUDE OF THE PROBLEM

In this section, we empirically evaluate the prevalence of preferences and preference-related bugs,
as well as the popularity of various preference types, in Android apps. In particular, we aim to
address the following three questions: Q1) How often settings in Android apps are implemented
using APL preferences? Q2) How many bugs in Android apps are related to APL preferences?
Q3) Which preference types are the most frequently used? Answers to these questions will not
only help us gain a better understanding about the necessity of preference-wise testing for Android
apps, but also shed light on the preference types that we should focus on when providing support
for preference-wise testing.

As we explain later in this section, to answer the three questions involves manual examination
of both the source code and the executions of the subject apps. Therefore, we selected open-source
Android apps that are also available on Android application markets like Google Play and F-Droid
as our subjects. Particularly, we first gather all apps from a list of open-source Android apps hosted
on Github [46]. The list of apps was rather popular and has been used in quite a number of previous
studies on Android applications [34, 50, 55]. Apps on the list were organized into 16 categories.
We excluded apps in categories Android TV and Android Wear, since our study involves running the
apps, while apps from those two categories can only be installed on specific types of devices. The
remaining 14 categories contained in total 244 apps, among which 200 were available for download
in Google Play and/or F-Droid (as of July 2019). We therefore used the 200 apps as the subjects for
this study. Table 1 lists the total number of apps included in each category (#Total). Note that, since
none of the 200 subject apps falled in category Business, only 13 categories are listed in the table.

To answer question Q1, we first installed and manually navigated through each app to determine
whether it contains any screens devoted to settings. Then, for apps that do have settings, we check
their source code to find out whether their settings are implemented using preference classes from
the APL. Manual examination is necessary here since non-APL preferences can be very different in
their implementations and appearances and therefore are challenging to identify in an automated
fashion.

Table 1 summarizes the results from the examination. Among the 200 apps, 129 had preferences
and 115 implemented those settings based on the APL, which suggests preferences are common in
Android apps and the most dominant way to implement them is by using the APL. Having said that,

Preference-Wise Testing of Android Apps via Test Amplification 7

Table 1. Prevalence of preferences in the 200 Android apps. For each category, the total number of apps,

the numbers of apps without and with preferences, and the breakdown of the latter into the numbers of

apps with apl and non-apl preferences. The percentage for a category gives the ratio of apps with APL

preferences to the total number of apps in the category (apl/total).

preference

category total without with apl non-apl

Communication 16 5 11 10 (63%) 1
Education 5 1 4 3 (60%) 1
Finance 6 2 4 4 (67%) 0
Game 14 8 6 3 (21%) 3
Health Fitness 2 0 2 2 (100%) 0
Life Style 6 1 5 3 (50%) 2
Multi-Media 27 11 16 15 (56%) 1
News and Magazines 20 6 14 14 (70%) 0
Personalization 7 2 5 4 (57%) 1
Productivity 15 6 9 8 (53%) 1
Social Network 18 7 11 10 (56%) 1
Tools 55 22 33 32 (58%) 1
Travel and Local 9 2 7 7 (78%) 0

Overall 200 71 129 115 (58%) 14

(0 , 1 0 K] (1 0 K , 5 0 K] (5 0 K , 1 0 0 K] � � � � � � � � �
0

2 0

4 0

6 0

8 0

1 0 0

#A
pp

A p p s i z e

 N o p r e f e r e n c e
 N o n - A P L p r e f e r e n c e
 A P L p r e f e r e n c e

Fig. 2. Relation between app size and num-

bers of apps with no preferences, with non-

APL preferences, and with APL preferences.

App size is measured in number of lines of

code contained.

3 9

6 2

1 1 9

A P A A P F S P F L P H
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

#A
pp

P a t t e r n

Fig. 3. The number of apps that use each

pattern to instantiate settings screens.

the number of apps without preferences was larger than we expected, and the main reason is that
almost half of the apps we examined in this study were relatively small in size and did not need
any settings to customize their functionalities. Figure 2 shows how the numbers of apps with no
preferences, with non-APL preferences, and with APL preferences vary across apps with different
sizes. It is clear from the figure that most apps with no preferences were relatively small in size. To
be more specific, 73% (=52/71) of the apps with no preferences had no more than 10,000 lines of
code, while 73% (=74/101) of the apps with larger size contained APL preferences.

8 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

Table 2. Preference-related bugs in 10 apps with the most stars. For each app, the total number of reported

bugs, the total number of preference-related bugs, and the breakdown of that into the numbers of incorrect-

preference-def and incorrect-preference-use bugs. Since no bug combining incorrect preference definition

and use was encountered in the study, the corresponding column is omitted from the table.

app total preference-related incorrect-def incorrect-use

AmazeFileManager 256 46 (18.0%) 11 35
AntennaPod 385 76 (19.7%) 16 60
Douya 19 2 (10.5%) 1 1
K9Mail 516 99 (19.2%) 15 84
Launcher3 27 3 (11.1%) 0 3
NewPipe 243 49 (20.2%) 10 39
OwnCloud 428 71 (16.6%) 11 60
Signal 104 20 (19.2%) 1 19
Uhabits 55 5 (9.1%) 2 3
zxing 55 12 (21.8%) 0 12

Overall 2088 383 (18.3%) 67 316

We have also manually inspected the implementations of the apps with APL preferences to
find out how they instantiate settings screens based on preference hierarchies. Figure 3 gives, for
each of the patterns we identified in Section 3, the number of apps that followed the pattern to
instantiate at least one of its settings screens. Note that the numbers for the four patterns add up to
121 because 6 apps implemented multiple patterns in constructing their settings screens. The figure
shows that, while patterns APA and APF are the most often adopted among the four, a significant
number of apps follow patterns SPF and LPF in constructing their settings screens. It is therefore
important that Prefest should support all the patterns for it to be widely applicable.
To answer question Q2, we examined code repositories of the apps with APL preferences on

GitHub to find out the percentage of defects reported on those apps that were related to preferences.
Among the 115 apps with APL preferences, 16 apps were excluded from our examination because
they did not list any issues in their repositories, 20 were excluded because they did not use tags like
bug or crash to label issues as defects, and 27 were excluded because each of them had less than 10
reported issues labeled as defects. We sorted the remaining 52 apps in decreasing order of their star
numbers, selected apps ranked in the top 10 positions, and manually checked each defect reported
for those apps in two steps to determine whether it is related to preferences. First, in case a defect
is corrected by a specific commit, the defect is considered an incorrect-preference-def bug if the
commit modifies an onPreferenceChange callback method, which is to be invoked when the value of
a preference is changed, and the defect is considered an incorrect-preference-use bug if the commit
modifies code that is guarded by a condition with data dependence to a preference value. Both
incorrect-preference-def and incorrect-preference-use bugs are preference-related. Second, when
no such commit could be identified for a defect, we mark the defect as preference-related if its
description explicitly mentions that certain preferences should be properly set in order to trigger
the defect. In such a case, the defect is considered an incorrect-preference-def bug if, according
to the description, the associated failure occurs immediately after changing the preference value.
Otherwise, the defect is considered an incorrect-preference-use bug.

Table 2 reports on the examination results. In total, 2088 bugs were reported on GitHub for the
10 apps. Among those bugs, 383, or 18.3%, were related to preferences, with 67 being incorrect-
preference-def bugs and 316 being incorrect-preference-use bugs. While apps with relatively fewer

Preference-Wise Testing of Android Apps via Test Amplification 9

reported bugs like Douya, Launcher3 and Uhabits had slightly lower percentage of preference-
related bugs, all apps with more than 100 reported bugs had over 15% of their bugs related to
preferences. Overall, such results suggest a significant percentage of bugs reported on Android
apps are indeed related to preferences.

To answer question Q3, we examined settings screens from the 115 apps with APL preferences
and counted how many times each type of APL preference was used. Table 3 lists 6 preference
types that were the most frequently used in those apps. The top four preference types are standard
preference types provided by the APL, and they together account for 90.4% of all the preferences
used in the 115 apps. The bottom two preference types are supported by third party libraries, which
may be the reason for the significantly smaller numbers of their occurrences in the studied apps.
Overall, the results of this empirical study clearly show that preferences are widely used in

Android apps and a significant portion of bugs in those apps are indeed related to preferences,
which underlines the importance of, and the necessity for, effective preference-wise testing. Since
most settings in Android apps are of the six preference types listed in Table 3, Prefest focuses on
supporting the effective testing of those preference types in its current implementation.

5 PREFERENCE-WISE TESTING VIA TEST CASE AMPLIFICATION

Figure 4 depicts an overview of Prefest. Prefest takes the APK file of an App Under Test (AUT)
and a set of test cases for the AUT as the input, and it amplifies each test case with a group of
configurations under which the test case will execute differently. More concretely, first Prefest
identifies preferences that a test case depends on by symbolically analyzing the statements along the
execution trace of the test case (Section 5.1), then it discovers how the preferences can be accessed
at the GUI level via a combination of static and dynamic analysis of the AUT (Section 5.2), and in
the end it constructs appropriate configurations for each input test case in an iterative fashion to
cover more preference related branches of the AUT (Section 5.3). The final results produced by
Prefest include a group of amplified test cases and their execution outcomes.

The rest of this section describes in detail how Prefest achieves effective preference-wise testing
by amplifying test cases with appropriate configurations, and the description makes use of the
following notations. Let 𝑃 be the app under test, 𝑇 = {𝑡1, 𝑡2, . . . 𝑡𝑛} (𝑛 > 0) be the set of input

Table 3. Six preference types that were the most frequently used in the 115 apps with APL preferences.

For each type, the number of valid values a preference of that type typically can take (#value), the total

and average numbers of times preferences of that type were used in those apps, and the percentage of

all preferences used in those apps that are of the type. A CheckBoxPreference or SwitchPreference may only

take Boolean values (i.e., true or false), the sets of valid values for ListPreferences and SeekBarPreferences are

often small in size (i.e., containing fewer than a few hundred elements), while the sets of valid values for

EditTextPreferences and ColorPreferences typically are much larger (i.e., containing more than a few thousand

elements).

type #value total average percentage

CheckBoxPreference 2 851 7.4 37.2%
ListPreference small 557 4.8 24.3%
SwitchPreference 2 453 3.9 19.8%
EditTextPreference large 207 1.8 9.1%
ColorPreference large 33 0.3 1.6%
SeekBarPreference small 18 0.2 0.8%

Overall 2124 19.9 93.0%

10 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

test cases for 𝑃 , and Δ be the set of all preferences defined in 𝑃 . We model each preference 𝛿
(𝛿 ∈ Δ) using a 5-tuple ⟨type, key, title, entryValues, locators⟩, where type, key, and title are the
type, key and title of the preference, respectively, entryValues is the sorted set of possible entry
values the preference may have, while locators is the set of identified locators for the preference
(more about preference locators in Section 5.2). Let Θ be the union of all preferences’ entry values,
i.e., Θ = ∪𝛿∈Δ𝛿.entryValues. A configuration 𝜙 : Δ ↛ Θ assigns valid values to preferences, i.e.,
∀𝛿 ∈ 𝑑𝑜𝑚(𝜙) : 𝜙 (𝛿) ∈ 𝛿.entryValues, where 𝑑𝑜𝑚(𝜙) is the domain of 𝜙 . A configuration 𝜙 is
full if 𝑑𝑜𝑚(𝜙) = Δ and it is partial if 𝑑𝑜𝑚(𝜙) ⊂ Δ. Given two configurations 𝜙1 and 𝜙2, 𝜙1 is
compatible with 𝜙2 if all preferences defined in 𝜙2 are assigned with the same values by 𝜙1, i.e.,
∀𝛿 ∈ 𝑑𝑜𝑚(𝜙2) : 𝛿 ∈ 𝑑𝑜𝑚(𝜙1) ∧ 𝜙1 (𝛿) = 𝜙2 (𝛿). Each amplified test case is a pair ⟨𝑡, 𝜙⟩, where 𝑡 ∈ 𝑇
is a test case and 𝜙 is a full configuration.

5.1 Test-Relevant Preference Identification

According to our experience, a test case usually only interacts with a few preferences. It is therefore
understandable that not all changes to a configuration will cause a specific test case to execute
differently under that configuration. To make sure our amplification of the input test cases is
effective and efficient, Prefest first identifies preferences that are relevant to each test case 𝑡 ∈ 𝑇 :
A preference 𝛿 ∈ Δ is considered relevant to an amplified test case ⟨𝑡, 𝜙⟩ if at least one branch
condition executed by 𝑡 under 𝜙 is data-dependent on the value of 𝛿 . Let 𝑅⟨𝑡,𝜙 ⟩ (𝑅⟨𝑡,𝜙 ⟩ ⊆ Δ) be the
set of preferences relevant to ⟨𝑡, 𝜙⟩. The values of preferences in 𝑅⟨𝑡,𝜙 ⟩ can be essential in steering
𝑡 ’s execution under 𝜙 to take certain branches, while the importance of those preferences has been
largely neglected by existing approaches for Android testing.

Prefest applies a customized, lightweight symbolic analysis to identify the relevant preferences.
On the one hand, symbolic analysis is needed here to trackwhich and how preference values are used
in 𝑃 , since those values are usually accessed viamethod invocations on the SharedPreference singleton
object and an invocation may access the values of distinct preferences in various executions if the
key used in that invocation evaluates to different results. On the other hand, off-the-shelf symbolic
execution tools cannot be directly applied here, partly because of the scalability issues they suffer
from [24], and partly because of the event-driven nature as well as the underlying application
development framework (ADF) [40] of the apps.

Fig. 4. Overview of Prefest.

Preference-Wise Testing of Android Apps via Test Amplification 11

𝑠𝑡𝑚𝑡 ::= skip | stop | 𝑠𝑖𝑚𝑝𝑠 | 𝑖 𝑓 𝑠 | 𝑝𝑟𝑒 𝑓 𝑠 𝑠𝑖𝑚𝑝𝑠 ::= 𝑟𝑣 = 𝑒
𝑖 𝑓 𝑠 ::= if(𝑒) 𝑙1 else 𝑙2 𝑝𝑟𝑒 𝑓 𝑠 ::= 𝑠𝑣 = get(𝑒) | set(𝑒, 𝑒′)
𝑒 ::= 𝑐𝑜𝑛𝑠𝑡 | 𝑟𝑣 | 𝑠𝑣 | 𝑜𝑝 (𝑒) |𝑚𝑑 (𝑒)

𝑒 ∈ Expr 𝑐𝑜𝑛𝑠𝑡 ∈ Const 𝑟𝑣 ∈ RegVar 𝑠𝑣 ∈ SymVar 𝑒 ∈ Exprs 𝑜𝑝 ∈ Operator
𝑚𝑑 ∈ LibMethod 𝑠𝑖𝑚𝑝𝑠 ∈ SimpleStmt 𝑙1, 𝑙2 ∈ Label 𝑖 𝑓 𝑠 ∈ IfStmt 𝑝𝑟𝑒 𝑓 𝑠 ∈ PrefStmt
Var = RegVar ∪ SymVar

Fig. 5. Syntax of the core language. A statement is either a skip statement, a stop statement, a simple

statement, an if statement, or a preference access statement. A simple statement assigns the value of an

expression 𝑒 to a regular variable 𝑟𝑣 ; An if statement of form if(𝑒) 𝑙1 else 𝑙2 transfers the execution to 𝑙1 if

𝑒 has value true and 𝑙2 if 𝑒 has value false; A statement of form 𝑠𝑣 = get(𝑒) gets the value of a preference
by key 𝑒 and assigns the value to a symbolic variable 𝑠𝑣 ; A statement of form set(𝑒, 𝑒′) sets the value of a
preference by key 𝑒 with the value of 𝑒′.

Given the APK file of 𝑃 , Prefest first extracts the preference resource files from the APK with
the help of the jadx decompiler1, and then it parses the resource files to retrieve the collection Δ of
preferences defined in 𝑃 . For each preference, Prefest initializes its type, key, title, and entryValues

based on attributes from the corresponding resource file. Next, Prefest instruments app 𝑃 to log
the traces of its executions. For each test case 𝑡 ∈ 𝑇 , Prefest runs 𝑡 on the instrumented app under
the default configuration 𝜙0 and gathers not only the statements executed but also the library
APIs invoked during 𝑡 ’s execution. Based on the gathered information, Prefest unfolds the loops
and inlines the invocations to non-library methods in 𝑃 to construct a program 𝑃⟨𝑡,𝜙0 ⟩ that would
produce the identical execution as 𝑃 if executed under 𝜙0 with the same inputs as used in 𝑡 . The
following symbolic analysis is applied to 𝑃⟨𝑡,𝜙0 ⟩ . Figure 5 gives the syntax of the core language of
𝑃⟨𝑡,𝜙0 ⟩ and we will use the language to present the algorithm for the analysis. Note that switch
statements in 𝑃 are translated into nested if statements in 𝑃⟨𝑡,𝜙0 ⟩ in a natural way, and that this core
language contains no loops and only invocations to methods from libraries, since loops have been
unfolded and invocations to non-library methods have been inlined when constructing 𝑃⟨𝑡,𝜙0 ⟩ .
We denote program 𝑃⟨𝑡,𝜙0 ⟩ as a pair ⟨𝑆, 𝑁 ⟩, where 𝑆 : 𝐿𝑎𝑏𝑒𝑙 → 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 maps each label

to the corresponding statement, 𝑁 : 𝐿𝑎𝑏𝑒𝑙 → 𝐿𝑎𝑏𝑒𝑙 maps each label to the label of the next
statement to execute. Here, 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 is the set of statements contained in 𝑃⟨𝑡,𝜙0 ⟩ , each statement is
associated with a unique label, or id, and 𝐿𝑎𝑏𝑒𝑙 is the set of labels associated with those statements.
𝑙0 ∈ 𝐿𝑎𝑏𝑒𝑙 is the label of the first statement in 𝑃⟨𝑡,𝜙0 ⟩ . Let𝑀⟨𝑡,𝜙0 ⟩ : 𝐿𝑎𝑏𝑒𝑙 → 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 be a map that
projects each label 𝑙 of 𝑃⟨𝑡,𝜙0 ⟩ to a location in the source code of 𝑃 where the statement at 𝑆 (𝑙)
originally appears. From the execution trace of ⟨𝑡, 𝜙0⟩, we can easily derive a branching history
𝐵𝐻⟨𝑡,𝜙0 ⟩ : 𝐿𝑎𝑏𝑒𝑙𝑏 ↛ 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 that maps the label of each branch condition executed by ⟨𝑡, 𝜙0⟩
to its evaluation result during that execution. Here, 𝐿𝑎𝑏𝑒𝑙𝑏 ⊂ 𝐿𝑎𝑏𝑒𝑙 is the set of labels for the if
statements in 𝑃⟨𝑡,𝜙0 ⟩ .
A state ⟨𝑙, 𝜎, 𝜙, 𝐸𝐻 ⟩ of program 𝑃⟨𝑡,𝜙0 ⟩ contains the label 𝑙 of the next statement to execute, the

current environment 𝜎 : 𝑉𝑎𝑟 → 𝐸𝑥𝑝𝑟 that maps each variable to the expression encoding its
value, the active full configuration 𝜙 : 𝐾𝑒𝑦 → 𝐸𝑥𝑝𝑟 that maps the key of each preference to its
value, and the branch evaluation history 𝐸𝐻 : 𝐿𝑎𝑏𝑒𝑙𝑏 → 𝐸𝑥𝑝𝑟 that maps the label of each executed
branch condition to the symbolic value of the condition expression. The inference rules in Figure 6
present the operational semantics of the simple statements, if statements, and preference access
statements, where the notation “𝜎, 𝜙 ⊢ 𝑒 ⇒ 𝑒′” indicates that expression 𝑒 symbolically evaluates
to 𝑒′ under environment 𝜎 and configuration 𝜙 . Take rule 𝑠𝑖𝑚𝑝 as an example. The rule stipulates

1https://github.com/skylot/jadx

https://github.com/skylot/jadx

12 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

simp :
𝑆 (𝑙) = 𝑟𝑣 = 𝑒 𝜎, 𝜙 ⊢ 𝑒 ⇒ 𝑒′

⟨𝑙, 𝜎, 𝜙, 𝐸𝐻 ⟩ =[[⟨𝑆, 𝑁 ⟩]]⇒ ⟨𝑁 (𝑙), 𝜎 [𝑟𝑣 ↦→ 𝑒′], 𝜙, 𝐸𝐻 ⟩

if true :
𝑆 (𝑙) = if(𝑒) 𝑙1 else 𝑙2 𝜎, 𝜙 ⊢ 𝑒 ⇒ 𝑒′ 𝐵𝐻 (𝑙) = true

⟨𝑙, 𝜎, 𝜙, 𝐸𝐻 ⟩ =[[⟨𝑆, 𝑁 ⟩]]⇒ ⟨𝑙1, 𝜎, 𝜙, 𝐸𝐻 [𝑙 ↦→ 𝑒′]⟩

if
false

:
𝑆 (𝑙) = if(𝑒) 𝑙1 else 𝑙2 𝜎, 𝜙 ⊢ 𝑒 ⇒ 𝑒′ 𝐵𝐻 (𝑙) = false

⟨𝑙, 𝜎, 𝜙, 𝐸𝐻 ⟩ =[[⟨𝑆, 𝑁 ⟩]]⇒ ⟨𝑙2, 𝜎, 𝜙, 𝐸𝐻 [𝑙 ↦→ 𝑒′]⟩

pref get :
𝑆 (𝑙) = 𝑠𝑣 = get(𝑒) 𝜎, 𝜙 ⊢ 𝑒 ⇒ 𝑘 𝜙 (𝑘) = 𝑒′

⟨𝑙, 𝜎, 𝜙, 𝐸𝐻 ⟩ =[[⟨𝑆, 𝑁 ⟩]]⇒ ⟨𝑁 (𝑙), 𝜎 [𝑠𝑣 → 𝑒′], 𝜙, 𝐸𝐻 ⟩

pref set :
𝑆 (𝑙) = set(𝑒, 𝑒′) 𝜎, 𝜙 ⊢ 𝑒 ⇒ 𝑘 𝑘 ∈ 𝐾𝑒𝑦 𝜎, 𝜙 ⊢ 𝑒′ ⇒ 𝑒′′

⟨𝑙, 𝜎, 𝜙, 𝐸𝐻 ⟩ =[[⟨𝑁 (𝑙), 𝜎, 𝜙 [𝑘 → 𝑒′′], 𝐸𝐻 ⟩

Fig. 6. Operational semantics of the simple, if, and preference access statements in the core language presented

as a set of inference rules.

...
𝑙1: $r1 = "widget_"

...
𝑙2: $r2 = $r1 + "update_location_pref_key"

...
𝑙3: $r3 = SharedPreferences.getDefaultSharedPreferences()
𝑙4: $z0 = $r3.getBoolean($r2,0)

...
𝑙5: $z1 = !$z0
𝑙6: if($z1 == 0)

...

Listing 3. Excerpt from a test execution trace of app good-weather.

that, from a current state ⟨𝑙, 𝜎, 𝜙, 𝐸𝐻 ⟩, if the next statement to execute is a simple statement 𝑟𝑣 = 𝑒
and expression 𝑒 evaluates to 𝑒′ under the current environment 𝜎 and configuration 𝜙 , executing
the statement will transit the program to a new state ⟨𝑁 (𝑙), 𝜎 [𝑟𝑣 ↦→ 𝑒′], 𝜙, 𝐸𝐻 ⟩, where the next
statement to execute is at label 𝑁 (𝑙) and regular variable 𝑟𝑣 has value 𝑒′. Note that, at the beginning
of the symbolic execution, 𝜙 maps the key of each preference 𝛿 ∈ Δ to a unique symbolic value 𝜇𝛿 ,
i.e., ∀𝛿 : 𝛿 ∈ Δ→ 𝜙 (𝛿.𝑘𝑒𝑦) = 𝜇𝛿 .
At the end of the symbolic analysis of 𝑃⟨𝑡,𝜙0 ⟩ ’s execution, the final branch evaluation history,

denoted as 𝐸𝐻⟨𝑡,𝜙0 ⟩ , maps the label of each executed branch to the symbolic value of that branch’s
condition expression. From 𝐸𝐻⟨𝑡,𝜙0 ⟩ , Prefest can easily discover all the symbolic values, and
therefore the corresponding relevant preferences, that were used in evaluating the branch conditions
during ⟨𝑡, 𝜙0⟩’s execution.
Take app good-weather in Section 2 as an example. Listing 3 shows part of the execution trace

produced by a test 𝑡1 on the app under configuration 𝜙1: Statements at labels 𝑙1 and 𝑙2 construct
the key of preference Update location through string concatenation; Statement at 𝑙3 obtains the
singleton object of SharedPreferences; Statement at 𝑙4 invokes a library method getBoolean on the
singleton object with variable $𝑟2 as the key and assigns the obtained preference value to $𝑧0;
Statement at 𝑙5 assigns the negation of $𝑧0 to $𝑧1, which is then tested in the branch condition at

Preference-Wise Testing of Android Apps via Test Amplification 13

Table 4. Instance identification for settings screen instantiation patterns. For each of the four patterns, the

criterion to be used for identifying instances of the pattern, the id of the criterion (c-id), as well as the

associated preference resource file (prf) and anchor activity if an instance of the pattern has been successfully

identified.

pattern c-id criterion prf anchor

APA C-APA cls (𝑚1) ∈ 𝐴 ∧𝑚1 = oc (cls (𝑚1)) ∧ isAddP (𝑚2) arg (𝑚2) cls (𝑚1)
APF C-APF cls (𝑚1) ∈ 𝐴 ∧𝑚1 = oc (cls (𝑚1)) ∧𝑚2 ∈ init (cls (𝑚2)) arg (𝑚′2) cls (𝑚1)

∧cls (𝑚′1) = cls (𝑚2) ∧ cls (𝑚′1) ∈ 𝐹 ∧𝑚′1 = oc (cls (𝑚′1)) ∧ isAddP (𝑚′2)
SPF C-SPF cls (𝑚1) ∈ 𝐴 ∧𝑚1 = oc (cls (𝑚1)) ∧𝑚2 ∈ init (cls (𝑚2)) arg (𝑚′2) cls (𝑚1)

∧cls (𝑚′1) = cls (𝑚2) ∧ cls (𝑚′1) ∈ 𝐹 ∧𝑚′1 = ocP (cls (𝑚′1)) ∧ isSetP (𝑚′2)
LHA C-LHA cls (𝑚1) ∈ 𝐴 ∧𝑚1 = oc (cls (𝑚1)) ∧ isLoadH (𝑚2) ∧ cls (𝑚′1) ∈ 𝐹 arg (𝑚′2) cls (𝑚1)

∧cls (𝑚′1) ∈ fReferenced (𝑚2) ∧𝑚′1 = oc (cls (𝑚′1)) ∧ isAddP (𝑚′2)

𝑙6. By symbolically executing the program, Prefest is able to find out the symbolic value of the
branch condition at 𝑙6 is (!𝜇𝑢𝑙) == 0, where 𝜇𝑢𝑙 is the symbolic value of preference Update location.
Therefore, Prefest will consider the preference as relevant to test ⟨𝑡1, 𝜙1⟩.

5.2 Preference Locator Discovery

Prefest determines whether a test case 𝑡 ∈ 𝑇 should be amplified with a specific configuration 𝜙
(𝜙 ≠ 𝜙0) based on 𝑡 ’s execution result under 𝜙 , therefore it is critical for Prefest to be able to set
the preference values of 𝑃 accordingly before executing 𝑡 . Given that programmatically setting
preferences, e.g., by invoking methods on the SharedPreferences singleton object, risks breaking
the integrity of 𝑃 ’s state, Prefest always modifies preference values at the GUI level, so that all
configurations it generates in test case amplification are actually feasible from a user’s point of
view.

Prefest uses a set of locators to abstract information about how each preference of 𝑃 can be
accessed at the GUI level. A locator for a preference is a pair ⟨𝛼, 𝜉⟩, where 𝛼 is the anchor activity
of the preference’s containing hierarchy and 𝜉 is a sequence of texts from the app GUI that a user
needs to tap for navigating the app from 𝛼 to the screen where the preference’s corresponding
widget is displayed. Prefest discovers locators for preferences in two steps, namely static locator
discovery and dynamic locator discovery.

5.2.1 Static Locator Discovery. In static locator discovery, Prefest first analyzes 𝑃 ’s preference
resource files and the invocation relation between 𝑃 ’s methods to identify potential instances
of settings screen instantiation patterns, then constructs an initial set of candidate locators for
each defined preference, and in the end checks the validity of the candidate locators, i.e., whether
they can indeed help locate the preferences on 𝑃 ’s GUI, by following their guidance to access the
preferences.

Pattern Instance Identification. As explained in Section 3, programmers often follow four patterns
when instantiating settings screens based on preference hierarchies. To identify the anchor activities
of the preference hierarchies, Prefest examines the invocations in 𝑃 to specific methods and looks
for potential instances of those patterns based on a group of criteria.
Table 4 lists the criteria Prefest applies to identify instances of settings screen instantiation

patterns in 𝑃 . The definition of criteria makes use the following notations. 𝐶 is the set of all classes
in 𝑃 ,𝑀 is the set of all methods2, 𝐴 is the set of activity classes, and 𝐹 is the set of fragment classes;
Function 𝑖𝑛𝑖𝑡 : 𝐶 → 2𝑀 maps each class 𝑐 ∈ 𝐶 to its non-empty set of constructors; Function
2Prefest treats constructors as member methods with no return types.

14 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

Table 5. Important APIs for settings screen instantiation. For each group of APIs, a short description, the list

of APIs in that group, and a predicate that is defined on all APL APIs but returns true if and only if when

applied to an API from the group.

description APIs predicate

To add preferences PreferenceActivity.addPreferencesFromResource

PreferenceFragment.addPreferencesFromResource

isAddP

To set preferences PreferenceFragmentCompat.setPrefernecesFromResource isSetP

To load preference headers PreferenceActivity.loadHeadersFromResource isLoadH

𝑜𝑐 : 𝐴 ∪ 𝐹 → 𝑀 maps an activity or a fragment to its unique onCreate lifecycle method; Function
𝑜𝑐𝑝 : 𝐴 ∪ 𝐹 → 𝑀 maps an activity or a fragment to its unique onCreatePreferences lifecycle method;
Funciton 𝑐𝑙𝑠 : 𝑀 → 𝐶 maps each method to its defining class; When an instance of a pattern
has been identified, arg (𝑚) denotes the preference resource file that is used as the parameter to
invoke method𝑚 in the instance, and fReferenced (𝑚) denotes the list of Fragments referenced by
arg (𝑚). Note that, since certain APIs from the APL play important roles in implementing the
four patterns, we have also introduced three predicates, namely isAddP , isSetP , and isLoadH , to
facilitate the easy identification of those APIs. Table 5 provides more information about the APIs
and the corresponding predicates to identify them.
To identify potential instances of the four patterns listed in Table 4, Prefest first gathers 6 sets

𝑆𝐴, 𝑆𝐵 , 𝑆𝐶 , 𝑆𝐷 , 𝑆𝐸 , and 𝑆𝐹 of method pairs with invocation relation (𝑆𝐴, 𝑆𝐵, 𝑆𝐶 , 𝑆𝐷 , 𝑆𝐸, 𝑆𝐹 ⊆ 𝜏+). Here,
𝜏 ⊆ 𝑀 ×𝑀 is the invocation relation between 𝑃 ’s methods, i.e., given two methods𝑚1,𝑚2 ∈ 𝑀 ,
⟨𝑚1,𝑚2⟩ ∈ 𝜏 if and only 𝑚1 invokes 𝑚2 in its definition, and 𝜏+ is the transitive closure of 𝜏 ,
i.e., 𝜏+ = ∪∞𝑖=1𝜏

𝑖 . In each pair ⟨𝑚1,𝑚2⟩ ∈ 𝑆𝐴, 𝑚1 is the onCreate method of an activity class, and
𝑚2 is method addPreferencesFromResource; In each pair ⟨𝑚1,𝑚2⟩ ∈ 𝑆𝐵 ,𝑚1 is the onCreate method of
an activity class, and 𝑚2 is the constructor of a fragment class; In each pair ⟨𝑚1,𝑚2⟩ ∈ 𝑆𝐶 , 𝑚1
is the onCreate method of a fragment class, and𝑚2 is method addPreferencesFromResource; In each
pair ⟨𝑚1,𝑚2⟩ ∈ 𝑆𝐷 ,𝑚1 is the onCreatePreferences method of a fragment class, and𝑚2 is method
setPrefernecesFromResource; In each pair ⟨𝑚1,𝑚2⟩ ∈ 𝑆𝐸 , 𝑚1 is the onCreate method of an activity
class, and 𝑚2 is method loadHeadersFromResource; In each pair ⟨𝑚1,𝑚2⟩ ∈ 𝑆𝐹 , 𝑚1 is the onCreate

method of a fragment class, and𝑚2 is method addPreferencesFromResource. Then, Prefest examines
the pairs in 𝑆𝐴 and combinations of pairs from 𝑆𝐵 × 𝑆𝐶 , 𝑆𝐵 × 𝑆𝐷 , and 𝑆𝐸 × 𝑆𝐹 to identify instances
of patterns APA, APF, SPF, and LHA, respectively. A pair of methods 𝜌 = ⟨𝑚1,𝑚2⟩ (𝜌 ∈ 𝜏+) is
considered implementing pattern APA if criterion C-APA is satisfied, while two pairs of methods
𝜌 = ⟨𝑚1,𝑚2⟩ and 𝜌 ′ = ⟨𝑚′1,𝑚′2⟩ (𝜌, 𝜌 ′ ∈ 𝜏+) are considered implementing patterns APF, SPF, and
LHA, if criteria C-APF, C-SPF, and C-LHA are satisfied, respectively. For example, given 𝜌 and
𝜌 ′, if a fragment is instantiated inside the onCreate method of an Activity class according to 𝜌 and
API PreferenceFragment.addPreferencesFromResource is invoked by the onCreatemethod of that Fragment
class according to 𝜌 ′, the methods involved in 𝜌 and 𝜌 ′ satisfy criterion C-APF and implement
pattern APF.

Candidate Locator Construction. From the identified instances of settings screen instantiation
patterns, Prefest can easily derive the anchor activities associated with the preference resource
files, as indicated in Table 4. To construct candidate locators for a preference, Prefest still needs to
find out, when the associated anchor activity is active, what navigation text(s) need to be tapped
for the preference’s related widget to be displayed.
The pseudo code shown in Algorithm 1 describes how Prefest finds out such information step

by step. Taking an anchor activity act, a preference element elem from a resource file, and a list

Preference-Wise Testing of Android Apps via Test Amplification 15

Algorithm 1: Construction of candidate preference locators based on pattern instances.
Input: The list 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 of identified instances of settings screen instantiation patterns;
Output: A table 𝑙𝑜𝑐𝑎𝑡𝑜𝑟𝑠 that maps each preference key to the set of locators for that preference;

1 𝑙𝑜𝑐𝑎𝑡𝑜𝑟𝑠 ← { } ;
2 foreach 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ∈ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠:
3 𝑟𝑜𝑜𝑡𝐸𝑙𝑒𝑚← getRootElement(getResourceFile(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒));
4 getLocators (getAnchorActivity(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒), 𝑟𝑜𝑜𝑡𝐸𝑙𝑒𝑚, [], 𝑙𝑜𝑐𝑎𝑡𝑜𝑟𝑠);

5 Procedure getLocators(Activity 𝑎𝑐𝑡 , DOMElement 𝑒𝑙𝑒𝑚, List 𝑝𝑟𝑒𝑇𝑒𝑥𝑡𝑠 , Map 𝑙𝑜𝑐𝑎𝑡𝑜𝑟𝑠):
6 if 𝑒𝑙𝑒𝑚 is of type PreferenceScreen or preference-headers:
7 foreach 𝑒𝑙𝑒𝑚′ ∈ getChildElements(𝑒𝑙𝑒𝑚):
8 getLocators (𝑎𝑐𝑡, 𝑒𝑙𝑒𝑚′, 𝑝𝑟𝑒𝑇𝑒𝑥𝑡𝑠, 𝑙𝑜𝑐𝑎𝑡𝑜𝑟𝑠);
9 else if 𝑒𝑙𝑒𝑚 is of a primitive preference type:
10 𝑙𝑜𝑐𝑎𝑡𝑜𝑟𝑠 [𝑒𝑙𝑒𝑚.𝑘𝑒𝑦] ← 𝑙𝑜𝑐𝑎𝑡𝑜𝑟𝑠 [𝑒𝑙𝑒𝑚.𝑘𝑒𝑦] ∪ {⟨𝑎𝑐𝑡, 𝑝𝑟𝑒𝑇𝑒𝑥𝑡𝑠⟩} ;
11 else if 𝑒𝑙𝑒𝑚 is of type header:
12 𝑝𝑟𝑒𝑇𝑒𝑥𝑡𝑠′ ← append(𝑝𝑟𝑒𝑇𝑒𝑥𝑡𝑠, 𝑒𝑙𝑒𝑚.𝑡𝑖𝑡𝑙𝑒);
13 𝑒𝑙𝑒𝑚′ ← getRootElement(getResourceFileReferenced(𝑒𝑙𝑒𝑚));
14 getLocators (𝑎𝑐𝑡, 𝑒𝑙𝑒𝑚′, 𝑝𝑟𝑒𝑇𝑒𝑥𝑡𝑠′, 𝑙𝑜𝑐𝑎𝑡𝑜𝑟𝑠) ;

preTexts of preceding navigation texts to tap as the input, procedure getLocators collects the
navigation information for preferences defined in either the child elements of elem (including elem

itself) or the resource files referenced by those child elements and makes the information easily
accessible by preference keys via the output parameter locators: If elem is of type PreferenceScreen

or preference-headers (Line 6), the procedure is recursively applied to each of elem’s child elements
(Lines 7 and 8). Otherwise, if elem is of primitive types like SwitchPreference and ListPreference (Line
9), a candidate locator is constructed and associated to the key of the preference (Line 10). If elem
is of type header (Line 11), elem’s text is appended to preTexts (Line 12), and then the procedure
recursively processes the elements from the preference resource file referenced by elem (Lines 13
and 14). To collect the candidate locators for all preferences, Prefest iterates through the list of
identified pattern instances (Line 2) and uses the associated anchor activity, the root element of the
corresponding resource file, an empty list of preceding navigation texts, and an empty map as the
arguments to invoke procedure getLocators (Lines 3 and 4).

Candidate Locator Validation. Since both the identification of pattern instances and the construc-
tion of candidate preference locators as described above ignore the data- and control-flow in the
app code, a candidate locator ⟨𝛼0, 𝜉0⟩ constructed in this way for a preference 𝛿 may be invalid in
the sense that 𝜉0 does not actually help Prefest steer 𝑃 from 𝛼0 to 𝛿 ’s containing settings screen.
For instance, if 𝛿’s residing preference hierarchy is only linked to 𝛼0 during 𝛼0’s creation under

specific conditions, but the actual instance of 𝛼0 Prefest launches for preference setting purposes
never satisfies those conditions during preference-wise testing, candidate locators identified by
Algorithm 1 with anchor activity 𝛼0 for 𝛿 will not be really helpful since the desired preference
hierarchy is not even linked to the activity. To prune out such invalid candidate locators, Prefest
follows the guidance of each of those locators to check whether it can help the tool access the
corresponding preference as expected. Prefest discards all the invalid locators and retains at most
one valid locator for each preference.
Algorithm 2 shows how Prefest dynamically checks the validity of the candidate preference

locators. After some initialization (Line 1), Prefest first groups preference keys by their potential
locators (Lines 2 through 4). Next, for each locator, Prefest takes the keys of all preferences that may

16 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

Algorithm 2: Validation of candidate preference locators discovered via static detection.
Input: A map locators from each preference key to a set of candidate locators for that preference;
Output: A map validLocators from each preference key to a valid locator for that preference;

1 validLocators← { }; loc2Pref ← { };
2 foreach key ∈ locators.keys():
3 foreach locator ∈ locators[key]:
4 loc2Pref [locator]← loc2Pref [locator] ∪ {key} ;
5 foreach locator =⟨anchor, texts⟩ ∈ loc2Pref.keys():
6 keys← loc2Pref [locator];
7 srcActivity← launchActivity(anchor) ;
8 destScreen← tapTexts(srcActivity, texts) ;
9 matchedKeys← getMatchedKeys(destScreen, keys);

10 if destScreen != null ∧ |matchedKeys| ≥ 𝑁𝑡 :
11 foreach key’ ∈ matchedKeys:
12 if ¬validLocators.contains(key’):
13 validLocators[key’]← locator ;
14 return validLocators;

be accessible via the locator (Line 6), launches the anchor activity (Line 7), follows the navigation
texts of the locator (Line 8), and collects the keys of the preferences whose titles exactly match with
text elements shown on the destination screen (Line 9). If the navigation was successful and at least
𝑁𝑚 preferences (𝑁𝑚 is empirically set to 3 by default) can be matched, the destination screen is
considered a settings screen and the current locator is deemed valid for all the matched preferences
(Lines 10 through 13).
5.2.2 Dynamic Locator Discovery.
In case all the statically constructed candidate locators for a preference fail to validate, Prefest

tries to derive a valid locator for the preference by dynamically exploring 𝑃 ’s GUI.
Algorithm 3 shows how this is done in Prefest. First, Prefest gathers the anchor activities for the

preferences to locate and their subclasses (Line 1), which will be used as the starting points of the
exploration. The subclasses are also included here because they may share instance initialization
code with their super-classes and can therefore be used to load settings screens. Next, Prefest
launches each gathered activity and invokes procedure explore to start the exploration of the
app’s GUI from the activity (Lines 2 through 4). Procedure explore takes four arguments: a starting
activity act, a sequence preText of navigation texts that need to be tapped to transit the app from
the starting activity to the current screen, a set prefToLocate of preferences to locate, and a map
validLocators from each preference key to a valid locator or null (Line 5). The procedure returns
immediately if there are no preferences in prefToLocate to be located (Lines 6 and 7). When there
are more preferences to find locator for, Prefest first extracts the texts shown on the current screen
(Line 8). Then, Prefest matches the texts against the titles of preferences and, if the current screen
turns out to be a settings screen, finds a preference resource file that is most likely linked to the
current screen (Line 9). If such preference resource file is found (Line 10), we have constructed
valid locators for preferences displayed on the current screen: For each preference to locate that is
found on the screen (Line 11 and 12), arguments act and preTexts are used to construct a locator
for the preference (Line 13), and matched preferences are removed from prefToLocate (Line 14).
In view that programmers sometimes implement preference headers based on ordinary navigable

Preference-Wise Testing of Android Apps via Test Amplification 17

Algorithm 3: Preference locator discovery by dynamically exploring the app’s GUI.
Input: A map locators from preference keys to the sets of potential locators;
Input: The set prefToLocate of preferences that do not have any valid locator;
Input: A map validLocators from each preference key to a valid locator or null;

1 actToExplore← ∪p∈prefToLocatelocators[p] .𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦.𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ();
2 foreach act ∈ actToExplore:
3 currentAct← launchActivity(act);
4 explore (currentAct, [], prefToLocate, validLocators);

5 Procedure explore(Activity act, List preTexts, Set prefToLocate, Map validLocators):
6 if prefToLocate = ∅:
7 return;
8 candidateTitles← getTextViews();
9 bestMatch← getBestMatchingPRF(candidateTitles);

10 if bestMatch ≠ null:
11 matchedPrefs← getMatchedPrefs(candidateTitles, bestMatch);
12 foreach pref ∈ prefToLocate ∩ matchedPrefs:
13 validLocators[pref.key]← ⟨act, preTexts⟩;
14 prefToLocate← prefToLocate \ matchedPrefs;
15 foreach navigationText ∈ getNavigationTexts():
16 tap(navigationText);
17 preTexts’← append(preTexts, navigationText);
18 explore (act, preTexts’, prefToLocate);
19 back();
20 return

texts, Prefest also collects the navigable texts on the current screen (Line 15), follows each of those
texts (Lines 16 and 17), and explores the screens arrived at recursively (Line 18).

5.2.3 Generation of Amplified Test Cases. With the valid locators for preferences, Prefest is now
able to generate an amplified test case ⟨𝑡, 𝜙⟩ by prefixing to 𝑡 a sequence of test actions that set the
preferences to desired values as specified in 𝜙 .
Take app good-weather and its test case mentioned in Section 2 that changes the location as

an example. The app implements pattern LHA to instantiate its settings screen: A preference
headers resource file is loaded by the onCreate method of org.asdtm.goodweather.SettingsActivity.
The activity displays a list of navigation texts that can be tapped to switch to different settings
screens, and particularly, tapping text “Widget settings” will cause preference Update Location to
be displayed on the screen. Prefest is able to detect a valid locator for the preference, where the
anchor activity is org.asdtm.goodweather.SettingsActivity and the list of navigation texts includes
only “Widget settings”, and it generates test actions as shown in Listing 4 as a prefix to the original
test case. With the prefixed test actions, preference Update Location will be set to true before the
original test case starts. In the generated test actions, the anchor activity for the preference hierarchy
is first launched via command adb shell am start of the Android Debugging Bridge [15]. Then, the
navigation texts from the locator are tapped in order to open the settings screen for the preference.
Next, if the current value of the preference is false, the preference is tapped to change its value to
true. Similar test actions can be generated to set the values of other preferences, if necessary.

18 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

setting preferences
os.popen("adb shell am start org.asdtm.goodweather.SettingsActivity");
getElement("text(\"Widget settings\")").tap();
if (getElememt("text(\"Update location\")").checkEnable () != true)

getElememt("text(\"Update location\")").tap();
back();

Listing 4. Test actions constructed by Prefest to set preference Update location.

5.3 Target-Oriented Test Amplification

While the preferences that are relevant to a test case may be just a small portion of all preferences
defined in an app, exhaustively trying out all possible value combinations of those relevant prefer-
ences, e.g., by following a N-wise combinatorial strategy (N>1), is often still way too expensive and
uneconomical, in terms of the testing time, the amount of code covered, and the number of bugs de-
tected. In view of that, test case amplification in Prefest aims to exercise more preference-dependent
behaviors of apps, rather than to blindly exhaust all possible preference value combinations.

Prefest models app behaviors in terms of the set of code branches they cover, and it uses a
triple ⟨𝑙𝑜𝑐, 𝑒𝑥𝑝𝑟, 𝑣𝑎𝑙⟩ to abstract each code branch, where 𝑙𝑜𝑐 is a location in the app’s code, 𝑒𝑥𝑝𝑟
is an expression, and 𝑣𝑎𝑟 is a value. A branch 𝑏 = ⟨𝑙𝑜𝑐, 𝑒𝑥𝑝𝑟, 𝑣𝑎𝑙⟩ is covered by an execution if
the execution reaches 𝑙𝑜𝑐 and 𝑒𝑥𝑝𝑟 evaluates to 𝑣𝑎𝑙 at 𝑙𝑜𝑐 at least once during the execution; 𝑏 is
bypassed by an execution if the execution reaches 𝑙𝑜𝑐 but 𝑒𝑥𝑝𝑟 never evaluates to 𝑣𝑎𝑙 at 𝑙𝑜𝑐 during
the execution; and 𝑏 is missed by an execution if the execution never reaches 𝑙𝑜𝑐 . 𝑏 is called a target
branch, or just a target for brevity, if 𝑒𝑥𝑝𝑟 is preference-dependent, i.e., 𝑒𝑥𝑝𝑟 is data-dependent on
certain preferences.
In the rest of this section, we first define two types of branches, namely control and parameter

branches, that Prefest is concerned with, then describe how Prefest analyzes the executions of
𝑃 ’s amplified test cases to collect those branches, and in the end explain how Prefest generates
new amplified test cases for 𝑃 in iterations to cover more preference-related branches. Recall from
Section 5.1 that all input test cases are always first amplified with the default configuration by
Prefest.

5.3.1 Control and Parameter Branches. Branches that originate from constructs like conditionals
and loops within 𝑃 are called control branches. For each if statement with condition 𝑒1 at location
𝑙𝑜𝑐1, Prefest constructs two control branches ⟨𝑙𝑜𝑐1, 𝑒1, 𝑡𝑟𝑢𝑒⟩ and ⟨𝑙𝑜𝑐1, 𝑒1, 𝑓 𝑎𝑙𝑠𝑒⟩; For each switch
statement with expression 𝑒2 and 𝑘 case clauses at location 𝑙𝑜𝑐2, Prefest constructs 𝑘 control
branches ⟨𝑙𝑜𝑐2, 𝑒2, 𝑣𝑖⟩, where 𝑣𝑖 is the constant used in the 𝑖-th case clause (1 ≤ 𝑖 ≤ 𝑘); For each loop
statement with condition expression 𝑒3 at location 𝑙𝑜𝑐3, Prefest constructs two control branches
⟨𝑙𝑜𝑐3, 𝑒3, 𝑡𝑟𝑢𝑒⟩ and ⟨𝑙𝑜𝑐3, 𝑒3, 𝑓 𝑎𝑙𝑠𝑒⟩.
Recall that, for each amplified test case ⟨𝑡, 𝜙⟩ and the corresponding program 𝑃⟨𝑡,𝜙 ⟩ = ⟨𝑆 ′, 𝑁 ′⟩,

Prefest gathers via symbolic analysis a map 𝐸𝐻⟨𝑡,𝜙 ⟩ from the labels of executed if conditions to the
symbolic values of those conditions and a map 𝐵𝐻⟨𝑡,𝜙 ⟩ from the labels of executed if conditions to
their concrete Boolean values in the execution (see Section 5.1). The set Γ⟨𝑡,𝜙 ⟩ of control branches
covered by ⟨𝑡, 𝜙⟩ can therefore be calculated as Γ⟨𝑡,𝜙 ⟩ = {⟨𝑙𝑜𝑐, 𝑒𝑥𝑝𝑟, 𝑣𝑎𝑙⟩|∃𝑙 ∈ 𝑑𝑜𝑚(𝑆 ′) : 𝑀⟨𝑡,𝜙 ⟩ (𝑙) =
𝑙𝑜𝑐 ∧ 𝐵𝐻⟨𝑡,𝜙 ⟩ (𝑙) = 𝑣𝑎𝑙}, and the set Σ⟨𝑡,𝜙 ⟩ of control branches bypassed by ⟨𝑡, 𝜙⟩ can be calculated
as Σ⟨𝑡,𝜙 ⟩ = {⟨𝑙𝑜𝑐, 𝑒𝑥𝑝𝑟, 𝑣𝑎𝑙⟩|∃𝑙 ∈ 𝑑𝑜𝑚(𝑆 ′) : (𝑀⟨𝑡,𝜙 ⟩ (𝑙) = 𝑙𝑜𝑐) ∧∀𝑙 ∈ 𝑑𝑜𝑚(𝑆 ′) : (𝑀⟨𝑡,𝜙 ⟩ (𝑙) = 𝑙𝑜𝑐 =⇒
𝐵𝐻⟨𝑡,𝜙 ⟩ (𝑙) ≠ 𝑣𝑎𝑙)}.
If the actual parameters used in an invocation to a library method𝑚 at location 𝑙𝑜𝑐 are data-

dependent on a set Δ′ = {𝛿1, 𝛿2, . . . , 𝛿𝑘 } of preferences (𝑘 ≥ 1 ∧ Δ′ ⊆ Δ), the values of those

Preference-Wise Testing of Android Apps via Test Amplification 19

preferences before the invocation may affect which control branches will be covered during the
execution of𝑚. Prefest, however, does not have detailed information about such influences, since
the symbolic execution it applies treats all library methods as black-boxes. To cover as many target
control branches in𝑚 as possible, Prefest conservatively assumes distinct value combinations
for preferences in Δ′ at the invocation location will always cause 𝑚 to cover additional target
control branches. Correspondingly, let 𝑉𝑖 be the set of valid entry values for 𝛿𝑖 (1 ≤ 𝑖 ≤ 𝑘), Prefest
constructs a set Λ𝑙𝑜𝑐 = {⟨𝑙𝑜𝑐, 𝛿1 = 𝑣1 ∧ . . . ∧ 𝛿𝑘 = 𝑣𝑘 , 𝑡𝑟𝑢𝑒⟩|𝑣1 ∈ 𝑉1 ∧ . . . ∧ 𝑣𝑘 ∈ 𝑉𝑘 } of parameter

branches to capture the configurations under which the library method invocation should be
executed for it to be thoroughly tested. Note that all parameter branches are also target branches
by definition.

5.3.2 Generation of Candidate Amplifications to Cover Bypassed Targets. Prefest monitors and records
all targets that are covered or bypassed by the execution of each amplified test case. To produce
a new configuration under which an input test case 𝑡 will cover a previously bypassed target,
Prefest follows an idea similar to that adopted in symbolic-execution-based test generation. More
concretely, Prefest first constructs a constraint to encode the conditions that the configuration
should satisfy to drive 𝑡 to cover the bypassed target and then derives the desirable values for the
preferences based on solutions to the constraint.
Given an amplified test case ⟨𝑡, 𝜙⟩ and a control target 𝑐𝑡 = ⟨𝑙𝑜𝑐, 𝑒𝑥𝑝𝑟, 𝑣𝑎𝑙⟩ bypassed by ⟨𝑡, 𝜙⟩,

there exists by definition another control target 𝑐𝑡 ′ = ⟨𝑙𝑜𝑐, 𝑒𝑥𝑝𝑟, 𝑣𝑎𝑙 ′⟩ at the same location that
was covered by the amplified test case. In other words, there exists a label 𝑙 in 𝑃⟨𝑡,𝜙 ⟩ such that the
statement at 𝑙 was executed by ⟨𝑡, 𝜙⟩, label 𝑙 maps to location 𝑙𝑜𝑐 , and 𝑒𝑥𝑝𝑟 , i.e., 𝐸𝐻⟨𝑡,𝜙 ⟩ (𝑙), evaluated
to 𝑣𝑎𝑙 ′ at 𝑙 during the execution of ⟨𝑡, 𝜙⟩. To cover 𝑐𝑡 , Prefest tries to find a different configuration
𝜙 ′ such that the following two conditions are satisfied. First, the execution of ⟨𝑡, 𝜙 ′⟩ should follow
the same path as that of ⟨𝑡, 𝜙⟩ until reaching label 𝑙 ; Second, 𝐸𝐻⟨𝑡,𝜙 ′ ⟩ (𝑙 ′) should evaluate to 𝑣𝑎𝑙 , i.e.,
𝐸𝐻⟨𝑡,𝜙 ′ ⟩ (𝑙 ′) == 𝑣𝑎𝑙 , where 𝑙 ′ is the counterpart label of 𝑙 in 𝑃⟨𝑡,𝜙 ′ ⟩ . Both constructing a constraint
to encode the first condition and finding a solution to satisfy the conjunction of the two conditions,
however, can be extremely challenging or even infeasible in practice, due to limitations in existing
symbolic execution and constraint solving techniques. Prefest therefore always weakens the
constraint that it actually solves in finding the desirable configurations by omitting the first condition
while only retaining the constraint 𝐸𝐻⟨𝑡,𝜙 ′ ⟩ (𝑙 ′) == 𝑣𝑎𝑙 . To derive desirable configurations from the
weakened constraint, Prefest enumerates all valid assignments to the involved preferences and
evaluates the constraint under these assignments. All configurations that can make the constraint
hold are considered as candidate amplifications associated with target 𝑐𝑡 .

Similarly, to construct and solve a constraint that faithfully encodes the condition under which
a bypassed parameter target 𝑝𝑡 = ⟨𝑙𝑜𝑐, 𝑒𝑥𝑝𝑟, 𝑣𝑎𝑙⟩ will be covered by test case 𝑡 is also highly
challenging or even impractical. Therefore, Prefest requires instead that the constraint 𝑒𝑥𝑝𝑟 = 𝑣𝑎𝑙
to be satisfied at the beginning of 𝑡 , and it generates all value combinations of the preferences
referenced in 𝑒𝑥𝑝𝑟 as candidate amplifications associated with target 𝑝𝑡 .
Three things about the generation of candidate amplifications are worthy of special attention

here. First, due to the simplifications applied in the generation process, the produced candidate
amplifications may not be able to help the test cases cover their associated targets. Prefest therefore
runs the input test cases under the candidate amplifications to dynamically check whether they work
as expected. This process is referred to as amplification validation. Second, candidate amplifications
essentially define partial configurations.When validating an amplificationwith partial configuration
𝜙 ′′, Prefest sets the values of all preferences specified by 𝜙 ′′ accordingly, while reusing the existing
values for the other preferences defined in the app. Since different reused preference values may lead
to distinct actual executions of the app, to make sure we can reproduce the observed executions after

20 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

amplification validation, Prefest always records the values of all app preferences at the beginning
of each amplified test. Third, all assertions in the original test cases are disabled in the amplified
test cases because the assertions become obsolete in those test cases. As explained above, Prefest
makes sure that each amplified test case covers some targets that were not covered by the original
test cases. Given that the amplified test cases execute under different configurations and exercise
distinct behaviors, keeping the old assertions most likely will do more harm than good. Therefore,
we decided to discard those assertions. We leave a systematic evaluation of the new configurations’
impact on the existing assertions and the generation of new assertions for the amplified test cases
for future work, since the former involves investing a considerable amount of time and human
effort to understand the apps, the tests, and the assertions, while the latter is a long-standing
challenge in automated test case generation.

5.3.3 Test Case Amplification in Iterations. Prefest aims to amplify the input test cases for 𝑃 with a
group of configurations that can help the test cases cover more target branches. To keep the number
of produced result configurations small, Prefest adopts a greedy strategy so that amplifications
that are more likely to help cover more target branches get generated earlier. Algorithm 4 shows
how Prefest achieves that in iterations.
The algorithm uses three tables configs, allByPassed, and allCovered as both the input and the

output parameters, where configs maps each test case to the set of configurations to be used to
amplify the test case, allBypassed maps each amplified test case to the set of targets bypassed by the
test case and the constraints associated with those targets, while allCovered maps each amplified
test case to the set of targets it covers. When the algorithm starts, the input parameters contain
information gathered from amplifying each test case with the default configuration. Afterwards,
Prefest generates more amplifications in an iterative fashion. In each iteration, it first collects a
sorted set targetBranches of targets that are bypassed by existing amplified tests (Line 3), with targets
that are bypassed by more existing amplified test cases appearing earlier in set targetBranches. Next,
a nested while loop that implements a greedy algorithm is employed so that new configurations
that are more likely to help cover more bypassed targets are generated earlier (Lines 5 through 23).
The outer loop terminates if the inner loop cannot amplify the test cases to cover any previously
bypassed target (Lines 4, 19, and 23).

Each iteration of the inner while loop first finds a set curTargets of targets that are bypassed by a
group of amplified tests with compatible constraints and stores the found tests and their constraints
in curTestsAndConstraints (Lines 6 through 12). From the group of tests found in this way, Prefest
then selects the one that has the least number of covered targets (Line 13), solves its associated
constraint and constructs a suitable candidate amplification based on the solution (Line 14), and
executes the test with the constructed amplification (Line 15). Note that, during the execution
of the amplified test case, Prefest records the target branches newly covered and bypassed. If
the execution covers some previously bypassed targets (Line 16), the covered ones are removed
from targetBranches (Line 17), while allCovered, allBypassed, and configs are updated accordingly
(Lines 18). Otherwise, all branches in curTargets are removed from targetBranches and added to
allFailedTargetBranches (Lines 21 and 22). The reason for such design is that, some target branches
may not be reachable by manipulating just preference values, e.g., because their branch conditions
rely on specific user inputs or states of external environment; By excluding such targets, Prefest
avoids spending a long time on the unreachable targets.

In our previous work [35], test case amplification to cover the previously bypassed targets was
done in one pass, instead of in iterations, and a retry mechanism was installed in order to reattempt
the targets that the tool failed to cover in the only pass. In the latest implementation of Prefest, all
targets that the tool failed to cover during an iteration are collected into set allFailedTargetBranches

Preference-Wise Testing of Android Apps via Test Amplification 21

Algorithm 4: How Prefest amplifies test cases to cover more target branches in iterations.
Input: A table allBypassed that maps each amplified test case to the associated set of

⟨target, constraint⟩ pairs.
Input: A table allCovered that maps each amplified test case to the set of branches it covers.
Input: A table configs that maps each test case to the set of configurations to be used to

amplify the test case.

1 allFailedTargetBranches← ∅;
2 while true:
3 targetBranches← getBypassedByAll(configs, allBypassed, allCovered);
4 hasProgress← false;
5 while ¬targetBranches.isEmpty():
6 curTargets←{targetBranches[0]};
7 curTestsAndConstraints← getTestsAndConstraints(targetBranches[0]);
8 foreach 1 ≤ 𝑖 <targetBranches.size():
9 tmpTestsAndConstraints← getTestsAndConstraints(targetBranches[i]);

10 if isCompatible(curTestsAndConstraints, tmpTestsAndConstraints):
11 curTargets← curTargets ∪ {targetBranches[i]};
12 curTestsAndConstraints.merge(tmpTestsAndConstraints);
13 test, constraint← getWithLeastCovered(curTestsAndConstraints);
14 newConfig← solve(test, constraint);
15 covered’, bypassed’← execute(test, newConfig);
16 if covered’ ∩ targetBranches ≠ ∅:
17 targetBranches.remove(covered’);
18 update(test, newConfig, covered’, bypassed’, allCovered, allBypassed, configs);
19 hasProgress← true;
20 else:
21 targetBranches.remove(curTargets);
22 allFailedTargetBranches.add(curTargets);
23 if ¬hasProgress: break;
24 foreach failedTargetBranch ∈ allFailedTargetBranches \ allCovered:
25 tmpTestsAndConstraints← getTestsAndConstraints(failedTargetBranch);
26 test, constraint← getWithLeastCovered(tmpTestsAndConstraints);
27 newConfig← solve(test, constraint);
28 covered’, bypassed’← execute(test, newConfig);
29 if failedTargetBranch∈covered’:
30 update(test, newConfig, covered’, bypassed’, allCovered, allBypassed, configs);

(Line 22) and the same retry mechanism is applied to reattempt those targets after the iteration
has terminated (Lines 24 through 30). Particularly, for each target to reattempt (Line 24), Prefest
gathers the tests that have bypassed the target and the constraints under which the tests may be
able to cover the target (Line 25), selects the test that has the least number of covered targets (Line
26), constructs a new amplification with which the test might cover the current target (Line 27),
and executes the test with that amplification (Line 28). If the current target is actually covered by
the execution, the full configuration used to run the test is reported (Line 29 and 30). Compared

22 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

with amplifying the test cases in iterations, doing that in one pass has the drawback that targets at
locations not covered by any initial test executions will be completely ignored by the amplification
process.

5.4 System Preference Analysis

The description above mainly focuses on app preferences that users can exploit to customize app
behaviors and features. The Android platform also provides a set of preferences that enables such
customization at the system level. By interpreting the related accessing API methods, Prefest
also supports the handling of six system preferences that are often used, namely WiFi, bluetooth,
mobile data, GPS locating, network locating and music playing. Conceptually, Prefest treats these sys-
tem preferences as shared by all the Android apps and handles them in the same way as it handles
app preferences. Therefore, we do not differentiate system and app preferences when describing the
experiments we conducted to evaluate Prefest or reporting the experimental results in Section 6.

5.5 Implementation

We implemented our approach into a tool, also named Prefest. Taking as the input an Android app
and a group of test cases, Prefest amplifies the input test cases with necessary configurations to
exercise more target branches in the app. At the moment, Prefest accepts input test cases written
in the Espresso3 or Appium4 format, be they manually written by developers or automatically
generated by testing tools. The Espresso testing framework, provided as part of the official Android
development toolkit, defines APIs for writing UI tests that simulate user interactions within Android
apps, while Appium is a widely-used open source test automation framework, which allows users
to test native Android apps without the SDK or rebuilding their apps. Although steps like test-
relevant preference identification in preference-wise testing with Prefest can be integrated into
an automated test generation tool to slightly enhance the efficiency of test case amplification, the
integration will cause Prefest to be tightly bound with the other tools and limit its applicability.
We therefore design Prefest to take existing test cases as the input. Test cases generated by tools
like AndroidRipper [3], 𝐴3

E [7] and Stoat [54] can be easily translated into the Espresso and/or
Appium format and then fed to Prefest.

In its current implementation, Prefest supports preferences of types SwitchPreference, CheckBoxPref-
erence, ListPreference, EditTextPreference and SeekbarPreference. Comparedwith our previouswork [35],
the support for SeekbarPreference was added since SeekbarPreferences are widely used in Android
apps (see Section 4). We leave adding the support for other types of preferences into Prefest for
future work.
At the moment, amplification test actions generated by Prefest open anchor activities via the

Android Debugging Bridge command, but activities with restricted permissions are not directly
launchable after Android 7. There are two possible ways to enable Prefest to work even in the face
of the restriction. First, if Prefest is used by the developers of an app, they may build a special
version of the app where the “exported” attributes of the anchor activities are set to true to lift the
restriction. Second, information about the steps needed for opening each anchor activity could be
provided as extra input to Prefest. While providing such extra information increases the costs of
using Prefest, the additional costs are most likely moderate and acceptable to the users.

3https://developer.android.com/training/testing/espresso
4https://http://appium.io/

https://developer.android.com/training/testing/espresso
https://http://appium.io/

Preference-Wise Testing of Android Apps via Test Amplification 23

6 EVALUATION

To gain first-hand knowledge about how Prefest supports preference-wise testing in practice, we
conducted comprehensive experiments where Prefest is applied to amplify tests for a wide range
of Android apps. Our experiments aim to answer the following research questions:
RQ1: How effective is Prefest? The main purpose of Prefest is to automatically amplify existing

tests with new configurations so that they exercise more preference-related behaviors of
Android apps. In RQ1, we assess to what extent amplifications produced by Prefest can help
existing tests cover more code and detect more bugs that are related to preferences;

RQ2: How efficient is Prefest? In RQ2, we study the costs in time for test amplification with
Prefest;

RQ3: How does important design decisions in Prefest affect its effectiveness and efficiency?
In RQ3, we examine how and to what extent test-relevant preference identification and
target-oriented test amplification affect Prefest’s effectiveness and efficiency.

RQ4: How well does Prefest work in amplifying test cases manually prepared by programmers?
We use automatically generated test cases as seeds for test amplification in answering RQ1,
RQ2, and RQ3 so as to guard against possible bias in selection of apps and their test cases.
In RQ4, we study how well Prefest works on test cases that are manually prepared by
programmers.

6.1 Subject Apps and Tests

We prepared subject apps in two phases, with the first phase focusing on selecting apps for
answering research questions RQ1, RQ2, and RQ3, and the second phase focusing on selecting apps
for answering research question RQ4.
More concretely, we constructed in the first phase an initial pool that contains 340 apps from

both previous research [43, 49, 52] and a popular list of open-source Android apps on GitHub [46].
Among those apps, 66 were excluded because they are duplicates or missing, 26 were excluded
because they are too old to compile, 145 were excluded because they contain fewer than five
preferences, and 19 were excluded because they are not compatible with Android API level 19,
and 44 were excluded because Stoat achieved instruction coverage lower than 20% on those apps.
Here, the requirement for compatibility with Android API level 19 was critical in our experiments,
since we employed the Stoat tool to automatically generate GUI tests for Android apps, and Stoat
produces the best test generation results at Android API level 19. We decided to utilize Stoat to
prepare the subject tests for our experiments because it was a state-of-the-art automated Android
test generation tool and it was utilized in various previous research studies [20, 23, 45, 57] to prepare
GUI tests for Android apps. We then applied Stoat to generate tests for the remaining 84 apps.
Each run of Stoat on a particular app took two hours, with one hour being spent on GUI exploring
and the other on Markov Chain Monte Carlo (MCMC) sampling; Each test suite generated by Stoat
contained at most 30 tests and each test has at most 30 events in one sampling iteration. Based on
the test generation results, 13 apps were excluded since Stoat crashed for over 30 times during the
1 hour GUI exploration, 31 apps were excluded since the tests generated for each of those apps
covered less than 20% of the app’s code. In this way, we were left with 40 apps at the end of the
first phase. Among those 40 apps, 28 were available in the Google Play store [17] and 8 of them
were popular apps each with over 1 million downloads. Only 5 apps among the 40, however, had
more than 3 programmer-written GUI test cases.

To gather more subjects to be used in addressing RQ4, we looked for additional apps with more
than a couple programmer-written GUI test cases on GitHub in the second phase. Particularly, we
first searched GitHub for projects with keywords “android application” and “android app” and then

24 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

Table 6. Subject apps and their test cases automatically generated by Stoat. For each app, its id, version,

the numbers of lines of code (#i), branches (#b), and defined preferences (#p) in the app, the number of test

cases generated by Stoat for the app (#tc), and the following information about the generated test cases:

The instruction (%i) and branch (%b) coverage achieved, the number of relevant preferences (#rp) and the

ratio of that number to #p (%rp), the number of collected target branches (#tb), the number of covered target

branches (#tbc) and the ratio of that number to #tb (%tbc), and the time in minutes needed to run the tests

(t). Note that #rp may be larger than #p, leading to %rp values greater than 100%, if the tests access also

system preferences.

id app ver #i #b #p Stoat

#tc %i %b #rp %rp #tb #tbc %tbc t

A01 a2dpvolume 2.13.0.4 18324 1443 15 180 40.0% 17.4% 7 46.7% 48 27 56.3% 73.4
A02 Adaway 4.3.0 16189 1162 19 150 41.1% 28.9% 9 47.4% 18 14 77.8% 71.3
A03 Alwayson 0.9.5.2 15379 1335 29 240 44.5% 30.7% 24 82.8% 72 57 79.2% 120.7
A04 AmazeFileManager 3.3.0-rc1 80767 6735 31 210 20.6% 15.0% 19 61.3% 88 45 51.1% 137.8
A05 amme 2018.11.15.987 93689 6449 34 180 25.3% 17.9% 9 26.5% 39 18 46.2% 105.2
A06 Anki-Android 2.9-alpha-54 128890 10155 96 210 33.1% 22.7% 19 19.8% 72 36 50.0% 144.8
A07 AntennaPod 1.7.1 38421 3431 34 180 33.0% 23.5% 14 41.2% 44 26 59.1% 73.4
A08 APhotoManager 0.7.2.181027 47512 4889 25 150 39.0% 26.8% 19 76.0% 154 80 51.9% 71.1
A09 avare 8.1.2 138689 8610 83 120 30.2% 12.5% 46 55.4% 132 77 58.3% 70.3
A10 CalendarNotification 5.0.5 51317 3319 43 240 46.4% 34.4% 21 48.8% 52 27 51.9% 95.7
A11 commons 2.9 42439 2490 5 270 25.8% 15.0% 2 40.0% 10 8 80.0% 101.5
A12 connectbot 1.9.5-35 70864 3756 26 390 23.8% 22.5% 15 57.7% 48 26 54.2% 127.9
A13 FanFictionReader 1.58a 27910 1946 7 240 31.8% 21.9% 5 71.4% 26 14 53.8% 94.5
A14 Fillup 1.7.2 18141 3932 6 210 21.1% 16.5% 4 66.7% 32 8 25.0% 63.2
A15 forecast 1.6.2 8331 532 15 300 57.9% 40.8% 16 106.7% 74 39 52.7% 137.7
A16 good-weather 4.4 11195 678 11 360 59.9% 34.4% 8 72.7% 22 11 50.0% 137.2
A17 hn-android 5.0 14790 1298 5 240 47.8% 34.3% 5 100.0% 37 18 48.6% 80.5
A18 KISS 3.7.2 20003 1823 36 360 47.4% 34.3% 23 69.4% 83 48 43.2% 150.7
A19 materialistic 3.2 30085 2587 37 210 44.3% 26.1% 17 45.9% 66 43 65.2% 113.1
A20 movianremote 1.1.0 874 40 8 180 77.6% 55.0% 0 0.0% 0 0 0.0% 119
A21 mupen64plus 3.0.87-beta 58716 5080 165 330 28.7% 17.4% 30 18.2% 102 60 58.8% 197.9
A22 MyExpenses r410 150889 13245 36 390 19.7% 10.3% 18 50.0% 49 28 57.1% 223.3
A23 nanoConverter 0.7.87 8508 527 6 210 32.8% 31.9% 7 116.7% 68 49 72.1% 121.6
A24 nextcloud 3.12.0 184155 15348 6 300 18.5% 12.1% 0 0.0% 0 0 0.0% 109.2
A25 nextcloud-news 0.9.9.36 36241 2112 18 420 23.9% 13.1% 6 33.3% 23 12 52.2% 100.7
A26 NotePad 1.0.2 7722 753 6 321 52.0% 39.8% 6 100.0% 133 82 61.7% 104.4
A27 Omni-Notes 5.4.4 34993 2895 23 330 25.5% 21.7% 10 43.5% 38 19 50.0% 88.5
A28 OpenBikeSharing 1.10.0 5529 363 5 180 58.8% 47.9% 4 80.0% 31 24 77.4% 91.5
A29 openhab 2.12.18 64089 6175 20 390 27.5% 18.2% 10 50.0% 32 16 50.0% 168.8
A30 opensudoku 2.5.2 17606 1328 14 120 44.6% 32.5% 10 71.4% 36 23 63.9% 65.3
A31 Radiobeacon 0.8.18 36252 2171 20 180 37.2% 19.9% 11 55.0% 44 31 70.5% 117.4
A32 RedReader 1.9.9 59012 4984 62 240 32.8% 24.9% 27 43.5% 83 35 42.2% 77.2
A33 reference-browser 1.0.2047 18771 896 7 390 27.1% 5.2% 2 28.6% 4 2 50.0% 94.5
A34 runnerup 1.90.1 75863 5878 67 150 20.2% 13.7% 10 14.9% 26 14 53.8% 92.7
A35 Signal-Android 4.33.0 237215 16644 40 450 30.6% 14.3% 17 42.5% 52 28 53.8% 245.9
A36 smsdroid 1.7.7 12709 957 33 360 43.0% 30.0% 14 42.4% 26 15 57.7% 139.5
A37 SuntimesWidget 0.13.4 148810 11221 44 180 24.6% 15.2% 21 47.7% 83 43 51.8% 81.7
A38 TapAndTurn 2.8.0 3043 270 5 300 53.7% 29.6% 1 20.0% 2 1 50.0% 116.6
A39 Timber 1.6 55262 4307 11 240 25.4% 15.1% 7 63.6% 30 16 53.3% 89.5
A40 TintBrowser 1.8.1 33074 7558 22 210 27.0% 16.2% 9 40.9% 32 19 59.4% 65.1
A41 uhabit 1.7.9 20107 1637 11 300 54.8% 28.5% 2 18.2% 6 3 50.0% 100.7
A42 vanilla 1.0.80 48501 4801 36 270 45.5% 35.2% 29 80.6% 98 48 49.0% 109.7
A43 websms 4.9.5 10839 1030 35 390 33.0% 26.9% 22 62.9% 47 37 78.7% 211.5
A44 WhereYouGo 0.9.3 27066 2283 47 150 38.6% 26.7% 16 34.0% 40 25 62.5% 71.3
A45 WikiPedia 2.7.237 105509 7334 53 180 43.1% 27.3% 23 43.4% 62 36 58.1% 122.7

Overall – 2333635 186407 1357 11301 30.1% 19.0% 594 43.9% 2264 1288 56.9% 5102.9

Preference-Wise Testing of Android Apps via Test Amplification 25

gathered all the matched projects with over 50 stars. This produced a list of 1857 apps. Among
those apps, 127 were excluded because they were duplicates or unavailable for download, 1697 were
excluded because they each had fewer than 3 programmer-written GUI test cases, 12 were excluded
because they contained fewer than five preferences, 6 were excluded because over 80% of their test
cases were out of date and did not match the apps’ source code, and 5 were excluded because they
cannot be compiled due to problems like missing license key or missing Google Play service key.
Since only ten apps were left after the pruning, we slightly relaxed the selection criteria, i.e., we no
longer required compatibility with Android API level 19, and retained all the ten apps. Although
we started with 1857 apps in total, we were left with only 10 apps at the end of the second phase
mainly because very few Android apps on GitHub have more than a couple of GUI test cases. This
phenomena, however, was in line with the observations made by Pecorelli et al. [47].

Since the two sets of apps gathered in the two phases had 5 apps, namely AntennaPod, connectbot,
KISS, Omni-Notes and SuntimesWidget, in common, we collected in total 45 subject apps in the
end, and we also applied the same process as described above to generate test cases for the 5 new
apps found in the second phase using Stoat. Table 6 lists the 45 apps. For each app, the table
provides basic information about both the app and the tests generated by Stoat for it. The size of
the apps varies between 874 and over 237K instructions, or between 40 and over 16K branches5,
and the number of preferences defined in those apps ranges between 5 and 165. There is therefore
a considerable amount of diversity with the subjects, making our experiments representative of
Prefest’s behaviors on a wide range of apps. The 11,301 initial test cases generated by Stoat take
in total 5,102.9 minutes to run. The overall instruction and branch coverage achieved by the tests
was 30.1% and 19.0%, respectively. More importantly, while the apps have defined 1,357 preferences
in total, only 594, or 43.9%, of them were actually relevant to the generated tests, which confirms
our observation explained in Section 1 that each test case typically interacts with only a small
number of preferences defined in the app. When executed under the default preference settings, the
generated tests revealed in total 2264 target branches and covered 1288, or 56.9%, of those target
branches.
For each subject app with at least three programmer-written GUI test cases, Table 7 lists the

basic information about the app and its associated programmer-written tests. Overall, programmers
have written in total 360 tests for the apps, and most characteristics of the programmer-written
tests were comparable to those of the automatically generated tests. The size of these apps varies
between around 18.7K and over 184.1K instructions, or between 896 and over 15.3K branches, and
their numbers of defined preferences range between 6 and 44; While the apps have defined 250
preferences in total, only 120, or 48%, of them were relevant to the tests; When executed under the
default preference settings, the generated tests revealed in total 418 target branches and covered
243, or 58.1%, of those target branches. However, the tests cover only 25.5% and 15.5% of the app
instructions and branches, respectively. While test cases with lower coverage may be common
for open-source Android apps, we expect the test cases for commercial apps to have much better
quality and achieve much higher coverage. Using these apps and their programmer-written test
cases as the subject therefore constitutes a major threat to the external validity of our findings with
respect to RQ4. We discuss further this threat in Section 6.4.
To understand to what extent programmers test preference-related code in their apps, we

manually examined the tests that explicitly mention “preference” in their names—we refer to
such tests as preference-oriented tests. We make the following two observations. First, 119, or
33.1%, of the programmer-written tests were actually preference-oriented, and all of the ten apps,

5The JaCoCo library (https://www.eclemma.org/jacoco/) was employed in this work to measure app size as well as instruction
and branch coverage of tests.

https://www.eclemma.org/jacoco/

26 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

Table 7. Subject apps with at least three programmer-written GUI test cases. For each app, the basic infor-

mation about both the app and its associated programmer-written test cases, as was reported in Table 6,

as well as the number of preference-oriented tests (#tc’) and the number of preferences relevant to those

preference-oriented test cases (#rp’).

id app ver #i #b #p Programmer-written

#tc %i %b #rp %rp #tb #tbc %tbc t #tc’ #rp’

A07 AntennaPod 1.7.1 38421 3431 34 54 24.6% 16.2% 15 44.1% 53 36 67.9% 13.2 29 10
A12 connectbot 1.9.5-35 70864 3756 26 10 22.1% 18.2% 13 50.0% 38 20 52.6% 0.9 0 0
A18 KISS 3.7.2 20003 1823 36 16 32.0% 21.3% 21 58.3% 64 33 51.6% 0.3 2 21
A22 MyExpenses r410 150889 13245 36 81 29.5% 16.7% 20 55.6% 62 34 54.8% 3.8 14 7
A24 nextcloud 3.12.0 184155 15348 6 36 18.8% 10.4% 0 0.0% 0 0 0.0% 2.3 0 0
A25 nextcloud-news 0.9.9.36 36241 2112 18 17 31.0% 22.1% 11 61.1% 31 16 51.6% 1.5 5 7
A27 Omni-Notes 5.4.4 34993 2895 23 15 25.1% 19.5% 9 39.1% 36 18 50.0% 1.0 3 4
A29 openhab 2.12.18 64089 6175 20 7 24.7% 15.2% 7 35.0% 22 13 59.1% 0.7 2 3
A33 reference-browser 1.0.2047 18771 896 7 21 39.8% 15.8% 2 28.6% 4 2 50.0% 2.8 6 2
A37 SuntimesWidget 0.13.4 148810 11221 44 103 27.9% 16.7% 22 50.0% 108 71 65.7% 5.0 58 15

Overall - 767236 60902 250 360 25.5% 15.5% 120 48.0% 418 243 58.1% 31.5 119 69

except connectbot and nextcloud, had at least one preference-oriented test, which suggests that,
when programmers do write test cases for their apps, they tend to take preferences into account.
Second, most of the preference-oriented tests are superficial in the sense that they seldom check
how preferences affect app behaviors, which suggests that, even if programmers are aware of the
importance of preference-wise testing, the tests they write are insufficient for detecting bugs related
to preferences. In particular, among the 119 preference-oriented test cases, 13 (2 from KISS, 2 from
MyExpense, 3 from Omni-Note and 6 from reference-browser) only navigated to, but never interacted
with, the settings screens, and 77 (26 from AntennaPod and 51 from SuntimesWidget) simply checked
read-/write-access to the preference values, without exercising other preference-related behaviors
directly. Such results emphasize that Android developers are in dire need of help to conduct effective
preference-wise testing.

6.2 Experimental Setup

To answer RQ1 and RQ2, we applied Prefest to amplify the tests automatically generated by Stoat
for the 45 subject apps.

To answer RQ3, we first modified Prefest to produce three variant test amplification tools as the
following:

(1) Prefest-cr works in the same way as Prefest except that it performs 2-way combinatorial
testing over preferences relevant to each existing amplified test, instead of conducting target-
oriented test amplification; That is, given the initial amplified test ⟨𝑡, 𝜙0⟩, Prefest-cr gener-
ates a group Φ of configurations for 𝑡 such that ∀𝛿1, 𝛿2 ∈ 𝑅⟨𝑡,𝜙0 ⟩ : ∀𝑣1 ∈ 𝛿1 .entryValue, 𝑣2 ∈
𝛿2.entryValue : ∃𝜙 ′ ∈ Φ : 𝜙 ′ (𝛿1) = 𝑣1 ∧ 𝜙 ′ (𝛿2) = 𝑣2.

(2) Prefest-ca also performs 2-way combinatorial testing in amplifying tests, but it generates a
group of configurations for a test such that each pair of all preference values is included
at least once; That is, given the amplified test ⟨𝑡, 𝜙0⟩, Prefest-ca generates a group Φ′ of
configurations for 𝑡 such that ∀𝛿1, 𝛿2 ∈ Δ : ∀𝑣1 ∈ 𝛿1.entryValue, 𝑣2 ∈ 𝛿2 .entryValue : ∃𝜙 ′ ∈
Φ′ : 𝜙 ′ (𝛿1) = 𝑣1 ∧ 𝜙 ′ (𝛿2) = 𝑣2.

(3) Prefest-nd is much less sophisticated and amplifies each input test case with a single
configuration where each preference is randomly set to a non-default value.

Preference-Wise Testing of Android Apps via Test Amplification 27

We then compared the test amplification results produced by Prefest and the three variants on
13 subjects, including 8 apps that we investigated already in our previous work [35] and 5 extra
apps where Prefest was able to detect bugs. Given that the total number of 2-way combinations of
preference values can be astronomical, especially when some preferences that may take a relatively
large amount of possible values are present, in our previous work [35] we applied Prefest-ca
and Prefest-cr on only 8 subject apps, namely, a2dpvolume (A01), Alwayson (A03), good-weather
(A16), Notepad (A23), opensudoku (A26), Radiobeacon (A27), SuntimesWidget (A32), and Wikipedia

(A40), and considered at most two possible values for each preference when building the 2-way
combinations, with one being the default value and the other being randomly selected from the
remaining entry values. In this work, we also applied these tools to the subject apps where Prefest
can detect bugs and compared the tools in terms of their capability to detect bugs.
To answer RQ4, we applied Prefest to amplify the tests written by programmers for the 10

subject apps listed in Table 7.
All experiments were conducted on a desktop machine with 8GB RAM and 2.0GHz quad-core

processor running Windows 10, and the Android emulator to run the test cases of apps was
configured with 2GB RAM and the X86 ABI image.

6.3 Experimental Results

This section reports on the results from experiments.

6.3.1 RQ1: Effectiveness. Table 8 lists, for each subject app, the basic information about the am-
plification results produced by Prefest, and the box plot in Figure 7 shows the distribution of
improvements Prefest achieved in terms of various metrics. In total, Prefest generated 919 ampli-
fied test cases for the apps, averaging to 20.4 amplified test cases per app.
The amplified test cases helped raise the overall instruction and branch coverage by 9.3% and

15.3%, respectively. Considering that Stoat is a state-of-the-art test generation tool for Android apps,
the improvement in code coverage achieved by Prefest is significant. In particular, improvements
of over 10% in instruction and branch coverage were observed on 21 and 31 apps, respectively,
and improvements of less than 3% in both instruction and branch coverage were only observed
on 4 apps, namely apps commons (A11), movianremote (A20), nextcloud (A24) and uhabit (A41).
movianremote accesses the values of its preferences via inter-component communication, instead
of by calling methods on the shared SharedPreferences singleton object, but Prefest does not handle
such special mechanism in its current implementation; No target branches were revealed by the
input test cases on app nextcloud; As for apps commons and uhabit, the improvements were small
partly because their input test cases have only a few relevant preferences and partly because the
amplified test cases for those apps share most behaviors with the original test cases. It is also worth
mentioning that, for appsAnki-Android (A06), avare (A09), Signal-Android (A35) and SuntimesWidget

(A37), although the improvements of 14.8%, 12.5%, 9.2%, 11.7% in instruction coverage and 17.6%,
20.2%, 17.5% and 21.2% in branch coverage may not seem huge, the absolute numbers of additional
instructions and branches that are covered by the amplified test cases are actually substantial,
considering that each of these apps has more than 100K instructions and 10K branches.

Although the number of relevant preferences did not change after amplification on 24 apps, that
number did increase by more than 10% on 14 apps, achieving an overall improvement of 9.8%. Such
significant increase indicates that the amplifications enabled the test cases to check the influence
of quite some additional preferences on app behaviors; Meanwhile, the amplified test cases raised
the percentage of covered target branches on all but two apps, achieving an overall improvement
of 49.9%. The huge raise suggests that the amplifications enabled the test cases to exercise the
different choices at various target branches much more thoroughly. Generally speaking, we believe

28 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

% T B C

% B

% I

2 5 % 7 5 %0 % 5 0 % 1 0 0 %
I m p r o v e m e n t

Fig. 7. Distribution of the improvements achieved by Prefest in terms of instruction (%i), branch (%b), and

target branch (%tbc) coverage.

Preference-Wise Testing of Android Apps via Test Amplification 29

Table 8. Test amplification results produced by Prefest on automatically generated test cases. For each

app, its id, the number of amplified test cases generated (#tc), the information about the whole suite of test

cases after amplification (including %i, %b, #rp, #tb, and %tbc, as reported in Table 6 for tests generated by

Stoat), and the information about the amplification process with Prefest: The number of iterations Prefest

went through in amplifying the test cases (#ite), the amplification time in minutes (t), and the breakdown

of that to the time spent on test-relevant preference discovery (td), preference locator discovery (tl), and

target-oriented test amplification (ta). Values in the brackets are calculated as (𝑚𝑎 −𝑚𝑏)/𝑚𝑏 , where𝑚𝑏

and𝑚𝑎 are the measurements before and after test amplification, and they indicate how much Prefest has

improved the measurements.

id #tc %i %b #pr #tb %tbc #ite t td tl ta

A01 10 (5.6%) 41.6 (4.0%) 20.7 (19.0%) 8 (14.3%) 60 (25.0%) 93.3 (65.9%) 3 87.0 73.9 2.8 10.3
A02 4 (2.7%) 41.8 (1.7%) 30.4 (5.2%) 9 (0.0%) 18 (0.0%) 100.0 (28.6%) 1 77.7 71.7 3.4 2.6
A03 19 (7.9%) 48 (7.9%) 34.5 (12.4%) 24 (0.0%) 74 (2.8%) 93.2 (17.8%) 2 152.3 121.4 7.8 23.1
A04 29 (13.8%) 23.7 (15.0%) 17.7 (18.0%) 21 (10.5%) 94 (6.8%) 83.0 (62.3%) 2 202.6 141.8 5.1 55.7
A05 21 (11.7%) 27.6 (9.1%) 19.8 (10.6%) 10 (11.1%) 64 (64.1%) 89.1 (93.0%) 3 142.8 105.9 10.5 26.4
A06 34 (16.2%) 38 (14.8%) 26.7 (17.6%) 28 (47.4%) 94 (30.6%) 84.0 (68.1%) 3 228.5 145.7 19.1 63.7
A07 20 (11.1%) 35.1 (6.4%) 26.4 (12.3%) 15 (7.1%) 47 (6.8%) 74.5 (26.0%) 2 102.4 74.7 5.9 21.8
A08 37 (30.8%) 43.4 (11.3%) 30.2 (12.8%) 46 (0.0%) 146(10.6%) 93.2 (59.7%) 2 169.0 71.3 10.6 87.1
A09 14 (5.8%) 34.0 (12.5%) 15.0 (20.2%) 24 (14.3%) 65 (25.0%) 89.2 (71.9%) 2 134.9 96.2 8.9 29.8
A10 26 (17.3%) 48.8 (5.0%) 38.6 (9.1%) 19 (0.0%) 164(6.5%) 92.1 (77.2%) 3 117.1 71.7 3.1 42.3
A11 3 (1.1%) 26 (0.8%) 15.3 (2.0%) 2 (0.0%) 10 (0.0%) 100.0 (25.0%) 1 104.2 102.5 0.8 0.9
A12 13 (3.3%) 23.9 (0.6%) 23.2 (3.2%) 15 (0.0%) 48 (0.0%) 87.5 (61.5%) 1 147.8 129.1 0.6 18.1
A13 18 (7.5%) 37.4 (17.6%) 27.4 (25.1%) 5 (0.0%) 34 (30.8%) 70.6 (31.1%) 2 111.4 95.3 1.4 14.7
A14 17 (8.1%) 24.3 (15.2%) 20.2 (22.4%) 4 (0.0%) 33 (3.1%) 90.9 (263.6%) 2 86.1 63.6 0.5 22
A15 52 (17.3%) 64.9 (12.1%) 57.7 (41.4%) 17 (6.3%) 110(48.6%) 80.0 (51.8%) 3 203.6 138.7 2 62.9
A16 10 (2.8%) 68.6 (14.5%) 48.4 (40.7%) 8 (0.0%) 22 (0.0%) 81.8 (63.6%) 1 152.6 137.7 2.1 12.8
A17 14 (5.8%) 54.5 (14.0%) 37.9 (10.5%) 5 (0.0%) 45 (21.6%) 82.2 (69.0%) 2 101.3 82.0 1 18.3
A18 31 (8.6%) 54.7 (15.4%) 43.1 (25.7%) 29 (26.1%) 111(33.7%) 91.9% (58.9%) 2 218.4 154.8 5.7 57.9
A19 32 (15.2%) 52.3 (18.1%) 34.3 (31.4%) 22 (29.4%) 84 (27.3%) 81.0 (24.3%) 3 180.3 113.8 7.4 59.1
A20 0 (0.0%) 77.6 (0.0%) 55 (0.0%) 0 (0.0%) 0 (0.0%) 0.0 (0.0%) 1 119.3 119.3 0 0
A21 40 (12.1%) 29.3 (2.1%) 18.7 (7.5%) 31 (3.3%) 128(25.5%) 86.7 (47.4%) 3 311.7 200.0 8.9 102.8
A22 18 (4.6%) 21.8 (10.5%) 11.7 (13.3%) 18 (0.0%) 53 (8.2%) 75.5 (32.1%) 2 267.9 224.2 7.2 36.2
A23 19 (9.0%) 36.7 (11.9%) 39.1 (22.6%) 7 (0.0%) 70 (2.9%) 92.9 (28.9%) 2 148.4 121.9 6.2 20.3
A24 0 (0.0%) 18.5 (0.0%) 12.1 (0.0%) 0 (0.0%) 0 (0.0%) 0.0 (0.0%) 0 113.2 111.2 0 2.0
A25 12 (2.9%) 26.5 (10.9%) 15.1 (15.4%) 7 (16.7%) 28 (21.7%) 67.9 (30.1%) 2 113.8 101.2 2.0 10.5
A26 61 (29.0%) 55.6 (6.9%) 49.3 (23.9%) 6 (0.0%) 159(19.5%) 76.7 (24.5%) 3 163.9 104.9 0.9 58.1
A27 22 (6.7%) 26.8 (5.1%) 22.7 (4.7%) 12 (20.0%) 41 (7.9%) 58.5 (17.1%) 2 111.0 89.3 4.8 16.9
A28 22 (12.2%) 60.2 (2.4%) 50.4 (5.2%) 4 (0.0%) 31 (0.0%) 77.4 (0.0%) 1 113.8 92.0 0.8 21
A29 17 (4.4%) 32.2 (17.3%) 22.1 (21.6%) 11 (10.0%) 48 (50.0%) 77.1 (54.2%) 2 200.4 170.6 2.7 27.1
A30 17 (14.2%) 47.5 (6.5%) 37.4 (15.1%) 11 (10.0%) 52 (44.4%) 92.3 (44.5%) 2 91.4 66.0 2.6 22.8
A31 21 (11.7%) 40.9 (9.9%) 21.9 (10.1%) 12 (9.1%) 50 (13.6%) 82.0 (16.4%) 2 143.7 118.0 2.2 23.5
A32 38 (15.8%) 36.9 (12.5%) 31.4 (26.1%) 27 (0.0%) 83 (0.0%) 85.5 (102.9%) 2 134.1 79.1 13.1 41.9
A33 5 (1.3%) 30.7 (13.3%) 9.8 (88.8%) 2 (0.0%) 12 (200.0%) 83.3 (66.7%) 2 100.1 95.5 1.1 3.6
A34 11 (7.3%) 21 (4.0%) 14.9 (8.8%) 10 (0.0%) 26 (0.0%) 88.5 (64.3%) 1 115.8 93.5 11.1 11.2
A35 27 (6.0%) 33.4 (9.2%) 16.8 (17.5%) 19 (11.8%) 62 (19.2%) 75.8 (40.8%) 2 299.5 256.5 7.3 35.7
A36 12 (3.3%) 44.2 (2.8%) 33.5 (11.7%) 24 (71.4%) 70 (169.2%) 95.7 (65.9%) 2 166.5 139.9 6.7 19.9
A37 36 (20.0%) 27.4 (11.7%) 18.4 (21.2%) 21 (0.0%) 95 (14.5%) 73.7 (42.2%) 2 136.1 83.6 3.0 49.5
A38 3 (1.0%) 55.7 (3.7%) 32.2 (8.8%) 1 (0.0%) 2 (0.0%) 100.0 (100.0%) 1 120.3 117.0 2.7 0.6
A39 5 (2.1%) 26.4 (3.9%) 16.7 (10.6%) 7 (0.0%) 30 (0.0%) 100.0 (87.5%) 1 98.6 90.8 2.6 5.2
A40 21 (10.0%) 35.2 (30.4%) 21.3 (31.5%) 14 (55.6%) 51 (59.4%) 82.4 (38.7%) 3 90.6 65.4 4.5 20.7
A41 6 (2.0%) 55.7 (1.6%) 29.1 (2.1%) 3 (50.0%) 8 (33.3%) 75.0 (50.0%) 2 108.0 102.0 2.6 3.4
A42 43 (15.9%) 52.8 (16.0%) 41.9 (19.0%) 29 (0.0%) 113(15.3%) 89.4 (82.5%) 2 197.1 110.7 6.7 79.7
A43 14 (3.6%) 38.7 (17.3%) 35.1 (30.4%) 24 (9.1%) 53 (12.8%) 96.2 (22.2%) 2 240.6 211.9 4.3 24.4
A44 18 (12.0%) 40.6 (5.2%) 29.8 (11.6%) 16 (0.0%) 46 (15.0%) 82.6 (32.2%) 2 92.7 71.8 5.2 15.7
A45 27 (15.0%) 45.9 (6.5%) 29.4 (7.7%) 25 (8.7%) 80 (29.0%) 86.3 (48.5%) 3 187.0 124.8 5.6 56.6

Overall 919 (8.1%) 32.9 (9.3%) 21.9 (15.3%) 652 (9.8%) 2714 (19.9%) 85.3 (49.9%) - 6713.8 5153.3 222 1338.4

30 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

Table 9. Bugs detected by Prefest in the subject apps. For each bug, the ID (id) and name (app) of the app it

belongs to, the type of exception triggered by the bug (exception), whether it has been reported before (new),

and its corresponding issue URL on GitHub.

id app exception new url

A04 AmazeFileManager BadParcelableException F github.com/TeamAmaze/AmazeFi-leManager/issues/1400
A15 forecast IllegalArgumentException T github.com/martykan/forecastie/issues/395
A16 GoodWeather IllegalArgumentException T github.com/qqq3/good-weather/issues/54
A18 KISS NumberFormatException T github.com/Neamar/KISS/issues/1136
A31 Radiobeacon IntentReceiverLeaked T github.com/openbmap/radiocells-scanner-android/issues/223
A40 TintBrowser NullPointerException T github.com/Anasthase/TintBrowser/issues/120
A42 vanilla IllegalArgumentException T github.com/vanilla-music/vanilla/issues/898

Preference-Wise Testing of Android Apps via Test Amplification 31

Prefest was effective in helping the generated test cases exercise new behaviors that are dependent
on preferences.
Regarding the number of iterations Prefest went through for amplifying the test cases, while

one iteration was already enough on 9 apps, additional iterations helped Prefest produce more
amplified test cases for the other 34 apps, suggesting that the amplifications do make the apps
exercise more of their behaviors and many of those behaviors cover target branches that were
missed by the input test cases.

Amplified test cases produced by Prefest helped detect 7 bugs, as shown in Table 9. These bugs
are all preference related and only cause problems when certain functions of the apps were tested
under specific configurations. None of the bugs were detected by Stoat, since Stoat missed the
specific values of those relevant preferences or even the settings screens completely. The bug in
app Radiobeacon caused data leaks, while the others caused crashes. We were able to reproduce all
these bugs. Compared with our previous research [35], we found two more bugs in apps TintBrowser
and forecast: The former bug is relevant to a preference type not supported by the previous version
of Prefest, while the latter one was found after the first iteration of test amplification. Overall, six
of the bugs, i.e., all except the one in AmazeFileManager, were reported for the first time. We have
submitted these bugs together with the steps to reproduce the failures on GitHub. So far, bugs in
apps KISS, vanilla and forecast have been confirmed and fixed by developers of the corresponding
apps. Especially, the bug in vanilla was an old one introduced over one year ago, and the developers
were happy to know the root cause of the bug and be able to fix it. We, however, have not received
any response regarding the other three bugs, possibly because the three projects are no longer
actively maintained. Nevertheless, given that they caused crashes or data leaks, we are confident
they are real bugs.
Compared with our previous work [35], the current implementation of Prefest also handles

preferences of type SeekBarPreference. Among the 45 subject apps, six apps, namely alwayson, Anki-
Android, materialistic, mupen64plus, TintBrowser, and vanilla, contained SeekBarPreferences. In our
experiments on the six apps, the additional capability of Prefest led to an overall increase of 5.8%
and 5% in instruction and branch coverage, respectively. The increase was not huge, partly because
the total number of SeekBarPreferences relevant to the test cases was small, and partly because the
values of SeekBarPreferences are often used to invoke API methods, hence covering those parameter
target branches does not always lead to any improvement on instruction or branch coverage.
Nevertheless, such results demonstrate that Prefest can be extended to support the effective testing
of more preference types.

Prefest was effective in amplifying test cases to exercise more behaviors and detect bugs that are

dependent on preferences.

6.3.2 RQ2: Efficiency. Table 8 also lists for each app the time in minutes Prefest took to amplified
the test cases and the breakdown of that to the time spent on various steps.

Overall, Prefest took in total 6713.8 minutes to generate 919 amplified test cases for the 45 subject
apps, averaging to 7.3 minutes per amplification and 149.2 minutes per app. Among the three steps
that Prefest took to amplify the test cases, test-relevant preference discovery was by far the most
time-consuming. This was mainly because Prefest needs to run each input test case during the
step so as to discover its relevant preferences, and running those test cases already needs 5102.9
minutes (see Table 6). Target-oriented test amplification accounted also for a significant portion of
Prefest’s total running time, since test cases with relevant preferences are executed repeatedly to
evaluate the impact of various configurations in that step. Prefest spent relatively little time on
preference locator discovery, because static analysis was able to construct valid locators for most

32 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

Table 10. Comparison between the amplification results produced by Prefest and its three variants. For each

amplification approach, the extra instruction (%iΔ) and branch (%bΔ) coverage achieved, the time in minutes

taken to produce the results (t), and the number of amplified test cases generated (#tc).

app Prefest Prefest-cr Prefest-ca Prefest-nd

%iΔ %bΔ t #tc %iΔ %bΔ t #tc %iΔ %bΔ t #tc %iΔ %bΔ t #tc

a2dpvolume 1.6% 2.9% 87.0 10 1.7% 3.5% 1549.7 1080 2.4% 3.7% 3214.8 1800 1.4% 2.6% 359.8 180
Alwayson 3.5% 3.8% 152.4 19 3.1% 4.7% 1494.2 1049 2.7% 4.2% 8157.8 2880 1.4% 2.5% 761.8 240
AmazeFileManager 3.1% 2.7% 202.6 29 4.2% 3.6% 3674.5 1968 2.9% 2.7% 14598.6 2520 1.5% 1.5% 1535.3 210
forecast 6.9% 16.9% 203.6 52 9.3% 21.2% 4273.0 2700 11.1% 16.7% 4583.2 3000 4.7% 10.1% 515.6 300
good-weather 8.8% 14.0% 153.6 10 10.2% 15.1% 1905.9 2035 10.5% 16.8% 4297.1 3600 7.4% 11.7% 455.1 360
KISS 7.3% 8.8% 218.4 31 9.1% 11.1% 7545.9 3590 11.0% 13.0% 18780.2 4680 7.2% 8.4% 1390.8 360
Notepad 3.6% 9.5% 164.0 61 3.2% 6.3% 1462.9 1661 3.6% 5.8% 2622.9 2889 2.3% 4.2% 292.9 321
opensudoku 2.9% 4.9% 91.3 17 2.7% 5.3% 237.5 129 3.1% 5.2% 2484.6 1200 1.8% 3.1% 233.6 120
Radiobeacon 3.7% 2.0% 143.6 21 2.6% 1.6% 475.2 294 2.9% 2.4% 3373.2 1800 2.0% 1.6% 320.2 180
SuntimesWidget 2.9% 3.2% 134.1 36 5.1% 4.7% 2998.9 1697 5.1% 5.4% 6412.5 2520 2.5% 2.9% 500.3 180
TintBrowser 8.2% 5.1% 90.6 21 8.4% 4.9% 870.2 737 8.0% 4.8% 6074.2 2520 5.9% 3.6% 500.3 210
vanilla 7.3% 6.7% 197.1 43 10.3% 10.5% 4506.4 2481 12.4% 12.4% 14549.5 3780 6.2% 5.4% 1021.6 270
Wikipedia 2.8% 2.1% 187.1 27 6.2% 5.2% 2659.5 1429 5.7% 5.2% 5733.6 2160 2.2% 1.0% 432.6 180

Overall 4.0% 4.2% 2024.7 377 5.7% 5.7% 33690.8 20850 5.8% 5.9% 94834.8 35349 3.0% 3.1% 8271.9 3111

preferences and therefore the much more expensive process of dynamic exploration was seldom
needed.

The total test amplification time with Prefest was only 1.3 times of the running time of the input
test cases. It is therefore clear that the two times are at the same order of magnitude. While such
time costs make Prefest inappropriate to be used in an interactive way, Prefest’s performance was
compatible with many other usage scenarios. For example, the tool can be invoked on the test suite
of an app while the developer is on a break or off for the day, and it can also be integrated into
processes like continuous integration where test case selection and prioritization techniques are
routinely employed to help reduce the number of tests that actually need to be executed.

Prefest was efficient in amplifying existing test cases. Its running time was at the same order of

magnitude as that of the input test cases.

6.3.3 RQ3: Design Decisions. Table 10 compares test case amplification results produced by Prefest,
Prefest-cr, Prefest-ca, and Prefest-nd. For space reasons, the number of bugs detected by each
tool is not included in the table: Prefest-ca and Prefest-cr were both able to detect all the 7 bugs
Prefest detected, but not more. Prefest-nd was able to detect three of the 7 bugs, i.e., the ones
in apps forecast, good-weather and a2dpvolume, because each of those three bugs can be easily
triggered by setting one Boolean typed preference to its non-default value.
Understandably, Prefest-ca produced the largest number of amplified test cases and achieved

the greatest improvement in instruction and branch coverage with those test cases, since it utilizes
a more comprehensive set of configurations to amplify the test cases; Prefest-cr produced fewer
amplified test cases and achieved slightly smaller improvement in instruction and branch coverage
than Prefest-ca, since it considers fewer configurations for amplification. Given that Prefest-cr
managed to cover almost the same percentage of extra instructions and branches as Prefest-ca,
but using only 59.0% (=20850/35349) of the amplified test cases, it is obviously more desirable to
focus on relevant preferences in preference-wise test case amplification when the allocated time is
limited. Similarly, Prefest managed to achieve 70.2% (=4.0%/5.7%) and 73.7% (=4.2%/5.7%) of the
improvements brought by Prefest-cr in terms of extra instruction and branch coverage achieved,
but using only 1.8% (=377/20850) of the amplified test cases.

Preference-Wise Testing of Android Apps via Test Amplification 33

Table 11. Test amplification results produced by Prefest on programmer-written test cases. For each app,

its id, the number of amplified test cases generated (#tc), the information about the whole suite of test

cases after amplification (including %i, %b, #rp, #tb, and %tbc, as reported in Table 6 for tests generated by

Stoat), and the information about the amplification process with Prefest: The number of iterations Prefest

went through in amplifying the test cases (#ite), the amplification time in minutes (t), and the breakdown

of that to the time spent on test-relevant preference discovery (td), preference locator discovery (tl), and

target-oriented test amplification (ta). Values in the brackets indicate how much test amplification has

improved the measurements of the test suites for the apps. Particularly, each percentage is calculated as

(𝑚𝑎 −𝑚𝑏)/𝑚𝑏 , where𝑚𝑏 and𝑚𝑎 are the measurements before and after test amplification, respectively.

id #tc %i %b #pr #tb %tbc #ite t td tl ta

A07 21 25.1% (2.0%) 16.6% (2.5%) 15 (0.0%) 56 (5.7%) 82.1% (20.9%) 2 33.0 13.7 5.9 13.4
A12 11 22.3% (0.9%) 18.9% (3.8%) 13 (0.0%) 38 (0.0%) 92.1% (75.0%) 1 9.1 1.2 0.6 7.3
A18 17 38.7% (20.9%) 27.3% (28.2%) 22 (4.8%) 85 (32.8%) 89.4% (73.4%) 2 15.0 0.4 3.4 11.2
A22 29 30.9% (4.7%) 18.2% (9.0%) 20 (0.0%) 68 (9.7%) 79.4% (44.8%) 2 37.8 4.5 7.2 26.1
A24 0 18.8% (0.0%) 10.4% (0.0%) 0 (-) 0 (-) 0.0% (-) 1 3.1 3.1 0 0
A25 17 38.9% (25.5%) 27.4% (24.0%) 11 (0.0%) 37 (19.4%) 78.4% (51.9%) 3 13.2 1.8 2.0 9.4
A27 21 26.5% (5.6%) 20.6% (5.6%) 11 (22.2%) 39 (8.3%) 64.1% (28.2%) 2 15.9 1.4 4.8 9.7
A29 7 29.8% (20.6%) 18.7% (23.0%) 9 (28.6%) 31 (40.9%) 83.9% (41.9%) 2 10.4 1.2 2.7 6.6
A33 5 40.7% (2.3%) 17.7% (12.0%) 2 (0.0%) 10 (150.0%) 90.0% (80.0%) 2 6.2 3.5 1.1 1.7
A37 37 29.1% (4.3%) 18.2% (9.0%) 23 (4.5%) 122 (13.0%) 81.1% (23.4%) 2 49.6 5.5 3.0 41.0

Overall 165 27.1% (6.3%) 17.0% (9.7%) 126 (5.0%) 486 (16.3%) 74.1% (47.1%) 19 193.1 36.2 30.7 126.2

In terms of the total running time required by the approaches, Prefest-cr was highly expensive,
taking 23.7 days, or around 16.7 times of Prefest’s running time, to finish amplifying the test cases
for the 13 apps; Prefest-ca was even more time-consuming, taking 64.9 days to finish running on
the apps; By focusing on the relevant preferences and the target branches when amplifying test
cases, Prefest only took 2024.7 minutes to run on the apps, which is merely 6.0% and 2.2% of the
running time with Prefest-cr and Prefest-ca, respectively.

Compared with Prefest, Prefest-nd implements a rather straightforward strategy, and it produced
a slightly smaller number of amplified test cases in the end. Those amplified test cases covered
a significantly smaller part of the code, possibly because many of the amplifications Prefest-nd
produced did not help the tests exercise new behaviors. The total running time of Prefest-nd
was 3.0 times longer than that of Prefest’s. The main reason is that Prefest-nd always amplifies
test cases with full configurations, which are much more time-consuming to prepare than partial
configurations often produced by Prefest, while the target-oriented test amplification step involves
repeatedly preparing those configurations and running the test cases.
Such results clearly suggest that the test case amplification strategy implemented in Prefest is

overall more cost-effective than the other alternatives.
Prefest stroke a good balance between the effectiveness and efficiency in test case amplification.

6.3.4 RQ4: Programmer-written tests. Table 11 gives, for each app listed in Table 7, the basic
information about the amplification results produced by Prefest.
Overall, Prefest generated 165 amplified test cases for the apps, averaging to 16.5 amplified

test cases per app, and the amplified test cases helped raise the instruction and branch coverage
by 6.3% and 9.7%, respectively. While the number of relevant preferences was not changed after
amplification on 6 apps, that number did increase on 4 apps, achieving an overall improvement
of 5.0%. More importantly, the amplified test cases raised the total number of target branches
by 16.3% and the overall percentage of covered target branches by 47.1%. Prefest achieved the

34 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

greatest improvement in terms of instruction and branch coverage on three apps, namely apps
KISS (A18), nextcloud-news (A25), and openhab (A29), mainly because these apps make heavy use
of preferences, while little was done in their programmer-written tests to check the correctness
of their preference-related behaviors; Prefest also managed to amplify the test cases for apps
AntennaPod (A07) and SuntimesWidget (A37) and increase their coverage, because preference-
related behaviors in those two apps were poorly tested, even though over 50% of the apps’ test
cases were preference-oriented. Prefest achieved such results in multiple iterations on all but
two apps. Prefest failed to produce any amplified test cases for only one app, namely nextcloud

(A24), because the app’s programmer-written tests were not relevant to any preferences. In such
a case, applying an automated tool, e.g., Stoat, to generate a collection of initial tests that make
some use of preferences could help bootstrap the test amplification process with Prefest. Generally
speaking, the improvements brought by Prefest on the programmer-written tests are comparable
with those on the Stoat-generated test cases, suggesting that Prefest is also effective in helping
programmer-written test cases exercise new behaviors that are dependent on preferences.
It took Prefest in total 193.1 minutes to produce the amplified test cases, averaging to 19.3

minutes for each app and 1.2 minutes per amplified test case. The overall test amplification time
is 6.1 times longer than that of running the programmer-written test cases. The relatively larger
difference between the two times is mainly because the total amount of time required to execute the
programmer-written test cases is much shorter than that for running the automatically generated
test cases. Since the two times are still at the same order of magnitude, we consider the amplification
of programmer-written tests with Prefest to be efficient.

Prefest was effective in amplifying programmer-written test cases to exercise more behaviors that

are dependent on preferences, and its running time was at the same order of magnitude as that of the

input test cases.

6.4 Threats to Validity

In this section, we discuss possible threats to the validity of our study and show how we mitigate
them.

6.4.1 Construct validity. Threats to construct validity are mainly concerned with whether the
measurements used in the experiment reflect real-world situations.

In this work, when evaluating the effectiveness of Prefest in test case amplification, we adopted
popular metrics like extra instructions/branches covered and new faults detected by the amplified
test cases. However, we had to rely on a weak oracle in deciding whether amplified test cases
executed successfully, even if the original test cases were equipped with programmer-written
assertions. That is, we considered all executions of amplified test cases that do not cause crashes
or information leaks as passing. We believe it is reasonable to exclude the old assertions from the
amplified test cases since those test cases are essentially new test cases. Although we ensure in this
way that all failed executions expose real bugs in the subject apps, we may miss other faults that
silently produce incorrect results. In the future, on the one hand we will systematically evaluate
the impact of new configurations on the existing assertions, on the other hand we will investigate
the generation of new assertions for the amplified test cases.

6.4.2 Internal validity. Threats to internal validity are mainly concerned with the uncontrolled
factors that may have also contributed to the experimental results.

As with other test amplification tools, the effectiveness of Prefest greatly depends on the quality
of the input test cases. Therefore, one major threat to internal validity has to do with how the test
cases to be amplified in our experiments were prepared. To reduce the bias in test case preparation

Preference-Wise Testing of Android Apps via Test Amplification 35

as much as possible, we used either test cases automatically generated by the Stoat tool or test
cases written by programmers. Experimental results suggest that Prefest is effective and efficient
in amplifying both types of tests. Another threat to internal validity is the possible faults in
the implementation of Prefest and the scripts we wrote to run the experiments. To address the
threat, we carefully reviewed our code and experimental scripts to ensure their correctness before
conducting the experiments.

6.4.3 External validity. Threats to external validity are mainly concerned with whether the findings
in our experiment are generalizable to other situations.
A major threat to external validity is that our evaluation results may not generalize to other

Android apps. To mitigate this risk, we carefully selected 45 subject apps in various sizes and with
different levels of complexity from a large pool of real-world Android apps. Despite the great effort
we put into the preparation of subjects, the 45 apps may not be good representatives of Android
apps in general, since most of the subject apps were open-source ones, and the quality of the
programmer-written test cases for the apps was not high in the sense that they cover only less than
30% of the app code. In view of that, we plan to gather more Android apps with higher-quality tests
and more comprehensively evaluate the effectiveness and efficiency of Prefest on those apps in
the future.

7 RELATEDWORK

This section reviews researches on automated Android testing and combinatorial testing that are
closely related to the work described in this paper.

7.1 Automated Android Testing

Nowadays, frameworks and tools that automate the execution of Android tests, e.g., Robotium [48],
monkeyrunner [42], and Appium [6], are widely used in industry already. To further reduce the
costs for testing, techniques like fuzz testing [2, 18, 36], model-based testing [3, 7, 20, 28, 54], search-
based testing [23, 37, 38], and machine-learning-based testing [30, 33, 45, 53] have been developed
to automate also the generation of new tests for Android apps, and symbolic analysis has been
applied in many of these Android test generation techniques. Anand et al. [4] propose an approach
to automatically and systematically generate events to exercise mobile apps. In their approach,
events are symbolically tracked from their originating points to locations where they are ultimately
handled and the gathered constraints are solved to produce new, concrete events. Mirzaei et al. [40]
present SIGDroid, which combines model-based testing with symbolic execution to systematically
generate test inputs for Android apps. Gao et al. [19] present the SynthesiSE symbolic execution
approach for Android apps where models for Android framework are automatically deduced,
rather than manually prepared. Prefest also applies symbolic analysis to gather constraints on
preference values and solves those constraints to discover new configurations for testing Android
apps. Symbolic analysis employed in Prefest, however, is less expensive and more likely to scale
than in other Android test generation techniques for two reasons. First, its scope is more restricted
and the constraints that it needs to solve are typically simpler, since Prefest focuses on just the
use of preferences along the executions of given test cases. Second, given that most constraints
Prefest needs to solve concern only a single preference and that the numbers of possible values
those preferences may take are often small, correct solutions to those constraints can be easily
determined by examining all the possible combinations. In contrast, a generic solver has to be
invoked to find solutions to the constraints in techniques like SIGDroid and ACTEve, which often is
expensive and risks not finding any correct solutions within the given time limit.

36 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

Another line of work in this area aims to facilitate the testing of Android apps in different settings
and/or contexts. Kowalczyk et al. [27] observe that Android apps may exhibit distinct behaviors
when run on different devices and operating systems with different internal settings, and they
argue Android testing should be aware of the apps’ internal and external configurations. Liang
et al. [31, 32] focus on contextual parameters like device heterogeneity, wireless network speed,
and unpredictable sensor input, and propose the contextual fuzzing technique that systematically
explores a range of mobile contexts. Ki et al. [25] propose a framework called Mimic that tests UI
compatibility of Android applications with different mobile devices and Android versions. Ceccato
et al. [9] propose an in-vivo testing framework for mobile apps, where tests are executed in the
field to check whether the apps behave correctly on different devices and/or operating systems
as well as under different settings. The main rationale behind the work is that, despite the huge
configuration space, the configurations that matter and should be well tested are those used in
practice. Compared with these works, Prefest focuses just on the impact of preferences on app
behaviors and supports effective and efficient preference-wise testing.

7.2 Combinatorial Testing

Combinatorial Testing has been an active field of researches in the last twenty years [44]. One of the
major trends in this area has been towardsminimizing the size of test sets w.r.t. a given combinatorial
criteria. Along that line, techniques based on greedy and heuristic algorithms [11, 12, 29, 58],
genetic algorithms [39, 51], or artificial intelligence [1] have been proposed. Some combinatorial
optimization techniques were also adopted in Android testing recently, of which two are closely
related to the work in this paper: Mirzaei et al. [41] propose TrimDroid, an approach that statically
extracts dependencies among widgets to reduce the number of combinations in GUI testing;
Sadeghi et al. [49] design the PATDroid technique for testing Android permission configurations
that performs hybrid program analysis and reduces the amount of permission combinations to be
tested by excluding irrelevant permissions. Compared with TrimDroid, Prefest analyzes not only the
AUT but also the existing test cases when deriving new configurations. Compared with PATDroid,
Prefest targets at preferences, which are more difficult to analyze as their values can be passed
along executions. Besides, in view that features and behaviors influenced by different preferences
are often independent, we implement the target mode, instead of pairwise combinatorial testing, in
Prefest to strike a better balance between effectiveness and efficiency in preference-wise testing.

7.3 Test Amplification

Test amplification has been applied to augment existing tests on various platforms and for different
purposes. Since Prefest amplifies GUI test cases for Android apps to cover more preference-related
behaviors, we briefly review in this section test amplification techniques that aim to improve
code coverage and those that target mobile applications. Interested readers may refer to [13] for a
comprehensive summary of such techniques.

Tillmann and Schulte [56] describe a technique to amplify unit tests to exercise more behaviors
of the program under test. The technique replaces concrete values in tests with variables, gathers
path conditions over those variables via symbolic execution, and generates new values for the
variables to drive the test executions to cover new paths. New test cases are often needed to cover
the changed code when a program has evolved. Xu [59] proposes a directed test suite augmentation
algorithm, named DTSA, that combines genetic algorithm and concolic testing to derive new tests
from a given test suite for such a purpose. Compared with existing techniques, DTSA generates
test cases for all paths that may reach a specific branch, which increases the chance of success.
Bloem et al. [8] present a technique that combines symbolic execution and model checking to test
suite augmentation. Instead of exploring new execution paths and constructing path conditions in

Preference-Wise Testing of Android Apps via Test Amplification 37

a forward way, the technique employs a backward heuristic search on the control-flow graph to
gather paths from code already covered by the input test suite to code not yet covered. All these
techniques employ symbolic execution to gather conditions on values that may drive existing tests
along new execution paths. As explained in the introduction, off-the-shelf symbolic execution
techniques, however, are not sufficient to enable the type of test amplification that Prefest aims to
accomplish, and we have to devise a new technique to construct the constraints on preference values.
To make sure the preference values used in the amplified test cases do not break the integrity of
app states, Prefest also generates test actions at the GUI level to configure the preferences properly.

Research has also been done to amplify test cases for mobile applications. Assis et al. [14] propose
a technique called x-PATeSCO to generate new tests for apps on one platform based on existing tests
for the same apps on another platform. Test generation in x-PATeSCO is based on four test patterns
manually summarized from common use scenarios. Zhang et al. [60, 61] introduce a cost-effective
technique that amplifies existing tests via dynamic code instrumentation to validate exception
handling code in Android applications. Neither of the two techniques take into account the possible
impact of preferences on app behaviors. Compared with them, Prefest amplifies existing tests
with actions that explicitly set preference values at the GUI level to exercise apps under more
configurations.

8 CONCLUSION

In this paper, we present the Prefest approach to effective testing of Android apps with preferences.
Given an Android app and a set of test cases for the app, Prefest amplifies the test cases with a
small number of configurations to enable them to exercise more behaviors and detect more bugs
that are dependent on preferences. In the experimental evaluation conducted on Android apps
with automatically generated and programmer-written test cases, amplified test cases produced by
Prefest covered significantly more behaviors of the apps and detected real bugs.

REFERENCES

[1] Bestoun S Ahmed and Kamal Z Zamli. 2010. PSTG: a T-way strategy adopting particle swarm optimization. In
Proceedings of the 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer

Simulation. IEEE Computer Society, 1–5.
[2] Domenico Amalfitano, Nicola Amatucci, Anna Rita Fasolino, Porfirio Tramontana, Emily Kowalczyk, and Atif M

Memon. 2015. Exploiting the saturation effect in automatic random testing of Android applications. In Proceedings of

the Second ACM International Conference on Mobile Software Engineering and Systems. IEEE Press, 33–43.
[3] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De Carmine, and Atif M Memon. 2012.

Using GUI ripping for automated testing of Android applications. In Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering. ACM, 258–261.
[4] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Automated concolic testing of smartphone

apps. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering.
ACM, 59.

[5] Joseph Annuzzi, Lauren Darcey, and Shane Conder. 2014. Introduction to Android application development: Android

essentials. Pearson Education.
[6] AppiumConf. 2019. Appium : Automation for Apps. http://appium.io/. [online, accessed 01-Mar-2021].
[7] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration for systematic testing of Android apps.

In Acm Sigplan Notices, Vol. 48. ACM, 641–660.
[8] Roderick Bloem, Robert Koenighofer, Franz Röck, and Michael Tautschnig. 2014. Automating test-suite augmentation.

In 2014 14th International Conference on Quality Software. IEEE, 67–72.
[9] Mariano Ceccato, Luca Gazzola, Fitsum Meshesha Kifetew, Leonardo Mariani, Matteo Orrù, and Paolo Tonella. 2019.

Toward In-Vivo testing of mobile applications. In 2019 IEEE International Symposium on Software Reliability Engineering

Workshops (ISSREW). IEEE, 137–143.
[10] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI testing of Android apps with minimal restart and

approximate learning. In Acm Sigplan Notices, Vol. 48. ACM, 623–640.

http://appium.io/

38 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

[11] David M Cohen, Siddhartha R Dalal, Michael L Fredman, and Gardner C Patton. 1997. The AETG system: an approach
to testing based on combinatorial design. IEEE Transactions on Software Engineering 23, 7 (1997), 437–444.

[12] Myra B Cohen, Matthew B Dwyer, and Jiangfan Shi. 2008. Constructing interaction test suites for Highly-Configurable
systems in the presence of constraints: a greedy approach. IEEE Transactions on Software Engineering 34, 5 (2008),
633–650.

[13] Benjamin Danglot, Oscar Vera-Perez, Zhongxing Yu, Andy Zaidman, Martin Monperrus, and Benoit Baudry. 2019. A
snowballing literature study on test amplification. Journal of Systems and Software 157 (2019), 110398.

[14] Thiago Botti de Assis, André Augusto Menegassi, and Andre Takeshi Endo. 2019. Amplifying Tests for Cross-Platform
Apps through Test Patterns. In SEKE. 55–74.

[15] Google Developers. 2021. Android Debug Bridge. https://developer.android.com/studio/command-line/adb. [online,
accessed 01-Mar-2021].

[16] Google Developers. 2021. Documentation of Settings for Android Developers. https://developer.android.com/guide/
topics/ui/settings. [online, accessed 01-Mar-2021].

[17] Google Developers. 2021. Google Play. https://play.google.com. [online, accessed 01-Mar-2021].
[18] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury. 2020. Time-travel testing of Android apps. In

Proceedings of the 42nd International Conference on Software Engineering (ICSE’20). 1–12.
[19] Xiang Gao, Shin Hwei Tan, Zhen Dong, and Abhik Roychoudhury. 2018. Android testing via synthetic symbolic

execution. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. 419–429.
[20] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao, Qirun Zhang, Jian Lu, and Zhendong Su.

2019. Practical GUI testing of Android applications via model abstraction and refinement. In Proceedings of the 41st

International Conference on Software Engineering. 269–280.
[21] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan. 2014. PUMA: programmable UI-

automation for large-scale dynamic analysis of mobile apps. In Proceedings of the 12th annual international conference

on Mobile systems, applications, and services. ACM, 204–217.
[22] Sayed Hashimi, Satya Komatineni, and Dave MacLean. 2011. Pro Android 3. Apress.
[23] Reyhaneh Jabbarvand, Jun-Wei Lin, and Sam Malek. 2019. Search-based energy testing of Android. In Proceedings of

the 41st International Conference on Software Engineering. 1119–1130.
[24] Casper S Jensen, Mukul R Prasad, and Anders Møller. 2013. Automated testing with targeted event sequence generation.

In Proceedings of the 2013 International Symposium on Software Testing and Analysis. ACM, 67–77.
[25] Taeyeon Ki, Chang Min Park, Karthik Dantu, Steven Y Ko, and Lukasz Ziarek. 2019. Mimic: UI compatibility testing

system for Android apps. In Proceedings of the 41st International Conference on Software Engineering. 246–256.
[26] Satya Komatineni, Dave MacLean, and Sayed Y Hashimi. 2012. Pro Android 4. Vol. 1. Springer.
[27] Emily Kowalczyk, Myra B Cohen, and Atif M Memon. 2018. Configurations in Android testing: they matter. In

Proceedings of the 1st International Workshop on Advances in Mobile App Analysis. 1–6.
[28] Duling Lai and Julia Rubin. 2019. Goal-driven exploration for Android applications. In Proceedings of the 34th IEEE/ACM

International Conference on Automated Software Engineering. 115–127.
[29] Yu Lei, Raghu Kacker, D Richard Kuhn, Vadim Okun, and James Lawrence. 2007. IPOG: a general strategy for T-Way

software testing. In Proceedings of the 14th Annual IEEE International Conference and Workshops on the Engineering of

Computer-Based Systems. 549–556.
[30] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: a deep learning-based approach to automated

black-box Android app testing. In Proceedings of the 34th IEEE/ACM International Conference on Automated Software

Engineering. 1070–1073.
[31] Chieh-Jan Mike Liang, Nic Lane, Niels Brouwers, Li Zhang, Börje Karlsson, Ranveer Chandra, and Feng Zhao. 2013.

Contextual fuzzing: automated mobile app testing under dynamic device and environment conditions. Technical Report.
Technical Report MSR-TR-2013-100.

[32] Chieh-Jan Mike Liang, Nicholas D Lane, Niels Brouwers, Li Zhang, Börje F Karlsson, Hao Liu, Yan Liu, Jun Tang, Xiang
Shan, Ranveer Chandra, et al. 2014. Caiipa: Automated large-scale mobile app testing through contextual fuzzing. In
Proceedings of the 20th annual international conference on Mobile computing and networking. 519–530.

[33] Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek. 2019. Test transfer across mobile apps through semantic mapping.
In Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering. 42–53.

[34] Jun-Wei Lin, Navid Salehnamadi, and Sam Malek. 2020. Test Automation in Open-Source Android Apps: A Large-Scale
Empirical Study. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering (ASE

’20). Association for Computing Machinery, New York, NY, USA, 1078–1089. https://doi.org/10.1145/3324884.3416623
[35] Yifei Lu, Minxue Pan, Juan Zhai, Tian Zhang, and Xuandong Li. 2019. Preference-Wise testing for Android applications.

In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
268–278.

https://developer.android.com/studio/command-line/adb
https://developer.android.com/guide/topics/ui/settings
https://developer.android.com/guide/topics/ui/settings
https://play.google.com
https://doi.org/10.1145/3324884.3416623

Preference-Wise Testing of Android Apps via Test Amplification 39

[36] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: an input generation system for Android apps.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering. ACM, 224–234.

[37] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. Evodroid: Segmented evolutionary testing of Android
apps. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
599–609.

[38] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: multi-objective automated testing for Android applications. In
Proceedings of the 25th International Symposium on Software Testing and Analysis. ACM, 94–105.

[39] CC Michael, GE McGraw, MA Schatz, and CC Walton. 1997. Genetic algorithms for dynamic test data generation. In
Proceedings of the 12th international conference on Automated software engineering (formerly: KBSE). IEEE Computer
Society, 307.

[40] Nariman Mirzaei, Hamid Bagheri, Riyadh Mahmood, and Sam Malek. 2015. SIG-Droid: Automated system input
generation for Android applications. In Proceedings of the 2015 IEEE 26th International Symposium on Software Reliability

Engineering (ISSRE). IEEE Computer Society, 461–471.
[41] Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza Sadeghi, and Sam Malek. 2016. Reducing combinatorics in

GUI testing of Android applications. In Proceedings of the 38th International Conference on Software Engineering. ACM,
559–570.

[42] monkeyrunner. 2019. monkeyrunner. https://developer.android.com/studio/test/monkeyrunner/. [online, accessed
01-Mar-2021].

[43] Stas Negara, Naeem Esfahani, and Raymond PL Buse. 2019. Practical Android test recording with espresso test recorder.
In Proceedings of the 41st International Conference on Software Engineering: Software Engineering in Practice. 193–202.

[44] Changhai Nie and Hareton Leung. 2011. A survey of combinatorial testing. ACM Computing Surveys (CSUR) 43, 2
(2011), 11.

[45] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020. Reinforcement learning based curiosity-
driven testing of Android applications. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software

Testing and Analysis. 153–164.
[46] pcqpcq. 2019. open-source-android-apps. https://github.com/pcqpcq/open-source-android-apps/. [online, accessed

01-Mar-2021].
[47] Fabiano Pecorelli, Gemma Catolino, Filomena Ferrucci, Andrea De Lucia, and Fabio Palomba. 2020. Testing of Mobile

Applications in the Wild: A Large-Scale Empirical Study on Android Apps. In Proceedings of the 28th International

Conference on Program Comprehension. 296–307.
[48] RobotiumTech. 2019. Android UI Testing Robotium. https://github.com/RobotiumTech/robotium. [online, accessed

01-Mar-2021].
[49] Alireza Sadeghi, Reyhaneh Jabbarvand, and Sam Malek. 2017. PATDdroid: permission-aware GUI testing of Android.

In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM, 220–232.
[50] Gian Luca Scoccia, Anthony Peruma, Virginia Pujols, Ben Christians, and Daniel E. Krutz. 2019. An Empirical History

of Permission Requests and Mistakes in Open Source Android Apps. In Proceedings of the 16th International Conference

on Mining Software Repositories (MSR ’19). IEEE Press, 597–601. https://doi.org/10.1109/MSR.2019.00090
[51] Toshiaki Shiba, Tatsuhiro Tsuchiya, and Tohru Kikuno. 2004. Using artificial life techniques to generate test cases for

combinatorial testing. In Proceedings of the 28th Annual International Computer Software and Applications Conference-

Volume 01. 72–77.
[52] Wei Song, Xiangxing Qian, and Jeff Huang. 2017. EHBDroid: beyond GUI testing for Android applications. In

Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering. 27–37.
[53] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Reinforcement learning for automatic

test case prioritization and selection in continuous integration. In Proceedings of the 26th ACM SIGSOFT International

Symposium on Software Testing and Analysis. 12–22.
[54] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang Pu, Yang Liu, and Zhendong Su.

2017. Guided, stochastic model-based GUI testing of Android apps. In Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering. 245–256.
[55] Shin Hwei Tan and Ziqiang Li. 2020. Collaborative Bug Finding for Android Apps. In Proceedings of the ACM/IEEE

42nd International Conference on Software Engineering (ICSE ’20). Association for Computing Machinery, New York,
NY, USA, 1335–1347. https://doi.org/10.1145/3377811.3380349

[56] Nikolai Tillmann and Wolfram Schulte. 2006. Unit tests reloaded: Parameterized unit testing with symbolic execution.
IEEE software 23, 4 (2006), 38–47.

[57] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang Deng, and Tao Xie. 2018. An empirical
study of android test generation tools in industrial cases. In 2018 33rd IEEE/ACM International Conference on Automated

Software Engineering (ASE). IEEE, 738–748.

https://developer.android.com/studio/test/monkeyrunner/
https://github.com/pcqpcq/open-source-android-apps/
https://github.com/RobotiumTech/robotium
https://doi.org/10.1109/MSR.2019.00090
https://doi.org/10.1145/3377811.3380349

40 Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li

[58] Ziyuan Wang, Baowen Xu, and Changhai Nie. 2008. Greedy heuristic algorithms to generate variable strength
combinatorial test suite. In Proceedings of the 2008 The Eighth International Conference on Quality Software. IEEE
Computer Society, 155–160.

[59] Zhihong Xu and Gregg Rothermel. 2009. Directed test suite augmentation. In 2009 16th Asia-Pacific Software Engineering
Conference. IEEE, 406–413.

[60] Pingyu Zhang and Sebastian Elbaum. 2012. Amplifying tests to validate exception handling code. In 2012 34th

International Conference on Software Engineering (ICSE). IEEE, 595–605.
[61] Pingyu Zhang and Sebastian Elbaum. 2014. Amplifying tests to validate exception handling code: An extended study

in the mobile application domain. ACM Transactions on Software Engineering and Methodology (TOSEM) 23, 4 (2014),
1–28.

	Abstract
	1 Introduction
	2 Prefest in Action
	3 Background
	4 Magnitude of The Problem
	5 Preference-Wise Testing via Test Case Amplification
	5.1 Test-Relevant Preference Identification
	5.2 Preference Locator Discovery
	5.3 Target-Oriented Test Amplification
	5.4 System Preference Analysis
	5.5 Implementation

	6 Evaluation
	6.1 Subject Apps and Tests
	6.2 Experimental Setup
	6.3 Experimental Results
	6.4 Threats to Validity

	7 Related Work
	7.1 Automated Android Testing
	7.2 Combinatorial Testing
	7.3 Test Amplification

	8 Conclusion
	References

