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This paper aims to establish an intelligent procedure that combines the observational method with the
existing deep learning technique for updating deformation of braced excavation in clay. The gated
recurrent unit (GRU) neural network is adopted to formulate the forecast model and learn the potential
rules in the field observations using the Nesterov-accelerated Adam (Nadam) algorithm. In the proposed
procedure, the GRU-based forecast model is first trained based on the field data of previous and current
stages. Then, the field data of the current stage are used as input to predict the deformation response of
the next stage via the previously trained GRU-based forecast model. This updating process will loop up
till the end of the excavation. This procedure has the advantage of directly predicting the deformation
response of unexcavated stages based on the monitoring data. The proposed intelligent procedure is
verified on two well-documented cases in terms of accuracy and reliability. The results indicate that both
wall deflection and ground settlement are accurately predicted as the excavation proceeds. Furthermore,
the advantages of the proposed intelligent procedure compared with the Bayesian/optimization updating
are illustrated.
� 2021 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Braced excavation has been widely used in the urban con-
structions. However, damages may be produced to the adjacent
buildings and underground structures induced by lateral wall
deflection and ground movement (Shen et al., 2014, 2017; Xu et al.,
2016; Jin et al., 2018; Zhang et al., 2018). During the braced exca-
vation, it is crucial to estimate the lateral wall deflection and the
ground movement before the excavation of the next stage. How-
ever, the conservative estimation will increase the cost while the
underestimation will increase the risk and even result in accidents.
Therefore, in engineering practice, it is vital to develop an accurate
and reliable methodology to predict the lateral wall deflection and
the ground movement during the braced excavation. The stage-
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
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updating prediction methodology carried out stage by stage,
based on field observations, is useful in engineering practice.

The core of staged-updating prediction methodology is how to
calculate the deformation caused by excavation. The common way
to obtain the deformation response is to adopt finite element
method (FEM) (Ou et al., 2000; Hashash et al., 2010; Jiang and Yin,
2014; Zhang et al., 2019, 2020a). For the calculation by FEM, many
factors can affect the prediction accuracy, such as (1) the drainage
condition (Costa et al., 2007; Zhao et al., 2015; Yang et al., 2019a, b,
c, d; Goh et al., 2020), which is difficult to be considered in the
calculation, since most excavations are performed in partially
drainage condition; (2) the selection of an appropriate constitutive
model (Kung et al., 2007a; Hejazi et al., 2008; Lim et al., 2010;
Chang and Yin, 2011; Zhang and Ai, 2012; Jiang and Yin, 2014; Yin
et al., 2018a), which is important for predicting the deformation
responses; (3) the determination of reasonable parameters
(Calvello and Finno, 2004; Baroth andMalecot, 2010; Hashash et al.,
2011; Juang et al., 2012; Jin et al., 2016, 2017, 2019a); and (4) the
spatial variability of soil (Guillaumot et al., 2003; Jin et al., 2019b, c;
Goh et al., 2019). Combining FEM simulation with optimization/
Bayesian methods, the stage-updating prediction can be achieved.
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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Fig. 1. Structure of GRU (from https://primo.ai/index.php?title¼Gated_Recurrent_
Unit_(GRU)).

Fig. 3. Combination of model training and updating the prediction process.
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However, numerous calculations are required (Huang et al., 2014;
Zhao et al., 2015; Jin et al., 2019a), making it impractical for use.
Another approach to predict the deformation responses is the
semi-empirical model (Kung et al., 2007b), of which the drawback
is that only the maximum ground surface settlement and the
maximum lateral displacement can be predicted. Compared to the
FEM simulation or semi-empirical model, the machine learning
approach attracts a lot of attention in predicting the deformation
responses of excavation, such as artificial neural networks (ANN)
(Goh et al., 1995; Jan et al., 2002; Ambro�zi�c and Turk, 2003; Leu and
Lo, 2004; Chua and Goh, 2005; Kung et al., 2007c; Tan et al., 2011;
Lü et al., 2012; Zhang et al., 2020b, c). Compared with traditional
methods, the machine learning methods can dig the trend of field
data, which can learn the characteristics of the field data generated
by excavation and then predict the deformation of the following
excavation. The soil mechanism behind the field data is therefore
learned and considered implicitly instead of using explicitly a soil
constitutive model. The updating of machine leaning-based pro-
cedure can be regarded as the direct updating from measured data
to predicted data, therefore, no soil constitutive model or soil
parameter is needed. The advantage of the deformation prediction
using machine learning-based methods is that it does not require
plenty of numerical calculations (Al-Ani et al., 2009; Obead et al.,
2021; Zhang et al., 2021a, b). Furthermore, the inaccuracy
induced by the choice and calibration of soil constitutive model and
parameters can be avoided, neither extra field monitoring or field
sampling nor laboratory testing is required. However, the accuracy
Fig. 2. Schematic view of the GRU-based forecast model.
of machine learning-based methods heavily relies on the prefor-
mation of the used algorithm. Traditional machine learning
methods are no longer sufficient for such problems, such as the
ANN with few layers. Thus, the use of advanced machine learning
Fig. 4. Soil profile and the excavation depth in TNEC.

https://primo.ai/index.php?title=Gated_Recurrent_Unit_(GRU
https://primo.ai/index.php?title=Gated_Recurrent_Unit_(GRU
https://primo.ai/index.php?title=Gated_Recurrent_Unit_(GRU


J. Yang et al. / Journal of Rock Mechanics and Geotechnical Engineering 13 (2021) 1485e1499 1487
(deep learning) algorithm to predict the deformation response of
excavation is worth trying.

The gated recurrent unit (GRU) belongs to the family of recur-
rent neural network (RNN). In principle, RNN is more suitable for
capturing relationships among sequential data types. This impor-
tant feature has made RNN versatile among many applications that
require learning from temporal data such as the real-time pre-
dictions of mechanized tunnelling processes (Freitag et al., 2018;
Zhang et al., 2020a, d, 2021c, d), the rainfall-runoff modeling
(Kratzert et al., 2018), the response of caisson foundation (Zhang
et al., 2020e), and the soil behavior modeling (Byun and Song,
2018; Wang and Sun, 2018; Wang et al., 2019; Zhang et al., 2020f,
2021a,e). Bengio et al. (1994) showed that, using such simple RNN,
it is difficult to capture long-term dependencies due to the van-
ishing or explosion of (stochastic) gradients. To solve the
Fig. 5. The influence of the number of data points: (a) 35
“vanishing” or “exploding” gradient problems, the long-short-term
memory (LSTM) unit RNN (Hochreiter and Schmidhuber, 1997) and
GRU-RNN (Chung et al., 2014) have been proposed. In GRU, input
gate and forget gate that appear in LSTM are merged into one gate
operation. This changemakes the GRU have fewer weights and thus
less computation cost while preserving the similar performance to
LSTM on many applications (Wang, 2017).

The aim of this paper is to develop a GRU-based updating pro-
cedure using the filed data for deformation prediction in the braced
excavation in clay. The GRU neural network is adopted due to the
ability of memory. It is used to learn the potential rules in the field
observations using the Nesterov-accelerated Adam (Nadam) algo-
rithm. The framework of the GRU-based updating procedure using
the filed data is first presented with a brief introduction of GRU.
Then, the proposed framework is verified by analysing two typical
points, (b) 18 points, (c) 12 points, and (d) 9 points.



J. Yang et al. / Journal of Rock Mechanics and Geotechnical Engineering 13 (2021) 1485e14991488
cases of excavation. The accuracy and reliability of the proposed
procedure are evaluated. The advantages and limitations of the
proposed updating framework are further discussed.
2. A framework of GRU-based updating procedure

2.1. GRU network

Fig. 1 shows that, at t time step, there are two kinds of gate
operations in one hidden node of GRU: the update gate zt and the
reset gate rt. Similar to LSTM, the current hidden output ht is
computed based on the current input xt and the previous hidden
output hte1.

The reset gate is given as

rt ¼ sðW rxt þ Urht�1 þ brÞ (1)

The update gate is expressed as follows:

zt ¼ sðWzxt þ Uzht�1 þ bzÞ (2)

The hidden state (memory) is presented as
Fig. 6. Predicted and measured wall deflections of TNEC excavation at differen
ht ¼ ð1� ztÞ1ht�1 þ zt1~ht
~

�
(3)
ht ¼ tanh½Wxt þ Uðrt1ht�1Þ þ b�
In Eqs. (1)e(3),Wr,Wz,WandWo are theweightmatrices of GRU

neural networks related to the input xt; Ur, Uz, and U are the weight
matrices of GRUneural networks related tohidden statehte1; br, bz, b
and bo are the biases; xt is the input vector; the operation1 stands
for the Hadamard product; s represents the logistic sigmoid func-
tion; and tanh represents the hyperbolic function.

Then, the output from the fully-connected layers to the output
layer is expressed as

yt ¼ ELUðWoht þ boÞ (4)

where yt is the output vector, and ELU is the exponential linear unit.
Herein the logistic sigmoid function s and the hyperbolic

function tanh are defined as follows:

sðxÞ ¼ 1=ð1þ e�xÞ (5)

tanhðxÞ ¼ ðex � e�xÞ=ðex þ e�xÞ (6)

The exponential linear unit ELU is defined as
t stages: (a) Stage 3, (b) Stage 4, (c) Stage 5, (d) Stage 6, and (e) Stage 7.
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f ðxÞ ¼
�
x ðx > 0Þ
aðex � 1Þ ðotherwiseÞ (7)
where a is a hyper-parameter, and a ¼ 0.01 in this study.
Note that ELU tries to make the mean activations closer to zero,

and speed up the learning. It has been shown that ELU can obtain
Fig. 7. RRMSE of wall deflection of TNEC excavation at different stages
higher accuracy than rectified linear unit (ReLU) (Clevert et al.,
2015):

f ðxÞ ¼
�
x ðx > 0Þ
0 ðotherwiseÞ (8)

Note that the activation functions except for the gate operations
can be changed according to the practical problems.
: (a) Stage 3, (b) Stage 4, (c) Stage 5, (d) Stage 6, and (e) Stage 7.



Fig. 8. AE of maximum wall deflection of TNEC excavation at different stages: (a) Stage 3, (b) Stage 4, (c) Stage 5, (d) Stage 6, and (e) Stage 7.
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2.2. Updating procedure using field data

Figs. 2 and 3 demonstrate the proposed GRU-based procedure of
updating predictive deformation. In deep excavation, the ground
settlement and wall deflection are measured after the first and
second excavation stages. Then, the GRU-based forecast model can
be trained with the observed data of the first and second stages as
the training dataset. The GRU-based forecast model can learn the
deformation pattern of the previous two stages. Then, before the
subsequent stages of excavation, the wall and ground responses can
be predicted by the trained GRU-based forecast model. If too large
deformation is predicted, the precaution measures are needed to
protect the adjacent structures. The prediction accuracy is evaluated
by comparing the predictions and observations after finishing the
next stage of excavation. Next, the observed data of the second stage
will act as the training dataset and the newly measured data of the



Fig. 9. RE of maximum wall deflection of TNEC excavation at different stages: (a) Stage 3, (b) Stage 4, (c) Stage 5, (d) Stage 6, and (e) Stage 7.
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third stage will act as output to retrain a new GRU-based forecast
model. After that, the deformation responses of the fourth stage can
be predicted. As the excavation proceeds, the training and prediction
processes are repeated till the end of excavation.

The training of the GRU-based model is achieved through the
algorithm of back-propagation through time (BPTT) with batch
gradient descent. The average of the gradients of all the training
examples is used to update the weights of the neural network.
Nadam, the optimization algorithm proposed by Dozat (2016), is
adopted. Compared to stochastic gradient descent (SDG) and
Adam, the Nadam takes the advantage of Nesterov-accelerated
gradients. This change is an essential approximation of the sec-
ond derivative of the objective function. The Nadam algorithm
has a faster convergence rate than SDG and Adam due to the use
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of the second-order derivative information, and it has been
validated on various benchmarks by Dozat (2016). Note that be-
sides the commonly used deterministic algorithms, the stochastic
optimization methods (Yin et al., 2017, 2018b; Jin et al., 2019a; Jin
and Yin, 2020) are viable alternatives for the model training.

The goal of the algorithm is to find model parameters (e.g.
weights) thatminimize themodel error (Loss) on the training dataset.
In order to reduce the tedious works on tuning hyper-parameters,
the learning rate is set to a fixed value of 0.001 as recommended
by Wang and Sun (2018). Overfitting is the modeling error in sta-
tistics that occurs when the prediction of the machine learning
model is too closely aligned to the training data points but far away
from the testing data points. For any data-driven method, overfitting
is a frequent problemwhichmakes an overly complexmodel explain
the idiosyncrasies in the data. In view of the excavation problem, the
overfitting may also exist because the parameters of the GRUmodel
are much more than the number of training data. The L2 regulari-
zation with the coefficient l ¼ 0.001 is adopted to avoid the over-
fitting problem. In order to eliminate the effect of magnitudes of
input variables on the model’s performance and reduce the
computational cost, all training data used in the GRU-based model
were normalized into [0, 1]. The Loss function is defined as

Loss ¼ 1
N

XN
i¼1

 
Ui
obs � Ui

GRU

Ui
obs

!2

þ lkweightsk (9)

where Ui
obsis the ith point of observed data after normalization,

Ui
GRU is the ith point of predicted data after normalization, and N is

the number of points of measured data. Training will stop when the
Fig. 10. Predicted and measured ground settlement of TNEC excavation at
value of Loss is smaller than 1 � 10�4 or the number of epochs is
greater than 1 � 104.

The proposed procedure is similar to the multi-objective opti-
mization updating procedure proposed by Jin et al. (2019c), the
Bayesian updating procedure proposed by Juang et al. (2012), the
semi-empirical polynomial regression based spreadsheet solver
method by Zhang et al. (2015), and the multivariate adaptive
regression splines for inverse analysis by Zhang et al. (2017). The
optimized parameters of themulti-objective optimization updating
procedure are selected from the Pareto front obtained using the
multi-objective optimization algorithm. The updated parameters in
the Bayesian updating are represented by the posterior distribu-
tions and sample statistics obtained through the Markov chain
Monte Carlo (MCMC) simulation. It can be seen that for Bayesian/
optimization-based updating, the forward prediction is indirectly
achieved by updating the soil parameters, while for deep learning
based procedure, the updating is directly obtained from the
measured data to the predicted data, and no soil parameter is
needed. The merits of the proposed procedure realized by using
MATLAB (MathWorks, 2016) will be highlighted in two selected real
excavation cases.

3. Illustrative examples

3.1. Case 1: Taipei National Enterprise Center excavation

The proposed procedure is first verified by predicting the Taipei
National Enterprise Center (TNEC) excavation. The soil testing and
field monitoring data have been recorded completely (Ou et al.,
1998, 2000; Teng et al., 2014). The width of the excavation is
different stages: (a) Stage 4, (b) Stage 5, (c) Stage 6, and (d) Stage 7.
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41.2 m, and the length and thickness of the diaphragmwall is 35 m
and 0.9 m, respectively. The excavation was performed by the top-
down method in seven stages where the wall was supported by
150-mm thick concrete floor slabs. The total excavation depth is
19.7 m. Fig. 4 shows soil profile and the excavation depth in TNEC
excavation. According to Kung et al. (2007a), the site can be
considered as a clay-dominant site. The groundwater table is
located 2 m below the ground surface. The filed data are recorded
by the monitoring instruments including electronic-type piezom-
eters, rebar stress meters on the reinforcement cage, inclinometers
in the wall and soil, and earthewater pressure cells on the wall, as
well as settlement gauges and heave gauges. The creep behavior of
soils has not been considered (Yin and Wang, 2012; Wang et al.,
2014; Zhu et al., 2016).

3.1.1. Wall deflection
The performance of the proposed intelligent procedure is first

shown on the prediction of wall deflection. As mentioned in the
procedure, it starts from stage 2. The measured data of stages 1 and
2 were used to train the GRU-based forecast model. Since there are
only a few monitoring points, the hidden size is set to 10 to avoid
overfitting. Note that the selection of hidden size is challenging
and, in most cases, it should be determined according to the actual
situation. To evaluate the performances of the proposed forecast
model, three indicators are used: absolute error (AE), relative error
(RE) and relative root mean square error (RRMSE), which are
defined as
Fig. 11. RRMSE of TNEC excavation at different stages: (
AE ¼ Yobs � YGRU (10)

RE ¼ Yobs � YGRU
Yobs

� 100% (11)

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

 
Yi
obs � Yi

GRU

Yi
obs

!2
vuut � 100% (12)

where Yobs is the real observed data, and YGRU is the real predicted
data by the GRU-based forecast model.

To evaluate the influence of the number of points on the per-
formance of the GRU model, four calculations based on the wall
deflection prediction of stage 6 were carried out with different
numbers of data points, i.e. 35, 18, 12 and 9, respectively. Fig. 5
shows the RE of the wall deflection between the results of the
GRU model and measurements. It can be found that at least 18
points are needed for training the GRU model, and the overfitting
problem (i.e. small training error with large prediction error) occurs
when the number of data points is less than 18.

In terms of model training, the Nadam is adopted, whose pri-
mary advantage is rapid convergence. However, the limitations also
exist, e.g. its optimal solution strongly depends on the initial trial
solutions, and it is only capable of searching for a local minimum. A
possible solution to avoid such problems is to start the search from
a) Stage 4, (b) Stage 5, (c) Stage 6, and (d) Stage 7.



Fig. 12. AE of maximum ground settlement of TNEC excavation at different stages: (a) Stage 4, (b) Stage 5, (c) Stage 6, and (d) Stage 7.

Fig. 13. RE of maximum ground settlement of TNEC excavation at different stages: (a) Stage 4, (b) Stage 5, (c) Stage 6, and (d) Stage 7.

J. Yang et al. / Journal of Rock Mechanics and Geotechnical Engineering 13 (2021) 1485e14991494



Fig. 14. Soil profile and the excavation depth in Formosa.
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different initial positions. Therefore, to avoid randomness and to
show the reliability of the proposed procedure, each process of
model training and prediction was independently carried out for
1000 times. Based on all calculations, the statistical analysis was
performed. The mean, standard deviation and the predictions
within 99% credibility interval (CI) for thewall deflection are shown
in Fig. 6 (The negative sign of wall deflection denotes the
displacement towards the pit). For Stage 3 (Fig. 6a), a large
discrepancy between measurement and prediction is found. It is
attributed to the inevitable changes in the deformation pattern,
consequently, the rules learned by GRU from Stages 1 and 2 fail
when predicting the deformation responses of Stage 3. The defor-
mation pattern of the wall generally exhibits a cantilever shape in
Stages 2 and 3 for TNEC, and then in later stages, it changes into a
concave shape due to the installation of temporary support or the
construction of a slab. Furthermore, the effectiveness of the GRU-
based forecast model is compromised in the early stages because
the excavation responses in these early stages are very small and
prone to measurement errors (Juang et al., 2012). Previous studies
that use ANN to estimate the wall deflection caused by excavation
in clay did not consider the wall deflection data of the first two
stages to develop the ANN model. It is because that at least two
struts at different levels must be installed before determining the
system stiffness (Kung et al., 2007c). Therefore, the predicted per-
formance in the early stages may be inadequate. After Stage 3, the
predictions are more accurate compared to the observations, sug-
gesting that the GRU-based model has accurately learned the trend
of wall deflection development. Fig. 7 shows the probability dis-
tribution of RRMSE, representing the distribution of total predicted
error. All RRMSE distributions for wall deflection approximate the
lognormal distribution. Apart from Stage 3, the errors of other
predictions are controlled within 20%, even 10% for Stages 6 and 7.

Considering that the maximum wall deflection needs more
concern in design, the probability distributions of AE and RE at
maximumwall deflection were plotted, as displayed in Figs. 8 and 9,
respectively. The AE and RE distributions approximate the normal
distribution. The absolute difference between observations and
predictions are mostly located in the range of -15e15 mm except for
Stages 3 and 4. The RE is smaller than 20% except for Stage 3 due to
the inevitable changes in the deformation pattern. All errors show a
decreasing trend as the excavation proceeds. The results demon-
strate that the performance of the proposed GRU-based forecast
framework for predicting the wall deflection is satisfactory.

3.1.2. Ground settlement
Compared to the wall deflection, ground settlement is another

important and useful indicator in practice for assessing the safety
and the risk of the subsequent excavations and adjacent buildings
(Hsiao et al., 2008). Thus, the proposed GRU-based forecast model
needs to be effective in predicting ground settlement. Fig. 10 shows
the comparison of settlement between the observations and pre-
dictions. Note that the updating procedure for ground settlement
starts from Stage 3 due to the lack of observation of Stage 2. Similar
to the results of wall deflection, a discrepancy between the
measured and predicted ground settlements is noticed for Stage 4.
It is due to the changes in deformation patterns at the early stages.
Moreover, the underestimation of ground settlement for early
stages (e.g. Stage 4) is due to the slight response of the ground
surface at shallow excavation stages. The small settlement can
make the training deviate from the right direction. As the excava-
tion proceeds, the prediction is more and more accurate. Although
the settlements are always underestimated according to the mean
value of prediction, the mean predictions are close to the mea-
surements and the 99% CI predictions mostly cover the measure-
ments. The presented results demonstrate that the proposed GRU
model is reliable for predicting the response of excavation and the
significant response of settlement can help the GRU mine the ac-
curate rules from the observed data. The total errors represented by
RRMSE shown in Fig. 11 are less than 20%. All RRMSE distributions
of ground settlement approximate the lognormal distribution.

The distributions of AE and RE for the maximum settlement are
shown in Figs. 12 and 13, respectively. All AE and RE distributions of
maximum ground settlement approximate the normal distribution.
Except for stage 4, the absolute errors between the observations
and predictions are less than 10 mm, equivalent to the 20% RE. All
obtained results demonstrate that the accuracy of the predictions of
ground settlement by the proposed GRU-based forecast model is
acceptable in practice. It also proves the effectiveness of the pro-
posed updating procedure.

3.1.3. Comparison to Bayesian/optimization updating
Obviously, the preliminary results of both wall deflection and

ground settlement predictions demonstrate the effectiveness of
the proposed updating procedure. However, the efficiency of the
procedure is also vital especially in practice where construction is
continuously ongoing. Compared to the Bayesian updating (Juang
et al., 2012), not only the maximum values of ground settlement
and wall deflection can be accurately updated and predicted, but
also the evolution of the profiles of wall deflection and ground
settlement can be identified and predicted accurately with the
proposed GRU-based updating method. However, it is a fact that
the uncertainty involved in the braced excavation cannot be
accurately quantified. Although the semi-empirical model in
place of the FEM model adopted in Bayesian updating can greatly
reduce the computational effort, thousands of calculations are
unavoidable to derive the posterior distributions of involved
parameters of concern. In contrast to optimization-based
updating (Jin et al., 2019a), the calculation time for one updat-
ing process by the proposed procedure can be completed in 2 h
even a few minutes while the computation time of optimization
updating is more than 3 d (Jin et al., 2019a). For optimization-
based updating, selecting an appropriate soil model is a key



Fig. 15. Predicted and measured wall deflection of Formosa excavation at different stages: (a) Stage 3, (b) Stage 4, (c) Stage 5, (d) Stage 6, and (e) Stage 7.
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work that determines the performance of the updating results. At
the same time, the more the number of parameters to be updated
is, the greater the field observations required are. However, for
the proposed GRU-based updating procedure, all the mentioned
problems can be avoided.

Therefore, the proposed GRU-based updating procedure is su-
perior to Bayesian/optimization updating in terms of both effec-
tiveness and efficiency.

3.2. Case 2: Formosa excavation

To further validate the proposed GRU-based updating proced-
ure, the Formosa excavation (Ou et al., 1993; Kung et al., 2007a, b)
was analyzed. The width of the excavation is 33.4 m, and the length
and the thickness of the diaphragmwall is 31 m 0.8 m, respectively.
The Formosa excavation was performed by the bottom-up method
in seven stages. The total excavation depth is 18.5m. The soil profile
and the excavation depth are shown in Fig. 14. The groundwater
table is located 2 m below the ground surface. The monitoring in-
struments are similar to those in the TNEC excavation case. Thewall
deflection and ground settlement between predictions and mea-
surements from Stage 2 to Stage 7 are compared in Figs. 15 and 16,
respectively. For the wall deflection, the change of deformation
pattern leads to the inaccurate prediction of Stage 4. For other
stages, the proposed GRU-based updating procedure exhibits a
good performance with accurate predictions. For the prediction of
the ground settlement in Stage 3, it is normal that the GRU-based
forecast model is unable to learn reasonable deformation trends
when the wall and ground responses produced in the second stage
are too small. While for stage 4, it is difficult for the GRU-based
model to learn the underlying laws of the observed data from
Stages 2 and 3 since the evolution between the two previous stages
is too small, leading to the discrepancy between the measured and
predicted ground settlements in Stage 4. Alongside this, the pro-
posed procedure that combines the GRU and the observational
method can update the deformation in the braced excavation in
clay with success.

3.3. Limitations

Note that neither Bayesian (Juang et al., 2012) or optimization
(Jin et al., 2019a) updating nor the proposed GRU-based updating
procedure can predict the sudden change of deformation or exca-
vation collapse. The change of the deformation pattern due to the
installation of struts cannot be accurately predicted. One of the
corrective measures is to establish a database based on a large



Fig. 16. Predicted and measured ground settlement of Formosa excavation at different stages: (a) Stage 3, (b) Stage 4, (c) Stage 5, (d) Stage 6, and (e) Stage 7.
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number of FEM analyses to develop the intended ANN model.
Moreover, the excavation depth for each stage should be as same as
possible; otherwise, the trends of deformation learned from the
data of previous stages are not suitable to predict the response of
the next stage. Furthermore, during the excavation, a reasonably
detailed construction plan is needed, and the engineers should
follow the law of construction strictly to avoid unforeseen human
factors. More importantly, the deformation and ground responses
during the whole excavation stages should be monitored in real-
time, from which the data are used as the source for training the
GRU-based forecast model.

In addition, the influence of the uncertainty of the measured
data was not considered in the present updating procedure. It can
be improved by implementing Bayesian deep learning (Zhang et al.,
2021f) into the proposed GRU-based prediction procedure in future
work.
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4. Conclusions

An intelligent procedure for updating the deformation of braced
excavation in clay using deep learning has been proposed. In the
proposed procedure, the GRU neural network was employed to
build the forecast model. The observed data of the previous and
current stages were used to train the GRU-based forecast model by
Nadam algorithm. After that, the deformation response of the next
stage was predicted by the trained GRU-based forecast model with
the observed data of the current stage as the inputs. The defor-
mation updating cycled until the excavation finished.

The performances of the proposed intelligent procedure for
updating deformation were verified by analyzing two well-
documented excavations (i.e. TNEC and Formosa), in which the
wall deflection and the induced groundmovement were examined.
The errors of predicted results corresponding to the profiles and the
maximum values of the ground settlement and the wall deflection
were analyzed and found to be conformed to lognormal and normal
distributions, respectively. Furthermore, the advantages of the
proposed intelligent procedure compared to the Bayesian/optimi-
zation updating were illustrated. The proposed GRU-based updat-
ing procedure was superior to Bayesian/optimization updating in
terms of both effectiveness and efficiency. However, it should be
noted that neither Bayesian nor optimization updating nor the
proposed GRU-based updating procedure can predict the sudden
change of deformation or excavation collapse. The influence of the
uncertainty of measured data was not considered in the present
updating procedure. The corrective measures are needed, which
are, however, beyond the scope of this paper.
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