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Abstract 

This chapter introduces the autoregressive distributed lag (ADL) model. The ADL 

model is incorporated with the general-to-specific (GETS) approach for model 

specification, estimation, and selection to capture the relationship between tourism 

demand and its economic determinants. The model is applied to analyse and forecast 

inbound tourism demand for Thailand from selected source markets. Following a 

discussion of the forecasting performance of the ADL model, future research 

directions are proposed.  

3.1 Introduction 

Tourism demand forecasting has been a popular research topic for approximately five 

decades. The rapid development of tourism forecasting research has motivated recent 

review articles, such as that of Song, Qiu, and Park (2019), which uses 211 studies 

published between 1968 and 2018 to comprehensively summarise the new trends and 

developments in this area. Tourism demand forecasting models are generally divided 

into three types: time series, econometrics, and artificial intelligence.  

In this chapter, we focus on econometric model. The greatest advantage in using 

econometric model among these three categories is the ability to include information 

about explanatory variables in forecasting tourism demand. With a strong foundation 

in economics, econometrics can offer clear-cut practical implications (Song & Li, 

2008). Econometric models are generally classified into single-equation and system 
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demand models. Traditionally, single-equation models include the static regression 

model, the ADL model (Song, Witt, & Li, 2003; Song & Lin, 2010; Huang, Zhang, & 

Ding, 2017), the error correction (EC) model (Lee, 2011; Goh, 2012; Vanegas, 2013), 

and the time-varying parameter (TVP) model (Song & Wong, 2003; Song, Li, Witt, & 

Athanasopoulos, 2011; Page, Song, & Wu, 2012). Widely used system models 

include the vector auto-regressive (VAR) model (Wong, Song, & Chon, 2006; Song 

& Witt, 2006) and the almost ideal demand system (AIDS) model (Li, Song, & Witt, 

2004).  

Tourism demand is normally regarded as a dynamic process in which tourists’ 

decisions about destinations are affected by time. There are many reasons to capture 

the time-lag phenomenon. Tourists tend to revisit destinations at which they have had 

a pleasant experience because there is less uncertainty associated with returning to a 

familiar destination than with travelling to an unfamiliar one. Word of mouth is also 

an important factor. People often share their travel experiences with their friends and 

relatives after a holiday, and word-of-mouth recommendations can significantly 

influence a potential visitor’s selection of destinations for future holidays. In addition, 

because people are generally risk-averse and prefer outcomes with low uncertainty to 

those with high uncertainty, tourists often consider a destination’s popularity when 

making their choice. Therefore, sought-after destinations are likely to continue to 

receive large numbers of tourists in the future.  

The ADL model is the most widely used econometric method, and early studies such 

as those of Hendry (1995) and Pesaran and Shin (1995) have applied it to capture the 

dynamic pattern in economic variables (Liu, Lin, Li, & Song, 2022). Since being 

introduced into tourism demand forecasting research by Song and Witt (2003), the 

ADL model has been shown to have powerful analytical and predictive capabilities. 



Including the current value of independent variables and the lagged terms of 

dependent and independent variables in model specifications, the ADL model is more 

accurate to capture the relationship between tourism demand and its determinants 

compared to static regression models and can help to reveal how certain economic 

factors affect others.  

The ADL model views the time dynamics in demand variables as accounting for the 

intertemporal relationships between tourism demand and various explanatory 

variables. However, the introduction of more independent variables leads to a 

challenge of model specification and selection. Song et al. (2003) introduced the 

general-to-specific (GETS) modelling specification approach into the tourism 

literature. It starts from a general ADL model and removes insignificant variables 

sequentially according to certain criteria such as the Akaike information criterion 

(AIC), corrected Akaike information criterion (AICc), and Schwarz Bayesian 

information criterion (BIC). Song et al. (2003) found that the specified ADL model 

selected by GETS performed well according to both economic and statistical criteria. 

The ADL model incorporated with GETS has also been applied in studies of tourism 

in various destinations, such as Thailand (Song et al., 2003), Fiji (Narayan, 2004), and 

mainland China (Song & Fei, 2007). In addition, numerous studies have combined the 

ADL and EC models. Song and Lin (2010) and Lin, Liu, and Song (2015) further 

demonstrated that the ADL-EC model can consider not only the long-term 

relationship between tourism demand and its determinants but also the short-term 

error correction mechanism in modelled estimates. 

The ADL model has been further developed for incorporation into other methods of 

tourism demand forecasting. Athanasopoulos, Song, and Sun (2018) incorporated the 

bootstrap aggregation method into the ADL model to forecast tourism demand in six 



source markets for Australia, and their results showed the superior forecasting 

performance of bootstrap aggregation in improving the robustness of the ADL model. 

Song, Liu, Li, and Liu (2021) confirmed the forecasting performance of the ADL 

model with Bayesian bootstrap aggregation, which showed lower variance in 

forecasting results compared to its ordinary bootstrap aggregation counterpart. In 

addition, incorporating spatial dependence and spatial heterogeneity is an effective 

way to improve the ADL model, as suggested by Jiao, Li, and Chen (2021). By fully 

reflecting the spatial heterogeneity of European tourism demand forecasting models, 

the proposed general nesting spatiotemporal model outperformed the benchmark 

models. An alternative approach to improve the forecasting performance of the ADL 

model is to use judgemental adjustment. Song, Gao, and Lin (2013) utilised expert 

adjustments as inputs to combine statistical results with reliable consensus, and they 

demonstrated improved forecasting results for Hong Kong tourism. 

This chapter introduces the ADL model with the incorporation of GETS procedure 

and its application in forecasting tourism demand for Thailand from four source 

markets, with R codes included. To showcase how the model can be applied, the key 

procedures and forecasting practices are also provided. 

3.2 Methods 

3.2.1 The ADL model specification 

From the perspective of neoclassical economic theory, tourism demand is usually 

related to potential consumers’ income, the price of visiting the destination, and the 

comparable price for competing destinations. Following Chapter 2, a tourism demand 

function of a specific destination can be written as  

ln𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝛽𝛽0,𝑖𝑖 + 𝛽𝛽2,𝑖𝑖ln𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡 + 𝛽𝛽3,𝑖𝑖ln𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 , (3.1) 



where 𝛽𝛽0,𝑖𝑖 and 𝜀𝜀𝑖𝑖,𝑡𝑡 are the constant and disturbance terms, respectively. 𝛽𝛽2,𝑖𝑖 and 

𝛽𝛽3,𝑖𝑖 represent the income and the destination’s own price elasticities, respectively. To 

measure the dynamic features of tourism demand, the static model in Equation (3.1) 

can be written in an ADL model as 

ln𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝛽𝛽0 + �𝛽𝛽1,𝑖𝑖,𝑗𝑗ln𝑦𝑦𝑖𝑖,𝑡𝑡−𝑗𝑗
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(3.2) 

Considering the time lag of tourists’ decision-making progress, the ADL model offers 

more explanatory power, as tourism demand is affected by both the current value of 

its determinants and the lagged terms of itself and the determinants. The lag length of 

the time series may vary depending on data frequency. In common practice, one lag is 

frequently used for annual data, four lags for quarterly data, and twelve lags for 

monthly data (Song & Witt, 2003). The dummy variables in Equation (3.2) are used to 

capture the seasonal effect and offset the impact of one-off events such as the severe 

acute respiratory syndrome (SARS) outbreak in 2003. 

 

3.2.2 Stationarity and cointegration tests 

The concept of cointegration is used to test the existence of a long-run equilibrium 

between a pair of non-stationary variables in the same economic system, such as 

tourism demand and its determinants (Engle & Granger, 1987). 

To prepare for a cointegration test, we begin with unit root tests for all of input 

variables to identify their stationarity. A stationary time series is a series that has a 

constant mean, variance, and covariance over time, and is denoted by 𝐼𝐼(0). A non-

stationary time series has unit roots and is usually called an integrated process. The 



number of unit roots contained in the series equals the times that the series must be 

differenced before a stationary process is reached. The simplest autoregressive model 

(AR(1)) is 

𝑦𝑦𝑡𝑡 = 𝜆𝜆0 + 𝜆𝜆1𝑦𝑦𝑡𝑡−1 + 𝑒𝑒𝑡𝑡 ,  (3.3) 

where 𝜆𝜆0 is the intercept, 𝑒𝑒𝑡𝑡 is the white noise, and 𝜆𝜆1 is the parameters of the 

model. If 𝑦𝑦𝑡𝑡 has one unit root, denoted by 𝐼𝐼(1), then 𝜆𝜆1 = 1. Moreover, when the 

constant intercept 𝜆𝜆0 = 0, the process is termed a random walk; when the constant 

intercept 𝜆𝜆0 ≠ 0, the process is termed a random walk with drift. 

To determine objectively whether a series contains a unit root process, in most unit 

root tests, the null hypothesis 𝐻𝐻0: 𝜆𝜆1 = 1 is tested against the alternative hypothesis, 

𝐻𝐻1: 𝜆𝜆1 < 1, based on Equation (3.3). In empirical work, the Dickey–Fuller (DF) test, 

the augmented Dickey–Fuller (ADF) test, and the Phillips–Perron (PP) test are 

frequently applied. 

The DF test assumes that the time series can be modelled by an AR(1) process. 

Instead of testing 𝜆𝜆1 = 1 directly, Dickey and Fuller (1979) transformed Equation 

(3.3) by subtracting 𝑦𝑦𝑡𝑡−1 from both sides: 

   Δ𝑦𝑦𝑡𝑡 = 𝜓𝜓𝑦𝑦𝑡𝑡−1 + 𝑒𝑒𝑡𝑡 (3.4) 

Δ𝑦𝑦𝑡𝑡 = 𝜋𝜋0 + 𝜋𝜋1𝑡𝑡 + 𝜓𝜓𝑦𝑦𝑡𝑡−1 + 𝑒𝑒𝑡𝑡  (3.5) 

where Δ is the first difference operator and 𝑡𝑡 represents the time trend variable. 

Equation (3.4) is used to test a random walk process and Equation (3.5) for a random 

walk with drift process. Note that the null hypothesis changes to 𝐻𝐻0: 𝜓𝜓 = 0, against 

the alternative hypothesis 𝐻𝐻1: 𝜓𝜓 < 0.  

𝑡𝑡 =
𝜓𝜓�

𝑆𝑆𝑆𝑆�𝜓𝜓��
 

(3.6) 



The 𝑡𝑡 value, which is computed by Equation (3.6), can be compared to the critical 

value for the one-tailed test because 𝐻𝐻1: 𝜓𝜓 < 0 indicates that the rejection region is 

on the left. 

However, an AR(1) process may not model every time series; in these cases, the error 

will be serially correlated. To avoid the problem of autocorrelation in the residuals, 

the ADF test includes lagged dependent variables in the model specifications. Two 

variants of the ADF models are based on the following equations: 

   

Δ𝑦𝑦𝑡𝑡 = 𝜓𝜓𝑦𝑦𝑡𝑡−1 + ∑ 𝜔𝜔𝑖𝑖Δ𝑦𝑦𝑡𝑡−𝑖𝑖𝑛𝑛
𝑖𝑖=1 + 𝑒𝑒𝑡𝑡 ,  

(3.7) 

Δ𝑦𝑦𝑡𝑡 = 𝜋𝜋0 + 𝜋𝜋1𝑡𝑡 + 𝜓𝜓𝑦𝑦𝑡𝑡−1 + �𝜔𝜔𝑖𝑖Δ𝑦𝑦𝑡𝑡−𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝑒𝑒𝑡𝑡 , 
(3.8) 

where the n lagged first differences approximate the autoregressive moving average 

dynamics of the time series. Equation (3.7) is used to test a random walk process and 

Equation (3.8) for a random walk with drift process. The unit root test is then carried 

out under the null hypothesis 𝐻𝐻0: 𝜓𝜓 = 0, against the alternative hypothesis 𝐻𝐻1: 𝜓𝜓 <

0. Therefore, a one-tailed t-test is conducted to examine whether we need to reject the 

null hypothesis when the t value is less than the critical value. 

Both the DF and ADF tests assume that the residual in the regression is identically 

and independently distributed, and they thus are fairly restrictive. Phillips and Perron 

(1988) generalised the DF test and developed the PP test. However, the model 

specification of the PP test is rather complex and outside of the scope of this book. 

Many econometric software suites provide functions to conduct a PP test. 

For the cointegration test, a conditional ADL-EC model is used to test the existence of 

long-term relationships between tourism demand and the explanatory variables: 
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(3.9) 

where 𝜑𝜑 is the short-run impact parameter that captures short-run deviations from 

the equilibrium, 𝜃𝜃 is the long-run impact parameter that gives the long-run 

equilibrium and the cointegrating relationships, and 𝛼𝛼0 is the constant intercept. To 

eliminate insignificant terms and reach the optimal lag structure, the lag orders J, K, 

and L are determined by a number of criteria, such as AIC, AICc, and BIC. The 

mathematical details of the ADL-EC model can be found in Song and Turner (2006). 

The bounds test is an advanced method proposed by Pesaran, Shin, and Smith (2001) 

that has been widely used in tourism demand forecasting to examine the long-term 

relationships between tourism demand and explanatory variables (Song & Lin, 2010). 

Compared to the traditional cointegration test, the bounds test provides two 

flexibilities: 1) it is applicable irrespective of the integration order, which means that 

the variables can be a mixture of 𝐼𝐼(0) and 𝐼𝐼(1), and 2) variables considered in the 

ADL model can have different lag terms.  

The bounds test conducts an F-test with the null hypothesis that no cointegration 

relationships exist between the variables (𝐻𝐻0: 𝜃𝜃1,𝑖𝑖 = 𝜃𝜃2,𝑖𝑖 = 𝛿𝛿𝛿𝛿3,𝑖𝑖 = 0 for Equation 

(3.9)) against the alternative hypothesis that cointegration exists. Based on the 

situation in which the model variables are an arbitrary mix of 𝐼𝐼(0) and 𝐼𝐼(1), the 

lower bound assumes that all of the variables are 𝐼𝐼(0), and the assumption of the 

upper bound is that all of the variables are 𝐼𝐼(1). By definition, if the computed F-

statistic is less than the critical value of the lower bound, we cannot reject the null 



hypothesis. If the F-statistic exceeds the upper bound, cointegration may exist. If the 

F-statistic falls between the two boundaries, the test result is inconclusive. The critical 

values of the lower and upper bounds are provided by Pesaran et al. (2001) in Tables 

CI (pp. 300-301) and CII (pp. 303-304) in their study. 

For further checking, a t-test should also be conducted to identify the existence of 

cointegration (Pesaran et al., 2001). The t-test considers the null hypothesis 𝐻𝐻0:𝜃𝜃1,𝑖𝑖 =

0, which means that there is no cointegration relationship in the lag terms of tourism 

demand. Therefore, the t-test would confirm the existence of cointegration by 

rejecting the null hypothesis if the computed t-statistic is greater than the upper 

critical value, and it would indicate that all of the variables are stationary if the 

computed t-statistic is less than the lower critical value. 

3.2.3 Diagnostic tests 

Before we generate a forecast, the estimated model must be checked with numerous 

statistical tests to ensure that it is properly specified. For the final model, the 

regression residual is expected to be normality and not to contain autocorrelation or 

heteroscedasticity. In addition, the model should choose the function form correctly 

and avoid omitting important explanatory variables. Here we list the most used 

diagnostic tests. 

 

Autocorrelation test 

The Durbin–Watson statistic is a standard test to determine the existence of 

autocorrelation (Durbin & Watson, 1950). The statistic is 

𝑑𝑑 =
∑ (𝜀𝜀𝑖𝑖 − 𝜀𝜀𝑖𝑖−1)2𝑛𝑛
𝑖𝑖=2
∑ 𝜀𝜀𝑖𝑖2𝑛𝑛
𝑖𝑖=1

,  
(3.10) 

where 𝜀𝜀𝑖𝑖 represents the residuals and 𝑛𝑛 is the sample size. 



The statistic 𝑑𝑑 ranges from 0 to 4, where a value of 0 means that the data are 

perfectly positively autocorrelated and a value of 4 means that the data are perfectly 

negatively autocorrelated. If the value is around 2, there is no autocorrelation in the 

regression residuals. However, the DW statistic, constructed by Equation (3.10), is 

only able to detect first-order autocorrelation. The advanced method known as the 

Breusch–Godfrey (BG) test is a more general test, as it does not allow broader 

autocorrelation order, and it includes the lagged terms of dependent variables.  

 

Heteroscedasticity test 

Heteroscedasticity, which occurs when the modelling errors do not have the same 

variance, is a major concern in regression analysis, as it can result in biased standard 

errors. To make it simple but without the loss of universality, a White test (White, 

1980) posits two explanatory variables consisting of a multiple regression model as 

follows: 

𝑦𝑦𝑡𝑡 = 𝜌𝜌1 + 𝜌𝜌2𝑥𝑥1𝑡𝑡 + 𝜌𝜌3𝑥𝑥2𝑡𝑡 + 𝜏𝜏𝑡𝑡 (3.11) 

Then, the following auxiliary equation is used to test whether the error term 𝜏𝜏𝑡𝑡 is 

homoscedastic or heteroscedastic: 

𝜏̂𝜏𝑡𝑡2 = 𝛾𝛾1 + 𝛾𝛾2𝑥𝑥1𝑡𝑡 + 𝛾𝛾3𝑥𝑥2𝑡𝑡 + 𝛾𝛾4𝑥𝑥1𝑡𝑡2 + 𝛾𝛾5𝑥𝑥2𝑡𝑡2 + 𝛾𝛾6𝑥𝑥1𝑡𝑡𝑥𝑥2𝑡𝑡 + 𝜖𝜖𝑡𝑡  (3.12) 

where 𝜏̂𝜏𝑡𝑡2 is the estimated residual from Equation (3.11). The equations can also be 

expanded to test heteroscedasticity when the regression model has more than two 

explanatory variables. The null hypothesis of the White test is that the variances of the 

modelling error terms are equal, 𝐻𝐻0 = 𝜎𝜎𝑡𝑡2 = 𝜎𝜎2, and the alternative hypothesis is that 

the variances are not equal. The test statistic 𝑛𝑛𝑅𝑅2, where 𝑅𝑅2 is from the auxiliary 

regression in Equation (3.12), has a 𝜒𝜒2 distribution with degrees of freedom equal to 

the number of regressors. If the calculated statistic is greater than the critical 𝜒𝜒2 



value at the specific level of significance, the null hypothesis is rejected. In 

econometrics modelling practice, the Breusch–Pagan (BP) test is an effective method 

for testing heteroscedasticity. Derived from the Lagrange multiplier test, the BP test 

was developed by Breusch and Pagan in 1979, and subsequent studies have developed 

theoretical extensions of this test. 

 

Testing for normality 

The normality test is used to determine how well a data set is modelled by a normal 

distribution and how likely a random variable is to be normally distributed. In terms 

of model selection, the normality test is useful in measuring the goodness of fit of a 

model to the data. Developed by Shapiro and Wilk (1965), the Shapiro–Wilk 

normality test is  

𝑊𝑊 =
(∑ 𝑎𝑎𝑖𝑖𝑟𝑟(𝑖𝑖)

𝑛𝑛
𝑖𝑖=1 )2

∑ (𝑟𝑟𝑖𝑖 − 𝑟̅𝑟)2𝑛𝑛
𝑖𝑖=1

 

 

(3.13) 

where 𝑟𝑟𝑖𝑖 is the ordered random samples or the model’s residual. For 𝑟𝑟(𝑖𝑖), the 

subscript indices that are enclosed within parentheses represent the ith smallest 

number in the sample. 𝑎𝑎𝑖𝑖 is the constants computed from the variance, covariance, 

and means of the sample from a normal distribution. The null hypothesis of the 

Shapiro–Wilk normality test is that the tested sample is normally distributed. If the 

small value of W rejects the null hypothesis, the sample is not normally distributed. 

 

Test for misspecification 

The Ramsey RESET test is used to examine whether the omission of important 

explanatory variables or the non-linear format of an equation causes model 



misspecification (Ramsey, 1969). Taking Equation (3.11) as the example again, the 

fitted values of 𝑦𝑦𝑡𝑡 is: 

𝑦𝑦�𝑡𝑡 = 𝜌𝜌�1 + 𝜌𝜌�2𝑥𝑥1𝑡𝑡 + 𝜌𝜌�3𝑥𝑥2𝑡𝑡 (3.14) 

The second step is to test whether higher-powered dependent variables have 

explanatory power for 𝑦𝑦𝑡𝑡: 

𝑦𝑦𝑡𝑡 = 𝜇𝜇1 + 𝜇𝜇2𝑋𝑋1𝑡𝑡 + 𝜇𝜇3𝑋𝑋2𝑡𝑡 + 𝜗𝜗1𝑌𝑌�𝑡𝑡2 + 𝜗𝜗2𝑌𝑌�𝑡𝑡3 + 𝜗𝜗3𝑌𝑌�𝑡𝑡4 + 𝜉𝜉𝑡𝑡  (3.15) 

Finally, the Wald test is used to identify the significance of 𝜗𝜗1 through 𝜗𝜗3. The null 

hypothesis is that the model is correctly specified and that all 𝜗𝜗 coefficients are zero. 

If the null hypothesis is rejected because at least one powered fitted value can further 

explain the dependent variable, then the model suffers from misspecification. 

However, the RESET test is a general misspecification test, which means that 

rejection of the null hypothesis only identifies the misspecified condition of the 

model, not how the model is misspecified. 

Once the model passed the cointegration and most diagnostic tests, the income and 

own price elasticities in Equation (3.2) can be derived as ∑ 𝛽𝛽2,𝑖𝑖,𝑘𝑘
𝐾𝐾
𝑘𝑘=0

1−∑ 𝛽𝛽1,𝑖𝑖,𝑗𝑗
𝐽𝐽
𝑗𝑗=1

 and ∑ 𝛽𝛽3,𝑖𝑖,𝑛𝑛
𝑁𝑁
𝑛𝑛=0

1−∑ 𝛽𝛽1,𝑖𝑖,𝑗𝑗
𝐽𝐽
𝑗𝑗=1

, 

respectively. Then the model can be used to predict the tourism demand and the 

forecasting results should be evaluated by forecasting accuracy measured such as 

MAPE, RMSE and MASE as introduced in Chapter 2. 

3.3 Application 

In this chapter, the ADL model with the incorporation of GETS procedure is used to 

generate ex ante forecasts of visitor arrivals from mainland China, Malaysia, Russia 

and the USA to Thailand. 

3.3.1 Unit root test results 

Before modelling and forecasting, unit root tests are conducted for all of the log-

transformed variables to avoid spurious regressions. Table 3.1 demonstrates the 



stationarity status of all of the variables based on the results of the ADF, PP, and 

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests. The null hypotheses of ADF and 

PP tests are that there is a unit root present in the tested series, and the null hypothesis 

of the KPSS test is that no such unit root is present. 

An identified integration order is set depending on the majority result of the three unit 

root tests. In the ADF and PP tests, in the Malaysian model, the null hypothesis of a 

unit root is rejected for the log-transformed visitor arrivals variable. Taking the first 

differences, all of the variables are stationary series in the three unit root tests except 

for the income variable in the Chinese mainland model. The results of the ADF and 

KPSS tests suggest that a higher order of integration exists. The above results show 

that most of the variables in the models are either I(0) or I(1), which justifies the use 

of the following bounds test procedure. 

[Insert Table 3.1 about here] 

 

3.3.2 Bounds test results 

After the model specification and selection by GETS procedure, we conduct the 

bounds test to check whether there is cointegration between the remaining 

independent variables and visitor arrivals. With the null hypothesis that there is no 

cointegration between the variables, the bounds test outputs the F-statistic and t-

statistic together. These are then compared with the threshold interval at the 10% and 

1% significance levels (see Table 3.2). Because the final models for each source 

country have different numbers of independent variables, the corresponding threshold 

intervals are also provided for reference. 

The results in Table 3.2 show the F-statistics all lie on the right side of the upper 

bound at the 1% significance level. The computed t-statistic supports the existence of 



a long-run relationship between tourism demand and its determinants in Malaysia and 

the USA but fails to reject the null hypothesis with the bounds test for mainland China 

and Russia, which may relate to the fact that those two markets are largely influenced 

by domestic policy and international politics. The fluctuating outbound tourism series 

and the limited sample size also provide relatively weak confirmation of 

cointegration. Therefore, we need to interpret the modelling and forecasting results 

with caution of the two destinations. As the results show that the variables have long-

term relationships across these tourism demand models, the demand elasticities can be 

reasonably obtained. 

[Insert Table 3.2 about here] 

 

3.3.3 Diagnostic test results 

The estimation results and diagnostic tests are included in Table 3.3 and 3.4, 

respectively. All four models have high goodness of fit, as suggested by the high 

values of the adjusted 𝑅𝑅2, which exceed 0.95 for mainland China, Russia, and the 

USA. These results show that most of the variations in visitor arrivals from the 

relevant markets over the 2000Q1-2016Q4 period can be explained by the estimated 

models. In addition, all of the F-statistics are significant at the 1% significance level. 

The diagnostic statistics in Table 3.4 show that all of the models are well constructed 

except for the RESET tests. All of the models reject the null hypothesis of the RESET 

test that the correct specification is linear, probably because income and own prices 

are limited in their ability identify tourism demand. Other explanatory variables such 

as alternative price could be included with caution. The Chinese mainland model fails 

the BG test because of the substantial volatility in the Chinese outbound market over 

the sample period. The USA model fails the Shapiro–Wilk test but passes the others. 



Overall, the diagnostic testing results indicate that these four models are reasonably 

valid and reliable and can undergo further analysis. 

[Insert Table 3.3 and 3.4 here] 

3.3.4 Demand elasticities 

The signs for the income variables are positive for all four markets, which is 

consistent with theory (Table 3.4). The income elasticities for all of the models are 

greater than one, which suggests that demand for tourism in Thailand from these 

source markets is income elastic. These results imply that these visitors are sensitive 

to changes in income and that travel to Thailand has the attributes of a luxury product, 

probably because leisure travel makes up a large proportion of Thailand’s tourism 

market. In addition, the magnitudes of the estimated elasticities vary across markets. It 

is notable that the income elasticities of mainland China and Malaysia are smaller 

than those of Russia and the USA, perhaps due to the relatively short distances 

between Thailand and these short-haul markets. Income is a less significant 

influencing factor for mainland China and Malaysia. 

According to the law of demand, all price elasticities are expected to be negative. The 

computed price elasticity for the USA is less than one, revealing that American 

visitors are relatively less sensitive to changes in the prices of tourism products and 

services in Thailand. Visitors from mainland China and Russia are more sensitive to 

price elasticity, which suggests that price campaigns would be an effective way to 

attract visitors from these two source markets. The sign of the price elasticity of 

tourism demand from Malaysia is positive but not significant. 

3.3.5 Tourism demand forecasts 

The quarterly forecasts of visitor arrivals in Thailand from the selected short- and 

long-haul markets are generated based on the above estimated equations. One- to 12-



step-ahead forecasts are generated in a rolling window from 2017Q1 to 2019Q4. To 

eliminate potential forecasting outliers, we only consider the forecasting performances 

of one to eight steps ahead because they contain adequate forecast points. For 

example, the forecasting period from 2017Q1 to 2019Q4 allows five eight-step-ahead 

forecasts using the rolling window. The forecasting performance is compared with the 

three most-used time series models: the seasonal autoregressive integrated moving 

average (ARIMA), exponential smoothing (ETS), and seasonal naïve (SNAIVE) 

models. 

In general, the ADL model performs well across most forecasting horizons in terms of 

the rankings of MAPE, RMSE, and MASE (details of the forecasting performance can 

be found in Tables 3.5-3.7). When the forecasting horizon is extended, the forecast 

accuracy of the benchmark models deteriorates, but the ADL model outperforms the 

benchmark models. The empirical results suggest that the ADL model offers a highly 

consistent, superior forecasting performance. 

[Insert Table 3.5-3.7 here] 

 

3.4 Conclusion and future directions 

This chapter introduces the ADL model with the incorporation of GETS procedure 

and its application to forecasting demand for tourism in Thailand. The advantage of 

the ADL model lies in its ability to introduce into a demand model the economic 

determinants that are revealed as demand elasticities in a log-transformed demand 

function. Capturing the dynamics of dependent and independent variables contributes 

to the accurate prediction of future demand, particularly over the longer term. The 

empirical application in this chapter illustrates the model’s superior forecasting 



performance in most cases and shows that its performance remains highly stable over 

different forecasting horizons and with different forecast error measures. 

Based on the general form of the ADL model, this method can be further improved 

for incorporation into other techniques for forecasting tourism demand. The ADL 

model has shown significant improvements in forecasting tourism demand, as studies 

have expanded it with the EC model and time series bootstrap aggregation methods; 

however, developments remain limited (Song & Lin, 2010; Athanasopoulos et al., 

2018; Song et al., 2021). Integrations of the ADL model with other advanced 

forecasting approaches such as boosting, staking, and mixed-data sampling methods 

has yet to applied in the tourism demand forecasting context. In addition, as a 

powerful tool in identifying causal relationships, the ADL model can be applied to 

investigate new aspects of the tourist industry and verify their general applicability for 

forecasting tourism demand. 

 

Self-study questions 

(1) What are the advantages of the ADL model? 

(2) What are the limitations of the ADL model? 

(3) What are the practical implications for income/price elasticities larger than one (or 

less than one)? 
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Appendix: R code 

### The following codes shows how to estimate an ARDL model by GETS and 
generate the tourism demand forecast 
### with the package ARDL in R. 
### Author: Dr. Anyu Liu and Mr. Xinyang Liu 
### Last updated: 12-04-2022 
### R version: R 4.0.5 
 
### Clear memory 
rm(list=ls()) 
### install and load ARDL package 
#install.packages("ARDL") 
#install.packages("dynlm") 
#install.packages("aod") 
#install.packages("tseries") 
#install.packages("lmtest") 
#install.packages("forecast") 
library(ARDL) 
library(dynlm) 
library(aod) 
library(tseries) 
library(lmtest) 
library(forecast) 
library(Metrics) 
 
###Set the path that the data and function file is stored 
setwd("~") 
source('ardl_forecast_function.R') 
 
###Input the raw data 
data<-read.csv("THA_MAL.csv") 
 
###Generate the relative price and take natural log to non-dummy variables 
#data$RP=(data$CPI_D/data$EX_D)/(data$CPI_O/data$EX_O) 
data$RP=(data$CPI_D/data$EX_D)/(data$CPI_O/data$EX_O) 
data$lnarr=log(data$Arr) 
data$lngdp=log(data$GDP) 
data$lnrp=log(data$RP) 
data1=data[c('lnarr','lngdp','lnrp','Q1','Q2','Q3')]###Modify and specify the dummy 
variable names based on the data 
data1<-ts(data1,start=c(2000,1),end=c(2019,4),frequency=4) 
###Unit root tests 
###Level 
adf.test(data$lnarr) 
adf.test(data$lngdp) 
adf.test(data$lnrp) 
pp.test(data$lnarr) 



pp.test(data$lngdp) 
pp.test(data$lnrp) 
kpss.test(data$lnarr) 
kpss.test(data$lngdp) 
kpss.test(data$lnrp) 
###1st order difference 
adf.test(diff(ts(data$lnarr),differences=1)) 
adf.test(diff(ts(data$lngdp),differences=1)) 
adf.test(diff(ts(data$lnrp),differences=1)) 
pp.test(diff(ts(data$lnarr),differences=1)) 
pp.test(diff(ts(data$lngdp),differences=1)) 
pp.test(diff(ts(data$lnrp),differences=1)) 
kpss.test(diff(ts(data$lnarr),differences=1)) 
kpss.test(diff(ts(data$lngdp),differences=1)) 
kpss.test(diff(ts(data$lnrp),differences=1)) 
 
###Generate the training data set 
datam<-ts(data1[1:68,],start=c(2000,1),end=c(2016,4),frequency=4) 
###Find the best ADL specification based on AIC by GETS 
models<-auto_ardl(lnarr ~ lngdp + lnrp + Q1 + Q2 + Q3, data = datam, 
                  max_order = 4, fixed_order = c(-1,-1,-1,0,0,0)) ###Modify the 
formula based on the inclusion of dummy variables, the number of "0" in brakets 
equals to 3+ number of dummies 
models$top_orders 
ardl_fitted=models$best_model 
summary(models$best_model) 
###Estimate the ADL-EC model with the best model specification 
model_l<-models$best_model 
model_ecm<-uecm(model_l) 
summary(model_ecm) 
 
###Bounds test 
fbd<-bounds_f_test(model_l, case = 2) 
tbd<- bounds_t_test(model_l, case = 3, alpha = 0.01) 
 
###Diagnostic tests 
res<-model_l$residuals #save the residual 
bgtest(model_l)#performs the Breusch-Godfrey test for higher-order serial correlation 
bptest(model_l)#Performs the Breusch-Pagan test against heteroskedasticity 
resettest(model_l)#Ramsey’s RESET test for functional form 
shapiro.test(res)#Shaprio test for normality 
###Calculate Elasticities 
EL<-multipliers(model_l) 
 
###Forecast Generation 
###Generate the testing data set 
# datat <- ts(data1[69:80,],start=c(2017,1),end=c(2019,4),frequency = 4) 
N = nrow(data) 
forecasts.matrix = matrix(NA, 12, 8) 
LnY0.matrix = matrix(NA, 12, 8) 



colnames(forecasts.matrix) = paste0("h=", 1:8) 
rownames(forecasts.matrix) = paste0(rep(2017:2019, each = 4), paste0("Q", 1:4)) 
 
# ADL model 
# Rolling window: sampling period ending from N-12 to N-1 
for (i in 12:1) { 
  endi = N - i 
  mat = tail(head(data1, endi),68) 
  # Fitting ADL model 
  fit.adl <- auto_ardl(lnarr ~ lngdp + lnrp + Q1 + Q2 + Q3, data = mat, 
                          max_order=4, fixed_order=c(-1,-1,-
1,0,0,0))$best_model 
  # Forecasting h=i 
  fc.adl <- ardl_forecast(fit.adl, data1, i) 
  # Arranging forecasts and original values into 2 matrices with the same format 
  for (j in 1:8) { 
    if ((12 - i + j) > 12) 
      break 
    forecasts.matrix[(12 - i + j), j] = fc.adl[j] 
    LnY0.matrix[(12 - i + j), j] = data1[(endi + j), 1] 
  } 
} 
 
# Computing residuals matrix in original scale 
residuals.matrix = exp(forecasts.matrix) - exp(LnY0.matrix) 
 
# Computing MAPE 
MAPE = colMeans(abs(residuals.matrix) * 100 / exp(LnY0.matrix), na.rm = TRUE) 
 
# Computing RMSE 
RMSE = sqrt(colMeans((residuals.matrix) ^ 2, na.rm = TRUE)) 
 
# Computing MASE 
MASE.denominator = mean(abs(diff(exp(data1[,1]), 4))) 
MASE = colMeans(abs(residuals.matrix) / MASE.denominator , na.rm = TRUE) 
 
#ardl forecasts function 
ardl_forecast = function(model, data_full, horizon) { 
  data_train <- model$data 
  nrow <- dim(data_full)[1] 
  ncol <- dim(data_full)[2] 
  outro <- data_full[(nrow - horizon + 1): nrow, 2: ncol] 
  #construct forecast matrix   
  fore_array <- rep(0, horizon) 
  for (i in 1: horizon) { 
    if (i == 1) { 
      updated_matrix <- rbind(data_train, c(fore_array[1:i], matrix(outro, 
horizon,)[1:i,])) 
    } else { 
      updated_matrix <- rbind(data_train, cbind(fore_array[1:i], outro[1:i,])) 



    } 
    #with the help of ARDL fitting function, a complete forecast (both current value 
and lag value are included) matrix is construct 
    data_structure <- ardl(as.formula(paste(model$parsed_formula$y_part$var, 
paste(model$parsed_formula$x_part$var, collapse = "+"), sep = "~")), 
                           data = updated_matrix, order = model$order)$model 
     
    nrow_structure <- dim(data_structure)[1] 
    ncol_structure <- dim(data_structure)[2] 
    outro_input <- data_structure[nrow_structure, 2:ncol_structure] 
    coef <- model$coefficients[2: ncol_structure] 
    coef[is.na(coef)] <- 0 
     
    fore <- as.matrix(outro_input) %*% coef + model$coefficients[1] 
    fore_array[i] <- fore 
  } 
  return(fore_array) 
} 
 



Table 3.1 Unit root test results using the ADF, PP, and KPSS tests. 

    Level First Difference Integration 
Order     ADF PP KPSS ADF PP KPSS 

Mainland China ln𝑦𝑦 -2.218  -19.773 * 1.860 *** -5.817 *** -97.661 *** 0.141  I(1) 
 ln𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0.465  1.711  2.087 *** -2.673  -61.249 *** 1.074 *** higher order 
 ln𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 -2.364  -8.554  0.403 * -4.298 *** -62.419 *** 0.095  I(1) 
Malaysia ln𝑦𝑦 -4.366 *** -53.668 *** 2.062 *** -6.585 *** -75.967 *** 0.052  I(0) 
 ln𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 -2.786  -16.182  2.045 *** -5.489 *** -57.582 *** 0.086  I(1) 
 ln𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 -2.612  -21.982 ** 1.848 *** -5.830 *** -74.142 *** 0.266  I(1) 
Russia ln𝑦𝑦 -1.331  -45.007 *** 1.951 *** -3.388 * -42.207 *** 0.191  I(1) 
 ln𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 -1.822  -18.126 * 1.860 *** -3.462 * -63.076 *** 0.215  I(1) 
 ln𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 -1.825  -7.316  0.503 ** -4.580 *** -93.88 *** 0.641 ** I(1) 
US ln𝑦𝑦 -2.233  -49.092 *** 1.817 *** -5.267 *** -49.299 *** 0.212  I(1) 
 ln𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 -1.561  -3.393  1.991 *** -3.058  -62.368 *** 0.206  I(1) 
  ln𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 -1.579   -7.271   1.478 *** -4.606 *** -49.616 *** 0.127   I(1) 

Note: *, **, and *** denote a rejection of the null hypothesis at the 0.1, 0.05, and 0.01 significance levels, respectively. 

 

 

 

 

 

 



Table 3.2 Bounds test results 

  k F-statistic t-statistic 
Mainland China 9 13.121 *** -3.871  
Malaysia 5 8.753 *** -3.948 * 
Russia 7 8.073 *** -0.119  
US 9 99.838 *** -9.726 *** 
  F-statistic t-statistic 
Bounds test interval Lower-bound I(0) Upper-bound I(1) Lower-bound I(0) Upper-bound I(1) 
  10% Significance level 10% Significance level 
k=5 2.26 3.35 -2.57 -3.86 
k=7 2.03 3.13 -2.57 -4.23 
k=9 1.88 2.99 -2.57 -4.56 
  1% Significance level 1% Significance level 
k=5 3.41 4.68 -3.43 -4.79 
k=7 2.96 4.26 -3.43 -5.19 
k=9 2.65 3.97 -3.42 -5.54 

Note: 1. k is the number of variables left in the estimated model; 2. *, **, and *** denote a rejection of the null hypothesis at the 0.1, 0.05, and 
0.01 significance levels, respectively. 
 

 

 

 



Table 3.3 ADL estimates in the final state and diagnostics 

  Mainland China Malaysia Russia US 
ln𝑦𝑦(−1) 0.493 *** 0.586 *** 0.840 *** 0.237 *** 
ln𝑦𝑦(−2) 0.022    -0.478 ***   
ln𝑦𝑦(−3) 0.161 *   0.629 ***   
ln𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0.539 *** 0.483 ** 1.778 *** 1.699 *** 
ln𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(−1)     -1.893 ***   
ln𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 -0.827  0.007  -1.149 *** -0.199 *** 
ln𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(−1) 0.241    0.885 **   
ln𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(−2) 0.911        
ln𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(−3) -1.954 *       
Q1 0.297 *** -0.219 *** 0.095  -0.061 ** 
Q2 0.037  -0.166 *** -0.982 *** -0.267 *** 
Q3 0.195 ** -0.131 *** -0.899 *** -0.285 *** 
SARS -1.496 ***   -0.882 *** -0.383 *** 
PC_05 -0.791 ***       
FC_08 -0.758 ***   0.010  -0.125 *** 
PC_10 -0.857 ***       
SC_10       -0.174 *** 
SC_14       -0.154 *** 
Intercept 1.624 *** 3.385 *** 1.179   1.525 ** 

Notes: *, **, and *** denote significance at the 0.1, 0.05, and 0.01 levels, respectively.



Table 3.4 Demand elasticities and diagnostic test results 

  Mainland China Malaysia Russia US 
Income elasticity 1.66  1.17  2.93  2.23  
Own price elasticity -5.02  -  -4.16  -0.26   
 𝑅𝑅2 0.963   0.893   0.981   0.960  
Adjusted 𝑅𝑅2 0.952  0.882  0.976  0.953  
F-statistic 85.86 *** 83.37 *** 181 *** 135.9 *** 
Diagnostic test                 
BG test 6.881 *** 0.0560   2.182   0.087  
BP test 13.617  3.921  8.123  9.8  
RESET test 7.282 *** 4.905 ** 4.92 *** 2.961 * 
Shapiro–Wilk test 0.957 ** 0.958 ** 0.963 * 0.98   

Note: *, **, and *** denote a rejection of the null hypothesis at the 0.1, 0.05, and 0.01 
significance levels, respectively. 
 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3.5 Forecasting performance evaluation measured by MAPE (%) 
 Forecasting horizons 
 1 2 3 4 8 
Mainland China      
 SNAIVE 13.194 13.683 15.039 15.606 14.882 
 ETS 12.201 16.127 15.163 13.312 15.984 
 SARIMA 14.753 13.945 16.658 17.642 21.033 
 ADL 7.166 11.400 11.122 10.900 7.383 
Malaysia      
 SNAIVE 7.859 7.559 7.349 8.114 18.818 
 ETS 7.973 8.113 8.193 8.448 5.081 
 SARIMA 8.339 8.032 8.422 7.148 8.964 
 ADL 8.401 8.743 8.318 7.099 12.550 
Russia      
 SNAIVE 9.800 8.259 7.474 7.783 13.722 
 ETS 9.956 12.781 16.648 13.287 26.609 
 SARIMA 12.221 16.511 15.800 19.900 46.633 
 ADL 12.307 12.278 12.900 10.960 11.817 
US      
 SNAIVE 5.703 5.563 5.098 4.839 9.991 
 ETS 3.956 3.919 4.345 6.008 11.263 
 SARIMA 4.553 7.014 8.247 9.483 14.186 
 ADL 5.268 5.935 5.854 6.102 5.379 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3.6 Forecasting performance evaluation measured by RMSE 
 Forecasting horizons 
 1 2 3 4 8 
Mainland China      
 SNAIVE 435305 451019 473032 490637 465626 
 ETS 361836 454310 454610 469960 496274 
 SARIMA 431710 440885 532880 515603 596629 
 ADL 239047 346058 342582 332689 233116 
Malaysia      
 SNAIVE 114911 117014 119366 125817 227894 
 ETS 86084 96150 108836 92312 64159 
 SARIMA 98563 100908 116794 107835 131294 
 ADL 96799 111594 111151 107898 156260 
Russia      
 SNAIVE 60723 49666 50755 53441 72672 
 ETS 40284 35219 69387 61388 92175 
 SARIMA 44255 51003 58842 75123 150857 
 ADL 78401 53962 76022 55736 65652 
US      
 SNAIVE 17100 16758 15602 15539 32290 
 ETS 12734 13027 16326 19637 36930 
 SARIMA 17164 22540 26103 30561 45171 
 ADL 16907 18062 18546 19978 20142 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3.7 Forecasting performance evaluation measured by MASE 
 Forecasting horizons 
 1 2 3 4 8 
Mainland China      
 SNAIVE 1.624 1.691 1.858 1.926 1.790 
 ETS 1.472 1.916 1.885 1.678 2.002 
 SARIMA 1.777 1.631 1.963 2.117 2.503 
 ADL 0.902 1.410 1.418 1.398 0.940 
Malaysia      
 SNAIVE 1.033 1.024 1.010 1.117 2.720 
 ETS 0.974 1.016 1.069 1.076 0.727 
 SARIMA 1.052 1.049 1.121 0.983 1.326 
 ADL 1.056 1.115 1.103 0.977 1.833 
Russia      
 SNAIVE 0.830 0.656 0.644 0.698 1.239 
 ETS 0.657 0.633 1.191 0.912 1.725 
 SARIMA 0.802 0.959 0.968 1.237 3.059 
 ADL 1.044 0.836 1.081 0.895 0.943 
US      
 SNAIVE 0.962 0.936 0.875 0.863 1.862 
 ETS 0.646 0.652 0.768 1.078 2.110 
 SARIMA 0.773 1.144 1.409 1.684 2.624 
 ADL 0.873 0.977 0.989 1.065 0.955 
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