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Abstract

Transportation is the backbone of the economy and urban development. Improving the efficiency,
sustainability, resilience, and intelligence of transportation systems is critical and also challeng-
ing. The constantly changing traffic conditions, the uncertain influence of external factors (e.g.,
weather, accidents), and the interactions among multiple travel modes and multi-type flows result
in the dynamic and stochastic natures of transportation systems. The planning, operation, and
control of transportation systems require flexible and adaptable strategies in order to deal with
uncertainty, non-linearity, variability, and high complexity. In this context, Reinforcement Learn-
ing (RL) that enables autonomous decision-makers to interact with the complex environment,
learn from the experiences, and select optimal actions has been rapidly emerging as one of the
most useful approaches for smart transportation applications. This paper conducts a bibliometric
analysis to identify the development of RL-based methods for transportation applications, repre-
sentative journals/conferences, and leading topics in recent ten years. Then, this paper presents
a comprehensive literature review on applications of RL in transportation based on the specific
topics. The potential future research directions of RL applications and developments are also
discussed.
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1. Introduction1

The travel demand is increasing along with the growth of social and economic activities, which2

results in great challenges in terms of crowding, congestion, emission, energy, and safety. Mean-3

while, a massive amount of multi-source data has been continuously and/or automatically col-4

lected. In this context, artificial intelligence (AI) methods that can take advantage of the growing5

data availability have been proposed to address challenges faced by transportation systems and6

travelers and thus improve system safety, sustainability, resilience, and efficiency.7

Reinforcement Learning (RL) is an essential branch of AI-based methods, which is an experience-8

driven autonomous learning strategy for decision-making that aims to obtain the maximum ac-9

cumulative reward. The concepts and terminologies in relation to reinforcement learning are first10

proposed in 1954 (Minsky, 1954), where the trial and error interaction with the environment is11

emphasized as the core mechanism of RL to learn optimal behaviors/decisions (Kaelbling et al.,12

1996). Bellman (1957) proposes the dynamic programming method to solve the discrete Markov13

Decision Process (MDP) for the optimal control problem, where the proposed method is similar14

to the trial and error mechanism, and thus MDP becomes the most common mathematical frame-15

work to define RL tasks. Later on, Q-learning is proposed (Watkins, 1989) to find the optimal16

strategy under limited information/knowledge (e.g., without the knowledge of the state transition17
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function), which further expands the application of RL. Since the development of Q-learning, ap-18

plications with RL have grown rapidly. For instance, RL algorithms have been applied for Atari19

games proposed by DeepMind (Mnih et al., 2015). The design of AlphaGo (Silver et al., 2016),20

a deep RL-based Go program, defeats advanced human players, which demonstrates the huge21

potential of deep reinforcement learning.22

In the past several years, many top conference papers and journal papers have reported diverse23

theoretical progress of RL, which have motivated wide applications of RL in different fields. For24

instance, RL-based methods are able to control complex machinery (Levine et al., 2016) and self-25

driving (Wang et al., 2019). Also, it has been applied in recommendation systems for commodity26

recommendation (Chen et al., 2018) and advertising placement (Lou et al., 2020). The utilization27

of RL in the natural language processing (NLP) domain has also been explored extensively, such as28

dialogue system (Mo et al., 2018) and context sequence modeling (Chen et al., 2021). In addition,29

RL can be used to improve communication network resource allocation efficiency (Mao et al., 2016),30

where the energy usage for data centers can be reduced.1 The wide applications of Reinforcement31

Learning in different domains demonstrate the advantages of RL, which are further explained32

below. First, RL does not necessarily require substantial prior experiences or historical data to33

train the agent (Ye et al., 2019). Second, model-free RL algorithms allow agents to learn the34

environment information for optimization without dependence on prior expert knowledge. Third,35

RL is able to handle long-term problems by acknowledging long-term returns rather than only36

considering an immediate return for short-term benefits (Pan et al., 2019). Also, multi-agent RL37

algorithms that can handle large-scale systems where multiple agents either cooperate or compete38

with each other have been proposed. Multi-agent RL shows strong scalability by distributing tasks39

appropriately for a large number of agents (Desjardins and Chaib-Draa, 2011).40

In line with the advantages of RL, many studies have developed and/or applied RL strategies41

in the transportation sector. The experimental results evaluated on real-world datasets or syn-42

thetic datasets demonstrate the effectiveness of Reinforcement Learning in learning and managing43

transportation systems, improving accuracy and efficiency, and reducing resource consumption.44

There are several existing reviews on RL studies in the transportation domain. In particular, Man-45

nion et al. (2016); Yau et al. (2017); Noaeen et al. (2022) focus on traffic signal control with RL;46

Aradi (2022); Kiran et al. (2022); Zhu and Zhao (2021) focus on deep RL models for autonomous47

driving; and Qin et al. (2022) focuses on RL algorithms for ride-sharing. Three additional review48

studies (Abdulhai and Kattan, 2003; Haydari and Yilmaz, 2022; Farazi et al., 2021) have covered49

more transportation applications with Reinforcement Learning. Abdulhai and Kattan (2003) is50

published in 2003, which does not cover the substantial development of RL methods in recent51

years. Farazi et al. (2021) mainly focuses on deep RL methods for applications in transportation52

(e.g., autonomous driving and traffic signal control). However, non-deep RL models have not been53

examined. Haydari and Yilmaz (2022) has discussed both deep RL and non-deep RL methods and54

covers a wide range of RL applications in transportation (including traffic signal control, energy55

management for the electric vehicle, road control, and autonomous driving). However, the im-56

portance of fairness in developing RL methods for transportation applications is not emphasized.57

Moreover, none has provided a bibliometric analysis of RL methods for transportation applica-58

tions. Differently, this study takes advantage of the bibliometric analysis to provide a systematic59

review on applications of both deep RL and non-deep RL methods in transportation, and provide60

more comprehensive coverage of applications than related existing reviews (e.g., including RL61

applications in taxi and bus systems that have not been covered by Haydari and Yilmaz (2022)).62

Besides, this paper further points out several aspects that require substantial efforts in terms of63

developing RL methods for real-world transportation applications, i.e., scalability, practicality,64

transferability, and fairness.65

Specifically, this study provides a summary on applications of RL to address relevant trans-66

portation issues and takes advantage of the bibliometric analysis approach to uncover connections67

among the journals/conferences and use keywords to identify the influential journals/conferences68

and areas of concern. Several future directions of RL studies in transportation are also discussed.69

The major transportation topics that involve RL methods discussed in this study include traffic70

1https://www.deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40
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Fig. 1. Classification of RL Applications in Transportation

control, taxi and ride-sourcing/sharing, assistant and autonomous driving, routing, public trans-71

portation and bike-sharing system, and electric vehicles, which are identified based on an analysis72

of keywords summarized in Section 3. The detailed classification of topics is shown in Fig. 1.73

In particular, this review has collected over six hundred related papers mostly published in the74

last thirteen years in major journals in the transportation domain (e.g., Transportation Research75

Part B, Part C, IEEE Transactions on Intelligent Transportation Systems, IET Intelligent Trans-76

port Systems) and major related conferences in the computer science domain (e.g., AAAI, KDD,77

WWW, CIKM), which will be further discussed in Section 3. To summarize, this paper provides a78

reference point to researchers for interdisciplinary Reinforcement Learning research in transporta-79

tion and computer science.80

The rest of this paper is structured as follows. Section 2 introduces basic formulations of81

Reinforcement Learning and Section 3 conducts the bibliometric study. The review of the six82

topic categories for transportation applications with RL are presented in Section 4 − Section 9,83

respectively. Future directions of RL in transportation and the conclusion of this paper are84

discussed in Section 10.85

2. Preliminary86

Markov Decision Process (MDP) is often used to provide the basic mathematical formulation87

for Reinforcement Learning, which is presented first in this section. Then, algorithms for Reinforce-88

ment Learning (including value-based algorithms, policy-based algorithms, and actor-critic-based89

algorithms) and data usage in transportation applications are discussed.90

2.1. Markov Decision Process91

MDP is a mathematical model for stochastic control processes that can simulate agents,92

stochastic policy, and rewards, which provides a mathematical framework for RL (Sutton and93

Barto, 2018). RL aims to maximize the reward where the MDP framework is able to produce94

the delayed reward by adopting the reward function and discount factor. In MDP, the Markov95

property is a fundamental concept, which is defined as the next state being only related to the96

current state and is independent of previous states (Markov, 1954). The Markov property (state97

independence) often helps simplify the optimization task of RL.98

In detail, MDP consists of five elements, i.e., < S,A,P,R, γ >, where S represents the set of99

states, A denotes the set of actions, P is the probabilistic transition function, R is the reward100

function, and γ ∈ [0, 1] denotes the discount factor. At time step t, under a state st ∈ S, the101

agent performs an action at ∈ A and then receives an immediate reward rt(st, at) ∈ R from the102

environment. The environment state will change to st+1 ∈ S based on the transition probability103

P(st+1|st, at). The goal of the agent is to find an optimal policy π∗ for maximizing the cumulative104

reward with a discount factor where G =
∑T

t=1 γ
trt, π∗ = argmaxπE[G|π], and E represents105

the expectation operator. Specifically, the state, action, and reward are all problem-specific.106

For instance, for traffic signal control problems, the state may include traffic flow and speed107
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information, the action is the signal timing, and the reward is often defined to minimize traffic108

delay. The transition dynamics matrix maps the pair of the state and action into the distribution109

of states in the next time step, which consists of the probability between any two states. The110

specific values of transition matrices often do not need to be calculated after the development of111

Q-learning. The discount factor is often adopted to put more weight on more recent return. The112

policy is the solution to MDP, which maps from the state to the action and indicates the action113

to be taken under the specific state.114

Depending on the number of agents that are considered, RL can be divided into single-agent and115

multi-agent algorithms. When there are multiple agents, three relations among agents are often116

considered, i.e., the fully competitive, the semi-competitive and semi-cooperative, and the fully117

cooperative. Compared to single-agent RL, multi-agent RL faces more challenges. For example,118

the joint actions of all agents will affect the state, which increases the instability of the environment119

and leads to the difficulty of optimization. Also, in a multi-agent system, we may have to deal with120

agents with only local observation/information. In addition, the increase of agents will require121

more computation resources to handle the large or high-dimensional state and action spaces. This122

paper involves both single-agent and multi-agent RL methods for transportation applications.123

2.2. Reinforcement Learning Algorithms124

This subsection will introduce several major Reinforcement Learning algorithms, i.e., value-125

based algorithms, policy-based algorithms, and actor-critic-based algorithms, which are different126

in terms of how they optimize the decisions.127

Different states/outcomes (in future time steps) may occur even under the same actions (at the
current time step). Therefore, expected cumulative rewards are often considered. In particular,
the state-value function V π(s) calculates the expected cumulative reward under state s and policy
π. The state-action function Qπ(s, a) calculates the expected cumulative reward of taking action a
under state s. The state-value function and the state-action function can be formulated as follows:

V π(s) = E[G|s] (1)
Qπ(s, a) = E[G|s, a] (2)

V π(s) =
∑
a

π(a|s)Qπ(s, a) (3)

Qπ(s, a) =
∑
s′

P(s′|s, a)(r(s, a) + V π(s′)) (4)

Then, the optimal policy is obtained by letting π(s) = argmaxaQ(s, a) and the state-value function128

is V π(s) = maxa Q
π(s, a). Bellman Expectation Equation (Bellman, 1952) can be used to solve129

the value function:130

V π(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γV π(s′)] (5)131

With the above value functions, one then aims to produce the optimal policy that maximizes132

the long-term reward, where dynamic programming is often used to solve the problem, based on133

value iteration, policy iteration, or their combination. For the value iteration approach (value-134

based RL), after the initialization for the state-value function, there are two major steps (to be135

repeated), i.e., (i) calculating the state-action value for each pair of the action and state and (ii)136

updating the value function by choosing the maximum state-action value as the current state137

value. The above two steps will be repeated until the state-value function convergence. For the138

policy iteration approach (policy-based RL), after selecting an initial policy, there are two main139

steps (to be repeated), i.e., (i) policy evaluation by the state-value function and (ii) calculating140

the best action under the current state for policy improvement. The policy evaluation and policy141

improvement are repeated continuously until the policy no longer changes. Actor-Critic-based RL142

combines value-based and policy-based approaches. The above three strategies based on value143

iteration, policy iteration, or their combination are introduced below.144
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2.2.1. Value-based Reinforcement Learning145

In value-based RL, the value function V π(s) is updated following the Bellman Optimal Equa-146

tion (Bellman, 1952) and Eq. (5) can be rewritten as:147

V π
k+1(s) = max

a
E[rt+1 + γV π

k (St+1)|(St = s,At = a)] (6)148

Two classic approaches have been used to estimate V π(s), i.e., Monte-Carlo-based approach (MC)149

and Temporal-Difference-based approach (TD). In MC, based on current state s(t), the agent starts150

to interact with the environment until reaching a termination condition. Then, the cumulative151

reward Gt can be calculated. The value-based RL tries to drive V π
t (s) close to Gt, which updates152

the value-function as follows:153

V π
t (s)← V π

t (s) + α(Gt − V π
t (s)) (7)154

where α is the learning rate. Since the reward obtained by MC is estimated at the end of the155

episode in concern, there can be large variances in the cumulative reward. On the contrary, TD156

only simulates one step in the episode in concern and updates the value-function as follows:157

V π
t (s)← V π

t (s) + α(rt + γV π
t (s+ 1)− V π

t (s)) (8)158

which yields smaller variances but can be less accurate due to a lack of a systematic consideration159

of the whole episode.160

Typical TD-based strategies are Q-learning (Watkins and Dayan, 1992) and State-Action-161

Reward-State-Action (Sarsa) algorithm (Sutton, 1996), which replace V π(s) with Qπ(s, a) follow-162

ing Eq. (8). The update policy of Q-learning can be expressed as:163

Qπ(st, at)← Qπ(st, at) + α(rt + γmaxat+1
Qπ(st+1, at+1)−Qπ(st, at)) (9)164

And the update policy of Sarsa can be expressed as:165

Qπ(st, at)← Qπ(st, at) + α(rt + γQπ(st+1, at+1)−Qπ(st, at)) (10)166

Both Q-learning and Sarsa involve (i) a behavior policy to interact with the environment and167

sample potential actions from the learning data with randomness and (ii) a target policy to168

improve the performance with the help of sampling data and thus obtain the optimal policy. The169

“off-policy method” updates the target policy based on the data generated from the behavior170

policy, while the “on-policy method” updates the target policy based on the data generated by171

itself (Sutton et al., 1998). Sarsa is an on-policy method (i.e., the target policy is the same as the172

behavior policy), while Q-learning is an off-policy method (i.e., the target policy is to suppose the173

selecting action with the largest reward to update the value function).174

Q-learning might not be able to accommodate a large number of states and actions in some175

applications. Therefore, different deep models have been embedded in Q-learning to approximate176

the value function to deal with such issues. Mnih et al. (2015) proposes Deep Q-Network (DQN)177

for optimal policy finding. Given a Q-function Q and a target Q-function Q̂ initialized as Q̂ = Q,178

an experience replay buffer is utilized to store the transition (st, at, rt, st+1) in each time step where179

at is obtained by Q. When enough sample data is obtained from trials with the environment, a180

mini-batch of samples is randomly selected to produce the target y (a target point that provides181

the direction to move in order to improve the solution) as follows:182

y = rt + γmax
a

Q̂(st+1, a) (11)183

Then, parameters of Q are updated by driving Q(st, at) towards y with the gradient descent184

method. The target network Q̂ will be reset by Q̂ = Q after a number of C steps, where the185

value of C is a hyper-parameter to decide the iteration step for updating the parameters of186

the target network. It is noteworthy that for the combination of deep learning and RL two187

issues remain. The samples (in the aforementioned to produce y in Eq. (11)) to be generated188

when combining deep learning with RL are independent, while the states often have correlations.189

Moreover, the distribution of targets is static in deep learning, but the states are continuously190
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varying in RL. Thus, the experience replay buffer designed in DQN is used to accommodate the191

non-static distribution problem and correlations of states. Furthermore, the instability problem192

caused by the usage of non-linear neural networks to represent value functions can be solved by193

properly designing the target network. Moreover, the ϵ− greedy strategy is often used to increase194

randomness when generating actions to balance exploration and exploitation.195

Further DQN-based methods such as Double-DQN (Van Hasselt et al., 2016) and Dueling-196

DQN (Wang et al., 2016) are developed for more robust and faster policy learning. In detail, to197

reduce the overestimations caused by the single estimator of Q-learning (i.e., the estimated value198

is larger than the true value) (Thrun and Schwartz, 1993), Double Q-learning implements the199

choice and the evaluation of actions with double-estimator where two Q-functions are defined, i.e.,200

QA(s, a) and QB(s, a) (Van Hasselt, 2010). Specifically, each Q-function is updated with the value201

obtained from the other Q-function in the next state, which can be expressed as follows:202

QA(st, at)← QA(st, at) + α(rt + γmaxat+1Q
B(st+1, argmaxaQ

A(st+1, at))−QA(st, at))

QB(st, at)← QB(st, at) + α(rt + γmaxat+1
QA(st+1, argmaxaQ

B(st+1, at))−QB(st, at))
(12)203

Van Hasselt et al. (2016) further embeds deep learning into Double Q-learning and proposes204

Double-DQN. The evaluation of the current policy is estimated by the target network Q̂ instead205

of the second network in Double Q-learning. And the derivation of the target y in Double-DQN206

is obtained as follows:207

y = rt + γQ̂(st+1, argmaxaQ(st+1, a)) (13)208

Similar to the target network in DQN, the target network in Double-DQN keeps fixed and updates209

after a predetermined number of steps by Q̂ = Q.210

Dueling-DQN replaces the output state-action value function of DQN by the combination of211

the state-value function and the advantage function, i.e., Qπ(st, at) = V π(st) + Aπ(st, at), where212

Aπ(st, at) is the advantage function for the strategy evaluation. The design of the advantage213

function helps identify whether rewards are mainly an outcome of the state or induced by different214

actions. The suitability of specific actions can be evaluated.215

Given the success of DQN for decision-making, numerous variants of DQN have been proposed.216

For instance, Prioritized Replay DQN (Tom et al., 2016) is designed such that important tran-217

sitions are selected more frequently, and thus can help improve efficiency. Multi-step Learning218

(Yinlong et al., 2019) is proposed such that return in multiple steps is used instead of the reward219

in one step in order to reduce the bias and accelerate training. Noisy Network (Fortunato et al.,220

2017) approach replaces the ϵ − greedy strategy by adding noises on parameters to enhance the221

exploration ability. Moreover, Rainbow (Hessel et al., 2018) is proposed to combine Dueling DQN,222

Prioritized Replay, Multi-step Learning, Distributional RL, and Noisy Net to further improve the223

performance.224

2.2.2. Policy-based Reinforcement Learning225

Policy-based Reinforcement Learning algorithms model and estimate the policy function di-226

rectly and optimize the policy function to maximize the reward. Specifically, REINFORCE227

(Williams, 1992) optimizes policy πθ with the parameter vector θ by maximizing the expected re-228

turn rt where the gradient is approximated by the stochastic gradient descent technique for param-229

eter updating. Based on REINFORCE, Sutton et al. (2000) introduces the Policy Gradient method230

to optimize policy πθ(s, a) by maximizing the average reward ρ(π) =
∑

s d
π(s)

∑
a π(s, a)r(s, a)231

as follows:232

∂ρ

∂θ
=

∑
s

dπ(s)
∑
a

∂π(s, a)

∂θ
Qπ(s, a) (14)233

where dπ(s) = limt→∞P (st = s|s0, π) represents the stationary distribution of states under π and234

Qπ(s, a) =
∑∞

t=1 E[rt − ρ(π)|s0 = s, a0 = a, π]. In MDP starting from a stationary state, dπ(s)235

can also be defined as the discounted weighting of states under policy π starting at state s0 and236

Qπ(s, a) = E[
∑∞

k=1 γ
k−1rt+k|st = s, at = a, π]. Then, Qπ is approximated by an estimator fw237
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and thus the Policy Gradient with Function Approximation can be written as:238

∂ρ

∂θ
=

∑
s

dπ(s)
∑
a

∂π(s, a)

∂θ
fw(s, a) (15)239

where ∂fw(s,a)
∂w = ∂π(s,a)

∂θ
1

π(s,a) . Thus, the gradient can be expressed in a suitable form to find the240

locally optimal policy.241

Further policy-based algorithms are also designed. For instance, Trust Region Policy Optimiza-242

tion (TRPO) (Schulman et al., 2015) is proposed, which tends to give monotonic improvement over243

iterations by constraining the Kullback–Leibler divergence between the old and updated policies244

so that the change of the entire parameter space will not be too large to avoid the collapse of state245

values caused by wrong decisions. Similarly, Proximal Policy Optimization (PPO) (Schulman246

et al., 2017) is a widely adopted algorithm to ensure the difference between the old and updated247

policies is also not too large by limiting the ratio between old and updated strategies under a248

hyper-parameter value.249

2.2.3. Actor-Critic-based Reinforcement Learning250

Actor-Critic-based (AC-based) RL (Sutton et al., 2000) takes advantage of both value-based251

function and policy-based function. The actor network interacts with the environment and gener-252

ates actions. The critic network uses the value function to evaluate the performance of the actor253

and guide the actor’s actions in the next time step.254

Some widely-used algorithms in AC-based RL are Deterministic Policy Gradient (DPG) (Sil-255

ver et al., 2014), Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016), Advan-256

tage Actor-Critic (A2C) (Mnih et al., 2016), and Asynchronous Advantage Actor-Critic (A3C)257

(Babaeizadeh et al., 2017). DPG and DDPG are off-policy methods that can be trained even258

in high-dimensional action space, and DDPG adopts deep learning into DPG. A2C and A3C259

are on-policy algorithms where A2C adopts a synchronous control method, and A3C adopts an260

asynchronous control method for actor network updating. A3C is often adopted in transporta-261

tion problems for policy-making, which is further discussed below as an example to illustrate the262

mechanism of asynchronous methods. A3C takes advantage of the Actor-Critic framework and263

introduces the asynchronous method to improve performance and efficiency. Multiple threads are264

utilized in A3C to collect data in parallel, i.e., each thread is an independent agent to explore265

an independent environment. Also, each agent can use different strategies to sample data where266

sampling data independently is able to obtain unrelated samples and increase sampling speed.267

2.3. Data268

Synthetic and real-world data have been used in studies for transportation applications with269

RL. On the one hand, it is easier and more feasible to obtain synthetic data. A large number of270

scenarios/samples with different characteristics can be constructed to evaluate proposed methods.271

However, some uncertainties, disruptions, and accidents occurring in practice are hard to be272

measured or simulated, which leaves a certain and unknown gap with actual environments. On273

the other hand, the real-world data can reflect the actual situations more accurately, which means274

that the proposed method can be put into practice for the scenario corresponding to the collected275

data. It is harder to obtain complete and diverse real-world data due to several reasons, e.g., the276

confidentiality of various sources and the lack of information. Also, a real-world dataset may only277

represent the characteristics of a specific target, which has limited scenarios/samples to evaluate278

the generality of proposed models.279

Although the applications and corresponding data are diverse, the type of data can be di-280

vided into three categories, i.e., road network relevant data, traffic flow relevant data, and vehicle281

operation relevant data. Specifically, road networks are regarded as directed graphs with nodes282

and edges (i.e., nodes denote intersections while edges represent roads). Some other road related283

characteristics (e.g., speed limit, the number of lanes/tracks, and distributions of bus/railway sta-284

tions) are also concluded to construct the stationary environment of RL. The traffic flow relevant285

data (e.g., traffic speed and demand) and vehicle operation relevant data (e.g., fuel/electricity286

consumption, vehicle speed/acceleration, and lane changing) are used as the time-varying input287

of RL models to constitute the dynamic environment of RL. The agents learn and analyze the288
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information of both stationary and dynamic environments for decision-making based on different289

RL-based optimization strategies.290

3. Bibliometric Analysis291

This section provides a bibliometric analysis of studies for RL-based transportation applica-292

tions. The distribution of published papers in journals/conferences and the characteristics of293

research fields or topics are explored. The VOSviewer software 2 is used to measure the quantities294

and connections in relation to publications and keywords.295

The selected journals and conferences covering January 2010 to December 2022 are summarized296

in Table 1 according to the number of published related papers. The list of journals and conferences297

is based on the following. The selected transportation-related journals are ranked as Q1, Q2,298

and Q3 by Scimago Journal & Country Rank in 2022.3 The selected conferences in the field of299

artificial intelligence and data mining are with the highest CORE ranking (CORE A+) in recent300

years.4. International Conference on Intelligent Transportation Systems (ITSC) is also included301

due to its high relevance and wide audience. It can be seen that ITSC covers a substantial302

number of RL-based transportation applications studies (i.e., about 27.24%), which indicates that303

Reinforcement Learning has attracted substantial attention for achieving intelligent traffic control304

and management. Other journals with considerable relevant publications are T-VT, T-ITS, and305

TR-C with 173 (28.22%), 100 (16.31%), and 49 (7.99%) papers, respectively, which indicates306

the fusion and interaction of traditional transportation applications and popular machine learning307

strategies over the recent decade. Several transportation journals involve a relatively small number308

of papers regarding applications of RL (e.g., TR-A, TR-D, and Transportmetrica A), indicating309

that there are significant research potentials here for developing advanced RL in diverse aspects310

of transportation.311

Fig. 2. Number of Published Related Papers per Year (Jan. 2010 - Dec. 2022)

In addition, the numbers of the published papers in the aforementioned journals and confer-312

ences from January 2010 to December 2022 are shown in Fig. 2. Before 2017, only a few studies313

per year focused on Reinforcement Learning to solve transportation problems, with only 40 ar-314

ticles published in total in the selected journals and conferences. And the number of published315

related papers from 2011 to 2016 is between three and seven (around five), which is regarded as a316

random fluctuation. In the following six years (i.e., 2017-2022), the number of related papers has317

grown substantially, which indicates the increasing importance and popularity of RL to deal with318

transportation problems.319

Furthermore, in order to identify the major transportation application areas/topics in relation320

to Reinforcement Learning, Fig. 3 shows the bibliographic coupling network of keywords where321

the minimum number of occurrences of a keyword is five. The size of the circle represents the322

2https://www.vosviewer.com/
3https://www.scimagojr.com/journalrank.php
4http://cic.tju.edu.cn/faculty/zhileiliu/doc/COREComputerScienceConferenceRankings.html
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Table 1
Numbers of Related Publications in Major Journals/Conferences (as of December 31, 2022)

Attribute Name Number of
Related Papers

Journal IEEE Transactions on Vehicular Technology (T-VT) 173

Conference IEEE International Conference on Intelligent
Transportation Systems (ITSC) 167

Journal IEEE Transactions on Intelligent
Transportation Systems (T-ITS) 100

Journal Transportation Research Part C: Emerging Technologies (TR-C) 49
Journal IET Intelligent Transport Systems 19
Journal IEEE Transactions on Transportation Electrification 16

Conference Association for the Advancement of Artificial Intelligence (AAAI) 15

Conference Special Interest Group on Knowledge Discovery
and Data Mining (SIGKDD) 13

Journal Transportation Research Record:
Journal of the Transportation Research Board 12

Journal Transportation Research Part E:
Logistics and Transportation Review (TR-E) 10

Conference International Joint Conference on Artificial Intelligence (IJCAI) 8
Conference Conference on Information and Knowledge Management (CIKM) 8

Journal Transportation Research Part B: Methodological (TR-B) 5
Journal Transportmetrica B: Transport Dynamics 4

Conference World Wide Web Conference (WWW) 4
Conference International Conference on Data Mining (ICDM) 3

Journal Transportation 1
Journal Transportation Science 1

Journal Transportation Research Part F:
Traffic Psychology and Behaviour (TR-F) 1

Journal Journal of Transportation Engineering Part A: Systems 1
Journal Research in Transportation Economics 1
Journal Journal of Air Transport Management 1
Journal Travel Behaviour and Society 1
Journal Transport Reviews 0
Journal Transportation Research Part A: Policy and Practice (TR-A) 0

Journal Transportation Research Part D:
Transport and Environment (TR-D) 0

Journal Journal of Transport Geography 0
Journal Transportmetrica A: Transport Science 0
Journal Transport Policy 0
Journal International Journal of Sustainable Transportation 0
Journal Maritime Policy & Management 0
Journal Journal of Transportation Engineering, Part B: Pavements 0
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Fig. 3. Bibliographic Coupling of Keywords: the circle represents a keyword while the edge
represents the co-appearance of a pair of keywords.
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number of occurrences of the keyword. And the keywords represented by the same color mean323

the high co-appearance of these words in one paper. Excluding the words with similar meanings,324

the keywords with high frequency can be described as two aspects, i.e., learning algorithms and325

intelligent transportation applications. The learning strategies mainly cover deep learning or326

Neural Network and Reinforcement Learning. The major topics related to RL methods include the327

following nine categories: autonomous driving/vehicles, adaptive cruise control, fleet operations,328

ride-sharing, traffic signal control, highway/street/air traffic control, electric vehicle, taxicabs, and329

scheduling. Motivated by these keywords with high frequency, we identify six groups as shown in330

Fig. 1, which will be reviewed in the following sections, respectively.331

4. Traffic Control: Road and Air332

Traffic control is a critical issue in traffic flow management. This section summarizes RL-based333

controlling strategies proposed for both roadway traffic and air traffic in order to reduce traffic334

congestion and delays. Due to the large number of studies for traffic signal control and to facilitate335

reading, we summarize studies on roadway traffic signal control (TSC) in Table 2 and summarize336

studies on other aspects (i.e., speed limit, price management, perimeter control, and air traffic337

control) in Table 3.338

4.1. Roadway Traffic Control339

On roadway traffic control, we review the following five major issues: traffic signal control;340

speed limit control; pricing management; perimeter control; and ramp metering.341

4.1.1. Traffic Signal Control342

The congestion and delays caused by traffic bottlenecks motivate the development of methods343

for traffic signal control (TSC) (Yau et al., 2017). Conventional pre-timed control systems set344

constant time signals, while RL-based approaches have been used to dynamically and adaptively345

optimize traffic signal timing. We first illustrate a four-approach intersection as depicted in Fig. 4a346

(left-hand driving is assumed) and a typical signal plan with eight phases as shown in Fig. 4b.347

Many studies are formulated based on the such four-approach intersections with eight phases (Arel348

et al., 2010).349

(a) A Typical Four-Approach
Intersection (b) Phase Competition Matrix

Fig. 4. Traffic Signal Related Schematic Diagrams

The studies for traffic signal control started with the exploration for one intersection with350

single-agent RL methods, which provides the fundamental methods for TSC in environments with351

multiple intersections. Specifically, for one intersection, an intuitive designing scheme is to regard352

the intersection as an agent for signal control policy optimization and the agent’s decision is subject353

11



Table 2
Summary of RL Applications in Traffic Signal Control

Reference

Framework

Q-learning
Prashanth and Bhatnagar (2010), Ozan et al. (2015),

El-Tantawy et al. (2013, 2014), Mannion et al. (2015), Reyad and Sayed (2022),
Wiering (2000), Balaji et al. (2010), Arel et al. (2010), Abdoos et al. (2011)

DQN

Mousavi et al. (2017), Wei et al. (2018), Zhang et al. (2020a), Xu et al. (2019),
Van der Pol and Oliehoek (2016), Darmoul et al. (2017), Devailly et al. (2021),

Wang et al. (2021a), Wei et al. (2018, 2019a,b), Chen et al. (2020),
Zang et al. (2020), Zhang et al. (2021b), Yu et al. (2020), Xu et al. (2021)

A2C Chu et al. (2019), Wang et al. (2021a)
DDPG Li et al. (2021b), Ni and Cassidy (2019)

Actor-Critic Aslani et al. (2017)
Neural fitted
Q-iteration Nishi et al. (2018)

Ape-X DQN Zheng et al. (2019)

Agent single-agent
Prashanth and Bhatnagar (2010), Ozan et al. (2015), Reyad and Sayed (2022),

El-Tantawy et al. (2014), Mousavi et al. (2017), Xu et al. (2019),
Wei et al. (2018), Zhang et al. (2021b), Ni and Cassidy (2019)

multi-agent

Nishi et al. (2018), Wiering (2000), Abdulhai et al. (2003), Abdoos et al. (2011),
Chu et al. (2019), Balaji et al. (2010), El-Tantawy et al. (2013),

Arel et al. (2010), Van der Pol and Oliehoek (2016), Yu et al. (2020),
Wang et al. (2021a), Zheng et al. (2019), Chen et al. (2020),
Xu et al. (2021) Devailly et al. (2021), Mannion et al. (2015),
Zang et al. (2020), Zhang et al. (2020a), Wei et al. (2019a,b),
Li et al. (2021b), Darmoul et al. (2017), Aslani et al. (2017)

Scenario/
Data

synthetic
network/data

Prashanth and Bhatnagar (2010), Abdoos et al. (2011), Ozan et al. (2015),
El-Tantawy et al. (2014), Mousavi et al. (2017), Nishi et al. (2018),

Wiering (2000), Abdulhai et al. (2003), Arel et al. (2010),
Van der Pol and Oliehoek (2016), Darmoul et al. (2017), Reyad and Sayed (2022),

Mannion et al. (2015), Aslani et al. (2017), Ni and Cassidy (2019)

real-world
network/data

Wei et al. (2018) (Jinan), Zheng et al. (2019) (Jinan, Hangzhou),
Zhang et al. (2020a) (Hangzhou, Atlanta),

Chu et al. (2019) (Monaco), Wang et al. (2021a) (Monaco, Harbin),
El-Tantawy et al. (2013) (Toronto), Li et al. (2021b) (Maryland),

Zang et al. (2020) (Jinan, Hangzhou, Atlanta, Los Angeles),
Chen et al. (2020); Devailly et al. (2021) (New York),

Balaji et al. (2010) (Singapore), Xu et al. (2019) (Hangzhou),
Wei et al. (2019a) (Jinan, New York), Zhang et al. (2020d),

Wei et al. (2019b); Yu et al. (2020) (Hangzhou, Jinan, New York),
Xu et al. (2021) (Hangzhou, Jinan, Shenzhen, New York)

Simulator

GLD simulator
(Wiering et al., 2004) Prashanth and Bhatnagar (2010)

Paramics El-Tantawy et al. (2013, 2014), Balaji et al. (2010)

SUMO
(Lopez et al., 2018)

Mousavi et al. (2017), Wei et al. (2018), Nishi et al. (2018),
Chu et al. (2019), Mannion et al. (2015), Van der Pol and Oliehoek (2016),

Wang et al. (2021a), Li et al. (2021b), Devailly et al. (2021),
Zhang et al. (2021b), Yu et al. (2020), Xu et al. (2019)

CityFlow
(Zhang et al., 2019a)

Zhang et al. (2020a), Wei et al. (2019a,b), Zheng et al. (2019),
Chen et al. (2020), Zang et al. (2020), Yu et al. (2020), Xu et al. (2021)

AIMSUN 1 Aslani et al. (2017), Ni and Cassidy (2019)
VISSIM 2 Darmoul et al. (2017), Reyad and Sayed (2022)
personal
simulator

Ozan et al. (2015), Wiering (2000), Abdoos et al. (2011),
Abdulhai et al. (2003), Arel et al. (2010)

1 http://www.AIMSUN.com
2 http://vision-traffic.ptvgroup.com/en-uk/home
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Table 3
Summary of RL Applications in Speed Limit Control, Price Management, Perimeter Control,
and Air Traffic Control

Reference Application Framework Agent Scenario/DataSimulator

Zhu and Ukkusuri (2014) speed limit
control TD-based RL single-agent,

the controller
Sioux Falls
network

personal
simulator

Li et al. (2017b) speed limit
control Q-learning single-agent,

the controller

Interstate
freeway

in Oakland

personal
simulator

Wu et al. (2020b) speed limit
control DDPG single-agent,

the controller

northbound
freeway of I405
in California

SUMO

Pandey and Boyles (2018) price
management

Sparse
Cooperative
Q-learning

multi-agent,
a toll

synthetic
network

personal
simulator

Pandey et al. (2020) price
management A2C, PPO multi-agent,

a toll

express lanes
in Dallas

and Austin

personal
simulator

Zhou and Gayah (2021a) perimeter
control DQN, DDPG single-agent,

the controller
synthetic
network

personal
simulator

Chen et al. (2022) perimeter
control

Policy
iteration

single-agent,
the controller

synthetic
network SUMO

Yang et al. (2017) perimeter
control DQN single-agent,

the controller
synthetic
network

personal
simulator

Rezaee et al. (2012) ramp
metering Q-learning single-agent,

the controller
in the City
of Toronto Paramics

Fares and Gomaa (2014) ramp
metering Q-learning single-agent,

the controller
synthetic
network

personal
simulator

Belletti et al. (2017) ramp
metering DDPG

multi-agent,
the controller
for a region

San Francisco
Bay Bridge BeATs 1

Tumer and Agogino (2007) air traffic
management Q-learning multi-agent,

a location
synthetic
network FACET 2

Balakrishna et al. (2010) flight delay Q-learning single-agent,
the controller

Tampa
International

Airport

personal
simulator

1 https://connected-corridors.berkeley.edu/berkeley-advanced-traffic-simulator
2 https://www.nasa.gov/centers/ames/research/lifeonearth/lifeonearth-facet.html

to the setting of phases. To deal with the single-agent (one intersection) scenario, Q-learning354

(Prashanth and Bhatnagar, 2010; Ozan et al., 2015; El-Tantawy et al., 2014; Reyad and Sayed,355

2022) and DQN (Mousavi et al., 2017; Wei et al., 2018; Zhang et al., 2021b) have been the most356

commonly used framework to learn the action-value function in order to reduce the total/average357

delay of vehicles. The deep model, DQN, for traffic light optimization is able to accommodate358

more complex and non-linear environmental information of an intersection. Different types of359

states might be adopted. For example, the congestion level (low, medium, or high) indicated by360

the queue lengths and elapsed times of each signaled lane (Prashanth and Bhatnagar, 2010) are361

designed to reduce the dimensionality of the state. Exact values regarding traffic conditions (e.g.,362

link flows and the free-flow travel time) (El-Tantawy et al., 2014; Ozan et al., 2015), a vector of363

row pixel values (Mousavi et al., 2017), and the image representation of vehicles’ positions (Wei364

et al., 2018) are collected to provide more completed environments.365

The control strategies for one intersection can hardly relieve the traffic congestion in large366

metropolis with complex and dense networks, which motivates traffic control studies to simulta-367

neously consider multiple intersections. As multiple intersections (especially neighboring inter-368
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sections) may interact with each other, the optimal policy strategies should be considered at the369

target-area level to further improve traffic efficiency. Different reward functions have been used370

for TSC problems, i.e., the overall waiting time (Wiering, 2000; Nishi et al., 2018), overall delay371

(Abdulhai et al., 2003; Balaji et al., 2010) of all vehicles in multiple intersections, and the pressure372

(Varaiya, 2013) of all intersections (Wei et al., 2019a). Though these studies achieve satisfac-373

tory performance, the relations or impacts among various intersections have not been explored374

explicitly.375

A series of studies focus on the coordination or competition among multiple agents/intersections376

to find area-wide or system-wide TSC strategies. Similar states and reward functions as afore-377

mentioned studies have been used based on various RL algorithms. Specifically, El-Tantawy et al.378

(2013) adopts the principle of Multi-agent Modular Q-learning (Ono and Fukumoto, 1996) to ex-379

plicitly analyze the correlations of the target agent and one of its neighbor intersections to learn380

the joint policy. Arel et al. (2010) designs two types of agents for collaboration, a central agent381

extracting the information from itself and neighboring intersections to learn a value function and382

assist an outbound agent to schedule its own signals where Q-learning is used as the optimizing383

strategy. Furthermore, based on the Advantage Actor-Critic (A2C) framework, Chu et al. (2019)384

constructs the state of the agent as the composition of its observation and neighbor policies to385

achieve agents’ coordination. The performance of the discussed coordination-based methods is386

superior to the isolated intersection models in terms of average intersection delay, queue length,387

link stop time, and link travel time.388

In the aforementioned approaches, the agent of an intersection communicates with its adjacent389

locations but does not coordinate with further away intersections. A number of RL-based strategies390

are proposed to address more general system-wide or area-wide signal control issues. For instance,391

Van der Pol and Oliehoek (2016) combines multiple local Q-functions linearly as a global Q-392

function and utilizes the max-plus coordination algorithm (Kok and Vlassis, 2005) to optimize393

the joint action for multiple intersections in an area. Similarly, Mannion et al. (2015) defines394

Master and Slave agents where the Master agent uses a shared experience pool to deal with395

experiences from Master Agents for coordination. Yu et al. (2020) designs an active cross-agent396

communication mechanism to generate coordinated actions and uses the predicted traffic of the397

whole road network to mitigate the unnecessary impact of other agents’ actions. Moreover, in398

Wang et al. (2021a), the Mobile Edge Computing server with a fixed number of Road Side Units399

collects and deals with the local states from target intersections. The processed information is sent400

back to each individual agent to decide the phase of the traffic light. Li et al. (2021b) proposes401

a shared knowledge container to store the information obtained from the whole environment by402

embedding the observation vectors through Gated Recurrent Unit (GRU). Each agent then chooses403

relevant features from the container to make its own decision based on the Deep Deterministic404

Policy Gradient (DDPG) algorithm.405

The aforementioned studies test their approaches on small-scale environments for illustration406

(e.g., one intersection or dozens of intersections) while leaving scalability issues and large-scale407

applications for further research. In practice, megalopolis usually involves thousands of traffic light408

intersections, which has to be controlled simultaneously. In this context, some studies (Wei et al.,409

2019b; Zheng et al., 2019; Chen et al., 2020; Xu et al., 2021) focus on handling large-scale TSC410

problems based on various RL frameworks. In detail, Wei et al. (2019b) designs a graph attentional411

network named PressLight for agents’ coordination by calculating and normalizing the importance412

score (i.e., the value to evaluate the importance of the information from the source intersection413

when determining the policy for the target intersection) for all intersections in pairs. The influence414

affected by relevant intersections is modeled by the combination of the representation obtained by415

the target agent and its corresponding importance score. However, determining the importance416

score in pair still occupies a large number of computation resources. To reduce the exploration417

space, Zheng et al. (2019) proposes the FRAP (i.e., Flipping and Rotation and considers All Phase418

configurations) model to calculate the phase score. The score of the target phase is obtained by the419

element-wise multiplication of the phase pair demand representation and the phase competition420

mask. The representation is obtained by the number of vehicles and the current signal phase,421

and the mask is derived from the phase competition matrix shown in Fig. 4b. The phase with422

the highest score is chosen to be the action. The in-variance to symmetries (e.g., flipping and423

rotation) in traffic signal control is achieved by pair-wise phase completion modeling to reduce424
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the exploration space under complex scenarios. The method is combined with both value-based425

and policy-based RL algorithms for optimization. Furthermore, Chen et al. (2020) combines426

PressLight (Wei et al., 2019a) for reward function designing and FRAP (Zheng et al., 2019) for427

a faster training process with parameter sharing among the agents. The model is evaluated on a428

simulated environment with thousands of intersections to show its effectiveness. More recently, Xu429

et al. (2021) illustrates that minimizing the queue length, waiting time, or delay is not equivalent430

to minimizing average travel time, which motivates the design of different agents with different431

optimizing sub-targets (e.g., queue length). A high-level policy is then proposed to align all432

sub-policies and avoid directly minimizing average travel time.433

The optimization for large-scale environments needs numerous computational resources and434

time, which limits such strategies to be put into practice. Therefore, given that insufficient relevant435

data or computing resources in the target area, Xu et al. (2019); Zang et al. (2020); Zhang436

et al. (2020a); Devailly et al. (2021) propose to transfer and adapt experiences learned from437

existing scenarios to new scenarios, which can reduce the reliance on sufficient data and decrease438

training consumption. As for the transfer strategies, Xu et al. (2019) selects the similar source439

and target intersections by calculating similarity values, Zang et al. (2020); Zhang et al. (2020a)440

adopt Meta-Reinforcement Learning (Finn and Levine, 2018), while Devailly et al. (2021) applies441

zero-short transfer learning (Higgins et al., 2017) into the TSC framework. As for the framework442

of Reinforcement Learning, Zang et al. (2020) develops a model based on FRAP (Zheng et al.,443

2019) and Xu et al. (2019); Zhang et al. (2020a); Devailly et al. (2021) utilize DQN directly.444

The aforementioned studies focus on regular traffic situations while Darmoul et al. (2017);445

Aslani et al. (2017) focus on finding optimal solutions for traffic disruptions that are also practical446

and useful. In detail, Darmoul et al. (2017) investigates the impact of accidents on traffic light con-447

trol by mitigating the concepts of primary and secondary immune responses (i.e., the disturbance448

on the road is regarded as an antigen and the associated control decision is denoted as an anti-449

body). The multi-agent DQN method has been used for policy optimization. More specifically,450

the studied traffic network in Aslani et al. (2017) considers impatient pedestrians with illegal451

crossing behavior, vehicles parking beside the streets, and incidents (e.g., vehicle breakdown).452

The Actor-Critic framework is adopted to determine the duration of each phase (red/green light),453

which shows the capability of reducing average travel time when traffic disruptions have occurred.454

Furthermore, cordon control to determine the traffic signal metering rates is also an efficient way455

for vehicle inflows restriction. To find the optimal distribution for the metered vertices of roads,456

Ni and Cassidy (2019) adopts the Graph Convolution Network (GCN) to formulate the directed457

graph representation of the environment (i.e., the street network’s geometry) and traffic (i.e., traf-458

fic conditions and directions of movements) of an intersection. The optimal actions are obtained459

via the DDPG method to maximize the metered flow passing through the cordon.460

The promising performance of RL on traffic signal control problems motivates applications of461

RL in other transportation problems and also provides application examples.462

4.1.2. Speed Limit Control463

For flow maximization, speed limit control (adjusting the speed limit) is often used to drive464

the freeway recurrent traffic bottleneck density to be close to the desired density and thus avoid465

capacity drops (Liu et al., 2015b). The mechanism of conventional feedback-based strategies466

requires significant time (Li et al., 2017b), which stimulates adopting RL-based methods to deal467

with highly dynamic traffic situations in a timely manner.468

The speed limit controller is often designed as the agent with various RL frameworks, where469

the research has evolved from discrete state formulations to continuous state formulations in order470

to accommodate complex and varying environments. Specifically, Zhu and Ukkusuri (2014) defines471

four congestion levels (i.e., free flow state, slight congestion state, moderate congestion state, and472

heavy congestion state) as the input state based on the flow density and optimizes the policy473

by the temporal difference (TD) algorithm. However, four discrete congestion levels might not474

be sufficient to fully depict the complicated and varying environment that would affect decision-475

making. Thus, Li et al. (2017b) uses the density at the downstream of the merge area, the density476

at the upstream mainline section, and the density on the ramp by specific variables instead of477

congestion levels to minimize the travel time. The posted speed limits set as integer multiples478

of five mph for freeway bottlenecks are determined by the Q-learning strategy. Similar state479
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representations are utilized in Wu et al. (2020b) for variable speed limits control based on the480

optimization by the DDPG algorithm with single-agent. The proposed method is able to reduce481

congestion, accidents, and emissions by defining the reward function as the combination of total482

travel time, average velocity reported by detectors, the number of emergency braking vehicles,483

and related gas emissions. Though the research for speed limit control with RL does not receive484

much attention, the success of existing studies provides a solid foundation for future optimization.485

4.1.3. Pricing486

Dynamic pricing for managed lanes can be used to offer a premium service and alleviate487

congestion (Devarasetty et al., 2014). Pandey and Boyles (2018) and Pandey et al. (2020) examine488

pricing management via Reinforcement Learning to find optimal policies that maximize the revenue489

of the managed lanes. In these strategies, the vector containing the number of vehicles detected490

by the loop detectors is used as the state while the toll is set as the agent at the entrance of each491

managed line to decide the real-time price. A sparse cooperative Q-learning algorithm (Kok and492

Vlassis, 2006) is adopted in Pandey and Boyles (2018) while A2C and PPO are used in Pandey493

et al. (2020) to optimize the pricing policy.494

4.1.4. Perimeter Control495

Perimeter control is regarded as an efficient way for regional traffic control to optimize the496

network level traffic performance (Yang et al., 2017). The appealing performance obtained by497

RL-based optimizing strategies for traffic signal control illustrates their ability to handle complex498

and varying road environments. Similar environments analyzing in perimeter control and traffic499

signal control provide a novel direction for perimeter control, i.e., RL-based methods. Specifically,500

in Yoon et al. (2020), the agent determines green time ratios as discrete values with the optimiza-501

tion by DQN. However, this method is only able to handle discrete actions, which is less practical.502

To avoid relying on the full knowledge of the road network and design continuous action, Zhou503

and Gayah (2021a,b) proposes an RL-based scheme for an urban network composed of two ho-504

mogeneous sub-regions to improve the network throughput (i.e., the number of trips completed).505

Discrete-RL (D-RL) model optimized by DQN and Continuous-RL (C-RL) model optimized by506

DDPG are designed for discrete actions and continuous actions, respectively. Acknowledging the507

information of accumulations and estimated traffic demands as the state, the agent of D-RL de-508

cides the range while the agent of C-RL controls the allowable decrease/increase value of perimeter509

controllers (i.e., the parameter defined by the allowable portions of transfer flows) by maximizing510

actual portions of transfer flows. In addition, Chen et al. (2022) proposes a deep-based integral511

policy iteration approach to minimize the total time spent for multi-region perimeter control in a512

continuous manner.513

4.1.5. Ramp Metering514

Ramp metering takes advantage of traffic signals at freeway on-ramps to control the rate515

of vehicles entering the freeway. To decide passing and prohibiting phases on the freeway, the516

information of the numbers of vehicles in the mainstream and entering the freeway and the status517

of the ramp traffic signal are denoted as the state in existing studies with either single-agent518

or multi-agent methods. Rezaee et al. (2012) and Fares and Gomaa (2014) utilize Q-learning-519

based methods to minimize the total travel time of the whole network and the freeway density,520

respectively. The proposed models have been tested on a case study (e.g., the City of Toronto)521

and a synthetic network, which illustrates the effectiveness of RL-based methods in dealing with522

the ramp metering problem. However, the aforementioned two single-agent-based methods have523

limited scalability for controlling numerous intersections simultaneously. This motivates Belletti524

et al. (2017) to design a multi-agent DDPG framework for ramp metering. The highway vehicle525

density is modeled by the Partial Differential Equation to decide the incoming flow by maximizing526

the total observed outflow with the policy gradient algorithm. The interaction among agents is527

achieved by the introduction of Mutual Weight Regularization (Caruana, 1997).528

4.2. Air Traffic Control529

Congestion in air traffic creates substantial flight delays and limits efficiency and productivity.530

As reported in Balakrishna et al. (2010), one of the major factors leading to flight delays is the531
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taxi-out delay (i.e., the time between gate push back and time of takeoff). In order to mitigate532

congestion in the airport, a novel way to predict the delay based on RL is proposed, which has533

a relatively low demand on training data for optimization when compared to classical supervised534

learning strategies. The agent learns the information from the environment of the aircraft and535

airport (e.g., the number of aircraft in the queue at the runway and the number of departure536

aircraft co-taxiing) to estimate the taxi-out time by minimizing the absolute value of the error537

between the actual taxi-out time and predicted taxi-out time. In addition, Tumer and Agogino538

(2007) applies multi-agent Reinforcement Learning in air traffic flow management to minimize539

the sum of total delay penalty and total congestion penalty for all aircraft in the system. The540

ground locations throughout the airspace are split into multiple individual ‘fixes’ (i.e., individual541

locations) where each ‘fix’ is regarded as an agent. The task of the agent is to decide the distance542

between the approaching aircraft and itself, which can control the rate of aircraft going through a543

‘fix’. The proposed method is tested on a simulation tool, FACET, developed by NASA to show its544

ability for congestion reduction. The effectiveness of numerous RL strategies for air traffic control545

still has to be tested and evaluated in future research under complex and practical scenarios.546

5. Taxi and Ride-sourcing/sharing547

Cooperative mobility-on-demand (MOD) systems (e.g., Uber, Lyft, and Didi Chuxing) have548

been spreading widely (He and Shin, 2019) and provide multiple online taxi services such as express549

car, ride-sharing, ride-sourcing, and traditional taxi. The real-time large-scale order information550

provides the opportunity to analyze demand patterns for further forecasting and management. To551

reduce resource utilization, decrease the waiting time, and increase profit, Reinforcement Learning552

has been investigated for vehicle re-positioning, order dispatching, and vehicle routing in the taxi553

and ride-sourcing/sharing service systems, where a summary of related papers is provided in554

Table 4.555

5.1. Vehicle Re-positioning556

The imbalance between supply and demand leads to long waiting times for passengers and557

time/energy loss for drivers. Re-positioning available vehicles/drivers to potential locations (e.g.,558

locations with massive demand) is necessary to improve system efficiency and better match supply559

and demand. Methods requiring accurate information on a wide range of parameters or variables560

(e.g., customer demand and travel time) are often time-consuming (Mao et al., 2020). There-561

fore, RL-based methods without the need for prior knowledge are broadly utilized for vehicle562

re-positioning in traditional taxi and ride-sourcing/sharing systems.563

In the ride-hailing system, considering the influence from all vehicles and customers, existing564

studies (Nguyen et al., 2017; Lin et al., 2018; Shou and Di, 2020; Mao et al., 2020) take each565

available vehicle (or driver) as an agent for vehicle re-position, and develop various multi-agent566

RL models with different reward functions. For instance, gross merchandise volume (GMV, i.e.,567

the number of all orders served) and order response rate are set as the reward function by Lin et al.568

(2018) with contextual DQN and Actor-Critic frameworks. The contextual DQN model is designed569

for the allocation instructing to filter out invalid directions and avoid conflicting directions for570

agents. The contextual Actor-Critic framework is designed for explicit coordination among agents571

to enhance policy-making by acknowledging spatial distributions of available vehicles and orders.572

The influence of waiting time on passenger loss is overlooked in Lin et al. (2018), while Mao573

et al. (2020) further considers impatient passengers that may leave the market. The cancellation574

cost caused by user-specific tolerance of waiting time is regarded as one of the components of the575

reward function. The proposed model shows its superiority in reducing the cancellation rate and576

total waiting time of impatient passengers for the taxi system by the Actor-Critic framework.577

As for the traditional taxi system, global information, such as the distribution of all taxis, is578

hard to be obtained in a short time for optimization. Thus, Shou and Di (2020) develops a taxi re-579

positioning method that only uses local observations from each driver/vehicle through multi-agent580

Mean Field Actor-Critic algorithm (Yang et al., 2018). The aim of each agent (i.e., an available581

vehicle/driver) is to maximize their own monetary return. To accommodate the selfishness of582

each agent, Bayesian optimization is adopted to design the reward function, which helps achieve583

a better equilibrium for the overall system.584
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Table 4
Summary of RL Applications in Taxi and Ride-Sourcing/Sharing Service Systems

Reference Application Framework Agent Data Simulator

Lin et al. (2018) vehicle re-positioning
Contextual
DQN and

Actor-Critic

multi-agent,
an available

vehicle

real data from
Didi Chuxing
in Chengdu

contextual
simulator

(Lin et al., 2018)

Shou and Di (2020) vehicle re-positioning
Mean Field
Actor-Critic
algorithm

multi-agent,
an available

vehicle

synthetic data,
real data

from NYC TLC 1

personal
simulator

Nguyen et al. (2017) vehicle re-positioning Actor-Critic
algorithm

multi-agent,
an available

vehicle

synthetic data,
real taxi data

from Singapore

personal
simulator

Mao et al. (2020) vehicle re-positioning
Deep

Actor-Critic
algorithm

multi-agent,
an available

vehicle

real data
from NYC TLC 1

personal
simulator

Oda and Joe-Wong (2018) order dispatching Double-DQN
single-agent,

dispatch
center

real data
from NYC TLC 1

personal
simulator

Zhou et al. (2019a) order dispatching DQN multi-agent,
a driver

real data from
Didi Chuxing of

three cities

simulator
provided by

Didi Chuxing

Xu et al. (2018) order dispatching TD-based RL multi-agent,
a driver

synthetic data,
real data from
Didi Chuxing

personal
simulator

Li et al. (2019) order dispatching Actor-Critic,
Mean Field RL

multi-agent,
a driver

real data from
Didi Chuxing

contextual
simulator

(Lin et al., 2018)

He and Shin (2019) order dispatching Double-DQN
single-agent,
coordination

center

real data from
Uber, Yellow Taxi
and Didi Chuxing

personal
simulator

Wang et al. (2018) order dispatching Double-DQN multi-agent,
a driver

ExpressCar data
from Didi Chuxing

personal
simulator

Tang et al. (2019) order dispatching TD-based RL multi-agent,
a driver

real data from
Didi Chuxing

personal
simulator

Jin et al. (2019) order dispatching and
vehicle re-position

Hierarchical
RL, DDPG

multi-agent,
a region cell

real data from
Didi Chuxing

contextual
simulator

(Lin et al., 2018)

Holler et al. (2019) order dispatching and
vehicle re-position DQN, PPO multi-agent,

a driver

synthetic data,
real GAIA dataset
from Didi Chuxing

personal
simulator

Chen et al. (2019) order dispatching and
pricing TD-based RL

single-agent,
coordination

center

real data from
Didi Chuxing

simulator
provided by

Didi Chuxing

Manchella et al. (2021) order dispatching and
goods delivery Double-DQN multi-agent,

a vehicle

real data from
New York City

Taxicab

personal
simulator

James et al. (2019) vehicle routing
Deep Policy

Gradient
algorithm

single-agent,
dispatch
center

real data from
Cologne

personal
simulator

Zhang et al. (2020b) vehicle routing
Deep Policy

Gradient
algorithm

multi-agent,
a vehicle synthetic data personal

simulator

Silva et al. (2019) vehicle routing Q-learning multi-agent,
a vehicle synthetic data personal

simulator

Al-Abbasi et al. (2019) order dispatching and
vehicle routing Double-DQN multi-agent,

a vehicle
real data of taxi
from NYC TLC 1

personal
simulator

1 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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The computational complexity of the vanilla Actor-Critic-based method is relatively high for585

large-scale multi-agent vehicle re-positioning, which can take a very long time for convergence and586

is neglected in Lin et al. (2018); Shou and Di (2020). Thus, in favor of reducing the computational587

complexity and speeding up the optimization process, Nguyen et al. (2017) decomposes the ap-588

proximation of the action-value function over agents and derives a modified loss function to train589

the critic for each agent based on its own reward. The proposed strategy is tested on datasets590

with a large agent population size to decide whether drivers should stay in the current zone or591

move to another zone to look for passengers for total profit maximization.592

5.2. Order Dispatching593

On the premise of ensuring available vehicles in various areas by vehicle re-positioning, the594

dispatching strategies to meet the large volume of orders in real-time are emphasized in a large595

number of studies. Traditional rule-based solutions for order dispatching require sophisticated596

hand-crafted parameter design but are only effective on simplified problem settings (Li et al.,597

2019), which motivates the utilization of Reinforcement Learning.598

Oda and Joe-Wong (2018) examines the framework of DQN with the dispatch center as the599

agent to minimize the passenger waiting time and idle cruising time and reduce the number of600

requests that are not responded to. However, all idle vehicles need to sequentially decide their601

destinations which will increase computation time and decrease the dispatching efficiency. Thus,602

the following studies to be discussed consider the agent as the driver/vehicle to construct a multi-603

agent-based RL framework for order dispatching.604

Multi-agent RL strategies for order dispatching are also examined with either cooperative or605

independent agents. Zhou et al. (2019a) illustrates that explicit cooperation among various drivers606

is helpless for order dispatching since each driver serves different orders with different starting607

times, duration, and destination grids. Thus, each driver/vehicle is regarded as an agent working608

independently in this proposed method to explore the environmental information of the current609

locations, including the number of idle vehicles, valid orders, and destinations. To maximize the610

accumulated driver income (ADI) and order response rate (ORR), Double-DQN is extended with611

Kullback-Leibler (KL) divergence optimization to select optimal orders for drivers. More studies612

(Xu et al., 2018; Li et al., 2019; He and Shin, 2019) held a different opinion with Zhou et al. (2019a),613

which demonstrate the necessity of coordination among drivers for order dispatching. In detail,614

Li et al. (2019) clarifies that active agents sharing orders in the same/nearby areas might select615

the same order according to their own policy, which may cause conflicts. Thus, different methods616

have been proposed to solve such an issue based on the RL framework. Specifically, Mean Field617

Reinforcement Learning (Yang et al., 2018) is adopted to evaluate the average response among618

agents for agents interactions where the average response is derived from the number of drivers619

arriving at the same neighborhood and available orders. He and Shin (2019) proposes a capsule-620

based Double-DQN for coordination policy learning where the capsule means a structured group621

of neurons (Sabour et al., 2017). The capsule construction helps the agent to analyze spatial (e.g.,622

geographical distributions of demands and supplies) and temporal (e.g., weather conditions over623

time) relations and further learn the final policy. In addition, Xu et al. (2018) formulates the624

action-value function as a bipartite graph matching problem (i.e., the edge between one driver625

and one order is set as the action-value function). The Kuhn-Munkres (KM) algorithm (Munkres,626

1957) is employed for optimization to ensure that each order is assigned to at most one driver and627

avoid conflicts.628

The mass deployment of MOD systems shows great success and high profits in megalopo-629

lis, which motivates the popularization of MOD systems in tier-three cities, which lack data for630

optimization and management. Therefore, on the ride order dispatching problem, Wang et al.631

(2018) and Tang et al. (2019) propose transfer learning methods to enable knowledge transfer632

from source cities with sufficient historical data to target cities with limited historical data. Since633

travel patterns of different cities often share common spatial and temporal characteristics, reusing634

previously trained DQN models learned from source cities to determine the optimal policies for635

target cities can be flexible and useful. Three transfer learning methods are tested in these two636

studies, i.e., fine-tune (Hinton and Salakhutdinov, 2006), progressive network (Rusu et al., 2016),637

and correlated-feature progressive transfer (Wang et al., 2018).638
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The aforementioned studies dealing with order dispatching, vehicle re-positioning, and pricing639

independently may ignore the high correlations between them (Jin et al., 2019). Thus, Holler640

et al. (2019) and Jin et al. (2019) explore these two tasks (order dispatching and vehicle re-641

positioning) simultaneously with different RL frameworks and agents, where actions of agents642

include vehicle re-positioning without an order and orders serving. Chen et al. (2019) studies the643

pricing strategy and order dispatching jointly since the user decides whether to submit the order644

request after knowing the estimated price of the input trip (i.e., origin and destination) given by645

the MOD system. In detail, Holler et al. (2019) aims to maximize the revenue of each driver646

independently from driver-perspective and maximize the combined revenue across all drivers from647

system-perspective by using different reward specifications and optimization algorithms (i.e., DQN648

and PPO). The optimization results show that the driver-perspective system is more competitive649

than the system-perspective approach. It is noteworthy that most multi-agent-based RL methods650

designed for MOD systems management regard each driver/vehicle as an agent, which results in651

high computational costs due to a large number of agents. Based on the framework of Hierarchical652

RL, Jin et al. (2019) chooses the region as an agent where large districts are manager agents while653

small grids are worker agents to model the ride-hailing system. The goal of the manager agent is654

to maximize ADI and ORR based on observations and peer messages (i.e., features extracted from655

other manager agents). The worker agents generate actions (i.e., pick up orders or re-position)656

following the objective developed by its manager and own observations. The action value of657

order dispatching depends on environmental states (e.g., locations of drivers and passengers) and658

pricing strategies. Thus, the total expected reward of the pricing strategy is composed of expected659

driver income before order completion and actual driver income, which means the optimal pricing660

strategy also relies on order dispatching.661

More recently, Manchella et al. (2021) presents a novel and valuable direction for joint goods662

delivery and ride-sharing service with deep RL methods. Using the status of available vehicles and663

pick-up requests, the proposed model adopts Double-DQN to find optimal dispatching policies for664

passengers pooling and goods delivery. The ride-sharing data collected from New York City taxi-665

cab and customer check-in traffic data from Google Maps give the opportunity for this work to666

verify that jointly serving passengers and goods can be cost-efficient and environmentally friendly.667

5.3. Vehicle Routing668

In ride-sharing systems, multiple orders and various passengers with similar itineraries can be669

handled simultaneously, which means that the policies for vehicle routing after order dispatching670

should be addressed and studied. The methods with computational complexity issues are hard to671

be applied in time-sensitive vehicle routing applications. RL has already shown strong capabilities672

in vehicle routing/navigation. Also, the training process of RL-based strategies can be conducted673

offline so that the route generation process can be handled handy and fast (James et al., 2019)674

in large transportation networks. Therefore, RL becomes an essential tool for vehicle routing in675

ride-sharing service systems.676

RL strategies for vehicle routing in MOD systems include both single-agent algorithms (James677

et al., 2019) and multi-agent algorithms (Al-Abbasi et al., 2019; Silva et al., 2019; Zhang et al.,678

2020b). Specifically, the dispatch center is regarded as the agent in James et al. (2019) based on679

the formulation of green logistic systems (James and Lam, 2017). The Asynchronous Advantage680

Actor-Critic (A3C) method is adopted to train the route construction policy to serve more orders681

while minimizing the driving distances of all vehicles. To further explicitly study the cooperation682

or competition among vehicles or customers, Zhang et al. (2020b) regards each vehicle as an agent683

and designs a multi-agent attention RL-based model. The model consists of an encoder-decoder684

structure where the encoder module analyzes the relations among customers while the decoder685

module decides the choice of the next visited customer via reinforcing gradient estimator opti-686

mization. The optimization of vehicle routing independently neglects the correlations between687

order dispatching and vehicle routing, which motivates Al-Abbasi et al. (2019) to focus on pro-688

viding policies for two tasks simultaneously via Double-DQN. Each vehicle works as an agent to689

decide whether to serve existing or new users after observing and analyzing the predicted future690

demand and the time cost before vehicles become available. If a new user is chosen or the vehicle691

is empty, the agent determines the zone to arrive. This study shows the superiority of ride-sharing692

in reducing traffic congestion through experiments on the real-world dataset from New York City.693
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Silva et al. (2019) determines a set of routes to make each customer can be served by one vehicle694

based on a single depot with Q-learning. In order to minimize the number of vehicles and reduce695

travel distances, the action is set to decide the locations and order of passengers to be served by696

acknowledging the information of all vehicles and customers.697

6. Assistant and Autonomous Driving698

Ensuring safety is the most critical objective in transportation systems for both human-piloted699

driving and autonomous driving. Driver-assistance systems (DASs) and autonomous vehicles700

(AVs) are expected to enhance driving safety and also improve traffic efficiency (Pan et al., 2021).701

In this section, a widely studied DAS technology, adaptive cruise control (ACC), with the strategies702

of Reinforcement Learning, is introduced first. Then, two types of training methods for decision-703

making modeling based on RL (i.e., car-following modeling to decide the velocity/acceleration704

and lane-changing modeling for steering control) are presented. A list of studies using RL for705

assistant/autonomous driving is provided in Table 5.706

6.1. Adaptive Cruise Control707

The technologies of driver-assistance systems have been embedded into vehicles to improve the708

driving experience and reduce traffic accidents. Adaptive cruise control (ACC), as an essential709

function of the system, has the ability to adjust the speed and acceleration of the current vehicle710

and further maintain a safe distance from the vehicle in front of it. To reduce reliance on prior711

knowledge of disturbance measurements (Li et al., 2017a), Reinforcement Learning becomes a712

valuable tool for ACC.713

Adaptive cruise control with RL has been examined for both private vehicles and buses. As714

for the private vehicle, the speed and acceleration of the current vehicle and the distance from the715

front vehicle are collected as the state for adaptive cruise control policy optimization (Desjardins716

and Chaib-Draa, 2011; Li et al., 2017a; Li and Görges, 2019) with various reward functions and717

RL frameworks. Specifically, Desjardins and Chaib-Draa (2011) takes advantage of DDPG to718

determine the action (e.g., braking, accelerating). Li et al. (2017a) utilizes Q-learning to select719

the specific values of permissive accelerations, which can be more feasible in practice. Li and720

Görges (2019) investigates driving safety and fuel consumption simultaneously by optimizing the721

velocity and the online gear shift jointly. The utilized deep Actor-Critic framework consists of two722

actor networks and a critic network. Two actor networks are used to generate the traction force723

for velocity tracking and provide the gear position for fuel economy, respectively. And the critic724

network evaluates the control performance for these two purposes.725

The investigation of the bus adaptive cruise control with RL has received less attention. Gao726

et al. (2019) proposes a cooperative ACC algorithm with a central controller for a fleet of au-727

tonomous buses on the exclusive bus lane (XBL). The policy iteration RL method is employed to728

approximate the value of the control gain introduced in the linear optimal control theory (Lewis729

et al., 2012). The experimental results show that the proposed method is able to increase the730

traffic throughput and save the travel time of buses.731

More recently, Nascimento et al. (2021) reports that safe driving can be affected by the driver’s732

comfort and feel, which can be adaptable for all types of vehicles. To investigate the interplay733

between the perceived sounds of a vehicle and the driver’s attention/enjoyment, a psychoacoustic734

(PA) metric (Pedersen and Zacharov, 2008) is used as the reward function to measure the driver’s735

feeling where lower PA values mean more comfort. The agent analyzes environmental sounds736

(e.g., pedestrians and traffic) and noises (e.g., sounds of bells and beeps) to decide the states of737

the window (no change, open, close), radio (no change, on, off), and speed (no change, accelerate,738

decelerate) with the optimization via Double-DQN. The proposed method has the ability to change739

the state of the vehicle to maintain the driver’s concentration for driving safety.740

6.2. Velocity and Acceleration Control741

Velocity/acceleration control of the autonomous vehicle has the promise of improving traffic742

safety and increasing road capacity (Zhu et al., 2020), which has been studied in numerous studies743

with Reinforcement Learning.744
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Table 5
Summary of RL Applications in Assistant and Autonomous Driving

Reference Application Framework Agent Scenario/
Data Simulator

Desjardins and Chaib-Draa (2011) adaptive cruise
control DDPG single-agent,

a vehicle
synthetic
network

personal
simulator

Li et al. (2017a) adaptive cruise
control Q-learning single-agent,

a vehicle
synthetic
network

personal
simulator

Li and Görges (2019) adaptive cruise
control

Deep
Actor-Critic

single-agent,
a vehicle

synthetic
network

personal
simulator

Gao et al. (2019) adaptive cruise
control for buses

Policy
Iteration

single-agent,
the center

Lincoln
Tunnel

Corridor
Paramics

Nascimento et al. (2021) drivers’ comfort
modeling Double-DQN single-agent,

a vehicle
synthetic
network

GTA V
simulator 1

Zhu et al. (2018) acceleration
control DDPG single-agent,

a vehicle
synthetic
network

personal
simulator

Zhou et al. (2019b) acceleration
control DDPG single-agent,

the center
synthetic
network

personal
simulator

Zhu et al. (2020) velocity control
for electric vehicle DDPG

two agents,
following and
lead vehicle

NGSIM
dataset 2

Next Generation
Simulation 2

Wegener et al. (2021) acceleration
control

Twin-delayed
DDPG

single-agent,
a vehicle

NGSIM
dataset

Intelligent
Driver Model

Liu et al. (2021) lane keeping DDPG single-agent,
a vehicle

real and
synthetic
scenarios

simulator from
OpenAI Gym

Cao et al. (2020)
acceleration control
and lane changing

for highway existing

Monte Carlo
Tree Search

single-agent,
a vehicle

synthetic
network

personal
simulator

Ye et al. (2019) acceleration control
and lane changing DDPG single-agent,

a vehicle
synthetic
network VISSIM

Guo et al. (2021) acceleration control
and lane changing DDPG single-agent,

a vehicle
synthetic
network SUMO

Sathyan et al. (2021) acceleration control
and lane changing DQN multi-agent,

a vehicle
synthetic
network SUMO

Pan et al. (2021)
ramp metering,
lane changing,

speed limit control

Cross-
Entropy-
Method

single-agent,
a vehicle

synthetic
network

personal
simulator

Wachi (2019) failure scenario
finding DDPG multi-agent,

a vehicle
synthetic
network

Microsoft AirSim,
(Shah et al., 2018)

1 https://github.com/aitorzip/DeepGTAV
2 https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
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Zhu et al. (2018) introduces an autonomous driving model based on DDPG to reproduce be-745

haviors and trajectories of drivers. To determine the acceleration of the vehicle, the agent sets746

the reward function as minimizing the disparity of spacing and velocity between the simulated747

and observed data. Note that solely imitating human driving behaviors for autonomous vehicles748

may not reduce traffic accidents or increase road capacity due to the hardly optimal operation749

of human drivers (Zhu et al., 2020). Thus, the following studies (Zhou et al., 2019b; Zhu et al.,750

2020; Wegener et al., 2021) directly optimize autonomous driving from interactions with the sim-751

ulated environment (i.e., surrounding vehicles information, own driving information, and road752

networks) by adopting various deep RL strategies under different scenarios. As for the framework753

of RL, DDPG is adopted in Zhou et al. (2019b); Zhu et al. (2020) while Twin-delayed Deep De-754

terministic Policy Gradient (TD3) (Fujimoto et al., 2018) is used by Wegener et al. (2021). As755

for the application scenarios, Zhou et al. (2019b) and Wegener et al. (2021) focus on obtaining756

appropriate driving acceleration under different levels of traffic and lengths of the signal cycle at757

intersections. Zhu et al. (2020) examines velocity control of autonomous driving under different758

road incidents/events, which improves safety, efficiency, and comfortableness, as shown by their759

experimental results.760

6.3. Steering Control and Lane Changing761

Keeping the vehicle within the lane and driving stably are essential for the safety of autonomous762

driving (Liu et al., 2021). Liu et al. (2021) collects the distances from the vehicle to the road763

lane borders from the GPS information as the state to decide the vehicle’s steering angle via764

the framework of DDPG. To accommodate the real-world scenario with information noise, a765

noise compensation approach is used. The independent optimization of steering control or lane766

changing can be less practical since the change in position often results in the change in velocity767

or acceleration. Thus, many studies determine longitudinal and lateral positions simultaneously768

to achieve safer and more efficient autonomous driving.769

Initial works only depend on one optimizing strategy for two tasks (Ye et al., 2019; Cao et al.,770

2020; Sathyan et al., 2021). In detail, in order to increase the success rate of exiting from highways771

in heavy dynamic traffic, Cao et al. (2020); Sathyan et al. (2021) optimize longitudinal accelera-772

tion and the policy of lane changing by Monte Carlo Tree Search (Browne et al., 2012) and DQN,773

respectively, where the distance to the exit ramp and the surrounding vehicles’ positions and774

speeds are regarded as the state. Ye et al. (2019) proposes a more general strategy to decide the775

longitudinal and lateral position of the vehicle jointly under different driving environments based776

on DDPG with the driving information of surrounding vehicles. The reward form is calculated777

by its distance from the preceding vehicle, its speed, and the speed difference to the preceding778

vehicle. The collision, uncomfortableness, and inefficient driving performances are also penalized779

in the reward. Guo et al. (2021) finds the optimal policies for the continuous longitudinal ac-780

celeration/deceleration and discrete lane changing via DDPG and DQN, respectively. The two781

optimizing strategies are able to interact with each other and reduce the error probability, which782

is more robust in unusual driving conditions (e.g., abrupt deceleration of the front vehicle).783

Furthermore, an integrated model is proposed to deal with more comprehensive tasks, i.e.,784

ramp metering, variable speed limit, and lane changing control for both connected autonomous785

vehicles and regular human-piloted vehicles to minimize the total travel cost in Pan et al. (2021).786

The proposed model is optimized by the gradient-free Cross-Entropy-Method-based algorithm787

(Szita and Lörincz, 2006).788

In addition, a novel way to deal with the safety of autonomous driving is introduced (Wachi,789

2019), i.e., identifying failure scenarios of the vehicle. The environment consists of two types of790

vehicles, the player and multiple non-player characters (NPCs). And the aim is to train NPCs to791

make the player cause an accident or arrive at the destination late. When the player fails, NPCs792

get the adversarial reward based on their own contributions to the failure. Multi-agent DDPG793

algorithm (Lowe et al., 2017) is employed to train the agents to find the optimum driving directions794

and velocity. Their strategy provides a novel and effective direction to avoid catastrophic accidents795

for autonomous driving.796
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Table 6
Summary of RL Applications in Routing

Reference Application Framework Agent Scenario/Data Simulator

Cao et al. (2017) path
recommendation DQN single-agent,

the driver
networks of Munich,
Singapore, Beijing

personal
simulator

Ramos et al. (2018)
routing for
travel time

minimization
Q-learning multi-agent,

the driver synthetic data personal
simulator

Boutilier et al. (2018) shortest path
routing DQN single-agent,

the driver
network in San

Francisco Bay Area
personal
simulator

Chandak et al. (2020) shortest path
routing

Policy Gradient
algorithm

single-agent,
the driver

network in San
Francisco Bay Area

personal
simulator

Mao and Shen (2018)
routing for
travel time

minimization

Neural fitted
Q-iteration,
Q-learning

single-agent,
the driver

Sioux Falls
network

personal
simulator

Zhang and Masoud (2021) GPS
correctness A3C single-agent,

the controller

GPS trip recorder
in Southeast

Michigan

personal
simulator

An et al. (2020)
routing for
travel time

minimization
DQN single-agent,

the controller synthetic data personal
simulator

Zhang et al. (2019b) parking DDPG single-agent,
the controller synthetic data personal

simulator

Wang et al. (2021b) parking Monte-Carlo single-agent,
the controller synthetic data personal

simulator

7. Routing797

RL-based vehicle routing in taxi, ride-sourcing, and ride-sharing systems have been reviewed798

in Section 5. This section discusses RL-based routing in a more general context, where routing799

plays an important role in both human-driving and autonomous driving vehicles. It should be800

noted that the accuracy of Global Positioning System (GPS) localization is critical in vehicle801

navigation/routing applications, which might be affected by environmental factors (e.g., weather802

and occlusion of buildings). Raw GPS observations (i.e., longitude and latitude coordinates) are803

corrected in Zhang and Masoud (2021) by the algorithm of A3C, where the state is the observation804

history trajectory consisting of the last reported position and the most recent predicted positions805

within a certain period. Many previous studies on routing problems are based on parametric806

models with strong behavior assumptions (Mao and Shen, 2018). Tail-based research (Lim et al.,807

2013) for routing often suffers from the issue of low accuracy and high computational cost. Instead,808

given its capability for optimal policy discovery without expert knowledge and its scalability for809

adapting the proposed methods to large-scale real-world networks, RL-based models have been810

used to find the shortest path and minimize total travel time. This section mainly introduces811

routing problems from two aspects, i.e., the stochastic shortest path problem and real-time routing.812

The introduced RL-based works for routing are summarized in Table 6.813

The stochastic shortest path (SSP) problem with RL is first studied in Cao et al. (2017) by814

adopting Q-learning as the framework and designing a deep-based approximator to represent the815

value function for adaptation to large road networks. In practice, some travel paths are not816

always reachable due to road construction or other reasons, which motivates the exploration of817

the unavailability of actions by introducing stochastic action sets (SAS) (Boutilier et al., 2018).818

DQN is adopted as the framework to illustrate the effects on the shortest path sought problem819

with the consideration of the probability of the shortest path availability. The results indicate that820

the optimal policy with SAS has the ability to yield an expected travel time between the origin821

and destination within a target small range. Following studies (Boutilier et al., 2018; Chandak822

et al., 2020) further examine each node as the origin and learns the shortest path from each node.823

The proposed framework generalizes the Policy Gradient algorithm to estimate the optimal policy824
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in a large-scale network.825

RL methods for the SSP problem build the foundation for the real-time routing strategy, which826

needs to minimize the expected total travel time by accounting for real-time traffic conditions.827

Therefore, continuous variables describing real-time traffic congestion are used in many studies828

(Ramos et al., 2018; Mao and Shen, 2018; An et al., 2020) to look for the path that minimizes829

travel time or travel delay based on different developed RL strategies. The adaptation of Q-830

learning is combined with the regret-minimising method in Ramos et al. (2018) to minimize travel831

time for routing. The Neural Fitted Q Iteration (FQI) (Ernst et al., 2005) is adopted in Mao and832

Shen (2018) to accommodate the large state space (i.e., the constantly changing instantaneous833

travel cost) and produce a more refined representation of the Q-function for further routing policy834

optimization. An et al. (2020) utilizes DQN with the help of the Dijkstra algorithm and k-shortest835

path algorithm to determine the platoon size on the monitor link where the platoon strategy is836

used to avoid conflict points in platoons for routing assistance.837

Moreover, routing for parking issues has been discussed in Zhang et al. (2019b); Wang et al.838

(2021b). Specifically, Zhang et al. (2019b) adopts DDPG for autonomous parking (i.e., determine839

the steering wheel angle) with the coordinates of the four corner points in the vehicle. Wang840

et al. (2021b) proposes a Monte-Carlo-based optimization model on parking spot selections, which841

becomes a crucial problem in mega-cities for automated multistory parking facilities. In order842

to reduce customers’ waiting time, the agent is in charge of choosing the parking level for each843

vehicle on the elevator by analyzing the status of available parking spots and the current time.844

8. Public Transportation and Bike-sharing System845

The public transportation system (e.g., buses and trains) and bike-sharing system serve a large846

number of passengers and play a vital role (Li et al., 2021a) in metropolitan areas for environmental847

protection. RL-based strategies have been examined for public transit and bike-sharing systems848

scheduling and management to improve efficiency and profitability, which are reviewed in this849

section. A summary of the papers to be discussed is provided in Table 7.850

8.1. Bus Holding851

Bus holding, a strategy that delays buses at control points (Dai et al., 2019), has received852

substantial attention for many decades in order to reduce the probability of bus delay, decrease853

the waiting/travel time of passengers, and thus improve the efficiency of the bus system (Berrebi854

et al., 2018). A large number of strategies mainly consider local information with a pre-specified855

headway/schedule. However, the global coordination of the whole bus fleet and the long-term856

effect are often overlooked (Wang and Sun, 2020), which can be potentially addressed by RL-857

based methods.858

Owing to the mutual influence among buses, existing studies (Chen et al., 2016; Alesiani859

and Gkiotsalitis, 2018; Menda et al., 2018; Wang and Sun, 2020) adopt different multi-agent RL860

frameworks by regarding each bus as an agent to analyze the input state (e.g., treating departure861

time, arrival time, and target headway time of the bus) and determine bus holding duration with862

different granularity. Specifically, 30 seconds is set as the minimum unit of holding time in Alesiani863

and Gkiotsalitis (2018) with the optimization by Double-DQN. Since the bus holding time less than864

30 seconds is not practical considering constraints from real-world driving conditions, the holding865

time is chosen as some multiple of the holding time unit (e.g., 30 seconds) in Chen et al. (2016)866

optimizing by Q-learning and Menda et al. (2018) optimizing by PS-TRPO (Gupta et al., 2017).867

Though these methods adopt multi-agent frameworks to deal with holding time for multiple buses868

simultaneously, less attention has been paid to agents’ cooperation. More recently, Wang and Sun869

(2020) proposes a global joint action tracker embedding into the PPO framework to incorporate870

global coordination for dynamic bus holding control. The action tracker network is used to adopt871

the global information of buses and passengers to further track the policies of each agent (i.e.,872

a bus). Thus, the state evaluation of each agent’s policy is based on the local environment and873

other agents’ decisions.874
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Table 7
Summary of RL Applications in Public Transportation and Bike-sharing System

Reference Application Framework Agent Data Simulator

Alesiani and Gkiotsalitis (2018) bus holding Double-DQN multi-agent,
a bus

a main bus line
in Singapore

personal
simulator

Chen et al. (2016) bus holding Q-learning multi-agent,
a bus synthetic data personal

simulator

Menda et al. (2018) bus holding PS-TRPO multi-agent,
a bus synthetic data personal

simulator

Wang and Sun (2020) bus holding deep PPO multi-agent,
a bus synthetic data personal

simulator

Yin et al. (2014)
acceleration
control for
the subway

Q-learning single-agent,
a subway

real data from
Beijing Subway

personal
simulator

Yang et al. (2021) voltage control for
urban railway DQN single-agent,

the center
real data from
Beijing Subway

personal
simulator

Šemrov et al. (2016) train scheduling Q-learning single-agent,
the center

railway network
in Slovenia

personal
simulator

Khadilkar (2018) train scheduling Q-learning single-agent,
the center

railway lines
from Indian

personal
simulator

Ying et al. (2020) subway scheduling DDPG single-agent,
the center

London
Underground

personal
simulator

Jiang et al. (2018) inflow control for
urban rail transit Q-learning single-agent,

the center
metro line

in Shanghai
personal
simulator

Wei et al. (2020) next metro
line design

Deep
Actor-Critic

single-agent,
the center

the current metro
network in Xi’an

personal
simulator

Li et al. (2018)
bike re-position
for bike-sharing

system
DQN multi-agent,

a trike
Citi Bike data
from New York

personal
simulator

Pan et al. (2019)
price management
for bike-sharing

system

DDPG,
Hierarchical RL

multi-agent,
a user

Mobike dataset
from Shanghai

Mobike’s
original
system

8.2. Urban Rail Transit System Management875

Adopting the mechanism of Reinforcement Learning, multiple research topics have been inves-876

tigated for the operation of the urban rail transit system (e.g., train and subway), such as energy877

management, vehicle re-scheduling, passenger flow control, and network expansion which will be878

introduced in this subsection.879

Energy management: A few studies aim to use RL method to minimize the energy con-880

sumption of subway operation where two optimizing types are proposed, i.e., managing one subway881

vehicle independently and managing the whole subway system. In detail, Yin et al. (2014) de-882

fines the current vehicle position, the speed, and the reserved trip time as the state and each883

subway vehicle as an agent to decide the variation of acceleration via Q-learning. In order to884

cooperate with other subways to acknowledge the time-vary traffic, Yang et al. (2021) uses the885

super-capacitor energy management system (SCESS) as the central agent for energy-saving and886

voltage stabilization of the whole subway system. The states of the subways nearing the SCESS887

and the rectifier current/voltage of the substation where the SCESS is installed are accounted for888

the state in the implementation of RL. And the agent decides on the combination of charging and889

discharging voltage threshold to increase the energy-saving rate and voltage stabilization rate in890

each time step.891

Scheduling: Scheduling is one of the core issues for urban rail transit systems, e.g., in order892

to reduce the travel/waiting time and the operating cost (Zhao et al., 2021). Train scheduling for893

both the single-track railway (Šemrov et al., 2016) and multi-track railway (Khadilkar, 2018) are894

examined. The information in relation to the locations of trains, the infrastructure availability895

of block sections, and the time is considered in Šemrov et al. (2016) for single-track railway896

scheduling. Q-learning is used to decide the actions for each signaling element, i.e., setting it to897

red (stop) or green (go) color, indicating which trains can move on to the next section, which helps898
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reduce the total delay effectively. However, the study dealing with the single-track railway cannot899

be directly adapted to multi-track railway systems (e.g., the trains operating on multiple tracks900

can be merged into one track which may cause disruption). Train scheduling on multi-track is901

taken into consideration by the study of Khadilkar (2018), where directions of trains’ motion are902

analyzed for further decision-making with Q-learning. Different to train scheduling, urban subway903

scheduling has to take the number of passengers into account for decision-making (Ying et al.,904

2020). The optimizing framework based on DDPG shows very satisfactory performance in terms905

of reducing passenger waiting times and saving subway operating costs.906

Passenger flow control: To decrease the waiting time of passengers and reduce accidents907

caused by crowds in railway stations, the control of passenger inflow for railway systems has been908

investigated in Jiang et al. (2018). The environmental state includes information of real-time909

passenger demand, the arrival/departure time, the available capacity of trains, and the platform910

capacity of stations. Q-learning is adopted to set the rate of inflow volume for each station. The911

experimental results show that inflow control with RL can reduce the number of passengers being912

stranded and relieve passenger congestion at certain stations.913

Network expansion: The design or the expansion of a railway transit network is another pri-914

mary concern in public rail/transit systems (Laporte et al., 2010). Most existing strategies dealing915

with network expansion are often based on conventional mathematical programming approaches,916

which are heavily dependent on expert guidance and behavior assumptions (Wei et al., 2020).917

Instead of the usage of domain knowledge and behavior assumptions, the Actor-Critic framework918

with single-agent is adopted in Wei et al. (2020) to select the locations of expanded stations in919

the city metro network. Specifically, the actor network is an Encoder-Decoder Neural Network920

coupling with an attention layer to parameterize the station selection policy for metro line expan-921

sion, while the critic network consists of three convolutional layers and two fully connected layers922

to estimate the expected cumulative reward of the next metro line.923

8.3. Bike-sharing System924

Bike-sharing systems, including dock and dock-less systems, are widely deployed in urban925

and rural areas to ease the first/last-mile problems and reduce the usage of private vehicles. Li926

et al. (2018) and Pan et al. (2019) aim to balance the supply and demand of these two systems,927

respectively. In order to minimize the customer loss of the system with dock, Li et al. (2018)928

proposes a multi-agent DQN-based bike re-positioning method. Each trike (i.e., the tool for929

moving bikes) is regarded as the agent that chooses the location of the station and the number of930

picking up or unloading bikes after observing the system status (i.e., bike and dock availability at931

each station), its own status (i.e., the available location for bikes), and the status of other trikes.932

Pan et al. (2019) focuses on pricing management to incentive users for the dock-less bike-sharing933

system. Building upon DDPG and Hierarchical RL, the proposed pricing algorithm suggests the934

user return the bike to neighboring regions by offering a price incentive under a default budget.935

9. Electric Vehicle: Energy Management, Charging, and Ride Service936

To mitigate the crisis of resource scarcity and climate change, electrification has been the trend937

of the automotive industry to achieve the merits of high performance and long-term economy938

(Wu et al., 2020a). Reinforcement Learning methods have been adopted for electric vehicle (EV)939

control and management in recent years, especially for ground electric vehicles. This section mainly940

introduces the RL applications on two major ground vehicles, hybrid-electric vehicles (HEVs) and941

pure-electric vehicles (PEVs). The mentioned works in this study are summarized in Table 8.942

9.1. Hybrid-Electric Vehicle943

A hybrid-electric vehicle usually combines a conventional powertrain (e.g., gasoline) with an944

electric engine. Most existing studies dealing with energy management of HEVs follow pre-defined945

rules, which heavily rely on the accurate prediction of future traffic conditions and are not straight-946

forward for applications under time-sensitive driving conditions (Qi et al., 2019). RL strategies947

have been effective tools to avoid the need for precise forecasts.948
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Table 8
Summary of RL Applications in Electric Vehicle

Reference Application Framework Agent Data Simulator

Liu et al. (2015a) fuel and electricity
sources control Q-learning single-agent,

a vehicle synthetic data MotoTune 1

Qi et al. (2016) fuel and electricity
sources control Q-learning single-agent,

a vehicle

inductive loops detector
data archived in
the California

Freeway PEMS 2

Motor Vehicle
Emission

Simulator 3

Liu et al. (2017) fuel and electricity
sources control Q-learning single-agent,

a vehicle synthetic data personal
simulator

Qi et al. (2019) fuel and electricity
sources control

DQN
Dueling-DQN

single-agent,
a vehicle

inductive loops detector
data archived in
the California

Freeway PEMS 2

personal
simulator

Wu et al. (2019) fuel and electricity
sources control DDPG single-agent,

a vehicle synthetic data Paramics

Lian et al. (2020) fuel and electricity
sources control DDPG single-agent,

a vehicle synthetic data personal
simulator

Wan et al. (2018)
EV charging/
discharging
scheduling

DQN single-agent,
a vehicle

real scenario from
the California ISO

personal
simulator

Zhang et al. (2021a)
EV charging/
discharging
scheduling

DQN single-agent,
a vehicle

real data from EV
charging stations data

in Beijing

personal
simulator

Luo et al. (2020) EV re-positioning PPO
multi-agent,
a hexagonal

grid

real EV sharing data
in Shanghai

personal
simulator

Shi et al. (2019)
EV dispatching
and charging
management

DQN multi-agent,
a vehicle synthetic data personal

simulator

Tang et al. (2020)

EV taxi-customer
assignments, vehicle

dispatching
and charging

Deep RL
single-agent,

a central
controller

real data from
Tongzhou and Beijing

personal
simulator

Zhang et al. (2020c)
EV route planning

and energy
management

Actor-Critic,
Q-learning

single-agent,
the controller synthetic data ADVISOR 4

Lin et al. (2021) vehicle routing
for Electric Vehicles REINFORCE single-agent,

the controller synthetic data personal
simulator

1 http://mcs.woodward.com/support/wiki/index.php?title=MotoTune
2 http://pems.dot.ca.gov
3 https://www.epa.gov/moves
4 http://bigladdersoftware.com/advisor/docs/advisor_doc.html
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The studies start to regard the energy management center as the agent for engine power control949

via Q-learning in Liu et al. (2015a); Qi et al. (2016); Liu et al. (2017) with different state settings.950

In detail, Liu et al. (2015a) explores the knowledge of environmental features, the battery state-951

of-charge (SOC), and the rotational speed of the generator (i.e., engine speed) to determine fuel952

consumption. More related characteristics are analyzed in Qi et al. (2016), i.e., the vehicle velocity,953

road grade, percentage of remaining time to destination, SOC, and available charging gain of the954

selected charging station. The internal combustion engine (ICE) power supply level (discrete form)955

obtained from the optimization is chosen to further control the proportions of electricity and fuel956

to use. The predicted future velocity profile and the information of SOC are utilized in Liu et al.957

(2017) as the state to select the throttle engine power and further determine the power distribution958

of the electrical energy source and conventional powertrain source. The velocity profile is obtained959

by two novel velocity predictors (i.e., Nearest Neighbor Velocity Predictor and Fuzzy Encoding960

Velocity Predictor).961

A number of deep RL studies have shown their capability to handle non-linear and compli-962

cated relations among vehicles and the traffic environment for traffic control, which motivates the963

utilization of deep learning in energy management. Complex and powerful deep RL methods are964

proposed to control electricity and conventional powertrain energy split for HEVS with different965

reward functions and state settings (Qi et al., 2019; Wu et al., 2019; Lian et al., 2020). In detail,966

Qi et al. (2019) uses DQN and Dueling-DQN to select an optimal fuel/electricity split’s level (i.e.,967

24 power level outputs are set for the engine) with the information regarding the power demand968

at the wheel, the battery pack’s state-of-charge, and the distance to the destination to reduce969

fuel consumption. This study optimizes the agents based on a single driving cycle that might not970

be able to deal with different driving cycles (DCs) or the entire driving profile of a vehicle (Wu971

et al., 2019). Therefore, Wu et al. (2019) adopts the framework of DDPG to model the energy972

split management for multiple driving cycles. Given the control variables (e.g., rational speed973

of engine/motor) as the current state of the environment, the actor network represented by the974

structured control net (SCN) (Srouji et al., 2018) produces an action while the critic network con-975

sisting of several fully connected layers estimates the action-value function. Moreover, considering976

that human expertise can provide optimal training samples or preferences for the learning agent977

to guide exploration in the training process, Lian et al. (2020) proposes a rule-interposing DDPG978

model to deal with the time-consuming problem caused by deep RL strategies. The added expert979

knowledge includes the optimal brake specific fuel consumption curve of the HEV engine and the980

battery characteristics, which helps set control variables of RL models. The aim of the controller981

is to optimize the engine power increment or decrement (e.g., remain unchanged, increase one982

kilowatt, decrease one kilowatt).983

Different from the aforementioned studies focusing on energy management and splitting inde-984

pendently, Lin et al. (2021) adopts the Actor-Critic framework and Q-learning for route planning985

with power management of plug-in HEVs to minimize energy consumption. The inner loop is986

in charge of managing power by controlling the desired output torque from the engine, the gear987

shift command, and the direction by analyzing the state (i.e., vehicle status and geographic infor-988

mation). Meanwhile, the outer loop decides the changes in road slope and vehicle speed, which989

can affect energy utilization. The overall reward is designed to minimize fuel consumption and990

battery recuperation instead of only considering the shortest distance between the origin and the991

destination.992

9.2. Pure-Electric Vehicle993

The usage of pure-electric vehicles is rapidly growing, while the driving range and insufficient994

charging stations of EVs are two adverse factors on the widespread adoption of pure-electric vehi-995

cles (He et al., 2018). In order to solve such issues, recently, DQN-based frameworks are designed996

for EV charging/discharging scheduling subject to different objectives (Wan et al., 2018; Zhang997

et al., 2021a). Wan et al. (2018) aims to improve user benefit by designing a representation net-998

work to extract discriminative features from the battery state-of-charge (SOC) and the future999

price trends predicted by Long Short-Term Memory (LSTM). The Q-network is utilized to ap-1000

proximate the optimal action-value function and then make the decision for the amount of energy1001

that the EV battery will be charged or discharged. Zhang et al. (2021a) aims to minimize the1002

total charging time of EVs and reduce the distance between the origin and charging stations. The1003
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EVs charging schedule system analyzes the features from the available charging piles and the EVs1004

electricity consumption (predicted by distance traveled with linear regression) to obtain Q-value1005

for selecting a charging station for the vehicle.1006

Pure-electric vehicles have also been introduced to provide ride-sourcing services with the fast1007

improvement of battery technologies and the rapid growth of recharging facilities (Kim et al.,1008

2015; Ke et al., 2019). As presented in Section 5, a number of RL-based methods have been put1009

into use for dispatching and routing gasoline vehicles, which can also be adapted for ride-sourcing1010

management of EVs. Different from conventional gasoline vehicles, EV re-position, dispatching,1011

and routing often more explicitly take into account the recharging or electricity consumption issues1012

of EVs.1013

Specifically, unbalanced/skewed distributions of EV fleets motivate Luo et al. (2020) to propose1014

a multi-agent RL model for EV re-positioning in order to improve demand rate and net revenue.1015

The designed actor-critic-based PPO model consists of two connected policy networks, one used for1016

choosing the grid and another adopting the output from the first network for further selecting the1017

station in the chosen grid with the agent (i.e., each hexagon grid of the urban area in concern).1018

The proposed model can deal with the non-stationarity in action spaces caused by the station1019

extension or closure by the regularization of the reward function.1020

Vehicle dispatching considering an electric vehicle fleet has also been studied (Shi et al., 2019;1021

Tang et al., 2020; Lin et al., 2021) with different RL frameworks and optimizing aims. Shi et al.1022

(2019) designs a DQN-based algorithm to dispatch the electric vehicle for ride-hailing services1023

in terms of reducing EV operational costs and customer waiting time. The proposed framework1024

consists of two components: the decentralized learning process to approximate the state-value1025

function with the knowledge of vehicles and dispatching tasks; the centralized decision-making1026

process to formulate and maximize the state-value function for EV fleets by a linear assignment1027

problem and further to find the optimal dispatching policy. Tang et al. (2020) designs a two-step1028

framework, advisor-student RL, to dispatch vehicles and arrange charging activities. In the advisor1029

network, the control center assigns the status of vehicles (i.e., to be charged or to accept the order)1030

to minimize the system cost (i.e., customer waiting cost, customer abandon penalty, vehicle travel1031

cost, and vehicle charging cost) through the optimization by DQN. The student network decides1032

the vehicle-customer pair and vehicle-charging-station pair via assignment problem optimization.1033

Lin et al. (2021) focuses on reducing total distances of electric vehicles by solving routing problems1034

(i.e., choosing the geographical coordinate of the next location) with the REINFORCE algorithm1035

(Williams, 1992).1036

10. Future Directions and Conclusion1037

In the past decade, we have seen a growing number of studies that develop/adapt Reinforce-1038

ment Learning methods for applications in the transportation sector. However, the development1039

and utilization of advanced RL strategies for a more efficient and sustainable transportation sys-1040

tem are still at an early stage. This section will discuss several aspects that deserve substantial1041

further efforts in terms of developing RL methods for real-world transportation applications, i.e.,1042

scalability, practicality, transferability, and fairness.1043

1044

Scalability:1045

• Existing RL-based studies for transportation applications are often capable of dealing with a1046

single subject and/or one aspect of the system (e.g., speed limit control for a target part of the1047

freeway (Zhu and Ukkusuri, 2014)). The demand for computing resources and computing1048

time can be extremely high when adapting these methods to multiple-object large-scale1049

environments, especially where there are complex interactions among objects or sub-systems1050

within the system (e.g., a city often is served with thousands of intersections). Developing1051

competent models with a cooperative and/or competitive multi-agent RL-based framework1052

to deal with multi-object large-scale transportation systems is crucial. For instance, handling1053

a single train in urban rail transit system management will be more feasible given the current1054

development of RL methods, while optimizing the whole system with a large number of1055

objects (or agents) will be much more challenging. Developing a scalable model with the1056
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ability to adopt and analyze large-scale spatial-temporal features and jointly optimize the1057

actions of multi-object requires substantial novel efforts and innovations. For example,1058

hierarchical RL can be a promising concept for handling such large-scale problems with a1059

centralized manager for overall control and optimization and multiple decentralized workers1060

for implementations at the local level.1061

Practicality:1062

• The design of the environment and reward function is critical for RL-based methods. Many1063

methods are evaluated based on simulations with simulated observations and rewards. Only1064

several works take advantage of real-world platforms for evaluation (e.g., Zhou et al. (2019a)1065

uses the platform provided by Didi Chuxing for optimizing order dispatching). A certain1066

(and unknown) gap between simulation and reality may exist. It is essential to train and1067

evaluate the proposed methods based on real-world environments for policy optimization.1068

For instance, order dispatching for MOD systems might be tested on real-world platforms1069

such as Uber and Didi Chuxing so that the actual values of order response rate, driver1070

income, and waiting/travel time can be obtained. Also, the utilization of a digital twin1071

framework to mimic the real transportation system as a virtual system can be helpful in1072

obtaining more realistic feedback. This often requires coordinated and cooperative efforts1073

from academia, industry, and government.1074

• Existing studies are able to accommodate soft constraints effectively by introducing the1075

penalty to reward functions. For instance, Tang et al. (2020) introduces a customer aban-1076

don penalty to reduce the possibility of order cancellation. The hard/rigid constraints of1077

the environment are sometimes not straightforward to be incorporated, which should be1078

investigated in future studies. This might require proper designs of environments and ac-1079

tions with limitations. For instance, the number of moving bikes in the bike-sharing system1080

cannot exceed the capacity of the trike (the tool for moving bikes), which can be achieved1081

by designing the range of the action vector.1082

• The evaluation of RL methods is sometimes based on ideal simulated environments (e.g.,1083

bus holding without considering the sluggish of passengers (Alesiani and Gkiotsalitis, 2018)).1084

In practice, uncertainties, disruptions, and accidents often occur for road traffic, rail traffic,1085

and air traffic. External factors which may influence the transportation system and network1086

traffic should be analyzed or predicted (e.g., accurate weather forecasting can effectively help1087

aircraft scheduling), and then incorporated for more capable RL tools.1088

• Some information such as travel demand, traffic flow, vehicle speed, trip distance, and trip1089

time might be simulated or estimated for further decision-making with RL methods. For1090

example, Citi Bike demand data from New York is collected in Li et al. (2018) for bike1091

re-positioning. However, precise information in terms of some specific characteristics in1092

the environment may not be readily available or hard to be obtained. For instance, some1093

existing research for energy management of electric vehicles may require precise information1094

regarding the drivers’ behaviors, which might not be available at the time of decision-making.1095

Therefore, some estimations or expectations might have to be assumed or further methods1096

without such information request have to be developed (Qi et al., 2019; Wu et al., 2019).1097

• Some existing methods use discrete formulations for environmental features (e.g., the level1098

of traffic congestion) and actions (e.g., slow down or speed up in adaptive cruise control1099

(Desjardins and Chaib-Draa, 2011)), which achieve satisfactory performance based on private1100

and public simulators. This is likely not universal and might not be sufficient in many real-1101

world occasions. Inappropriate extensions of such methods to other applications might not1102

be feasible or might result in low quality solutions. It is necessary to develop methods1103

that are able to deal with the continuity and granularity of actions in transportation and1104

optimize the choice of continuity and granularity since different scenarios require continuous1105

or discrete actions with different (optimal) granularity. For example, the acceleration and1106

steering control for autonomous driving requires extremely precise decisions since a slight1107

adjustment in steering may cause a large change in the direction of a vehicle in the case1108
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of high-speed driving. On the contrary, it might be less meaningful to have a holding1109

time for buses of ten seconds (while ten seconds might be too long for autonomous driving1110

applications).1111

• The isolated design of different types of actions may also limit the practicality of RL to1112

solve more complex transportation problems with substantial endogeneity or correlations1113

among actions. Studies dealing with only one or two specific aspects of autonomous driving1114

(e.g., lane changing, motion control, and collision avoidance) are still not ready for practical1115

applications. More comprehensive consideration of multi-type actions simultaneously can be1116

critical and essential in solving more complicated transportation problems in future research1117

(e.g., to ensure safe, reliable, and efficient autonomous driving, the velocity, acceleration,1118

angle change, route, and passengers’ preference might have to be examined in an integrated1119

manner).1120

Transferability:1121

• Studies targeting on existing road networks and public transit routes/stations have shown1122

great success in numerous aspects, such as train scheduling (Khadilkar, 2018) and routing1123

(Mao and Shen, 2018). Due to urban expansion, new transportation facilities have to be1124

designed and arranged in existing or new regions, which receives less attention in the lit-1125

erature. The construction of new facilities requires sufficient expert knowledge due to the1126

scarcity of historical data for policy optimization in RL. The utilization of transfer learning1127

(Pan and Yang, 2009) and Meta-based RL (Finn and Levine, 2018) (i.e., the combination1128

of Meta-Learning and Reinforcement Learning) are potentially effective tools for address-1129

ing new tasks or applications that lack sufficient training data. These strategies are able1130

to transfer/adapt the trained RL-based model parameters/policies learned from the regions1131

that already have related facilities to the new model for new regions.1132

Fairness:1133

• Existing studies aiming at improving the efficiency, profit, and safety of transportation sys-1134

tems by utilizing RL methods have made promising progress. However, the fairness issue1135

of transportation systems has not been considered much, and is indeed often ignored in the1136

development of RL methods. Different targets or entities (e.g., intersections or vehicles)1137

may have to be fairly treated in the formulation of RL. To better address fairness issues1138

in transportation, exploring the combination of survey data (stated preference) and other1139

multi-source data is necessary. How to incorporate such a combination of data into RL1140

method development is a direction that is worth further examination. Therefore, combi-1141

national weighted rewarding optimization problems with multiple objectives might have to1142

be considered and addressed in transportation applications to achieve both efficiency and1143

fairness. Effective combinational weighted rewards are not straightforward to be designed1144

(e.g., the safety, efficiency, and comfort in autonomous driving are hard to be evaluated1145

simultaneously), which might have to be solved by introducing other new algorithms or1146

methodologies. For instance, Inverse Reinforcement Learning may be an effective solution1147

to learn the reward function based on the agent’s decisions and then find the optimal policy1148

(e.g., Lanzaro et al. (2022) takes advantage of Inverse RL to recover the reward function of1149

motorcyclists based on their actual trajectories for traffic conflicts modeling).1150

Reinforcement Learning and smart transportation are research topics that attracted substan-1151

tial interest in recent years, where we see a large number of novel developments on strategies,1152

techniques, and applications of RL to support smart transportation. It is also noted that applica-1153

tions of Reinforcement Learning in some sub-domains of transportation are limited, e.g., air traffic1154

control and the aviation sector. For these application sub-domains, examining relevant and useful1155

features is necessary.1156

In summary, this paper first uses the bibliometric analysis to identify the development of RL1157

methods for transportation applications in recent years and then provides a review of the most1158

relevant works covering a wide range of topics. This review provides readers with an understanding1159

of RL-based method developments and applications in smart transportation and can serve as a1160

32



reference point for researchers interested in interdisciplinary Reinforcement Learning research in1161

transportation and computer science.1162
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