
Convergence rate of the relaxed CQ algorithm
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Abstract

The relaxed CQ algorithm is one of the most important algorithms for solving the
split feasibility problem. We study the issue of strong convergence of the relaxed CQ
algorithm in Hilbert spaces together with estimates on the convergence rate. Under a
kind of Hölderian type bounded error bound property, strong convergence of the relaxed
CQ algorithm is established. Furthermore, qualitative estimates on the convergence rate
is presented. In particular, for the case when the involved exponent is equal to 1, the
linear convergence of the relaxed CQ algorithm is established. Finally, numerical ex-
periments are performed to show the convergence property of the relaxed CQ algorithm
for the compressed sensing problem.

1 Introduction

Let H1 and H2 be Hilbert spaces. Let A be a bounded linear operator from H1 to H2. Let
C and Q be arbitrary nonempty closed convex subsets of H1 and H2, respectively. Consider
the following split feasibility problem (SFP): find a point x ∈ H1 such that

x ∈ C and Ax ∈ Q. (1.1)

Throughout the whole paper, we always assume that the solution set S of (1.1) is nonempty.
The SFP (1.1) was introduced by Censor and Elfving in [10], which provides a unified
framework for many inverse problems and has been used in various areas such as signal
processing, image reconstruction [33] and intensity-modulated radiation therapy [11].
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The CQ algorithm introduced in [8] is one of the most popular and practical algorithms
to solve the SFP (1.1) which, with the stepsizes {βn} ⊆ R+, is formulated as follows:

xn+1 = PC(xn − βnA∗(I− PQ)Axn),

where I is the identity in H2, A∗ is the adjoint of A, while PΩ is the metric projection
onto Ω (a subset of a Hilbert space H). Convergence properties of the CQ algorithm
with different types of stepsizes have been extensively explored; see [8, 26, 35, 37, 39] and
references therein. In particular, the weak convergence property of the CQ algorithm in
Hilbert spaces with constant stepsize and with dynamic stepsizes were established in [37]
and [26], respectively. Recently, Wang et al [35] established the linear convergence result for
the CQ algorithm with the constant stepsize or with the dynamic stepsizes in Hilbert spaces.
The main computational cost of the CQ algorithm at each step depends on the projections
PC(·) and PQ(·), which in general are expensive (see [2]). To reduce the computational cost,
Yang [38] proposed a relaxed CQ algorithm, i.e., Algorithm 1, for solving the SFP (1.1),
when the involved convex sets C and Q are respectively the level sets of the continuous
convex functions c : H1 → R and q : H2 → R:

C := {x ∈ H1 : c(x) ≤ 0} and Q := {y ∈ H2 : q(y) ≤ 0}. (1.2)

Recall that, for a convex function f : H → R, the subdifferential of f is denoted by ∂f and
defined by

∂f(x) := {u ∈ H : 〈u, y − x〉 ≤ f(y)− f(x), ∀y ∈ H} for each x ∈ H.

f is said to be subdifferentiable at x ∈ H if ∂f(x) 6= ∅.
Algorithm 1. Let x0 ∈ H1 be given. Having x0, x1, · · · , xn, choose ξn ∈ ∂c(xn),

ηn ∈ ∂q(Axn), and stepsize βn ≥ 0, and determine xn+1 by

xn+1 := PCn(xn − βnA∗(I− PQn)Axn),

where
Cn := {x ∈ H1 : c(xn) + 〈ξn, x− xn〉 ≤ 0} (1.3)

and
Qn := {y ∈ H2 : q(Axn) + 〈ηn, y −Axn〉 ≤ 0}. (1.4)

Note that Cn and Qn are half-spaces and so the projections PCn and PQn have closed
form expressions; see [13, 38]. Moreover, Algorithm 1 also covers the CQ algorithm by
taking c(·) := dC(·) and q(·) := dQ(·), the distance functions of C and Q, respectively.
Weak convergence results of Algorithm 1 were established in [37] and [26] for the case when
the stepsizes {βn} are constants satisfying

σ ≤ βn ≤
2

‖A‖2
− σ, (1.5)

or stepsizes {βn} are dynamic given by

βn :=
ρn‖(I− PQn)Axn‖2

‖A∗(I− PQn)Axn‖2
with σ < ρn < 2− σ, (1.6)
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for some 0 < σ ≤ 1
‖A‖2 for (1.5) or 0 < σ < 1 for (1.6), where the convention that 0

0 = 0 is

adopted.
To the best of our knowledge, the result regarding the linear convergence for Algorithm

1, similar to the one studied in [35] for the CQ algorithm, has not been explored. It
seems to us that the bounded linear regularity property, which plays an important role
in the analysis for the CQ algorithm in [35], is not enough here and the techniques used
in [35] do not work for us to establish linear convergence of Algorithm 1. Recall that
the bounded error bound property has been studied extensively and is a powerful tool in
convergence analysis of optimization algorithms; see [1, 6, 16, 22] and references therein. A
natural extension is the error bound with fractional exponent (which is usually called the
Hölderian type error bound) where the exponent may have a close relationship with the
convergence rate of some algorithms; see, e.g. [5, 18–20, 23, 24, 27] and references therein.
Inspired by this and the work of [35], in the present paper, we will study the issue of strong
convergence of Algorithm 1 in Hilbert spaces together with estimates on the convergence
rate. Under Hölderian type bounded error bound property, strong convergence of Algorithm
1 is established. Furthermore, qualitative estimates on the convergence rate is presented.
In particular, for the case when the involved exponent is equal to 1, the linear convergence
of Algorithm 1 is established.

The paper is organized as follows. As usual, some auxiliary results are presented in
the next section. Strong convergence together with estimates on the convergence rate of
Algorithm 1 is established in Section 3. Numerical experiments to show the convergence
property of Algorithm 1 are given in Section 4.

2 Preliminaries

For simplicity, let N be the set of all positive integers and let N∗ = N∪ {0}. For x ∈ H and
r > 0, we use B(0, r) to denote the closed metric ball at x with radius r, that is,

B(x, r) := {y ∈ H : ‖x− y‖ ≤ r}.

The following propositions are useful. Proposition 2.1 is about some well-known proper-
ties of the projection operator, which is taken from [3, Corollary 4.10 and Theoren 3.14].
Proposition 2.2 is known in [32, p46, Lemma 6].

Proposition 2.1. Let Ω be a nonempty closed convex set in H and let x, y ∈ H. Then the
following assertions hold:

(i) 〈(I− PΩ)x− (I− PΩ)y, x− y〉 ≥ ‖(I− PΩ)x− (I− PΩ)y‖2;

(ii) [z = PΩ(x)]⇐⇒ [z ∈ Ω and 〈x− z, y − z〉 ≤ 0, ∀y ∈ Ω].

Proposition 2.2. Let α > 0, p > 0, and let {βk} be a sequence of nonnegative numbers
satisfying

βk+1 ≤ βk(1− αβpk) for each k ∈ N∗.

Then,

βk+1 ≤
(
β−p0 + pα(k + 1)

)− 1
p

for each k ∈ N∗.
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Recall that the solution set of (1.1) is nonempty, that is, S := C
⋂
A−1Q 6= ∅. We need

the following lemma about useful properties for the sequences generated by Algorithm 1.
Set [a]+ := max{a, 0} for each a ∈ R.

Lemma 2.3. Let {xn} be a sequence generated by Algorithm 1 (together with associated
sequences {Cn}, {Qn}, {ξn}, {ηn}). Then, for each n ∈ N∗, we have the following assertions:

(i) C ⊆ Cn and Q ⊆ Qn.
(ii) [0 ∈ ∂c(xn)] =⇒ [xn ∈ C] and [0 ∈ ∂q(Axn)] =⇒ [Axn ∈ Q].
(iii) [c(xn)]+ = ‖ξn‖dCn(xn) and [q(Axn)]+ = ‖ηn‖dQn(Axn).
(iv) [xn ∈ Cn ∩A−1Qn]⇐⇒ [xn ∈ S].

Proof. (i) Let x ∈ C. Then c(x) ≤ 0. Since ξn ∈ ∂c(xn), one has by definition that

〈ξn, x− xn〉 ≤ c(x)− c(xn),

and so
〈ξn, x− xn〉+ c(xn) ≤ c(x) ≤ 0

which gives that x ∈ Cn. Similarly, let y ∈ Q. Then q(y) ≤ 0. Since ηn ∈ ∂q(Axn), one has
by definition that

〈ηn, y −Axn〉 ≤ q(y)− q(Axn)

and so
〈ηn, y −Axn〉+ q(Axn) ≤ q(y) ≤ 0,

which implies that y ∈ Qn.
(ii) Assume 0 ∈ ∂c(xn). Then we have that

〈0, x− xn〉 ≤ c(x)− c(xn) for each x ∈ H1.

This implies that c(xn) ≤ 0 and so xn ∈ C. Similarly, assume 0 ∈ ∂q(Axn). Then we have
that

〈0, y −Axn〉 ≤ q(y)− q(Axn) for each y ∈ H2.

This gives that q(Axn) ≤ 0 and so Axn ∈ Q.
(iii) For the case when xn ∈ Cn, it follows from (1.3) that c(xn) ≤ 0 and so [c(xn)]+ =

0 = ‖ξn‖dCn(xn). Below, we consider the case when xn /∈ Cn. Note by assertions (i)-(ii)
that 0 /∈ ∂c(xn) (so ξn 6= 0) and c(xn) > 0. Thus, for any x ∈ Cn, one has that

〈xn − (xn −
c(xn)

‖ξn‖2
ξn), x− (xn −

c(xn)

‖ξn‖2
ξn)〉 =

c(xn)

‖ξn‖2
(c(xn) + 〈ξn, x− xn〉) ≤ 0,

which together with Proposition 2.1 (ii) gives that PCn(xn) = xn − c(xn)
‖ξn‖2 ξn and so

dCn(xn) = ‖xn − PCn(xn)‖ =
|c(xn)|
‖ξn‖

=
c(xn)

‖ξn‖
,

which implies that [c(xn)]+ = ‖ξn‖dCn(xn).
Similarly, we can obtain that [q(Axn)]+ = ‖ηn‖dQn(Axn).
(iv) Assume xn ∈ Cn ∩ A−1Qn. Then we have by (1.3) and (1.4) that c(xn) ≤ 0 and

q(Axn) ≤ 0, respectively. It means that xn ∈ C ∩A−1Q = S. The converse can be obtained
by (i).
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3 Convergence rate of the relaxed CQ algorithm

Recalling that the error bound property is found to have many important applications in
various areas such as instance sensitivity analysis, convergence analysis of many algorithms
for optimization problems, and so on; see, e.g. [28,31] and references therein. The notion of
the (Lipschitz-type) error bound was originally introduced by Hoffman in [15] for systems
of affine functions in finite dimensional spaces. Since then, various extensions of this result
to convex and/or non-convex inequalities and/or equality systems, have been explored and
well developed; see [30,31,36] and references therein. Another natural extension is the error
bound with fractional exponent (i.e., Hölderian type error bound) where the exponent may
have a close relationship with the convergence rate of some algorithms; see, e.g. [5, 18–20,
23, 24, 27] and references therein. In order to establish strong convergence together with
estimates on the convergence rate of Algorithm 1, we need the following notion of Hölderian
type bounded error bound property for the SFP (1.1)-(1.2).

Definition 3.1. Let τ ∈ (0, 1]. The SFP (1.1)-(1.2) is said to satisfy the bounded error
bound property with exponent τ , if for any bounded subset W of H1 with W ∩ S 6= ∅,
there exists γW > 0 such that

dS(x) ≤ γW (max{[c(x)]+, [q(Ax)]+})τ for each x ∈W. (3.1)

For the remainder of this paper, we always assume that τ ∈ (0, 1], and that c and q, or
equivalently, their subdifferentials, are bounded on bounded sets.

Remark 3.2. (a) The study of the Hölderian type error bound properties for convex poly-
nomial systems, nonnegative convex polynomial systems and general polynomial systems
was done in [5, Corollary 3.4], [21, Theorem 4.3] and [25], respectively.

(b) In the special case when c(·) := dC(·) and q(·) := dQ(·), the bounded error bound
property with exponent τ = 1 for the SFP (1.1)-(1.2) is equivalent to the bounded linear
regularity property for the SFP (1.1) considered in [35]. In fact, note that, for each x ∈ H,

dS(x) ≤ ‖x− PCx‖+ dS(PCx) and dQ(APCx) ≤ dQ(Ax) + ‖A‖dC(x);

then the equivalence can be checked directly by definition; see also [14] for more details.

For the general case, using the Lipschitz property of the functions c and q on bounded
subsets, one checks directly by definition that the bounded error bound property with the
exponent τ = 1 implies the bounded linear regularity property. However, the converse
is not true in general; indeed, for a nontrivial SFP (1.1) satisfying the bounded linear
regularity property, the SFP (1.1)-(1.2) with c(·) := d2

C(·) and q(·) := d2
Q(·), fails to satisfy

the bounded error bound property with exponent τ = 1.

Our main theorem in the present paper is as follows, which extends the corresponding
one in [35, Theorem 2.3].

Theorem 3.3. Suppose that the SFP (1.1)-(1.2) satisfies the bounded error bound property
with exponent τ and let {xn} be a sequence generated by Algorithm 1 with each stepsize
βn satisfying (1.5) or (1.6). Then, {xn} converges strongly to a solution x∗ of the SFP
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(1.1)-(1.2). Furthermore, there exists α > 0 such that for each n ∈ N∗,

‖xn − x∗‖ ≤


2(1− α)

1
2
ndS(x0), τ = 1,

2

(
d

2(1− 1
τ

)

S (x0) + α( 1
τ − 1)n

)− τ
2(1−τ)

, τ ∈ (0, 1).
(3.2)

In particular, if τ = 1, then {xn} converges linearly.

Proof. For simplicity, write

I0 := {n ∈ N∗ : Axn ∈ Qn}.

Without loss of generality, we may assume that

0 /∈ ∂c(xn) for each n ∈ I0

because, if there is n ∈ I0 such that 0 ∈ ∂c(xn), then xn ∈ Cn by Lemma 2.3(i)-(ii), and so
xn ∈ S by Lemma 2.3(iv). Let z ∈ S. Fix n ∈ N∗, and set

∇xn := A∗(I− PQn)Axn.

Then, one checks that

‖∇xn‖ ≤ ‖A‖dQn(Axn) and 〈xn − z,∇xn〉 ≥ d2
Qn(Axn). (3.3)

In fact, the first inequality follows directly from the definition of ∇xn , while for the second
one, we check from the fact (I− PQn)Az = 0 that

〈xn − z,∇xn〉 = 〈Axn −Az, (I− PQn)Axn − (I− PQn)Az〉
≥‖ (I− PQn)Axn − (I− PQn)Az ‖2
= d2

Qn
(Axn),

where the inequality holds by Proposition 2.1(i). Below, we show by the choice of βn (see
(1.5) and (1.6)), that for each n /∈ I0,

βn ≥ min

{
σ,
σd2

Qn
(Axn)

‖∇xn‖2

}
≥ σmin{1, ‖A‖−2} (3.4)

and

2− βn‖∇xn‖2

d2
Qn

(Axn)
≥ min{2− βn‖A‖2, 2− ρn} ≥ σmin{‖A‖2, 1}. (3.5)

Indeed, for the case when βn is given by (1.5), (3.4) follows directly from (3.3), while for
the case when βn is given by (1.6), we obtain from (3.3) that

βn =
ρn‖(I− PQn)Axn‖2

‖A∗(I− PQn)Axn‖2
>
σd2

Qn
(Axn)

‖∇xn‖2
≥ σ

‖A‖2
;
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hence (3.4) is seen to hold. Additionally, for the case when βn is given by (1.5), we have by
(3.3) that

2− βn‖∇xn‖2

d2
Qn

(Axn)
≥ 2− βn‖A‖2 ≥ σ‖A‖2,

while for the case when βn is given by (1.6), it follows from the fact βn =
ρnd2

Qn
(Axn)

‖∇xn‖2
and

ρn < 2− σ that

2− βn‖∇xn‖2

d2
Qn

(Axn)
= 2− ρn > σ;

hence (3.5) is checked.
To proceed, for simplicity, we write

un := xn − βn∇xn . (3.6)

Noting (I− PCn)z = 0, one has from Proposition 2.1(i) that

〈un − PCn(un), un − z〉 = 〈un − PCn(un)− (I− PCn)z, un − z〉 ≥ ‖PCn(un)− un‖2.

Thus, it follows that

‖xn+1 − z‖2 = ‖PCn(un)− un + un − z‖2 ≤ ‖un − z‖2 − d2
Cn(un). (3.7)

Now set ζ := σmin{‖A‖2, 1}. Below we shall show that

‖xn+1 − z‖2 ≤ ‖xn − z‖2 − d2
Cn(un)− βnζd2

Qn(Axn) for each n ∈ N∗. (3.8)

This follows trivially from (3.7) in the case when n ∈ I0 (noting that d2
Qn

(Axn) = 0,∇xn = 0
and so un = xn by (3.6) in this case). For the case when n /∈ I0, it follows from (3.6), (3.3)
and (3.5) that

‖un − z‖2 = ‖xn − z‖2 − 2βn〈xn − z,∇xn〉+ β2
n‖∇xn‖2

≤ ‖xn − z‖2 − βn
(

2− βn ‖∇xn‖
2

d2
Qn

(Axn)

)
d2
Qn

(Axn)

≤ ‖xn − z‖2 − βnζd2
Qn

(Axn).

Combining this with (3.7) yields (3.8). Thus, {‖xn − z‖} is monotone decreasing, and so
{‖xn− z‖} is bounded. Let W be a bounded subset of H1 containing z and {xn}. Then by
the assumed bounded error bound property, there exists γW > 0 such that

dS(xn) ≤ γW (max{[c(xn)]+, [q(Axn)]+})τ for each n ∈ N∗. (3.9)

Set

α := γ
−2
τ
W min

{
inf
n/∈I0

βnζ

‖ηn‖2
, inf
n

ζ

‖ξn‖2(ζ + 2)

}
. (3.10)

Then α is well defined and α > 0 by (3.4) and the fact that {‖ξn‖}, {‖ηn‖} are bounded by
assumption. Below, we show that

d2
Cn(un) + βnζd2

Qn(Axn) ≥ αd
2
τ
S (xn) for each n ∈ N∗. (3.11)
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This is clear for the case when [c(xn)]+ < [q(Axn)]+ because, by (3.9) and Lemma 2.3(iii),
one has that

γ
−1
τ
W d

1
τ
S (xn) ≤ [q(Axn)]+ = ‖ηn‖dQn(Axn),

and so

d2
Cn(un) + βnζd2

Qn(Axn) ≥ βnζd2
Qn(Axn) ≥

γ
−2
τ
W βnζ

‖ηn‖2
d

2
τ
S (xn)

(noting that n /∈ I0 in this case). Thus, we only consider the case when [c(xn)]+ ≥
[q(Axn)]+. To do this, we note first by (3.6) that ‖xn − PCn(un)‖ = ‖un − PCn(un) +
βn∇xn‖ ≤ dCn(un) + ‖βn∇xn‖, and so we have that

‖xn − PCn(un)‖2 ≤ d2
Cn

(un) + 2dCn(un) ‖βn∇xn‖+ ‖βn∇xn‖2

≤ 2+ζ
ζ d2

Cn
(un) +

(
1 + ζ

2

)
‖βn∇xn‖2,

(3.12)

where the last inequality holds by the following basic inequality:

2dCn(un) ‖βn∇xn‖ ≤
2

ζ
d2
Cn(un) +

ζ

2
‖βn∇xn‖2.

Furthermore, from (3.5), one sees that 2 − βn‖∇xn‖2
d2
Qn

(Axn)
> 0 and so βn ‖∇xn‖2 ≤ 2d2

Qn
(Axn);

then it follows from (3.12) that

d2
Cn(xn) ≤ ‖xn − PCn(un)‖2 ≤ 2 + ζ

ζ
d2
Cn(un) + 2(1 +

ζ

2
)βnd2

Qn(Axn).

This implies that
ζ

2 + ζ
d2
Cn(xn) ≤ d2

Cn(un) + ζβnd2
Qn(Axn). (3.13)

Recalling that [c(xn)]+ ≥ [q(Axn)]+, we have by (3.9) and Lemma 2.3(iii) again that

γ
−1
τ
W d

1
τ
S (xn) ≤ [c(xn)]+ = ‖ξn‖dCn(xn). Combining this with (3.13) gives that

γ
−2
τ
W ζ

(2 + ζ)‖ξn‖2
d

2
τ
S (xn) ≤ d2

Cn(un) + ζβnd2
Qn(Axn);

then (3.11) is seen to hold by the definition of α in (3.10).
Now combining (3.8) and (3.11), we arrive at

‖xn+1 − z‖2 ≤ ‖xn − z‖2 − αd
2
τ
S (xn) for each n ∈ N∗. (3.14)

Since z ∈ S is arbitrary, it follows from (3.14) that

d2
S(xn+1) ≤ (1− αd

2( 1
τ
−1)

S (xn))d2
S(xn) for each n ∈ N∗. (3.15)

Then, we have that for each n ∈ N∗,

d2
S(xn+1) ≤


(1− α)n+1d2

S(x0), τ = 1,(
d

2(1− 1
τ

)

S (x0) + α( 1
τ − 1)(n+ 1)

)− τ
1−τ

, τ ∈ (0, 1).
(3.16)
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In fact, for the case when τ = 1, (3.16) follows directly from (3.15), while for the case
when τ ∈ (0, 1), (3.16) holds by (3.15) and applying Proposition 2.2 to {d2

S(xk)}, 1
τ − 1 in

place of {βk}, p. Fix n ∈ N∗. Recalling that the sequence {‖xm − PS(xn)‖ : m ∈ N∗} is
monotonically decreasing, we have that for each m > n

‖xm − xn‖ ≤ ‖xm − PS(xn)‖+ ‖xn − PS(xn)‖ ≤ 2‖xn − PS(xn)‖ = 2dS(xn).

This, together with (3.16), implies that

‖xm − xn‖ ≤


2(1− α)

1
2
ndS(x0), τ = 1,

2

(
d

2(1− 1
τ

)

S (x0) + α( 1
τ − 1)n

)− τ
2(1−τ)

, τ ∈ (0, 1).

Hence, it follows that {xn} is a Cauchy sequence and converges to a point x∗ ∈ H1. Passing
to the limit of m → ∞, we arrive at (3.2). Furthermore, letting n → ∞ in (3.16), one has
that x∗ ∈ S because S is closed. Hence x∗ is a solution of the SFP (1.1)-(1.2). The proof
is complete.

We end this section with a remark to discuss some comparisons related to algorithms
appeared in [4, 7, 9, 34].

Remark 3.4. (a) In [34], the authors proposed a relaxed gradient projection algorithm
(RGPA for short), which is an extension of the relaxed simultanneous iterative algorithm
(RSSEA for short) introduced in [9], for solving the split equality problem (SEQ for short),
and studied the linear convergence property of the RGPA under a bounded linear regularity
assumption. In the case when the involved linear operator B is the identity, the SEQ is
reduced to the SFP, and it is easy to check that Algorithm 1 is different from the RGPA
and the RSSEA for the SFP; see also the the numerical experiments for comparisons of
Algorithm 1 and the RSSEA in Section 4.

(b) Under a bounded Hölderian regularity assumption, the convergence rate of the quasi-
cyclic algorithm (which was proposed in [4]) for finding a common fixed point of a finite
family of averaged nonexpansive operators in a Hilbert space was analyzed in [7], which,
in particular, extends the corresponding linear convergence results in [4]. As explained
in [7], this algorithm covers many important iterative methods including Krasnoselskii-Man
iterations, the cyclic projection algorithm, forward-backward splitting methods and the
Douglas-Rachford feasibility algorithm along with some variants. Note that the SFP (1.1)
is equivalent to the problem: finding a point x ∈ H1 such that x ∈ C ∩A−1Q. Thus, in the
case when A is the identity, the results in [7] can apply directly. However, in the general
case, it seems unclear how to construct an averaged nonexpansive operator TQ avoiding
the “inverse” A−1 such that A−1Q is the set of fixed points of TQ. Furthermore, even in
the case when A is the identity, Algorithm 1 is, in general, different from the quasi-cyclic
algorithm (note that the involved projection operators in Algorithm 1 are adaptive).

4 Numerical Experiments

In this section, we give a numerical experiment to show the convergence property of Al-
gorithm 1. Here we consider the compressed sensing problem known in [12] which is rep-
resented approximately by a linear system of the form b = Ax + e, where A ∈ Rm×n and
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b ∈ Rm are known, and e ∈ Rm is an arbitrary and unknown vector of errors, and x ∈ Rn
is the variable to be estimated. The sparsity of x is measured by the `1 norm, which is
defined by ‖x‖1 :=

∑n
i=1 |xi| (cf. [12]). Let t ≥ 0 be a constant and ε := ‖e‖. Write

C := {x ∈ Rn | ‖x‖1 ≤ t} and Q := {y ∈ Rm | ‖y − b‖2 ≤ ε}. (4.1)

Thus, the compressed sensing problem can be regarded as the SFP (1.1)-(1.2) with H1 = Rn,
H2 = Rm,

c(x) := max
α∈Λ
{αTx− t} for each x ∈ Rn, (4.2)

where Λ := {α ∈ Rn : α = (α1, α2, · · · , αn)T , αi ∈ {1,−1}, i = 1, 2, · · · , n}, and

q(y) := ‖y − b‖22 − ε2 for each y ∈ Rm. (4.3)

Furthermore, the SFP (1.1)-(1.2) satisfies the bounded error bound property with exponent
1
2 ; see Remark 4.1 for details.

Remark 4.1. The SFP (1.1)-(1.2) (with C,Q, c(·), q(·) given by (4.1), (4.2), (4.3), respec-
tively) satisfies the bounded error bound property with exponent 1

2 . In fact, in the case
when the minimum value of q ◦ A on C is negative, the conclusion is clear by the known
result for quadratic convex systems satisfying the Slater condition; see, e.g., [27, Theorem
3.1]. Hence, we only need to consider the case when

q(Ax) ≥ 0 for each x ∈ C. (4.4)

Recall that S is the solution set of the SFP (1.1)-(1.2). Let W be a bounded subset of Rn
with W ∩ S 6= ∅ and δ > 0. Since q ◦ A is a convex quadratic function and its minimum
value on C is 0 (due to (4.4)), it follows from [29, Lemma 2.3] (with q ◦A, C, S in place of
f , X, X∗) that there exists a constant κ1 > 0 such that

dS(x) ≤ κ1

√
q(Ax) for all x ∈ C with q(Ax) ≤ δ. (4.5)

Noting that q ◦ A is Lipschtiz continuous on any bounded subset, there exists a constant
κ2 > 0 such that

q(A(y))− q(A(x)) ≤ κ2‖y − x‖ for each x, y ∈ C ∪W. (4.6)

Since C is a polyhedron, it follows from Hoffman theorem [15, Theorem] that there exists
a constant κ3 > 0 such that

dC(x) ≤ κ3[c(x)]+ for any x ∈ Rn. (4.7)

Let x̄ ∈W ∩ S and set

ρ1 := sup
x∈W
‖x− x̄‖, κ := max{κ1,

ρ1√
δ
}, ρ2 := sup

x∈W

√
dC(x) (4.8)

and
γW := (

ρ2√
κ2

+ κ)
√

1 + κ2κ3. (4.9)
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To complete the proof, it suffices to show that (3.1) holds with τ = 1
2 and γW given by

(4.9). To do this, let x ∈W . By the triangle inequality, one has that

dS(x) ≤ dC(x) + dS(PC(x)). (4.10)

If q(APC(x)) > δ, then it follows from the definition of ρ1 in (4.8) that

dS(PC(x)) ≤‖ PC(x)− PC(x̄) ‖≤‖ x− x̄ ‖≤ ‖ x− x̄ ‖√
δ

√
q(APC(x)) ≤ ρ1√

δ

√
q(APC(x));

otherwise, it follows from (4.5) that dS(PC(x)) ≤ κ1

√
q(APC(x)). This, together with the

definition of κ in (4.8), gives that

dS(PC(x)) ≤ κ
√
q(APC(x)). (4.11)

Note by (4.6) that

q(APC(x)) ≤ q(A(x)) + κ2dC(x) ≤ [q(A(x))]+ + κ2dC(x).

Combining this with (4.11), (4.10) and (4.7) yields that

dS(x) ≤ dC(x) + κ
√

[q(A(x))]+ + κ2dC(x)

≤ (
√

dC(x)/κ2 + κ)
√

[q(A(x))]+ + κ2κ3[c(x)]+.

Thus by the definition of γW in (4.9), (3.1) is seen to hold with τ = 1
2 .

Four experiments are performed to show the comparison of the convergence results
between Algorithm 1 and the RSSEA in [34] for the compressed sensing problem. In each
experiment, we consider the synthetic data described in [17] for compressed sensing problem.
Each entry in matrix A ∈ Rm×n is randomly and independently generated from a Gaussian
distribution, where A>A = I is satisfied. The true sparse solution x̄ ∈ Rn has s nonzero
elements drawn independently from a Gaussian distribution, and t is obtained by t = ‖x̄‖1.
The observation b is generated by b = Ax.

The dimension of problem is set as m = 256 and n = 1024, and we select initial point
x0 = 0 and set ε = 10−6. To evalute the performance of algorithms, we compute the total
violation by

Total violation := [‖x‖1 − t]+ + [‖Ax− b‖2 − ε]+.

All numerical experiments are implemented in R (3.5.2) on personal desktop (Intel Core
i7-10510U, 2.30GHz, 16GB of RAM).

The first experiment shows the convergence results of Algorithm 1 with constant step-
sizes βn ≡ 0.9. We conduct 100 trials with randomly simulated data to show the convergence
property of Algorithm 1. See Figure 1.
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Figure 1: Convergence results of Algorithm 1 after 100 trials.

The second experiment illustrates the choice of stepsize for Algorithm 1 and the RSSEA.
We consider different constant stepsizes βn ∈ {0.3, 0.9, 1.5, 2.1} for Algorithm 1 and βn ∈
{0.3, 0.6, 0.9, 1.2} for the RSSEA. Part (a) of Figure 2 indicates that Algorithm 1 converges
when 0 < βn ≤ 2 and stepsize βn ≡ 0.9 provides a faster convergence than others. Moreover,
part (b) of Figure 2 shows that the RSSEA converges when 0 < βn ≤ 1 and stepsize βn ≡ 0.6
provides a better convergence than others.

(a) Algorithm 1 (b) RSSEA

Figure 2: Convergence results of Algorithm 1 and the RSSEA with different stepsizes.

The third experiment compares the convergence results of Algorithm 1 and the RSSEA.
We consider the constant stepsize βn ≡ 0.9 for Algorithm 1 and βn ≡ 0.6 for the RSSEA.
The results show that Algorithm 1 owns faster convergence than the RSSEA based on total
violation. See Figure 3.
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Figure 3: Convergence results of Algorithm 1 and the RSSEA.

The last experiment is implemented to compare the performance of Algorithm 1 and the
RSSEA with different sparsity. We consider the constant stepsize βn ≡ 0.9 for Algorithm
1 and βn ≡ 0.6 for the RSSEA in this experiment, and we set the maximum number of
iterations as 50. Figure 4 shows the performance of Algorithm 1 and the RSSEA based on
100 random trials, and it indicated that Algorithm 1 performs better than the RSSEA with
different sparsity levels.

Figure 4: Performance of Algorithm 1 and the RSSEA with different sparsity.

5 Conclusion

Under the Hölderian type bounded error bound property, we established strong convergence
with estimates on the convergence rate of the relaxed CQ algorithm in Hilbert spaces. In
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particular, for the case when the involved exponent is equal to 1, the linear convergence of
the relaxed CQ algorithm was established. Numerical experiments were performed to show
the convergence property of the relaxed CQ algorithm for the compressed sensing problem.

References

[1] T. Aspelmeier, C. Charitha and D. R. Luke. Local linear convergence of the
ADMM/Douglas-Rachford algorithms without strong convexity and application to sta-
tistical imaging. SIAM J. Imaging Sci., 9(2): 842–868, 2016.

[2] H. H. Bauschke and J. M. Borwein. On projection algorithms for solving convex
feasibility problems. SIAM Rev., 38(3): 367–426, 1996.

[3] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory
in Hilbert Spaces. Springer Science + Business Media, 2011.

[4] H. H. Bauschke, D. Noll and H. M. Phan. Linear and strong convergence of algorithms
involving averaged nonexpansive operators. J. Math. Anal. Appl., 421: 1–20, 2015.

[5] J. M. Borwein, G. Li and L. Yao. Analysis of the convergence rate for the cyclic
projection algorithm applied to basic semialgebraic convex sets. SIAM J. Optim.,
24(1): 498–527, 2014.

[6] J. V. Burke and S. Deng. Weak sharp minima revisited. I. Basic theory. Control
Cybernet., 31(3): 439–469, 2002. Well-posedness in optimization and related topics
(Warsaw, 2001).

[7] J. M. Borwein, G. Li and M. K. Tam. Convergence rate analysis for averaged fixed
point iterations in common fixed point problems. SIAM J. Optim., 27(1): 1-33, 2017.

[8] C. L. Byrne. Iterative oblique projection onto convex sets and the split feasibility
problem. Inverse Problems, 18(2): 441–453, 2002.

[9] C. L. Byrne and A. Moudafi. Extensions of the CQ algorithm for the split feasibility
and split equality problems. J. Nonlinear Convex Anal., 18(8): 1485–1496, 2017.

[10] Y. Censor and T. Elfving. A multiprojection algorithm using Bregman projections in
a product space. Numer. Algorithms, 8(2-4): 221–239, 1994.

[11] Y. Censor, T. Elfving, N. Kopf and T. Bortfeld. The multiple-sets split feasibility
problem and its applications for inverse problems. Inverse Problems, 21(6): 2071–
2084, 2005.

[12] E. J. Candes and T. Tao Decoding by linear programming. IEEE Trans. Inform.
Theory, 51(12): 4203–4215, 2005.

[13] M. Fukushima. A relaxed projection method for variational inequalities. Math. Pro-
gram., 35(1): 58–70, 1986.

14



[14] T. Gao, C. Li, J. Wang and X. Yang. Relative regularity conditions and bounded linear
regularity properties for split feasibility problems in normed linear spaces. submitted.

[15] A. J. Hoffman. On approximate solutions of systems of linear inequalities. J. Research
Nat. Bur. Standards, 49: 263–265, 1952.

[16] Y. Hu, C. Li and X. Yang. On convergence rates of linearized proximal algorithms for
convex composite optimization with applications. SIAM J. Optim., 26(2): 1207–1235,
2016.

[17] Y. Hu, C. Li, K. Meng, J. Qin and X. Yang. Group sparse optimization via `p, q
regularization. The Journal of Machine Learning Research, 18(1):960–1011, 2017.

[18] A. Kruger, M. Lopez, X. Yang and J. Zhu. Hölder error bounds and Hölder calmness
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