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Abstract 3 

This paper measures tourism carbon efficiency (TCE) in China by incorporating energy 4 

consumption and carbon dioxide (CO2) emissions into an efficiency assessment 5 

framework, and to further investigate the determinants of TCE by considering the 6 

spatial spillover effects. To do this, a bootstrap slacks-based measure (SBM) model was 7 

applied to assess the TCE in 30 provincial-level administrative regions of China from 8 

2008 to 2019. Next, the Moran’s index and spatial Durbin model (SDM) were adopted 9 

to explore the spatial distribution and determinants of TCE. The results indicate that 10 

regional differences affect the level of China’s TCE, as do spatial spillover effects. In 11 

addition, technology innovation, urbanization rate and government support positively 12 

affect TCE. In contrast, economic growth negatively affects TCE. Educational 13 

attainment, green infrastructure and government support have a negative spatial 14 

spillover effect on TCE. Transportation infrastructure has a negative total effect on TCE.  15 
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Introduction 19 

Tourism makes vital contributions to the national economies of many countries, 20 

including China (Wang & Ap, 2013) and greatly contributes to global economic growth. 21 

In 2019, there were 145 million inbound tourists to China, and China received CNY 22 

0.90 trillion (≈USD 131.25 billion) in foreign exchange income from international 23 

tourism, accounting for 9.9% of total global tourists and 8.9% of total tourism income. 24 

Meanwhile, domestic tourists in China completed 6.006 billion visits, more than four 25 

times the number from total international tourists (NBS, 2019; UNWTO, 2020). These 26 

facts show the important role of tourism in the growth of China's national economy, 27 

which is also provided in many previous studies (e.g., Liu et al., 2021; Tu and Zhang, 28 

2020; Zhang and Zhang, 2021).  29 

   Tourism directly creates economic benefits and reduces unemployment; however, 30 

tourism development poses a threat to the environment (Ehigiamusoe, 2020). Most 31 

tourism-driven consumption-related activities, such as transportation and 32 

accommodation, consume large amounts of fossil fuels, negatively impacting the 33 

environment (Liu et al., 2022). As such, a key problem for the tourism sector is 34 

determining how to separate projected growth from resource consumption and 35 

greenhouse gas (GHG) emissions (WTOITF, 2019). According to Zha et al. (2020), 36 

GHG emission reduction and energy conservation can contribute to solving this 37 

problem. In 2020, the Chinese government committed to achieving peak carbon dioxide 38 

(CO2) emissions by 2030 and set a target to achieve carbon neutrality by 2060. 39 
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   Sustainable tourism development requires encompassing both economic and 40 

ecological benefits (Lozano-Ramírez et al., 2022). Focusing on assessing energy usage, 41 

carbon emissions, and economic factors is essential when balancing economic benefits 42 

and environmental protection (Liu et al., 2022; Sun and Pratt, 2014). Furthermore, 43 

tourism is affected by different complex factors (Chaabouni, 2019; Divisekera and 44 

Nguyen, 2018; Zhou et al., 2020), all of which impact on the sustainable development 45 

of tourism. Therefore, in addition to economic factors, external determinants and the 46 

detrimental impact on the environment should also be considered in evaluation of 47 

tourism industry (Song and Li, 2019). Nevertheless, when analyzing the environmental 48 

and economic factors in tourism, previous studies (e.g., Aratuo and Etienne, 2019; 49 

Chaabouni, 2019; Eyuboglu and Uzar, 2020) have typically separated the tourism 50 

ecological impact from the tourism economic development. However, comprehensive 51 

studies on the interaction between tourism efficiency and its external factors such as 52 

socio-economic development and environmental capacity considering CO2 emissions 53 

from tourism have been ignored, which is a topic that must be further addressed by 54 

current and future studies on sustainable development of tourism. Thus, this study 55 

centers on solving these unresolved issues related to sustainable tourism development. 56 

   Moreover, tourism development is associated with spatial externalities, manifested 57 

through spatial spillover effects due to factors such as geography (Majewska, 2015). 58 

This means that tourism development in one region may impact neighboring regions 59 

(Ma et al., 2015). In other words, tourism stakeholders in neighboring regions are 60 
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unlikely to be independent (Jiao et al., 2019). Previous tourism efficiency study has 61 

not addressed the spatial spillover effect, particularly with respect to the sustainable 62 

tourism development. 63 

To study the ecological and economic benefits generated by tourism development, 64 

this study identified the following objectives: (1) Based on energy consumption and 65 

CO2 emissions generated by tourism, to assess tourism carbon efficiency (TCE) by 66 

setting up input and output indexes; (2) To investigate the temporal evolution and 67 

spatial distribution of TCE; (3) Considering the interaction of spatial factors on tourism 68 

in different regions, to identify key determinants affecting TCE.  69 

To achieve these goals, considering the close linkage between tourism and CO2 70 

emissions (Koçak et al., 2020), energy consumption and CO2 emissions are included in 71 

an index evaluation system to measure TCE in this study. The ultimate goal is to 72 

achieve economic benefits while minimizing the impact on GHG. Next, the bootstrap 73 

slacks-based measure (SBM) model is applied to evaluate TCE in China. This approach 74 

improves upon the conventional data envelopment analysis (DEA) model, which relies 75 

heavily on input and output data, making it impossible to observe the true efficiency 76 

(Song and Li, 2019). Further, given that tourism development is influenced by inter-77 

regional interactions, socio-economic development and environmental capabilities, the 78 

Moran’s index and spatial Durbin model (SDM) were adopted to explore the spatial 79 

distribution and determinants of TCE. This study’s findings enrich the literature on 80 

tourism efficiency considering its environmental impact, and provide a useful reference 81 
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for the tourism industry for improving TCE and contributing to the sustainable tourism 82 

development. 83 

The rest of the study is structured as follows. The next section covers the literature 84 

review, followed by the methodology, variables and data, and empirical results. The 85 

implications and conclusions are showed in the last section. 86 

Literature review 87 

Assessing efficiency in the tourism industry 88 

When considering tourist destinations, improved tourism efficiency usually refers to 89 

better connectivity among tourism-related industries, such as transportation and 90 

accommodations. This helps attract tourists, promotes tourism competitiveness, and 91 

drives regional economic advancement (Li et al., 2018). Therefore, studying tourism 92 

efficiency is a significant part of tourism research. To assess tourism efficiency, 93 

researchers commonly apply DEA, a non-parametric technique without the need for 94 

assuming a production function (Wen et al., 2021) (e.g., Alberca & Parte, 2018; 95 

Lozano-Ramírez et al., 2022; Yin et al., 2020). This method can estimate the relative 96 

efficiency of decision making units (DMUs) (Charnes et al., 1978) against the best 97 

practice DMUs, to help identify any performance gaps (Assaf and Josiassen, 2016).  98 

   Several scholars have applied DEA to research tourism efficiency (Chaabouni, 99 

2019; Corne, 2015; Niavis and Tsiotas, 2019; Yi and Liang, 2015); however, they have 100 

focused on expected production outputs, and have not considered unexpected outputs 101 
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or those that could produce a negative environmental byproduct, such as CO2 emissions 102 

(Li et al., 2022; Xia et al., 2022; Zha, Yuan, et al., 2020; Zhang et al., 2021). Given that 103 

people are increasingly concerned about environmental issues, Gössling et al. (2005) 104 

proposed the idea of eco-efficiency, which is a ratio method of tourism eco-efficiency 105 

that divides CO2 emissions by tourism revenue. Other comparable methods have also 106 

been derived to assess the eco-efficiency of tourism (Qiu et al., 2017; Sun and Pratt, 107 

2014). Nevertheless, focusing on CO2 emissions and economic benefits, and not 108 

considering input factors such as manpower and capital, leads to an incomplete 109 

evaluation of efficiency (Peng et al., 2017). 110 

   To overcome these limitations, some researches have introduced environmental 111 

variables to estimate tourism eco-efficiency more systematically, using the input and 112 

output index evaluation framework of DEA. For example, in China's coastal cities,  113 

Liu et al. (2017) evaluated tourism efficiency by setting tourism-related environmental 114 

pollutants such as sewage and exhaust gas and energy consumption as inputs, and 115 

revenue and the number of tourists as outputs. Peng et al. (2017) considered labor, 116 

capital, energy, and natural resources as inputs, and revenue and tourism waste as 117 

outputs, to evaluate the tourism efficiency of Huangshan National Park in China. Sun 118 

et al. (2020) calculated the tourism efficiency of 63 cities in China by integrating capital, 119 

labor, energy consumption, revenue, and CO2 into the efficiency assessment framework.  120 

   Previous studies have considered adverse environmental factors when evaluating 121 

tourism efficiency; however, studies of tourism efficiency that have used DEA to 122 
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consider multi-input and output indicators have mainly focused on the urban level 123 

and rarely consider CO2 emissions. Further, tourism industry relies heavily on travel 124 

agencies and star-rated hotels, and the scale and number of these establishments 125 

somewhat reflect the development scale of the tourism industry (Yi and Liang, 2015), 126 

which was rarely considered in previous studies. This highlights the need to consider 127 

energy consumption and CO2 emissions to establish a more complete DEA index 128 

evaluation system to measure TCE in China's provincial administrative regions.  129 

Determinants of tourism efficiency 130 

Previous studies have applied a regression model to further evaluate the determinants 131 

impacting tourism efficiency (Corne and Peypoch, 2020). Tobit regression or bootstrap 132 

regression are commonly used methods to examine determinants of tourism efficiency. 133 

For example, Song & Li (2019) utilized Tobit regression to research the determinants 134 

of tourism efficiency in 31 Chinese provinces. They found that urbanization and 135 

openness had positive impacts on tourism efficiency. Liu et al. (2017) also applied 136 

Tobit regression to examine the factors that influence tourism efficiency in 53 cities in 137 

China. The findings indicated that tourism efficiency benefits from GDP and tourism 138 

industry structure. In contrast, the number of tourists had the opposite impact. 139 

Chaabouni (2019) applied double bootstrap regression to study tourism efficiency in 31 140 

Chinese provinces. That study found that trade openness, temperature, and the number 141 

of hotels all positively contributed to tourism efficiency, but geographic localization 142 

had a negative impact. Barros et al. (2011) applied bootstrapped truncated regression 143 
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to explore determinants of tourism efficiency in France, finding that attractions such as 144 

monuments and museums may increase tourism efficiency. 145 

Previous studies analyzed many factors that influence tourism efficiency, which are 146 

beneficial for policy making to improve the economic benefits of tourism. However, 147 

there is still the gap in the exploration of factors affecting TCE considering the 148 

ecological benefits of tourism. Furthermore, few studies assessing environmental 149 

impact of tourism development have considered the spatial spillover effect (Li & Lv, 150 

2021). A positive spatial spillover effect occurs when tourism regions benefit each other 151 

through complementary activities, support, and resource-sharing to attract tourists 152 

(Zhou et al., 2020). In contrast, a negative spatial spillover effect occurs when the 153 

similarity of tourism products and supplies attracts similar tourists, generating fierce 154 

competition (Yang & Wong, 2012).  155 

   Spatial econometric models can address spatial interactions between different 156 

geographical regions; as such, some empirical studies have considered spillover effects 157 

and have applied these models to analyze the determinants of tourism development 158 

from different perspectives. For example, when studying the tourism economy, Tian et 159 

al. (2020) used the SDM to research whether different types of transportation have 160 

affected tourism growth in nearby regions. The results show that high-speed rail 161 

transport promotes the growth of domestic and inbound tourism in surrounding regions, 162 

while air transport only promotes inbound tourism revenue in surrounding regions.  163 



9 

 

   From the perspective of tourism flow, Yang and Wong (2012) applied a spatial 164 

econometric model to examine tourism flows for 341 Chinese cities. They found that 165 

both inbound and domestic tourism flows have spatial spillover effects, with total 166 

tourist attractions, flight number and density of roads serving as the important factors 167 

influencing tourism flow. To study the tourism ecological environment, Xu et al. (2020) 168 

applied the SDM to discuss the spillover effects of haze on China’s inbound tourism; 169 

the findings indicated that the number of inbound tourists in neighboring regions is 170 

expected to fall by 0.189% for every one percent increase in local haze pollution.  171 

   To sum up, despite this important research work, few research has utilized spatial 172 

econometric models and analyzed the determinants of tourism efficiency while also 173 

considering environmental impacts, in particular, CO2 emissions. 174 

Methodology 175 

Energy consumption and CO2 emissions estimation 176 

Data about CO2 emissions resulting from tourism are critical for tourism stakeholders 177 

working to reduce emissions, however, these data have not been published nor made 178 

readily available. As such, scholars have proposed different methods of quantifying 179 

CO2 from tourism to directly demonstrate the effect on climate change. One such 180 

method is a bottom-up approach that calculates CO2 emissions based on the 181 

classification of products and services consumed by travelers while traveling (Sun & 182 

Drakeman, 2020). This approach offers detailed information on the end-use of energy 183 
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and the major drivers of CO2 emissions. However, it requires large amounts of raw data 184 

(Becken and Patterson, 2006). 185 

   Another method is the top-down approach, which assesses tourism as a sector of 186 

the wider economy based on environmental accounting and the Tourism Satellite 187 

Account (TSA) (Tang & Ge, 2018). This approach treats tourism as an independent 188 

sector in the economy, allowing it to be compared with other sectors. However, this 189 

approach is based on input-output tables, satellite accounts, and other data, which are 190 

difficult to obtain if the government does not publish them (Sun, 2014).  191 

   This study adopts the bottom-up method to assess the CO2 emissions resulting from 192 

tourism, as an input-output data table is not available, and China does not have a 193 

standard TSA. The bottom-up method used to estimate energy consumption and CO2 194 

emissions starts with tourists arriving at a destination. It divides tourism-associated 195 

energy consumption and CO2 emissions into three sources: transportation, 196 

accommodation, and activities (Becken and Patterson, 2006). First, the energy 197 

consumed and CO2 emissions of the three sources are calculated, respectively, based 198 

on the activity data. Then the sum is derived. The formulas are as follows: 199 

  𝐸𝐸𝑡𝑡 = 𝐸𝐸𝑇𝑇𝑇𝑇 + 𝐸𝐸𝐻𝐻𝐻𝐻 + 𝐸𝐸𝐴𝐴𝐴𝐴   (1) 200 

  𝐶𝐶𝑡𝑡 = 𝐶𝐶𝑇𝑇𝑇𝑇 + 𝐶𝐶𝐻𝐻𝐻𝐻 + 𝐶𝐶𝐴𝐴𝐴𝐴    (2) 201 

where 𝐸𝐸𝑡𝑡  and 𝐶𝐶𝑡𝑡  represent the total energy consumption and CO2 emissions, 202 

respectively, from the tourism industry. Parameters 𝐸𝐸𝑇𝑇𝑇𝑇 , 𝐸𝐸𝐻𝐻𝐻𝐻 , and 𝐸𝐸𝐴𝐴𝐴𝐴  represent the 203 

tourist-related energy consumption from transportation, accommodation, and activities, 204 
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respectively; and 𝐶𝐶𝑇𝑇𝑇𝑇, 𝐶𝐶𝐻𝐻𝐻𝐻 and 𝐶𝐶𝐴𝐴𝐴𝐴 represent the CO2 emissions from these three same 205 

sources, respectively. The method used to calculate energy consumption and CO2 206 

emissions for transportation and tourism activities was adopted from Chen et al. (2018) 207 

and Ma et al. (2021). Energy consumption and CO2 emission for tourism 208 

accommodation were calculated based on Lu et al. (2019). 209 

Bootstrap SBM model with undesirable outputs 210 

In the conventional radial DEA models, the proportion of the decrease (increase) of all 211 

inputs (outputs) is used to quantify the inefficiency of DMUs, ignoring the slack 212 

improvement. The SBM-DEA model with undesirable outputs can solve the problem 213 

that slack variables used to measure inefficiency in the radial model are absent (Tone, 214 

2004). The result generates efficiency values that avoid the deviation and improve the 215 

probability of distinguishing DMUs (Lee et al., 2020). The SBM-DEA model with 216 

undesirable outputs showed in formula (3) and (4).  217 

  218 

 min 𝜌𝜌𝑘𝑘 =
1− 1

𝑚𝑚
∑

𝜁𝜁𝑖𝑖
−

𝑥𝑥𝑖𝑖𝑖𝑖
𝑚𝑚
𝑖𝑖=1

1+ 1
𝑠𝑠1+𝑠𝑠2

(∑ 𝜁𝜁𝑟𝑟
+

𝑦𝑦𝑟𝑟𝑟𝑟
𝑔𝑔 +∑

𝜁𝜁𝑞𝑞
−

𝑦𝑦𝑞𝑞𝑞𝑞
𝑏𝑏 )𝑠𝑠2

𝑞𝑞=1
𝑠𝑠1
𝑟𝑟=1

   (3) 219 

 s.t. 𝑥𝑥𝑖𝑖𝑖𝑖 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝜆𝜆𝑓𝑓 +𝑛𝑛
𝑓𝑓=1 𝜁𝜁𝑖𝑖−    (4) 220 

       𝑔𝑔𝑟𝑟𝑟𝑟 = ∑ 𝑦𝑦𝑟𝑟𝑟𝑟
𝑔𝑔 𝜆𝜆𝑓𝑓𝑛𝑛

𝑓𝑓=1 − 𝜁𝜁𝑟𝑟+ 221 

           𝑦𝑦𝑞𝑞𝑞𝑞𝑏𝑏 = ∑ 𝑦𝑦𝑞𝑞𝑞𝑞𝑏𝑏 𝜆𝜆𝑓𝑓𝑛𝑛
𝑓𝑓=1 + 𝜁𝜁𝑞𝑞+                                          222 

          𝜆𝜆𝑓𝑓 , 𝜁𝜁𝑖𝑖−, 𝜁𝜁𝑟𝑟+, 𝜁𝜁𝑞𝑞+ ≥ 0 223 

          𝑖𝑖 = 1,2,···,𝑚𝑚;  𝑓𝑓 = 1,2,···,𝑛𝑛 224 
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           r = 1,2,···, 𝑠𝑠1;  q = 1,2,···, 𝑠𝑠2 225 

In this model, we assume that there are n  DMUs, denoted as 𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓, and each DMU 226 

is composed of 𝑚𝑚 input variables, 𝑠𝑠1 desirable outputs, and 𝑠𝑠2 undesirable outputs. 227 

The matrix of input 𝑥𝑥, desired output 𝑦𝑦𝑔𝑔, and undesirable output variables 𝑦𝑦𝑏𝑏 are 228 

expressed as 𝑥𝑥𝜖𝜖�𝑥𝑥1𝑓𝑓 ,𝑥𝑥2𝑓𝑓 , … , 𝑥𝑥𝑖𝑖𝑖𝑖�𝑚𝑚×𝑛𝑛
, 𝑦𝑦𝑔𝑔𝜖𝜖�𝑦𝑦1𝑓𝑓

𝑔𝑔 ,𝑦𝑦2𝑓𝑓
𝑔𝑔 , … ,𝑦𝑦𝑟𝑟𝑟𝑟

𝑔𝑔 �
𝑠𝑠1×𝑛𝑛

, 229 

𝑦𝑦𝑏𝑏𝜖𝜖�𝑦𝑦1𝑓𝑓𝑏𝑏 ,𝑦𝑦2𝑓𝑓𝑏𝑏 , … ,𝑦𝑦𝑞𝑞𝑞𝑞𝑏𝑏 �𝑠𝑠2×𝑛𝑛
, respectively.  𝜌𝜌 is the TCE value; the index 𝑘𝑘 identifies 230 

the DMU being evaluated; 𝜆𝜆  is a linear combination coefficient. 𝑖𝑖 , 𝑟𝑟 , and 𝑞𝑞 231 

represent the ith input, rth desired output, and qth undesired output, respectively. 𝜁𝜁𝑖𝑖−, 𝜁𝜁𝑟𝑟+,232 

𝜁𝜁𝑞𝑞+ are the slack variable of input, desired output, and undesirable output variables, 233 

respectively. A DMU is considered relatively efficient when its efficiency value equals 234 

one (Adler et al., 2002). 235 

When carrying out production activities, DMUs may be impacted by external 236 

factors in addition to inputs and outputs (Bădin et al., 2012, 2019). However, the 237 

second-stage regression of DEA efficiency scores has been criticized for its serious 238 

separability problem (Bădin et al., 2010, 2014; Daraio et al., 2018). Bootstrap-DEA 239 

method can overcome this problem. On the basis of original sample data, this method 240 

simulates the generation process of original data by repeated sampling (Simar and 241 

Wilson, 2011). By enlarging the sample size, the method corrects the bias of efficiency 242 

evaluation value in the case of small sample. Therefore, in efficiency measurement 243 

with DEA method, bootstrap technology is used to correct the efficiency value to avoid 244 

the bias of efficiency results and improve the reliability of the second stage regression 245 
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results (Huang et al., 2021). In this study, the bootstrap SBM method is applied, and 246 

the steps were as follows (Huang et al., 2021; Song and Li, 2019):  247 

(1) For each DMU (𝑥𝑥𝑓𝑓, 𝑦𝑦𝑓𝑓), 𝑓𝑓 =  1, . . . , n, 𝑥𝑥𝑓𝑓 and 𝑦𝑦𝑓𝑓 is the input and output of 248 

the fth DMU, respectively. Using the SBM-DEA model with undesirable outputs for 249 

each DMU, we obtain the relative efficiency 𝜌𝜌�𝑓𝑓 ,𝑓𝑓 = 1, … , n;  250 

(2) For the efficiency value 𝜌𝜌�𝑓𝑓 ,𝑓𝑓 = 1, … , n, the bootstrap method is applied to 251 

simulate the random efficiency value 𝜌𝜌1𝛾𝛾∗ ,𝜌𝜌2𝛾𝛾∗ , … ,𝜌𝜌𝑛𝑛𝑛𝑛∗  with scale 𝛺𝛺  ( γ =252 

1, … ,𝛺𝛺,𝛺𝛺 = 2000 ). 𝜌𝜌𝑓𝑓𝑓𝑓∗  is the random efficiency value γth iteration among 253 

𝜌𝜌�1,𝜌𝜌�2, … ,𝜌𝜌�𝑛𝑛, and  𝑓𝑓 = 1, … , n;  254 

(3) The simulation sample (𝑥𝑥𝑓𝑓𝑓𝑓∗ , 𝑦𝑦𝑓𝑓) are calculated by 𝑥𝑥𝑓𝑓𝑓𝑓∗ = � 𝜌𝜌�𝑓𝑓
𝜌𝜌𝑓𝑓𝑓𝑓
∗ � ∗  𝑥𝑥𝑓𝑓;  255 

(4) Using SBM-DEA method, the efficiency value 𝜌𝜌�𝑓𝑓𝑓𝑓 for each simulation sample 256 

is evaluated;  257 

(5) By repeating steps (2) to (3) 𝛺𝛺 times, a collection of estimated values 𝜌𝜌�𝑓𝑓𝑓𝑓 is 258 

obtained;  259 

(6) The corrected efficiency value for each DMU is calculated by 𝜌𝜌�𝑓𝑓 = 2𝜌𝜌�𝑓𝑓 −260 

(1
𝛺𝛺

)∑ 𝜌𝜌�𝑓𝑓𝑓𝑓𝛺𝛺
𝛾𝛾=1 . 261 

Moran’s index 262 

Spatial autocorrelation refers to the dependence of a variable’s value in a certain region 263 

on the same variable’s value in a neighboring region (Getis, 2007). Spatial 264 

autocorrelation can expose spatial dependencies and the spatial heterogeneity of 265 

geographic data (Wang et al., 2016). Moran’s index is one of the most widely used 266 

https://context.reverso.net/%E7%BF%BB%E8%AF%91/%E8%8B%B1%E8%AF%AD-%E4%B8%AD%E6%96%87/expose
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approaches to assess spatial autocorrelation. The global Moran’s index is applied to 267 

investigate the spatial autocorrelation of observations across a study region; it is 268 

formulated as follows: 269 

   𝐼𝐼 = ∑ ∑ 𝑤𝑤ℎ𝑙𝑙(𝜌𝜌ℎ−𝜌𝜌�)(𝜌𝜌𝑙𝑙−𝜌𝜌�)𝑧𝑧
𝑙𝑙=1

𝑧𝑧
ℎ=1

𝑆𝑆2 ∑ ∑ 𝑤𝑤ℎ𝑙𝑙
𝑧𝑧
𝑙𝑙=1

𝑧𝑧
ℎ=1

  (5) 270 

 𝑆𝑆2 = 1
𝑛𝑛
∑ (𝜌𝜌ℎ − 𝜌̅𝜌)2𝑧𝑧
ℎ=1   (6) 271 

 𝜌̅𝜌 = 1
𝑛𝑛
∑ 𝜌𝜌ℎ𝑧𝑧
ℎ=1  (7) 272 

 𝑤𝑤ℎ𝑙𝑙 = � 1, 𝑖𝑖𝑖𝑖 ℎ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
0, 𝑖𝑖𝑖𝑖 ℎ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (8) 273 

Here, 𝑆𝑆2  is the variance; and  𝜌𝜌ℎ  and  𝜌𝜌𝑙𝑙  are the TCE of ℎ  and 𝑙𝑙  regions, 274 

respectively; 𝜌̅𝜌 is the average of all TCE; 𝑤𝑤ℎ𝑙𝑙 is the element of spatial weight matrix 275 

W; and 𝑧𝑧 is the number of regions. The value of 𝐼𝐼 ranges between negative one and 276 

positive one; the closer the value of 𝐼𝐼 is to being positive one, the more geographically 277 

concentrated the observed regions possessing similar attributes are. In contrast, the 278 

closer the value of 𝐼𝐼 is to being negative one, the more concentrated the observed 279 

regions possessing different attributes are. The closer the value of 𝐼𝐼 is to zero, the more 280 

randomly scattered the attributes of the observed regions are (Diniz-Filho et al., 2003). 281 

   This study applied the local Moran’s index to reflect the spatial dependence of a 282 

particular location in the studied regions (Anselin, 1995). The formula is as follows: 283 

 𝐼𝐼ℎ = 𝜌𝜌ℎ−𝜌𝜌�
𝜎𝜎

∑ 𝑤𝑤ℎ𝑙𝑙
𝜌𝜌𝑙𝑙−𝜌𝜌�
𝜎𝜎

𝑧𝑧
𝑙𝑙=1(ℎ≠𝑙𝑙)    (9) 284 

the other parameters have the same meanings as those of the global Moran’s index 285 

except that 𝜎𝜎 is the standard deviation of 𝜌𝜌.   286 
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   The results of the local Moran index are reflected in a Moran scatter plot. 287 

The horizontal axis of the scatter plot corresponds to the value of the observed region 288 

after data standardization; the vertical axis corresponds to the spatial lag values of the 289 

observations. There are four quadrants in the Moran scatter plot. Table 1 shows the 290 

corresponding classes of regional differences in each quadrant (Wang et al., 2016). The 291 

HH cluster contains regions with high TCE values that are surrounded by high-TCE 292 

regions; an analogous scheme is used to describe LH, LL, and HL clusters. 293 

Insert the Table 1 294 

Spatial econometric model 295 

Frequently applied spatial econometric techniques to assess spatial correlation include 296 

the spatial autoregressive (SAR) model, spatial error model (SEM), and SDM. The SAR 297 

model considers the spatial dependence between observations of adjacent observed 298 

regions, or their endogenous interactive effects (Halleck Vega and Elhorst, 2017). The 299 

SEM includes the spatial effects between the error terms. SDM is an integrated 300 

approach that incorporates SEM and SAR models and it also considers the exogenous 301 

interactive effects of the explanatory variables of other units on the explained variables 302 

of specific units (Elhorst, 2014). The SDM is a general and popular model, and is 303 

formulated as follows: 304 

 𝑌𝑌 = 𝛼𝛼𝛼𝛼𝛼𝛼 + 𝜏𝜏𝑈𝑈𝑁𝑁 + 𝑋𝑋𝑋𝑋 + 𝑊𝑊𝑊𝑊𝑊𝑊 + 𝜀𝜀  (10) 305 

Here, Y is an N × 1 vector of the explained variable; X is an N × K matrix of the 306 

explanatory variables; 𝑈𝑈𝑁𝑁  is an N × 1  vector of ones; 𝛼𝛼 , 𝜏𝜏 , 𝛽𝛽 , and 𝜃𝜃  are the 307 
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parameters to be estimated; 𝜀𝜀 is the random disturbance terms; and 𝑤𝑤 is the spatial 308 

weight matrix (the spatial weight matrix in the Moran’s index as described above). 309 

When 𝜃𝜃 is zero, the SDM is the SAR model; when 𝜃𝜃 is −𝛼𝛼𝛼𝛼, the SDM is the SEM 310 

(Elhorst, 2014).  311 

Variables and Data 312 

The efficiency evaluation depends on input and output indexes (Tsaur, 2001). Based on 313 

Cao et al. (2016); Chaabouni (2019); He et al. (2020); Yi and Liang (2015) and Zha et 314 

al. (2019), the number of employees, energy consumption, the number of travel agency 315 

and star hotel were selected as input indexes from the perspectives of labor, investment 316 

scale and energy input. Tourism revenue and number of tourists and were selected as 317 

output variables from the economic and ecological perspective. Table 2 shows the input 318 

and output index system of TCE. 319 

Insert the Table 2 320 

   This research focuses on improving tourism efficiency by understanding and 321 

influencing economic benefits and CO2 emissions generated from tourism. To do this, 322 

we reviewed the existing literature, leading to the inclusion of the following factors as 323 

explanatory variables to assess their influence on TCE. 324 

   First, when considering economic growth as a driver of tourism expansion, 325 

enhancing the economy improves a region’s tourism infrastructure, education, and 326 

safety, possibly attracting more visitors (Paramati et al., 2017). Therefore, economic 327 

growth may impact improvements in tourism efficiency (Cao et al., 2016). We used the 328 



17 

 

natural logarithm of per capita GDP to measure the economic growth (lnEG) (Danish 329 

and Wang, 2018). Second, travelers rely on transportation infrastructure to access 330 

tourist destinations, accounting for a significant element of tourism development (Tian 331 

et al., 2020). This transportation produces a significant volume of CO2 emissions (Li 332 

and Zhang, 2020), also possibly influencing TCE. Transportation accessibility (lnTA) 333 

was used to represent the service capacity of transportation infrastructure, and was 334 

measured using the logarithm of the sum of the density of road and railway networks 335 

(Yang & Wong, 2012).  336 

 Third, the high urbanization rate creates a better environment for tourism 337 

development and enables more people to participate in tourism activities (Song and Li, 338 

2019). Based on Shi and Li (2018), for calculating the urbanization rate (lnUR) of a 339 

region, we used the logarithm of the proportion of urban population in total population. 340 

Fourth, the financial support from government symbolizes the economic impetus for 341 

tourism investment (Ruan et al., 2019). We measured government support for tourism 342 

(lnGS) using the logarithm of the tourism-related fiscal expenditure as a share of total 343 

fiscal expenditure.  344 

   For the fifth variable, technology innovation and reduced input expenses may 345 

reduce CO2 emissions related to tourism infrastructure and services (Stamboulis and 346 

Skayannis, 2003). Technological progress can help increase economic development 347 

and resource utilization (Xie et al., 2021). Therefore, technology innovation (lnTI) was 348 

measured using the logarithm of the number of patent applications (Paramati et al., 349 
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2018). For the sixth variable, educational attainment is another possible determinant of 350 

tourism efficiency. Paramati et al. (2017) noted that educational improvements in a 351 

region can help attract more tourists, as more educated residents may be more aware of 352 

low carbon-emission concepts, which may reduce CO2 emissions (Zhou et al., 2019). 353 

The logarithm of the proportion of people with higher education as a percentage of the 354 

population represented educational attainment (lnEA). Finally, green infrastructure can 355 

help improve air quality and maintain sustainable environmental development (Badiu 356 

et al., 2016; Ruan et al., 2019). If the tourism regions show green function, it can not 357 

only reduce the CO2 emissions generated by tourism activities, but also promote 358 

tourism development and contribute to the tourism ecological security (Xiaobin et al., 359 

2021). Green infrastructure (lnGI) was represented by the logarithm of the per capita 360 

park green area (Badiu et al., 2016). 361 

   This study analyzed tourism data from 30 provincial-level administrative regions in 362 

China (all regions of mainland China except Xizang) from 2008 to 2019. The study 363 

period ended after 2019 due to the availability of data. Linear interpolation was adopted 364 

to address missing data, as suggested by Song and Szafir (2019). To reduce 365 

heteroscedasticity, the variables in all the spatial models were logarithm-transformed 366 

(Eyuboglu and Uzar, 2020). The data were mainly collected from the Yearbook of 367 

China Tourism Statistics and its Supplement, provincial and municipal Statistical 368 

Yearbooks, provincial and municipal Statistical Bulletins, China City Statistical 369 
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Yearbook, China Tourism Sample Survey Data, China Statistical Yearbook during 370 

2009-2020. 371 

Results and analysis 372 

TCE values 373 

Figure 1 shows the TCE values of 30 provincial administrative regions in China from 374 

2008 to 2019 through applying bootstrap SBM model, along with SBM-DEA efficiency 375 

results for comparison purposes.  376 

Insert the Figure 1 377 

Specifically, the average TCE value of China's tourism industry after correction by 378 

bootstrap method is lower than the SBM-DEA efficiency value every year. In view of 379 

the small number of samples for measurement, DEA model is highly dependent on the 380 

original data, and the estimation neglects the problem of statistical properties, leading 381 

to certain deviations in the evaluation value of production efficiency (Huang et al., 382 

2021). Obviously, from Figure 1, the deviations of average TCE values are positive in 383 

the study. Therefore, the results of bootstrap SBM model are more reliable and real. 384 

Furthermore, the TCE values by bootstrap SBM model and SBM-DEA model showed 385 

the same trend over time, with a trend of increasing first, followed by decreasing, 386 

increasing, and then decreasing. After the global economic crisis of 2008, tourism 387 

gradually recovered. In December 2011, China National Tourism Administration 388 

published the outline of the 12th Five-Year Plan, which promoted the demand and 389 
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development of tourism. Therefore, TCE value showed an overall growth trend from 390 

2008 to 2016 and reached a peak in 2016. On the whole, China's TCE value showed an 391 

upward trend from 2008 to 2019. 392 

   Figure 2 shows the spatial distributions of average TCE values using bootstrap SBM 393 

model in 2008-2019.  394 

Insert the Figure 2 395 

In figure 2, the average TCE value after correction ranged from 0.128 to 0.896, with 396 

an average value of 0.529. The TCE varied significantly across China’s administrative 397 

regions during the study period. At the national level, the east-central China, southwest 398 

China and northeastern China had the high TCE values, while the northwest China and 399 

southeast coastal China had TCE value less than 0.5, accounting for 43% of the 30 400 

regions. Specifically, the four regions with the highest average TCE levels (all above 401 

0.8) were Guizhou (0.896), Tianjin (0.858), Jiangsu (0.843), and Henan (0,817), which 402 

belonged to the first echelon. Chongqing, Anhui, Liaoning, Sichuan and Jilin were the 403 

second echelon, which had an average TCE values between 0.7 and 0.8.  404 

Spatial spillover effect 405 

The Moran’s index method was applied to assess the overall geographic correlation of 406 

TCE values and the result is disputed in Table 3.  407 

Insert the Table 3 408 

Table 3 shows that during the study period, in nine out of 12 years, the Moran’s index 409 

values were positive and significant. This indicates there was a significant spatial 410 
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autocorrelation of TCE in China; administrative regions with similar TCE values have 411 

a spatial aggregation effect. In other words, TCE values of regions are not independent 412 

of the others, and TCEs are not distributed randomly; they are spatially dependent. The 413 

geographical proximity allows the administrative regions to interact with each other, 414 

and that relationship is positive. 415 

   Figure 3 displays the Moran scatter distribution of average TCE values in 2008-416 

2019, spatially and geographically illustrating the local spatial correlations of average 417 

TCE value. The quadrant distribution of average TCE value is shown on the right, and 418 

the spatial pattern of average TCE value is shown on the left. The TCE in China shows 419 

significant local spatial agglomeration, with two main classifications: HH and LL 420 

agglomeration. The HH-cluster was present mostly in central China, southwest China, 421 

and eastern China; the LL-cluster was present mostly in northwestern and southeastern 422 

China. Each cluster region’s quantity and spatial distribution revealed regional dynamic 423 

characteristics. In 2008-2019, the HH cluster contained 18 regions and the LL cluster 424 

contained eight, accounting for 87% of the 30 regions.  425 

Insert the Figure 3 426 

Analysis of spatial regression results 427 

The Lagrange Multiplier (LM), Wald, and Likelihood Ratio (LR) tests were used to 428 

determine an appropriate spatial econometric model. In Table 4, LM-error, Robust LM-429 

error, and Robust LM-lag were all significant, while the LM-lag results were not 430 

significant, indicating that the error terms have spatial effects. Furthermore, the results 431 

https://synonyms.reverso.net/synonym/en/furthermore
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of Wald and LR test are both statistically significant, showing that influencing factors 432 

have spatial effects. Because the SDM has the advantage of including the spatial 433 

dependence of dependent variables and independent variables and the spatial effect 434 

between error terms (Elhorst, 2014), the SDM was adopted. Next, a Hausman test 435 

yielded a result of -68.53, based on Schreiber (2008), we used the fixed-effect SDM 436 

model to analyze the factors influencing the TCE. 437 

Insert the Table 4 438 

   Table 5 shows the results using the SAR, SEM, and SDM models. Comparing the 439 

Akaike Info Criterion (AIC) and log-likelihood values of the three models revealed that 440 

the SDM model has the lowest AIC value and highest log-likelihood value. This 441 

identified SDM as the optimal choice. This result is also consistent with the test results 442 

discussed above, thus verifying that the SDM regression results should be used. Given 443 

this, only the SDM results were used for further analysis. 444 

   Table 5 indicates that the lnTI (0.175) and lnUR (2.845) coefficients all exceeded 445 

zero. This shows that improving technology innovation and urbanization rate helped 446 

promote improvements in TCE at a statistically significant level. Specifically, for each 447 

1% increase in technology innovation and urbanization rate, the TCE increased by 448 

0.1756% and 2.845%, respectively. However, the coefficients of lnEG (-0.594) was 449 

less than zero (statistically significant at 1% levels), showing a decrease in the TCE by 450 

0.594 % for every one percent increase in economic growth. 451 
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   A positive coefficient of the lag term indicates an agglomeration effect; a negative 452 

coefficient indicates a spatial competition effect (Yang & Fik, 2014). The coefficients 453 

of W*lnEA, W*lnTR, W*lnGI, W*lnGS were both negative and significant, showing 454 

that educational attainment, transportation, green infrastructure, and government 455 

support in surrounding regions had a negative impact on TCE in focal region. That is, 456 

there was a tourism competition effect between a focal region and its neighbors. 457 

Improvements in educational attainment, transportation, green infrastructure, and 458 

government support of a surrounding region may negatively affect the TCE of the focal 459 

region. The coefficient of W*lnUR was greater than zero and was statistically 460 

significant, showing that improvements in urbanization rate in the neighboring regions 461 

promoted TCE in the focal region. This result indicates that urbanization rate 462 

complementarity between neighboring regions contributed to TCE. However, the 463 

spatial lag coefficients of lnEG and lnTI were not significant, meaning that economic 464 

growth and technology innovation in nearby regions did not clearly impact the region’s 465 

TCE. 466 

Insert the Table 5 467 

   The marginal effects of explanatory variable on explained variable, which is not 468 

directly reflected by the coefficients of SDM (Kim et al., 2021). As such, the process 469 

may generate incorrect results concerning the impact of different factors on the TCE 470 

(LeSage and Pace, 2009). Given this, the influence was further divided into direct, 471 

indirect, and total effects. The influence of a change of a factor in a region on its 472 
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regional TCE is called the direct effect; and the influence of a change of a factor in one 473 

region on the TCE in other regions is called the indirect effect. The indirect effect 474 

reflects the spatial spillover effect (Elhorst, 2014), and the direct effect plus the indirect 475 

effect equals the total effect. The findings of the spatial dependence effect 476 

decomposition are showed inTable 6.  477 

Insert the Table 6 478 

   The coefficient of the direct effect coefficient of lnEG was -0.648 (p<0.01), 479 

showing that improving the economic growth in a region directly impede improvement 480 

in its TCE. Economic expansion boosts the tourism sector in China, however, it 481 

inevitably leads to increased energy consumption and CO2 emission (Zhang and Zhang, 482 

2021), which may not be conducive to the development of TCE. The results remind 483 

tourism-related companies that long-term sustainable development needs to focus on 484 

economic and ecological benefits. 485 

   The direct and indirect effects of lnTA were not statistically significant, and the 486 

coefficient of total effect was -1.174 (p<0.05). This indicates that every 1% increase in 487 

transportation accessibility in a region reduced TCE by 1.174%. Regions with high 488 

transportation accessibility attract more tourists, but also reduce the number of 489 

overnight stays (Fan et al., 2022). Most of the CO2 emissions of tourism come from 490 

transportation (Li & Zhang, 2020), which may adversely impact TCE. The direct impact 491 

of lnUR exceeded zero and were significant, which shows that developing urbanization 492 

level increases TCE. This result is consistent with Li and Liu (2021). The increase of 493 
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urbanization rate means convenient infrastructure, reasonable economic structure and 494 

cleaner production technology, which can increase the efficiency of sectors associated 495 

to tourism and encourage more people to travel and visit (Luo et al., 2016; Sun and 496 

Huang, 2020). 497 

   The spatial spillover effect of lnTI on TCE were not significant, but lnTI had a 498 

significant positive direct and total effects on TCE. Liu et al. (2021) suggested that 499 

technological innovation was conducive to economic growth. Paramati et al. (2018) 500 

found that technological growth has helped reduce CO2 emissions from tourism, thus 501 

negative environmental effects of tourism. Therefore, technology innovation can 502 

improve TCE by acting on the economy and CO2 of tourism. However, when 503 

considering the indirect effect of lnEA on TCE, a one percent increase in educational 504 

attainment was associated with a 0.333% decrease in TCE of surrounding region, which 505 

was statistically significant at a 0.05 level. This may be due to the talent competition 506 

between neighboring regions, which drives up labor costs and has a detrimental effect 507 

on TCE (Chaabouni, 2019).  508 

   The coefficients for direct and indirect effects of lnGS were 0.181 and -0.307, 509 

respectively, which were statistically significant values. These results indicate that if 510 

government support increases by 1% in a region, the region’s TCE is expected to 511 

increase by 0.181%, and the TCE of the neighboring region may decrease by 0.307%. 512 

The effective development of economic activities is inseparable from government 513 

intervention (Liu et al., 2021). As a major stakeholder in tourism governance, the 514 
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support from government is essential for the sustainable tourism development (Shone 515 

et al., 2016). The tourism sector is driven by government backing, which promotes the 516 

development of tourism by supporting the material and social impact of tourism 517 

activities (Ruhanen, 2013). Thus, government support has a direct positive influence on 518 

focal TCE. However, there may be a phenomenon of convergence of government 519 

intervention in the tourism industry of adjacent regions, such as investment in the same 520 

type of tourism products or development of similar tourist attractions, which will cause 521 

inter-regional competition and not conducive to the improvement of TCE. 522 

   Finally, for green infrastructure, the spatial spillover effect of lnGI was significantly 523 

negative. Every 1% increase in per capita park green area in a region reduced TCE by 524 

0.447 % in the neighboring region. Park green space is not only the place of recreation 525 

for residents but also the tourist destination (Terkenli et al., 2020). In adjacent regions, 526 

the park green space may have the same resource endowment, resulting in competition 527 

effect and hinder the growth of tourism efficiency. 528 

Implications 529 

Theoretical implications 530 

The theoretical implications of this study are as follows. First, compared with previous 531 

studies (Aratuo and Etienne, 2019; Cao et al., 2016; Chaabouni, 2019; Eyuboglu and 532 

Uzar, 2020) that separate the economic benefits and ecological benefits of tourism, this 533 

study considered the comprehensive effect from tourism economic activities and 534 
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ecological environment. The study supports that energy consumption is a crucial factor 535 

and material inputs and CO2 are significant products in the course of tourism production. 536 

In addition, previous studies on efficiency evaluation using DEA model has certain 537 

limitations, such as sample sensitivity (Chang et al., 2021) and deviation from the real 538 

efficiency value (Simar and Wilson, 2011). Therefore, this study combines bootstrap 539 

technology with SBM-DEA method considering undesired output, to measure the real 540 

tourism efficiency value of China, enriching the tourism efficiency literature of 541 

sustainable tourism development.  542 

Second, some previous studies (Chaabouni, 2019; Xue et al., 2022) applied Tobit 543 

regression or bootstrap regression to explore the determinants of tourism efficiency, 544 

which neglected the spatial spillover effect between data based on geographical location, 545 

leading to bias in the regression results. Further, tourism development has inter-regional 546 

interactions and is affected by different complex factors including environmental 547 

factors. As such, another contribution of this paper is that it considered geographic 548 

spatial relationships and sustainable development factors when determining TCE using 549 

Moran’s index and the spatial econometric model. This explores the spatial distribution 550 

of TCE and reduces deviations and inefficient parameter estimation caused by the 551 

absence of spatial interactions, providing a new perspective for the study of tourism 552 

efficiency.  553 

Practical implications 554 
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In practice, the results of this study can support policy making by Chinese tourism 555 

authorities. First, the study found that TCE is at a low level in China, with an average 556 

efficiency value of roughly 0.529. This leaves significant room to improve China's TCE. 557 

According to UNWTO (2017), the CO2 emissions from tourism account for 558 

approximately 5% of overall carbon emissions. Climate affects tourism seasonality, and 559 

climate change may affect the popularity of tourist destinations and people's travel 560 

experience (Hoogendoorn and Fitchett, 2018). Therefore, while creating economic 561 

value is important, another top priority for tourism authorities is to devise policies and 562 

monitor measures that reduce CO2 emissions, to minimize the negative effect of tourism 563 

on climate change.  564 

   In addition, the study found positive spatial spillover effects of TCE among the 565 

different regions of China. Tourism in different regions does not occur independently; 566 

the knowledge, economy, and climate impacted by tourism in one region is likely to 567 

spill over and affect neighboring regions (Kim et al., 2021; Li & Lv, 2021). Studies 568 

have shown that the TCE of a region positively relates to the TCE of its neighboring 569 

region. This highlights the need for decision-makers in all regions to strengthen inter-570 

regional cooperation in tourism (Jiao et al., 2019).  571 

   Regional tourism sectors should collectively focus on improving TCE; and knowing 572 

the determinants of TCE can be of great significance for tourism development (Ruan et 573 

al., 2019). The findings of our study were as follows. First, the technology innovation, 574 

urbanization rate and government support can help improve China's TCE, while further 575 
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improving economic growth and transportation infrastructure may hinder China's TCE. 576 

Second, educational attainment, green infrastructure and government support have a 577 

negative spillover effect on TCE. These findings can help the government work on 578 

improving tourism efficiency from both socio-economic and ecological standpoints.  579 

   Given the implications above, we provide the following policy recommendations 580 

for tourism related-sectors. First, the negative impact of economic growth on TCE 581 

should also be capitalized on. Economic expansion results in increased energy use and 582 

CO2 emissions. Although economic growth can promote the development of tourism, 583 

in the long run, the sustainable development of energy saving and emission reduction 584 

is more suitable. The government should formulate CO2 emission reduction targets and 585 

measures for tourism-related enterprises, with the goal of ensuring high-quality and 586 

sustainable economic development to achieve sustainable economic development. This 587 

could include assigning carbon reduction tasks to each region or different type of hotel; 588 

increasing investments in ecological protection; promoting employment in resource 589 

recovery and pollutant treatment fields; adopting green trade policies (Destek and Sinha, 590 

2020).  591 

However, urbanization is directly related to TCE, which may be attributed to the 592 

improvement of urbanization level driving the tourism development and the progress 593 

of environmentally friendly production technology, thus reducing energy usage and 594 

CO2 emission intensity (Han et al., 2019). As such, the government should advocate 595 

the development of a new type of energy-saving and low-carbon urbanization and 596 
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encourage investment in green production and cleaner production technologies. In 597 

terms of tourism infrastructure construction, the construction of green buildings with 598 

low energy usage and low carbon emission should be encouraged (Sun and Huang, 599 

2020), for example, the construction of green hotels should be funded (Olya et al., 2019). 600 

   Next, the study found that technology innovation had a direct positive impact on 601 

TCE, increasing its level. Therefore, tourism related sectors could pursue ecological 602 

innovation and actively cooperate with surrounding regions to conduct tourism 603 

innovation research and development (Divisekera and Nguyen, 2018). Environmental 604 

technology and innovation inputs, for example, can be applied to hotels and the 605 

transportation system to foster green and low-carbon-emission tourism development 606 

(Sun et al., 2021). For the negative spatial spillover effect of educational attainment 607 

and green infrastructure, the government can consider expanding educational efforts 608 

and green infrastructure construction, and reduce talent competition and green space 609 

competition between regions through inter-regional cooperation. Furthermore, tourists 610 

and residents should be instilled with the concept and awareness of the need to lower 611 

carbon emissions (Zhou et al., 2019). 612 

   Special attention should be paid to the negative impact of transportation on TCE. 613 

Transportation is the basis of tourism development; however, it is also the source of 614 

most tourism-related CO2 emissions (Cadarso et al., 2015; Tsai et al., 2018). Therefore, 615 

stakeholders should adopt measures such as clean energy use, develop public 616 

transportation infrastructure (Yang et al., 2019), fund new energy vehicle development, 617 



31 

 

and remind tourists of the carbon footprint incurred by air travel, and publicize possible 618 

alternatives, such as high speed rail. These approaches may help reduce energy usage 619 

and CO2 emissions in tourism-related transportation. 620 

   Finally, for government investment, it is necessary for local governments to 621 

participate in or coordinate tourism strategic planning (Ruhanen, 2013). Although 622 

proper government intervention can improve China's TCE, the government should 623 

avoid investing in the same tourism products as the surrounding regions, such as 624 

creating similar tourist attraction, which my form competition with the surrounding 625 

areas. Seeking common ground and win-win cooperation should be considered for 626 

government intervention in tourism (Xiaobin et al., 2021). 627 

Conclusions 628 

This study found that the TCE varied significantly between regions in China, and there 629 

were many regions with low efficiency levels needing improvement. Guizhou, Tianjin, 630 

Jiangsu, and Henan outperformed other regions in terms of average TCE in 2008-2019. 631 

More than 43% of the administrative regions had a TCE below 0.529; those with the 632 

low efficiencies were mainly located in northwest and southeast coastal China. The 633 

results of Moran’s index showed that the TCE has spatial spillover effects and local 634 

spatial differences; regions with high-TCE surrounded by high-TCE regions and 635 

regions with low TCE surrounded by low-TCE regions formed the principal types of 636 

clustering. Finally, technology innovation, urbanization rate and government support 637 

have direct impacts on improving TCE in China, while economic growth has a negative 638 

https://synonyms.reverso.net/synonym/en/principal


32 

 

effect on TCE. Educational attainment, green infrastructure and government support 639 

have a negative spatial effect. Transportation infrastructure hinder China's TCE in total 640 

effect on TCE. 641 

   Like all studies, this one has some limitations. First, the study focused on measuring 642 

and improving TCE, but did not address how much CO2 should be reduced in each 643 

region to achieve energy-saving and emission reduction goals in tourism. Therefore, 644 

future research should consider the allocation of carbon emission reductions for tourism, 645 

without lowering or increasing TCE. Second, this study analyzed 30 provincial-level 646 

administrative regions in China. Further research should be expanded to include more 647 

regions and other countries. Finally, we focused on seven influencing factors for the 648 

spatial regression; future studies should explore the other factors on the TCE in China.  649 

References 650 

Adler N, Friedman L and Sinuany-Stern Z (2002) Review of ranking methods in the 651 

data envelopment analysis context. European Journal of Operational Research 652 

140(2): 249–265. DOI: 10.1016/S0377-2217(02)00068-1. 653 

Alberca P and Parte L (2018) Operational efficiency evaluation of restaurant firms. 654 

International Journal of Contemporary Hospitality Management 30(3). input-655 

oriented DEA model. Emerald Publishing Limited: 1959–1977. DOI: 656 

10.1108/IJCHM-09-2016-0547. 657 



33 

 

Anselin L (1995) Local indicators of spatial association—LISA. Geographical Analysis 658 

27(2): 93–115. DOI: 10.1111/j.1538-4632.1995.tb00338.x. 659 

Aratuo DN and Etienne XL (2019) Industry level analysis of tourism-economic growth 660 

in the United States. Tourism Management 70: 333–340. DOI: 661 

10.1016/j.tourman.2018.09.004. 662 

Assaf AG and Josiassen A (2016) Frontier analysis: A state-of-the-art review and meta-663 

analysis. Journal of Travel Research 55(5): 612–627. DOI: 664 

10.1177/0047287515569776. 665 

Bădin L, Daraio C and Simar L (2010) Optimal bandwidth selection for conditional 666 

efficiency measures: A data-driven approach. European Journal of Operational 667 

Research 201(2): 633–640. DOI: 10.1016/j.ejor.2009.03.038. 668 

Bădin L, Daraio C and Simar L (2012) How to measure the impact of environmental 669 

factors in a nonparametric production model. European Journal of Operational 670 

Research 223(3): 818–833. DOI: 10.1016/j.ejor.2012.06.028. 671 

Bădin L, Daraio C and Simar L (2014) Explaining inefficiency in nonparametric 672 

production models: the state of the art. Annals of Operations Research 214(1): 5–673 

30. DOI: 10.1007/s10479-012-1173-7. 674 



34 

 

Bădin L, Daraio C and Simar L (2019) A bootstrap approach for bandwidth selection 675 

in estimating conditional efficiency measures. European Journal of Operational 676 

Research 277(2): 784–797. DOI: 10.1016/j.ejor.2019.02.054. 677 

Badiu DL, Iojă CI, Pătroescu M, et al. (2016) Is urban green space per capita a valuable 678 

target to achieve cities’ sustainability goals? Romania as a case study. Ecological 679 

Indicators 70. Navigating Urban Complexity: Advancing Understanding of Urban 680 

Social – Ecological Systems for Transformation and Resilience: 53–66. DOI: 681 

10.1016/j.ecolind.2016.05.044. 682 

Barros CP, Botti L, Peypoch N, et al. (2011) Performance of French destinations: 683 

Tourism attraction perspectives. Tourism Management 32(1): 141–146. DOI: 684 

10.1016/j.tourman.2010.01.015. 685 

Becken S and Patterson M (2006) Measuring national carbon dioxide emissions from 686 

tourism as a key step towards achieving sustainable tourism. Journal of 687 

Sustainable Tourism 14(4): 323–338. DOI: 10.2167/jost547.0. 688 

Cadarso M-Á, Gómez N, López L-A, et al. (2015) Quantifying Spanish tourism’s 689 

carbon footprint: the contributions of residents and visitors: a longitudinal study. 690 

Journal of Sustainable Tourism 23(6): 922–946. DOI: 691 

10.1080/09669582.2015.1008497. 692 



35 

 

Cao F, Huang Z, Jin C, et al. (2016) Influence of Chinese economic fluctuations on 693 

tourism efficiency in national scenic areas. Tourism Economics 22(5): 884–907. 694 

DOI: 10.5367/te.2015.0463. 695 

Chaabouni S (2019) China’s regional tourism efficiency: A two-stage double bootstrap 696 

data envelopment analysis. Journal of Destination Marketing & Management 11: 697 

183–191. DOI: 10.1016/j.jdmm.2017.09.002. 698 

Chang Y-T, Jo A, Choi K-S, et al. (2021) Port efficiency and international trade in 699 

China. Transportmetrica A: Transport Science 17(4). Taylor & Francis: 801–823. 700 

DOI: 10.1080/23249935.2020.1817169. 701 

Charnes A, Cooper WW and Rhodes E (1978) Measuring the efficiency of decision 702 

making units. European Journal of Operational Research 2(6): 429–444. DOI: 703 

10.1016/0377-2217(78)90138-8. 704 

Chen L, Thapa B and Yan W (2018) The relationship between tourism, carbon dioxide 705 

emissions, and economic growth in the Yangtze River Delta, China. Sustainability 706 

10(7): 2118. DOI: 10.3390/su10072118. 707 

Corne A (2015) Benchmarking and tourism efficiency in France. Tourism Management 708 

51: 91–95. DOI: 10.1016/j.tourman.2015.05.006. 709 

Corne A and Peypoch N (2020) On the determinants of tourism performance. Annals 710 

of Tourism Research 85: 103057. DOI: 10.1016/j.annals.2020.103057. 711 



36 

 

Danish and Wang Z (2018) Dynamic relationship between tourism, economic growth, 712 

and environmental quality. Journal of Sustainable Tourism 26(11). Routledge: 713 

1928–1943. DOI: 10.1080/09669582.2018.1526293. 714 

Daraio C, Simar L and Wilson PW (2018) Central limit theorems for conditional 715 

efficiency measures and tests of the ‘separability’ condition in non‐parametric, 716 

two‐stage models of production. The Econometrics Journal 21(2): 170–191. DOI: 717 

10.1111/ectj.12103. 718 

Destek MA and Sinha A (2020) Renewable, non-renewable energy consumption, 719 

economic growth, trade openness and ecological footprint: Evidence from 720 

organisation for economic co-operation and development countries. Journal of 721 

Cleaner Production 242: 118537. DOI: 10.1016/j.jclepro.2019.118537. 722 

Diniz-Filho J, Bini LM and Hawkins B (2003) Spatial autocorrelation and red herrings 723 

in geographical ecology. Global Ecology and Biogeography 12(1): 53–64. 724 

Divisekera S and Nguyen VK (2018) Drivers of innovation in tourism: An econometric 725 

study. Tourism Economics 24(8). SAGE Publications Ltd: 998–1014. DOI: 726 

10.1177/1354816618794708. 727 

Ehigiamusoe KU (2020) Tourism, growth and environment: analysis of non-linear and 728 

moderating effects. Journal of Sustainable Tourism 28(8): 1174–1192. DOI: 729 

10.1080/09669582.2020.1729164. 730 



37 

 

Elhorst JP (2014) Spatial Econometrics: From Cross-Sectional Data to Spatial Panels. 731 

SpringerBriefs in Regional Science. Berlin, Heidelberg: Heidelberg: Springer. 732 

DOI: 10.1007/978-3-642-40340-8. 733 

Eyuboglu K and Uzar U (2020) The impact of tourism on CO2 emission in Turkey. 734 

Current Issues in Tourism 23(13): 1631–1645. DOI: 735 

10.1080/13683500.2019.1636006. 736 

Fan DXF, Hsu CHC and Liu AX (2022) Transforming brand identity to hotel 737 

performance: the moderating effect of social capital. Journal of Hospitality & 738 

Tourism Research. SAGE Publications Inc: 10963480221074278. DOI: 739 

10.1177/10963480221074278. 740 

Getis A (2007) Reflections on spatial autocorrelation. Regional Science and Urban 741 

Economics 37(4): 491–496. DOI: 10.1016/j.regsciurbeco.2007.04.005. 742 

Gössling S, Peeters P, Ceron J-P, et al. (2005) The eco-efficiency of tourism. Ecological 743 

Economics 54(4): 417–434. DOI: 10.1016/j.ecolecon.2004.10.006. 744 

Hadad S, Hadad Y, Malul M, et al. (2012) The economic efficiency of the tourism 745 

industry: a global comparison. Tourism Economics 18(5): 931–940. DOI: 746 

10.5367/te.2012.0165. 747 

Halleck Vega S and Elhorst JP (2017) Regional labour force participation across the 748 

European Union: a time–space recursive modelling approach with endogenous 749 



38 

 

regressors. Spatial Economic Analysis 12(2–3): 138–160. DOI: 750 

10.1080/17421772.2016.1224374. 751 

Han X, Cao T and Sun T (2019) Analysis on the variation rule and influencing factors 752 

of energy consumption carbon emission intensity in China’s urbanization 753 

construction. Journal of Cleaner Production 238: 117958. DOI: 754 

10.1016/j.jclepro.2019.117958. 755 

He L, Zha J and Loo HA (2020) How to improve tourism energy efficiency to achieve 756 

sustainable tourism: evidence from China. Current Issues in Tourism 23(1): 1–16. 757 

DOI: 10.1080/13683500.2018.1564737. 758 

Hoogendoorn G and Fitchett JM (2018) Tourism and climate change: a review of 759 

threats and adaptation strategies for Africa. Current Issues in Tourism 21(7). 760 

Routledge: 742–759. DOI: 10.1080/13683500.2016.1188893. 761 

Huang J-B, Zou H and Song Y (2021) Biased technical change and its influencing 762 

factors of iron and steel industry: Evidence from provincial panel data in China. 763 

Journal of Cleaner Production 283. bootstrapSBM: 124558. DOI: 764 

10.1016/j.jclepro.2020.124558. 765 

Jiao S, Gong W, Zheng Y, et al. (2019) Spatial spillover effects and tourism-led growth: 766 

an analysis of prefecture-level cities in China. Asia Pacific Journal of Tourism 767 

Research 24(7): 725–734. DOI: 10.1080/10941665.2019.1630454. 768 



39 

 

Kim YR, Williams AM, Park S, et al. (2021) Spatial spillovers of agglomeration 769 

economies and productivity in the tourism industry: The case of the UK. Tourism 770 

Management 82: 104201. DOI: 10.1016/j.tourman.2020.104201. 771 

Koçak E, Ulucak R and Ulucak ZŞ (2020) The impact of tourism developments on CO2 772 

emissions: an advanced panel data estimation. Tourism Management Perspectives 773 

33: 100611. DOI: 10.1016/j.tmp.2019.100611. 774 

Lee H, Choi Y and Seo H (2020) Comparative analysis of the R&D investment 775 

performance of Korean local governments. Technological Forecasting and Social 776 

Change 157: 120073. DOI: 10.1016/j.techfore.2020.120073. 777 

LeSage J and Pace RK (2009) Introduction to Spatial Econometrics. New York: 778 

Chapman and Hall/CRC. DOI: 10.1201/9781420064254. 779 

Li KX, Jin M and Shi W (2018) Tourism as an important impetus to promoting 780 

economic growth: A critical review. Tourism Management Perspectives 26: 135–781 

142. DOI: 10.1016/j.tmp.2017.10.002. 782 

Li S and Lv Z (2021) Do spatial spillovers matter? Estimating the impact of tourism 783 

development on CO2 emissions. Environmental Science and Pollution Research 784 

28(25): 32777–32794. DOI: 10.1007/s11356-021-12988-6. 785 



40 

 

Li Y and Zhang L (2020) Ecological efficiency management of tourism scenic spots 786 

based on carbon footprint analysis. International Journal of Low-Carbon 787 

Technologies 15(4): 550–554. DOI: 10.1093/ijlct/ctaa023. 788 

Li Y, Liu A-C, Yu Y-Y, et al. (2022) Bootstrapped DEA and clustering analysis of eco-789 

efficiency in China’s hotel industry. Sustainability 14(5). 5. Multidisciplinary 790 

Digital Publishing Institute: 2925. DOI: 10.3390/su14052925. 791 

Li Z and Liu H (2021) How tourism industry agglomeration improves tourism 792 

economic efficiency? Tourism Economics. SAGE Publications Ltd: 793 

13548166211009116. DOI: 10.1177/13548166211009116. 794 

Liu H, Xiao Y, Wang B, et al. (2021) Effects of tourism development on economic 795 

growth: An empirical study of China based on both static and dynamic spatial 796 

Durbin models. Tourism Economics: 13548166211021176. DOI: 797 

10.1177/13548166211021175. 798 

Liu J, Zhang J and Fu Z (2017) Tourism eco-efficiency of Chinese coastal cities–799 

Analysis based on the DEA-Tobit model. Ocean & Coastal Management 148. 800 

DEA: 164–170. DOI: 10.1016/j.ocecoaman.2017.08.003. 801 

Liu Z, Lan J, Chien F, et al. (2022) Role of tourism development in environmental 802 

degradation: A step towards emission reduction. Journal of Environmental 803 

Management 303: 114078. DOI: 10.1016/j.jenvman.2021.114078. 804 



41 

 

Lozano-Ramírez J, Arana-Jiménez M and Lozano S (2022) A pre-pandemic Data 805 

Envelopment Analysis of the sustainability efficiency of tourism in EU-27 806 

countries. Current Issues in Tourism. Routledge: 1–19. DOI: 807 

10.1080/13683500.2022.2062309. 808 

Lu X, Shi P, Deng Z, et al. (2019) Calculation of green production efficiency of tourism 809 

in the Yangtze River Economic Belt and analysis of its spatial and temporal 810 

evolution. China Population, Resources and Environment 29(7): 19–30. 811 

Luo JM, Qiu H and Lam CF (2016) Urbanization impacts on regional tourism 812 

development: a case study in China. Current Issues in Tourism 19(3). Routledge: 813 

282–295. DOI: 10.1080/13683500.2015.1033385. 814 

Ma T, Hong T and Zhang H (2015) Tourism spatial spillover effects and urban 815 

economic growth. Journal of Business Research 68(1): 74–80. DOI: 816 

10.1016/j.jbusres.2014.05.005. 817 

Ma X, Han M, Luo J, et al. (2021) The empirical decomposition and peak path of 818 

China’s tourism carbon emissions. Environmental Science and Pollution Research 819 

28(46): 66448–66463. DOI: 10.1007/s11356-021-14956-6. 820 

Majewska J (2015) Inter-regional agglomeration effects in tourism in Poland. Tourism 821 

Geographies 17(3): 408–436. DOI: 10.1080/14616688.2014.997279. 822 



42 

 

National Bureau of Statistics of China (NBS) (2019) Development of Tourism 2019. 823 

Available at: https://data.stats.gov.cn/english/easyquery.htm?cn=C01 (accessed 824 

19 January 2022). 825 

Niavis S and Tsiotas D (2019) Assessing the tourism performance of the Mediterranean 826 

coastal destinations: A combined efficiency and effectiveness approach. Journal 827 

of Destination Marketing & Management 14: 100379. DOI: 828 

10.1016/j.jdmm.2019.100379. 829 

Olya HGT, Bagheri P and Tümer M (2019) Decoding behavioural responses of green 830 

hotel guests: A deeper insight into the application of the theory of planned 831 

behaviour. International Journal of Contemporary Hospitality Management 31(6): 832 

2509–2525. DOI: 10.1108/IJCHM-05-2018-0374. 833 

Paramati SR, Alam MdS and Chen C-F (2017) The effects of tourism on economic 834 

growth and CO2 emissions: a comparison between developed and developing 835 

economies. Journal of Travel Research 56(6): 712–724. DOI: 836 

10.1177/0047287516667848. 837 

Paramati SR, Alam MdS and Lau CKM (2018) The effect of tourism investment on 838 

tourism development and CO2 emissions: empirical evidence from the EU nations. 839 

Journal of Sustainable Tourism 26(9): 1587–1607. DOI: 840 

10.1080/09669582.2018.1489398. 841 



43 

 

Peng H, Zhang J, Lu L, et al. (2017) Eco-efficiency and its determinants at a tourism 842 

destination: A case study of Huangshan National Park, China. Tourism 843 

Management 60. DEA: 201–211. DOI: 10.1016/j.tourman.2016.12.005. 844 

Qiu X, Fang Y, Yang X, et al. (2017) Tourism eco-efficiency measurement, 845 

characteristics, and its influence factors in China. Sustainability 9(9). 846 

Multidisciplinary Digital Publishing Institute: 1634. DOI: 10.3390/su9091634. 847 

Ruan W, Li Y, Zhang S, et al. (2019) Evaluation and drive mechanism of tourism 848 

ecological security based on the DPSIR-DEA model. Tourism Management 75: 849 

609–625. DOI: 10.1016/j.tourman.2019.06.021. 850 

Ruhanen L (2013) Local government: Facilitator or inhibitor of sustainable tourism 851 

development? Journal of Sustainable Tourism 21(1). Routledge: 80–98. DOI: 852 

10.1080/09669582.2012.680463. 853 

Schreiber S (2008) The Hausman test statistic can be negative even asymptotically. 854 

Jahrbücher für Nationalökonomie und Statistik 228(4): 394–405. DOI: 855 

10.1515/jbnst-2008-0407. 856 

Shi X and Li X (2018) Research on three-stage dynamic relationship between carbon 857 

emission and urbanization rate in different city groups. Ecological Indicators 91: 858 

195–202. DOI: 10.1016/j.ecolind.2018.03.056. 859 



44 

 

Shone MC, Simmons DG and Dalziel P (2016) Evolving roles for local government in 860 

tourism development: a political economy perspective. Journal of Sustainable 861 

Tourism 24(12). Routledge: 1674–1690. DOI: 10.1080/09669582.2016.1184672. 862 

Simar L and Wilson PW (2011) Two-stage DEA: caveat emptor. Journal of 863 

Productivity Analysis 36(2): 205–218. DOI: 10.1007/s11123-011-0230-6. 864 

Song H and Szafir DA (2019) Where’s my data? evaluating visualizations with missing 865 

data. IEEE Transactions on Visualization and Computer Graphics 25(1): 914–924. 866 

DOI: 10.1109/TVCG.2018.2864914. 867 

Song M and Li H (2019) Estimating the efficiency of a sustainable Chinese tourism 868 

industry using bootstrap technology rectification. Technological Forecasting and 869 

Social Change 143. bootstrap-DEA: 45–54. DOI: 10.1016/j.techfore.2019.03.008. 870 

Stamboulis Y and Skayannis P (2003) Innovation strategies and technology for 871 

experience-based tourism. Tourism Management 24(1): 35–43. DOI: 872 

10.1016/S0261-5177(02)00047-X. 873 

Sun W and Huang C (2020) How does urbanization affect carbon emission efficiency? 874 

Evidence from China. Journal of Cleaner Production 272: 122828. DOI: 875 

10.1016/j.jclepro.2020.122828. 876 

Sun Y, Hou G, Huang Z, et al. (2020) Spatial-temporal differences and influencing 877 

factors of tourism eco-efficiency in China’s three major urban agglomerations 878 



45 

 

based on the Super-EBM model. Sustainability 12(10): 4156. DOI: 879 

10.3390/su12104156. 880 

Sun Y, Duru OA, Razzaq A, et al. (2021) The asymmetric effect eco-innovation and 881 

tourism towards carbon neutrality target in Turkey. Journal of Environmental 882 

Management 299: 113653. DOI: 10.1016/j.jenvman.2021.113653. 883 

Sun Y-Y (2014) A framework to account for the tourism carbon footprint at island 884 

destinations. Tourism Management 45: 16–27. DOI: 885 

10.1016/j.tourman.2014.03.015. 886 

Sun Y-Y and Drakeman D (2020) Measuring the carbon footprint of wine tourism and 887 

cellar door sales. Journal of Cleaner Production 266: 121937. DOI: 888 

10.1016/j.jclepro.2020.121937. 889 

Sun Y-Y and Pratt S (2014) The economic, carbon emission, and water impacts of 890 

hinese visitors to Taiwan: Eco-efficiency and impact evaluation. Journal of Travel 891 

Research 53(6). SAGE Publications Inc: 733–746. DOI: 892 

10.1177/0047287513517420. 893 

Tang M and Ge S (2018) Accounting for carbon emissions associated with tourism-894 

related consumption. Tourism Economics 24(5): 510–525. DOI: 895 

10.1177/1354816618754691. 896 



46 

 

Terkenli TS, Bell S, Tošković O, et al. (2020) Tourist perceptions and uses of urban 897 

green infrastructure: An exploratory cross-cultural investigation. Urban Forestry 898 

& Urban Greening 49: 126624. DOI: 10.1016/j.ufug.2020.126624. 899 

Tian F, Yang Y and Jiang L (2020) Spatial spillover of transport improvement on 900 

tourism growth. Tourism Economics 28(5): 1416–1432. DOI: 901 

10.1177/1354816620982787. 902 

Tone K (2004) Dealing with undesirable outputs in DEA: A slacks-based measure 903 

(SBM) approach. In: Toronto, 2004, pp. 44–45. Presentation At NAPW III. 904 

Tsai K-T, Lin T-P, Lin Y-H, et al. (2018) The carbon impact of international tourists to 905 

an Island Country. Sustainability 10(5): 1386. DOI: 10.3390/su10051386. 906 

Tsaur S (2001) The operating efficiency of international tourist hotels in Taiwan. Asia 907 

Pacific Journal of Tourism Research 6(1): 73–81. DOI: 908 

10.1080/10941660108722090. 909 

Tu J and Zhang D (2020) Does tourism promote economic growth in Chinese ethnic 910 

minority areas? A nonlinear perspective. Journal of Destination Marketing & 911 

Management 18: 100473. DOI: 10.1016/j.jdmm.2020.100473. 912 

Wang D and Ap J (2013) Factors affecting tourism policy implementation: A 913 

conceptual framework and a case study in China. Tourism Management 36: 221–914 

233. DOI: 10.1016/j.tourman.2012.11.021. 915 



47 

 

Wang S, Fang C and Wang Y (2016) Spatiotemporal variations of energy-related CO2 916 

emissions in China and its influencing factors: An empirical analysis based on 917 

provincial panel data. Renewable and Sustainable Energy Reviews 55: 505–515. 918 

DOI: 10.1016/j.rser.2015.10.140. 919 

Wen Y, An Q, Hu J, et al. (2021) DEA game for internal cooperation between an upper-920 

level process and multiple lower-level processes. Journal of the Operational 921 

Research Society. Taylor & Francis: 1–12. DOI: 922 

10.1080/01605682.2021.1967212. 923 

World Tourism Organization and International Transport Forum (WTOITF) (2019) 924 

Transport-Related CO2 Emissions of the Tourism Sector – Modelling Results. 925 

Madrid: UNWTO. Available at: https://www.e-926 

unwto.org/doi/abs/10.18111/9789284416660. 927 

World Tourism Organization (UNWTO) (2017) World Conference on Tourism and 928 

Future Energy – Unlocking Low-Carbon Growth Opportunities. Madrid: 929 

UNWTO. DOI: 10.18111/9789284419425. 930 

World Tourism Organization (UNWTO) (2020) International Tourism Highlights, 931 

2020. Madrid: UNWTO. Available at: https://www.e-932 

unwto.org/doi/abs/10.18111/9789284422456. 933 



48 

 

Xia B, Dong S, Li Z, et al. (2022) Eco-efficiency and its drivers in tourism sectors with 934 

respect to carbon emissions from the supply chain: An integrated EEIO and DEA 935 

approach. International Journal of Environmental Research and Public Health 936 

19(11). Multidisciplinary Digital Publishing Institute: 6951. DOI: 937 

10.3390/ijerph19116951. 938 

Xiaobin M, Biao S, Guolin H, et al. (2021) Evaluation and spatial effects of tourism 939 

ecological security in the Yangtze River Delta. Ecological Indicators 131: 108190. 940 

DOI: 10.1016/j.ecolind.2021.108190. 941 

Xie Z, Wu R and Wang S (2021) How technological progress affects the carbon 942 

emission efficiency? Evidence from national panel quantile regression. Journal of 943 

Cleaner Production 307: 127133. DOI: 10.1016/j.jclepro.2021.127133. 944 

Xu D, Huang Z, Hou G, et al. (2020) The spatial spillover effects of haze pollution on 945 

inbound tourism: evidence from mid-eastern China. Tourism Geographies 22(1): 946 

83–104. DOI: 10.1080/14616688.2019.1612464. 947 

Xue D, Li X, Ahmad F, et al. (2022) Exploring tourism efficiency and its drivers to 948 

understand the backwardness of the tourism industry in Gansu, China. 949 

International Journal of Environmental Research and Public Health 19(18). 18. 950 

Multidisciplinary Digital Publishing Institute: 11574. DOI: 951 

10.3390/ijerph191811574. 952 



49 

 

Yang G, Li P, Zheng B, et al. (2008) GHG emission-based eco-efficiency study on 953 

tourism itinerary products in Shangri-La, Yunnan Province, China. Current Issues 954 

in Tourism 11(6). Routledge: 604–622. DOI: 10.1080/13683500802475943. 955 

Yang W, Wang W and Ouyang S (2019) The influencing factors and spatial spillover 956 

effects of CO2 emissions from transportation in China. Science of The Total 957 

Environment 696: 133900. DOI: 10.1016/j.scitotenv.2019.133900. 958 

Yang Y and Fik T (2014) Spatial effects in regional tourism growth. Annals of Tourism 959 

Research 46: 144–162. DOI: 10.1016/j.annals.2014.03.007. 960 

Yang Y and Wong KKF (2012) A spatial econometric approach to model spillover 961 

effects in tourism flows. Journal of Travel Research 51(6): 768–778. DOI: 962 

10.1177/0047287512437855. 963 

Yi T and Liang M (2015) Evolutional model of tourism efficiency based on the DEA 964 

method: A case study of cities in Guangdong Province, China. Asia Pacific 965 

Journal of Tourism Research 20(7): 789–806. DOI: 966 

10.1080/10941665.2014.932294. 967 

Yin P, Chu J, Wu J, et al. (2020) A DEA-based two-stage network approach for hotel 968 

performance analysis: An internal cooperation perspective. Omega 93. novel 969 

DEAbased bi-objective model: 102035. DOI: 10.1016/j.omega.2019.02.004. 970 



50 

 

Zha J, He L, Liu Y, et al. (2019) Evaluation on development efficiency of low-carbon 971 

tourism economy: A case study of Hubei Province, China. Socio-Economic 972 

Planning Sciences 66: 47–57. DOI: 10.1016/j.seps.2018.07.003. 973 

Zha J, Tan T, Yuan W, et al. (2020) Decomposition analysis of tourism CO2 emissions 974 

for sustainable development: A case study of China. Sustainable Development 975 

28(1): 169–186. DOI: 10.1002/sd.1980. 976 

Zha J, Yuan W, Dai J, et al. (2020) Eco-efficiency, eco-productivity and tourism growth 977 

in China: a non-convex metafrontier DEA-based decomposition model. Journal 978 

of Sustainable Tourism 28(5). Routledge: 663–685. DOI: 979 

10.1080/09669582.2019.1699102. 980 

Zhang J and Zhang Y (2021) Tourism, economic growth, energy consumption, and CO2 981 

emissions in China. Tourism Economics 27(5). SAGE Publications Ltd: 1060–982 

1080. DOI: 10.1177/1354816620918458. 983 

Zhang Xixi, Sun D, Zhang Xiaofan, et al. (2021) Regional ecological efficiency and 984 

future sustainable development of marine ranch in China: An empirical research 985 

using DEA and system dynamics. Aquaculture 534: 736339. DOI: 986 

10.1016/j.aquaculture.2021.736339. 987 



51 

 

Zhou B, Wen Z, Sutherland I, et al. (2020) The spatial heterogeneity and dynamics of 988 

tourism-flow spillover effect: The role of high-speed train in China. Tourism 989 

Economics: 135481662095830. DOI: 10.1177/1354816620958309. 990 

Zhou C, Wang S and Wang J (2019) Examining the influences of urbanization on 991 

carbon dioxide emissions in the Yangtze River Delta, China: Kuznets curve 992 

relationship. Science of The Total Environment 675: 472–482. DOI: 993 

10.1016/j.scitotenv.2019.04.269. 994 

  995 



52 

 

Table 1. Types of different quadrants of Moran scatter plot. 996 

Quadrant Class Meaning  

First HH 
Regions with high TCE surrounded by high-TCE 
regions, and the spatial correlation is positive. 

 

Second  LH 
Regions with low TCE surrounded by high-TCE 
regions, and the spatial correlation is negative. 

 

Third  LL 
Regions with low TCE surrounded by low-TCE 
regions, and the spatial correlation is positive. 

 
 

Fourth  HL 
Regions with high TCE surrounded by low-TCE 
regions, and the spatial correlation is negative. 
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Table 2. Indexes of inputs, outputs and influencing factor. 1008 

Tourism sector Indices Unit 

Inputs 

Employees Quantity 

Energy consumption 108 MJ 

Travel agency Quantity 

Star hotel Quantity 

Desirable outputs 
Tourism revenue 108 CNY 

Number of tourists Quantity 

Undesirable output CO2 104 tons 

Influencing factor Economic growth (lnEG) CNY/person 

 transportation accessibility (lnTA) km/km2 

 Urbanization rate (lnUR) % 

 Government support (lnGS) % 

 Technology innovation (lnTI) Quantity 

 Educational attainment (lnEA) % 

 Green infrastructure (lnGI) m2 
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Table 3. Moran’s index of TCE. 1010 

Year  Moran’s I   Z-statistic 

2008  0.245 ** 2.277 

2009  0.265 ** 2.440 

2010  0.375*** 3.319 

2011  0.295*** 0.008 

2012  0.298*** 2.693 

2013  0.310 *** 2.797 

2014  0.286*** 2.600 

2015  0.243** 2.252 

2016 0.190 * 1.810 

2017 0.079 0.913 

2018 0.055 0.723 

2019  0.026 0.485 

Note: *** p<0.01, ** p<0.05, and * p<0.1. 1011 

 1012 

 1013 

 1014 

 1015 

 1016 

 1017 

 1018 

 1019 
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Table 4. Test results of the spatial panel model. 1021 

Test Statistic 

LM test 

LM-error 9.08*** 

Robust LM-error 24.89*** 

LM-lag 0.72 

Robust LM-lag 16.52*** 

Wald test 
Wald-lag 20.50*** 

Wald-error 18.79*** 

LR test 
LR-lag 19.57*** 

LR-error 16.37** 

Note: *** p<0.01, ** p<0.05. 1022 

 1023 

  1024 
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Table 5. Analysis of factors influencing TCE. 1025 

Dependent 

Variable 
 SEM  SAR  SDM 

lnEG -0.299*** -0.372*** -0.594*** 

lnTA -0.723*** -0.569** -0.394 

lnUR 2.583*** 2.881*** 2.845*** 

lnGS 0.103 0.141 0.135 

lnTI 0.194*** 0.185*** 0.175*** 

lnEA -0.092 -0.049 0.013 

lnGI -0.150 -0.019 0.001 

W*lnEG   0.209 

W*lnTA   -1.349* 

W*lnUR   1.712*** 

W*lnGS   -0.333* 

W*lnTI   0.097 

W*lnEA   -0.436*** 

W*lnGI   -0.603* 

AIC 

Log-likelihood 

-51.508 

34.754 

-48.311 

33.155 

-53.883 

42.941 

N 360 360 360 

Notes: *** p<0.01, ** p<0.05, and * p<0.1; lnEG is the economic growth; lnTA is 1026 

transportation accessibility; lnUR is urbanization rate; lnGS is government support; lnTI 1027 

is technology innovation; and lnEA is educational attainment; lnGI is green 1028 

infrastructure.  1029 
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Table 6. Decomposition of spatial effect. 1031 

  Direct effect Indirect effect Total effect 

lnEG -0.648*** 0.392 -0.257** 

lnTA -0.259 -0.915 -1.174** 

lnUR 2.846*** 0.114 2.960*** 

lnGS 0.181* -0.307** -0.126 

lnTI 0.170*** 0.015 0.184** 

lnEA 0.047 -0.333*** -0.286** 

lnGI 0.069 -0.447* -0.378 

Notes: *** p<0.01, ** p<0.05, and * p<0.1; lnEG is the economic growth; lnTA is 1032 

transportation accessibility; lnUR is urbanization rate; lnGS is government support; lnTI 1033 

is technology innovation; and lnEA is educational attainment; lnGI is green 1034 

infrastructure.  1035 
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 1040 

Figure 1. China's TCE trends over time. 1041 
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 1043 

 1044 

Figure 2. Spatial distribution of average TCE in 2008-2019. 1045 
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  1048 

Figure 3. Moran’s scatter plot of average TCE in 2008-2019. 1049 

Left: spatial pattern of TCE. Right: quadrant distribution of TCE. 1050 

 1051 

Moran scatterplot (Moran's I = 0.302)
lef

W
z

z
-3 -2 -1 0 1 2

-2

-1

0

1




