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Abstract 

Bolt loosening monitoring is of great significance to warrant the reliability and safety of 
bolted structures. The electromechanical impedance (EMI)-based evaluation is effective to 
perceive bolt loosening. However, EMI signals are highly prone to contamination by 
temperature fluctuation. Deep learning (DL) based EMI is a promising technique for accurate 
damage detection in the temperature variation environment. However, DL needs a lot of data 
to train, which is usually very difficult to collect sufficient structural damage data in real 
word scenarios. This paper proposed a few-shot EMI monitoring method based on a modified 
prototype network for bolt looseness detection under temperature varying environment. The 
approach features a conversion method of the impedance signal to image based on the Hank 
matrix. A modified prototype network is then developed. An experimental study was carried 
out on a bolted joint. EMI signals under different bolt loosening conditions were measured in 
a temperature variation environment. An impedance analyzer and a self-made small 
lightweight monitoring device were both used to measure the EMI signals to test the cross 
domain scenario. The proposed method was compared with the transfer learning methods and 
other typical FSL methods. The experiment results show that the proposed few-shot EMI 
method can obviously improve the monitoring accuracy of bolt loosening with few samples. 

Keywords: Bolt loosening, Few-shot learning, Modified prototype network, Electromechanical impedance, Temperature. 

1. Introduction

Bolt joints are often used in engineering structures to
connect different parts. However, bolts are frequently 
subjected to loosening due to inappropriate preloads during 
installation or time varying external loads during service[1]. 
Bolts loosening may lead to the failure of the entire structure. 

Hence, monitoring the preload states of bolt joints is of great 
significance to ensure the reliability and safety of the entire 
structure[2, 3]. Electromechanical impedance-based 
evaluation method (EMI) using active piezoelectric 
transducers is an effective technique for bolt loosening 
monitoring[4, 5]. By measuring the electrical impedance of a 
piezoelectric sensor attached to the monitored structure, the 
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change in the mechanical impedance of the structure can be 
evaluated[6, 7]. The EMI method is a local damage 
monitoring method and is sensitive to the initial loosening of 
a bolt. In the EMI damage detection, the real part of the 
measured impedance is perceptive to structural damage. The 
root mean square deviation (RMSD) or correlation coefficient 
(CC) of the real parts of impedance before and after the
damage is often used as the damage index[4, 5].

In the practical engineering applications of the EMI 
method, the environment temperature of engineering 
structures changes continually. However, the change of 
temperature will directly lead to changes in the characteristics 
of the piezoelectric transducer and the adhesive layer, which 
greatly affect the accuracy of defect detection. Hence, the 
temperature compensation of the impedance spectrum must be 
considered. To this end，Koo et al[8] proposed an effective 
frequency shift method (EFS) to reduce the effect of 
temperature. This method shifts the real part curve of EMI on 
the frequency axis to maximize the CC index. However, it is 
hard to compensate for changes in EMI amplitude caused by 
temperature. Hence, Wandowski et al[9] further proposed to 
compensate for vertical shift of EMI by whole-signal 
normalization using root mean square (RMS) before the 
application of EFS. Although this method eliminated the 
influence of temperature better, the change in the shape of the 
EMI curve caused by temperature is still ignored, which also 
affects the detection accuracy. 

To improve detection accuracy, the application of machine 
learning in EMI detection has been widely discussed by 
researchers. Park et al[10] calculated the RMSD of the 
principal components of EMI data extracted by principal 
component analysis (PCA). Then the k-means clustering 
network was used to cluster different numbers of loose bolts. 
Selva et al.[11] proposed to use Probabilistic Neural 
Networks(PNN) for the damage localization, and 7 damage 
indices including RMSD and CC were used as the input of the 
PNN. Recently, Na [12] used EMI technique with PNN to 
identify torque loss of bolts on three bolted structure 
specimens. To consider the effect of temperature, Min et al. 
[13] split the EMI signals into multiple sub-ranges of
frequency, and calculated the temperature-compensated CC
values for each sub-range by the EFS method[8]. Then the
compensated CC values were used as inputs of a feedforward
neural network (FNN) to classify damages. In the above
machine learning techniques, damage indices need to be
constructed artificially before using k-clustering, PNN or
FNN.

In recent years, DL methods, especially convolutional 
neural networks (CNN), have been gradually used in structural 
health monitoring (SHM) [14, 15]. DL is a promising 
technique for accurate damage detection based on EMI, which 
does not need damage indices. Two-dimension (2-D) CNNs 
are commonly used in many domains, while EMI signals are 

one-dimension (1-D) frequency-domain signals. Hence, how 
to construct an image based on EMI signals is one of the key 
aspects. Choy et al. [16]used the frequency axis of the real part 
curve of EMI signal as the vertical axis, and extended its 
corresponding value in the horizontal direction. Thus, RGB 
images were constructed as the input of CNN. However, the 
image size is also the square of the signal length. De Oliveira 
et al. [17] split the real part of EMI signal into several parts 
and then computed the Euclidean distance among them to 
form an RGB image. A 2-D CNN with three convolution 
layers was established to identify the simulated damages on an 
aluminum board. However, it is complicated to calculate the 
Euclidean distance matrix. Almeida et al.[18] established a 1-
D CNN and a 2-D CNN with only one convolutional layer in 
each model. For the 2-D CNN, EMI signal was divided into 
multiple segments, which were then directly stacked to 
construct an image as input, and 2,470 samples were used. 
However, this method will cause jumps at the cutoffs. The 
classification accuracy of the above two CNNs is not higher 
than 88.95%. The main reason is that only one convolutional 
layer cannot extract image features well.  

The above works based on CNNs did not consider the 
influence of temperature. De Rezende et al.[19] established a 
1-D CNN with only one convolutional layer to identify
simulated damages on aluminum plates, and 900 samples were 
used. However, only three different temperatures were
considered. Du et al.[20] proposed a multi-task U-Net CNN to
carry out temperature compensation and bolt loosening
condition monitoring of bolted structures based on EMI
signals. It is proved that the DL based EMI damage
monitoring method is effective and accurate in the temperature 
variation environment.

DL needs a lot of data to train. However, it is usually very 
difficult to collect sufficient structural damage data in real 
word scenarios[21]. The problem of training a DL network 
with few labeled samples (e.g., one or five samples per class) 
during network training is known as few-shot learning (FSL) 
[22]. It has received very much attention in recent years. An 
FSL task usually contains an auxiliary set, a target labeled 
support set and a target unlabeled query set. Unlike transfer 
learning, FSL methods usually employ an episodic training 
mechanism[23] to train the network. This is done by sampling 
a large number of episodes from the auxiliary training set, 
each of which is a simulation of the test task. In this way, the 
trained model can converge quickly on the test task[24]. 

Typical FSL methods can be roughly divided into two 
types: meta-learning based methods and metric-learning based 
methods[22]. The metric-learning based methods adopt the 
learning-to compare paradigm to classify query samples by 
comparing the distance between query samples and support 
samples. It has received a lot of attention. Vinyals et al. [23] 
proposed a MatchingNet, which uses LSTM as the embedding 
function and cosine similarity to measure the distance between 
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query samples and labeled samples. Sung et al.[25] developed 
a RelationNet using an embedded module consisting of four 
layers of CNN to extract features, and a relationship module 
consisting of two layers of CNN for distance measurement. 
Over fitting is the key problem of FSL. To solve this problem, 
Snell et al.[26] proposed a ProtoNet, which compares the 
Euclidean distance between query samples and prototypes of 
each class in an embedded space for few-shot classification. 
ProtoNet has a very simple model architecture. However, the 
metric function of the ProtoNet needs to be further improved 
to increase the generalization ability of the model. 

Recently, FSL method has been gradually applied to fault 
diagnosis and SHM. Wu et al.[27] verified the performance of 
the RelationNet in fault diagnosis on three bearing fault 
datasets. The results show that the RelationNet is effective in 
extremely few-shot classifications. Tao et al. [28] proposed a 
model unknown matching network for fault diagnosis problem 
by combining a meta-learning network and a metric-learning 
network. In the field of image-processing based SHM, Xu et 
al.[29] proposed a nested attribute-based few-shot meta 
learning paradigm for structural damage identification. It can 
be seen that FSL has achieved good performances in few-shot 
fault diagnosis and image-based SHM. However, it has not 
been applied in EMI-based SHM. 

In this paper, a few-shot EMI monitoring method based on 
a modified prototype network is proposed for bolt looseness 
detection under temperature varying environment. The 
contributions of this paper are as follows. 

(1) A few-shot EMI monitoring method based on a 
modified prototype network for damage detection is proposed. 
First, the Hank matrix is used to convert the 1-D EMI signal 
into a 2-D image. Then, the metric function of the prototype 
network is improved by adopting the cosine similarity to 
calculate the distance between the sample and the prototype. 

(2) Datasets simulating the real service environment were 
constructed to validate the proposed method. The EMI signals 
under different bolt loosening conditions were measured in a 
temperature change environment. In addition, an impedance 
analyzer and a self-made small lightweight monitoring device 
were both used to measure the EMI signals to test the cross 
domain scenario. 

(3) Comparison analysis among the proposed method, the 
traditional EMI monitoring method based on damage index, 
transfer learning methods and other typical FSL methods is 
performed. 

2. EMI Monitoring: Principle and Theory 

PZT sensors can realize the mutual conversion of electrical 
and mechanical energy. For the EMI detection method, a PZT 
is usually glued to the base structure, as shown in Figure 1a. 
The length, width and height of the PZT are la, ba and ta, 
respectively. At this time, the PZT is constrained by the 
structural stiffness of the base structure kstr. The structural 

stiffness can be split into two end components[30], as shown 
in Figure 1b. 

 

 
Figure 1. Structure with PZT pasted on it (1) Schematic diagram of 
the actual structure (b)Simplified boundary conditions 
 

According to the above boundary conditions, constitutive 
equation of PZT, and axial waves equation, the electrical 
impedance of the PZT under excitation of harmonic voltage 
can be expressed by the following formula[4, 30]  
 

 Z = 1
𝑖𝑖𝑖𝑖𝑖𝑖

�1 − 𝑘𝑘312 �1 − 1
𝑟𝑟+φcot𝜑𝜑

��
−1

 (1) 

 
where, ω is the angular frequency, C is the capacitance of the 
PZT, 𝑘𝑘312  is the electromechanical coupling factor, r =
𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃⁄  is the stiffness ratio of the PZT sheet and the base 
structure. φ can be expressed as 
 

 φ = 1
2
𝛾𝛾𝑙𝑙𝑎𝑎 (2) 

 
where, γ is the wave number. When the PZT is used in a 
frequency sweep, the structural stiffness, 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 will vary with 
frequency, going through zero at structural resonances, and 
extreme values at structural anti-resonances[30]. At this time, 
the electrical impedance Z changes significantly. Thereby, 
damages caused by the change of 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 can be evaluated. 

In practice, the most popular damage indices used in the 
EMI method are the root mean square deviation (RMSD) and 
the correlation coefficient(CC), which can be written as[31, 
32]: 
 

 RMSD = ∑ ��𝑅𝑅𝑅𝑅�𝑍𝑍2(𝜔𝜔)�−𝑅𝑅𝑅𝑅�𝑍𝑍1(𝜔𝜔)��
2

𝑅𝑅𝑅𝑅�𝑍𝑍1(𝜔𝜔)�
2

𝜔𝜔𝐹𝐹
𝜔𝜔𝐼𝐼  (3) 

 CC = 𝑐𝑐𝑐𝑐𝑐𝑐�𝑅𝑅𝑅𝑅�𝑍𝑍1(𝜔𝜔)�,𝑅𝑅𝑅𝑅�𝑍𝑍2(𝜔𝜔)� �
𝜎𝜎1𝜎𝜎2

 (4) 

 
where, Re�𝑍𝑍1(𝜔𝜔)�  is the real part of the baseline signal, 
Re�𝑍𝑍2(𝜔𝜔)�  is the real part of the impedance signal after 
possible damage, ωI and ωF are the initial frequency and final 
frequency, cov is the covariance of the two impedance signals, 
σ1 and σ2 are the corresponding standard deviations of each 
signal. 
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In fact, the properties of PZT, such as capacitance, change 
with temperature. Therefore, as the temperature increases, the 
real part of the impedance shifts to the low frequency direction 
of the frequency axis[9]. At the same time, its amplitude 
decreases and the shape of the impedance curve changes 
slightly. If temperature compensation is not performed, the 
damage index obtained by Eqs. (3) or (4) will result in a false 
warning [33]. 

3. The few-shot EMI monitoring method 

This section presents a few-shot EMI monitoring method 
based on a modified prototype network. A 1-D EMI signal is 
transformed into a 2-D image using a Hank matrix as the input 
to the network. 

3.1 The episodic training mechanism  

In few-shot setting, there are usually three sets of data, i.e. 
a target labeled support set 𝒮𝒮, a target unlabeled query set 𝒬𝒬 
and a class-disjoint auxiliary set 𝒜𝒜 . In addition,  𝒮𝒮  and 𝒬𝒬 
share the same label space. If the support set contains C classes 
with K labelled samples, the classification task is called a C-
way K-shot task[22, 25]. To learn an effective FSL classifier, 
episodic training mechanism[23] is normally adopted at the 
training stage. Episodic-training relies on lots of simulation 
few-shot tasks, which are randomly constructed from the 
auxiliary set 𝒜𝒜. Each simulated task (episode) 𝒯𝒯 consists of 
two subsets, 𝒜𝒜𝒮𝒮  and 𝒜𝒜𝒬𝒬 , which are akin to 𝒮𝒮  and 𝒬𝒬 , 
respectively. In one training epoch, lots of episodes will be 
randomly sampled from the auxiliary set to train this 
model[22], as shown in 

 
 �𝒯𝒯𝑖𝑖 = 〈𝒜𝒜𝒮𝒮

𝑖𝑖 ,𝒜𝒜𝒬𝒬
𝑖𝑖 〉�

𝑖𝑖=1

𝑁𝑁
  (5) 

 
where N is the number of episodes. 

3.2 The modified prototype network based on the 
cosine similarity 

The Prototype network is a typical metric-learning based 
FSL method. The metric-learning methods usually consist of 
two modules, an embedding module and a metric module. The 
embedding module embeds each sample to a lower-
dimensional representation space, and the metric module 
directly compares the distances between the query samples 
and support classes. Then, their distances are used to 
classify[34]. The Prototype network is based on the idea that 
there exists an embedding in which points cluster around a 
single prototype representation for each class. 

The Prototype network computes an M-dimensional 
representation vector of a sample through an embedding 
function fθ(·) which is usually a CNN. The mean 
representation vector of the support samples in each class is 

taken as the prototype belonging to this class. Specifically, 
given a few-shot task Τ =  {𝒮𝒮,𝒬𝒬}, the prototype of each class 
can be formulated as [26], 

 
  𝐜𝐜i = 1

𝐾𝐾
∑ 𝐳𝐳k𝐾𝐾
𝑘𝑘=1 = 1

𝐾𝐾
∑ 𝑓𝑓𝜃𝜃(𝐱𝐱k)𝐾𝐾
𝑘𝑘=1   (6) 

 
where xk is the input feature, zk is the embedding vector and K 
is the number of samples in each class (K-shot). 

Different from the Prototype network, the modified 
Prototype network uses cosine distance instead of Euclidean 
distance to compare the similarity between query samples and 
each prototype for classification. The cosine distance can be 
written as, 

 
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐�𝒛𝒛𝑗𝑗 , 𝒄𝒄𝑖𝑖� = 1 − cos�𝐳𝐳𝑗𝑗 , 𝒄𝒄𝑖𝑖� = 1 −

𝐳𝐳𝑗𝑗∙𝒄𝒄𝑖𝑖
�𝐳𝐳𝑗𝑗�‖𝒄𝒄𝑖𝑖‖

   (7) 

 
where zj is the embedding vector of query sample j.  

Finally, the posterior probability of query sample j 
belonging to class i is calculated using the softmax function, 
as shown below. 

 

 𝑝𝑝(𝑦𝑦 = 𝑖𝑖|𝑄𝑄) =
𝑒𝑒𝑒𝑒𝑒𝑒�−𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐�𝐳𝐳𝑗𝑗,𝒄𝒄𝑖𝑖��

∑𝑢𝑢=1
𝐶𝐶 𝑒𝑒𝑒𝑒𝑒𝑒�−𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐�𝐳𝐳𝑗𝑗,𝒄𝒄𝑢𝑢��

   (8) 

 
The structure of the improved prototype network is shown 

in Fig. 2. 
 

 
Figure 2. The structure of the modified Prototype network 

 
The embedding function in the modified Prototype 

Network is composed of four convolutional blocks[35]. Each 
block comprises a 64-filter 3×3 convolution, batch 
normalization layer, a ReLU nonlinearity and a 2×2 max-
pooling layer. The length of the embedded vector is 1600. 

3.3 Input feature based on Hankel matrix 

Impedance signal is a 1-D frequency domain signal. A 
Hankel matrix is a square matrix in which each ascending 
skew-diagonal from left to right is constant, as shown below: 
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 𝐴𝐴 = �

𝑎𝑎0 𝑎𝑎1 ⋯ 𝑎𝑎𝑛𝑛−1
𝑎𝑎1 𝑎𝑎2 ⋯ 𝑎𝑎𝑛𝑛
⋮ ⋮ ⋮

𝑎𝑎𝑛𝑛−1 𝑎𝑎𝑛𝑛 ⋯ 𝑎𝑎2𝑛𝑛−2

� (9) 

 
The Hankel matrix formed from the signal has been found 
useful for decomposition of non-stationary signals and time-
frequency representation[36]. Besides, the adjacent pixels in 
the obtained image are continuous. Therefore, the Hank matrix 
is used to convert the EMI signals into an image.  

Data normalization can improve training efficiency and 
network generalization performance. Therefore, each real part 
of impedance signal is normalized using the Min-Max 
Normalization method before converting to Hank matrix, as 
shown below: 

 

 Re �𝑍̂𝑍(𝜔𝜔)� =
𝑅𝑅𝑅𝑅�𝑍𝑍(𝜔𝜔)�−min �𝑅𝑅𝑅𝑅�𝑍𝑍(𝜔𝜔)��

max�𝑅𝑅𝑅𝑅�𝑍𝑍(𝜔𝜔)��−min �𝑅𝑅𝑅𝑅�𝑍𝑍(𝜔𝜔)��
 (10) 

 
Then, Re �𝑍̂𝑍(𝜔𝜔)� is converted to Hank matrix. The matrix is 
finally transformed into an 8-bit grayscale image, which is 
used as the input of the improved Prototype Network. The size 
of the grayscale image used in this study is 224×224 pixels. 

4. Experimental Validation 

Experimental validation was carried out on a lap joint 
connected by two bolts. EMI signals were measured from PZT 
pasted on the joint to verify the proposed method and its 
adaptability to cross domain scenarios. 

4.1 Experimental specimen and apparatus 

The experimental specimen is a bolted lap joint, as shown 
in Figure 3. The bolts are steel M6 bolts of strength grade 8.8, 
which connect two aluminum plates together. The thickness 
of each aluminum plate is 3mm. Flat washers were used for 
each bolt. A PZT sensor of P5-H was pasted between the two 
M6 bolts with AB glue. The dimensions of the PZT sensor are 
10mm×8mm×0.5mm. 

 

 
Figure 3. The bolted lap joint (a) Photo of the bolted lap joint, (b) 
Dimensions of the specimen (Unit: mm) 
 

In the experiment, a digital torque wrench of STANLEY 
SD-030-22 was used to tighten the two M6 bolts. An 
isothermal box 202-00A was used to change and maintain the 
temperature of the specimen, as shown in Fig. 4. The 
temperature in the box was accurately monitored through a 
four-wire thermistor PT100. The EMI measurement was 
performed when the monitored temperature in the box was 
stable. 

 

 
Figure 4. The impedance measurement in the isothermal box. 

 
An impedance analyzer of HIOKI IM3570 was used to 

measure the impedance signals from the PZT. SHM relies on 
small lightweight instruments. Hence, a self-made EMI 
monitoring device[37] based on AD5933 chip was also used 
to measure the EMI signals to test the cross domain scenario. 
When the temperature was 25℃ and the torque of the two M6 
bolts was 10N·m (health status of bolted joints), the specimen 
was pre-swept by the impedance analyzer HIOKI IM3570. 
The frequency sweep range is from 10kHz to100kHz, and the 
real part of the measured impedance is shown in Figure 5. 

 

The bolted lap joint 
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Figure 5. Real part of the pre-swept impedance 
 

It can be seen that there are multiple resonance peaks in the 
range from 10 to 100kHz. The resonance peak amplitude is 
relatively large from 40 kHz to 55kHz. To reduce the data 
length, the measurement frequency range of 40kHz~45kHz is 
selected in the following measurement, as shown by the dotted 
line in Figure 5. 

4.2 Damage scenarios and datasets 

Nine damage scenarios were measured by the impedance 
analyzer, as listed in Table 1 (1-1 represents the torque of both 
bolts 1N·m). There are a total of 720 sets of data. For each 
damage scenario, the bolts were tightened 3 times by the 
torque wrench. Therefore, three tightening batches were 
performed for all the damage scenarios. It should be noted that 
the temperature is evenly distributed within the temperature 
range for each damage scenario. 

Table 1. Damage scenarios measured by the impedance analyzer 

Damage 
scenario 

Torques of 
the two 

bolts(N·m) 

Temperature 
range(℃) Device 

Number 
of 

signals 
1 1-1 16~70 IM3570 80 
2 1-4 16~70 IM3570 80 
3 1-8 16~70 IM3570 80 
4 4-1 16~70 IM3570 80 
5 4-4 16~70 IM3570 80 
6 4-8 16~70 IM3570 80 
7 8-1 16~70 IM3570 80 
8 8-4 16~70 IM3570 80 
9 8-8 16~70 IM3570 80 

 
The self-made EMI monitoring device was used to measure 

four damage scenarios, as listed in Table 2. In this 
measurement, the bolts were tightened once for every damage 
scenario. Before the measurement, the AD5933 chip was 
calibrated by a resistance of 3000Ω. It can be seen that damage 
scenarios 10, 11, 12, and 13 are close to damage scenarios 1, 
3, 7, and 9 in Table 2, respectively. 
 
Table 2. Damage scenarios measured by the self-made monitoring 

device 

Damage 
scenario 

Torques of 
the two 

bolts(N·m) 

Temperature 
range(℃) Device 

Number 
of 

signals 
10 0-0 24~60 AD5933 107 
11 0-10 24~60 AD5933 99 
12 10-0 24~60 AD5933 98 
13 10-10 24~60 AD5933 102 

 
In the training phase, a total of 720 samples from damage 

scenarios 1-9 formed an auxiliary set on which episode 
training was performed. Among them, categories 1, 3, 5, 7 and 
9 were used as the auxiliary training set, and the remaining 4 
categories were used as the auxiliary validation set. In the 
testing phase, a total of 406 samples from categories 10-13 
listed in Table 2 were used as the test set. For the auxiliary set, 
the temperature distribution is shown in Fig. 6a. For the test 
set, the temperature distribution is shown in Fig. 6b. 
 

 
Figure 6. The temperature distributions (a) the auxiliary set (b) the 
test set 

 

4.3 EMI signals under different temperatures 

Figure 7 shows the real part of EMI signals of damage 
scenarios 1, 3, 7, and 9. Three signals are selected from each 
damage scenario, and the corresponding temperatures are 
around 24, 40, and 60℃. Figure 7a and d show that as the 
temperature increases, the resonance peak of the impedance 
shifts to the low-frequency direction, and the amplitude 
changes slightly. Meanwhile, the shapes of the curves in 
Figure 7b and c change greatly. The reason is that the signals 
in each subplot were measured in three different tightening 
batches. In addition, Figure 7b and c show that the impedance 
curves of damage scenarios 3 and 7 under the same 
temperature are different. The main reason is that the structure 
is not symmetrical due to the dimensional deviations and the 
preload deviations 
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Figure 7. The real parts of measured impedances (a) Damage 
scenario 1, (b) Damage scenario 3, (c) Damage scenario 7, (d) 
Damage scenario 9. 
 

Figure 8 shows the real part of the EMI signals of damage 
scenarios 10-13. Each subplot also shows 3 curves from the 
same damage scenario, and the corresponding temperatures 
are around 24, 40, and 60 ℃ . It is obvious that as the 
temperature increases, the resonance peak shifts to the low 
frequency direction, and the corresponding amplitude 
decreases. Compared with Figure 7, it can be seen that all the 
curves displayed in Figure 8 shift upward. The impedance 
amplitudes measured by the AD5933 are different from the 
impedance analyzer measurements. This difference is due to 
the characteristics of the chip AD5933[10]. Thus the auxiliary 
set and the support and query sets are cross-domain scenarios, 
which leads to difficulties for few-shot classification.  

 

 
Figure 8. The real parts of measured impedances (a) Damage 
scenario 10, (b) Damage scenario 11, (c) Damage scenario 12, (d) 
Damage scenario 13. 

5．Results and discussion 

The modified prototype network was used to identify the 
damage scenarios measured by the experiment in Section 4. 
The results were compared with the traditional EMI 
monitoring method based on damage index, the transfer 
learning methods and other typical FSL methods. 

5.1 Training process and hyperparameters  

The measured impedance signals were converted into 
224×224 pixel grayscale images using the method in Section 
4.3. Fig.9 shows the grayscale images converted from the 
impedance curves measured at around 24°C shown in Figs. 7 
and 8. It can be seen that the white stripes in each image 
change with the damage scenario. Furthermore, the white 
stripes shift in their vertical direction with temperature.  

 

 

Figure 9. The input grayscale images 
 

In this paper, 4-way 4-shot and 4-way 1-shot tasks were 
investigated. 4-way 4-shot task means the support set contains 
4 classes with 4 labelled samples. 4-way 1-shot task means the 
support set contains 4 classes with 1 labelled sample. At this 
time, the episode training process is as follows. First, 4 
categories were randomly sampled from the auxiliary training 
set. And each category in one episode contains 4 or 1 support 
samples and 15 query samples, which were randomly selected 
from the total number of 80 samples in each category. In this 
way, 15 episodes were generated from the auxiliary training 
set. Using the same procedure, the same number of episodes 
were generated from the auxiliary validation set. In each 
epoch, the episodes from the auxiliary training set were used 
to train the embedding function, and the model was evaluated 
on the episodes from the auxiliary validation set. The model 
was saved when the validation accuracy is highest.  

Then, the 4-way 4-shot and 4-way 1-shot tasks were tested 
to evaluate the performance of the saved model. In each 
episode, 4 or 1 support sample and 15 query samples were 
randomly selected from each of categories 10-13. Each task 
was tested with 50 episodes, and the mean and variance of 
classification accuracy were finally calculated.  
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During network training, the Adam optimization 
method[38] was used to optimize the network parameters. The 
learning rate has a great effect on the training process, so it 
was optimized. For the two tasks, the learning rate are 8e-3 
and 2e-3, respectively.  

5.2 Results of damage index after temperature 
compensation 

The results shown in Figs.7 and 8 were compensated by the 
method of  Wandowski et al. [9]. The impedance curves 
shown in Fig. 7 after temperature compensation are displayed 
in Fig. 10. It can be seen that the effect of temperature cannot 
be completely eliminated. Then, the RMSD and CC were 
calculated by Eq.3 and 4, and are displayed in Fig. 11. In this 
figure, the first curve means the result of the blue curve in Fig. 
7, the second curve means that of the red curve and the third 
curve means that of the black curve. For damage scenarios 1, 
3, 7 and 9, the curve in damage scenario 9 measured at 23.2℃ 
was used as the baseline signal. For damage scenarios 10-13, 
the curve in damage scenario 13 measured at 23.57°C was 
used as the baseline signal. 

 

 
Figure 10. The real parts of measured impedances after temperature 
compensation (a) Damage scenario 1, (b) Damage scenario 3, (c) 
Damage scenario 7, (d) Damage scenario 9. 

 

 
Figure 11. Damage indices after temperature compensation (a) CC 
indices of damage scenarios 1, 3, 7, 9, (b) CC indices of damage 
scenarios 10-13, (c) RMSD indices of damage scenarios 1, 3, 7, 9, 
(d) RMSD indices of damage scenarios 10-13. 
 

It can be seen from Fig. 11a that after temperature 
compensation, damage scenarios 1 or 9 can be identified from 
others by using the CC index. However, the CC indices of 
damage scenarios 3 and 7 are too close and cannot be 
distinguished. It should be noted that the CC value of the 
baseline is 1. Similarly, the results in Fig. 11b show that 
damage scenarios 11 and 12 cannot be distinguished from 
each other after temperature compensation. Figure 11c also 
shows that damage scenarios 1, 3 and 7 cannot be 
distinguished from each other by RMSD values after 
temperature compensation. It should be noted that the RMSD 
value of the baseline signal is 0. Similarly, damage scenarios 
11 and 12 cannot be distinguished from each other by RMSD 
as shown in Figure 11d. It can be concluded that it is difficult 
to accurately identify every damage scenario by traditional 
methods based on temperature compensation and damage 
indices. Hence, the temperature compensation method is not 
used in the proposed FSL method. 

5.3 Results of the proposed method 

The proposed method is verified, and the training procedure 
in Section 5.1 is used. The classification accuracy in the test 
set is compared with the results of typical FSL methods, 
including the ProtoNet, RelationNet, MatchingNet, and 
MAML. Note that the same four-layer convolution backbone 
is used in the above method, and the hyperparameters are the 
same. The 4-way 4-shot and 4-way 1-shot tasks were tested 
respectively. The mean and standard deviation of the results 
are listed in Table 3. 

At the same time, the proposed method was compared with 
the transfer learning methods based on network fine-tuning, 
including the Baseline and Baseline++[35]. Both the Baseline 
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and the Baseline++ methods use the same four-layer 
convolution backbone. Their classifiers are the softmax 
classifier and the cosine distances based classifier[35], 
respectively. The Baseline and Baseline++ models were pre-
trained using the entire auxiliary training set. Then, the 
classifiers of the models were fine-tuned by the support set of 
an episode in the test set. And the query set of the same 
episode is used to verify the classification accuracy. When the 
classifier was fine-tuned, the parameters of the convolution 
layers were fixed. 50 episodes of data in the test set were 
randomly selected, and the above fine-tuning procedures were 
repeated 50 times. The mean and variance of classification 
accuracies were finally calculated, and the results were listed 
in Table 3.  

 
Table 3. Classification accuracy of the FSL and transfer learning 

methods 

Method 
Accuracy (%) 

4-way 4-shot 4-way 1-shot 

Baseline 94.03 ± 1.57 85.53 ± 2.57 
Baseline++ 91.20 ± 1.03 86.90 ± 1.27 
RelationNet 94.33 ± 0.82 91.30 ± 1.93 
MatchingNet 97.07 ± 0.85 89.70 ± 1.51 

MAML 93.30 ± 1.18 89.20 ± 1.43 
ProtoNet 93.67 ± 0.92 88.53 ± 1.98 

Modified ProtoNet 97.63 ± 0.48 93.43 ± 0.92 
 
It can be seen from the results in Table 3 that, the proposed 

modified Prototype Network has the highest precision and 
smallest standard deviation on the test set. The accuracy 
improvement of the modified Prototype Network is obvious 
for both the 4-way 4-shot and 4-way 1-shot tasks, especially 
for the 4-way 1-shot task. The effectiveness of the proposed 
method has been verified. In addition, the results also show 
that the accuracies of all the FSL methods are higher than 
those of the transfer learning methods for the 4-way 1-shot 
task. It indicates that the episodic training mechanism is more 
effective than the fine-tune based transfer learning method in 
extremely few-shot classifications. Figure 12a and b show the 
confusion matrices of two episodes in the 4-way 1-shot task 
and the 4-way 4-shot task, respectively. 

 

 

Figure 12. The confusion matrices of the classification results for the 
modified ProtoNet (a) the 4-way 1-shot task, (b) the 4-way 4-shot 
task. 

 
For the proposed method, the classification accuracies 

under different embedded vector lengths were compared, and 
the results are listed in Table 4: 

 
Table 4. Classification accuracy with different embedded vector 

lengths 

Embedded 
vector length 

Accuracy (%) 

4-way 4-shot 4-way 1-shot 

1600 97.63 ± 0.48 93.43 ± 0.92 
1400 96.40±0.93 91.70± 1.85 
1200 96.27±0.85 91.43± 2.25 
800 95.57±0.72 95.13± 1.45 
400 95.20±0.71 92.53± 1.26 
200 93.50±1.09 84.53±2.05 

 
It can be seen that the length of the embedded vector has a 

greater impact on the test accuracy. For the 4-way 4-shot task, 
the classification accuracy is the highest when the embedded 
vector length is 1600. For the 4-way 1-shot task, the 
classification accuracy is the highest when the length is 800. 
The size of the input image is 224 × 224. When the embedded 
vector is too short, such as 400 or 200, it is difficult for the 
embedded vector to represent the overall characteristics of the 
sample. At this time, its classification accuracy is poor.  

For the 4-way 4-shot task, the classification accuracy 
increases with the vector length. The reason is that there are 
multiple support samples in one class of the support set, and 
the prototype calculated from the support samples can better 
represent the overall characteristics of the class. The feature 
information is richer when the prototype length is larger. 
However, for the 4-way 1-shot task, there is only one support 
sample in one class of the support set, and its embedded vector 
is used as the prototype of the entire class. If the prototype 
length is too large, it will contain too many details of the 
sample itself. These details cannot accurately represent the 
overall characteristics of the class, which have a negative 
impact on the classification. Therefore, the classification 
accuracy of the 4-way 1-shot task does not always increase 
with the length of the embedded vector. 

5.4 The effect of the cosine distance 

To show the advantage of the cosine distance, the 
embedding vectors obtained by the ProtoNet and the modified 
ProtoNet were compared. The embedding vectors were 
visualized using the t-distributed stochastic neighbor 
embedding (t-SNE). In addition, the distribution discrepancy 
between the embedding vectors from different datasets was 
measured using the maximum mean discrepancy(MMD). 

(a) (b)
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The t-SNE results of the embedding vectors from the 
auxiliary validation set and the test set are shown in Figs. 13 
and 14. The embedding functions of the 4-way 1-shot and 4-
way 4-shot tasks were used for Figs. 13 and 14, respectively. 

 

 
Figure 13. The t-SNE results of the embedding vectors for the 4-way 
1-shot task calculated by (a) the ProtoNet from the auxiliary 
validation set, (b) the modified ProtoNet from the auxiliary validation 
set, (c) the ProtoNet from the test set, (d) the modified ProtoNet from 
the test set. 
 

 
Figure 14. The t-SNE results of the embedding vectors for the 4-way 
4-shot task calculated by (a) the ProtoNet from the auxiliary 
validation set, (b) the modified ProtoNet from the auxiliary validation 
set, (c) the ProtoNet from the test set, (d) the modified ProtoNet from 
the test set. 
 

Figure 13a and b clearly show that the cosine distance can 
effectively increase the inter-class distances of embedding 
vectors from the auxiliary validation set. The results in Fig. 14 
a and b are consistent with these in Fig. 13a and b. For the test 
set, Fig. 13c and d proved that the cosine distance can increase 

the inter-class distances of embedding vectors. The results in 
Fig. 14c and d are consistent with these in Fig. 13c and d. 

Maximum mean discrepancy is a nonparametric distance 
metric that can measure the distribution discrepancy between 
two datasets. The MMD results between the embedding 
vectors calculated from the auxiliary and the test sets are listed 
in Table 5. The embedding vectors are calculated by the 
ProtoNet and the modified ProtoNet, respectively. It should be 
noted that the impedances in the test set were measured by the 
self-made EMI monitoring device. Moreover, the impedances 
in the auxiliary set were measured by the impedance analyzer 
of HIOKI IM3570. Table 5 shows that the distribution 
discrepancy can be reduced by the modified ProtoNet. This is 
better for the cross-domain classification. 
 

Table 5. The MMD results 
 ProtoNet Modified ProtoNet 

4-way 1-shot 0.7689 0.6380 

4-way 4-shot 0.7357 0.4954 

 

6．Conclusion 

This paper proposed a few-shot EMI monitoring method 
based on a modified prototype network for bolt looseness 
detection under temperature varying environment. In this 
method, impedance signals are converted into images by the 
Hankel matrix. A modified prototype network is developed by 
adopting the cosine similarity as the metric function. An 
experimental study was carried out on a lap joint connected by 
two bolts to construct realistic datasets. The EMI signals under 
different bolt loose conditions were measured under 
temperatures, varying from 16℃  to 70℃ . An impedance 
analyzer and a self-made small lightweight monitoring device 
based on AD5933 were both used to measure the EMI signals 
to test the cross domain scenario. Comparison analysis among 
the proposed method, the traditional EMI monitoring method 
based on damage index, the transfer learning methods and 
other typical FSL methods is performed. 

The experiment results show that the proposed method 
outperforms the other methods. The accuracy improvement of 
the modified Prototype Network is obvious for both the 4-way 
4-shot and 4-way 1-shot tasks, especially for the 4-way 1-shot 
task. It is proved that the cosine distance can effectively 
increase the inter-class distances of embedding vectors and 
reduce distribution discrepancy of different domains. This is 
better for the cross-domain classification. The length of the 
embedded vector has a greater impact on the test accuracy. In 
addition, the results also show that the accuracies of all the 
FSL methods are higher than those of the transfer learning 
methods for the 4-way 1-shot task. It indicates that the 
episodic training mechanism is more effective than the fine-
tune based transfer learning method in extremely few-shot 
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classification. Moreover, it is difficult to accurately identify 
every damage scenario by traditional methods based on 
temperature compensation and damage indices.  

In summary, the proposed few-shot EMI method can 
provide accurate monitoring of bolt loosening with few 
samples and good generalization performance. Therefore, it 
has the potential to be applied to actual engineering structures 
in the service environment. 
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