This is the Pre-Published Version.

This is a pre-copyedited, author-produced PDF of an article accepted for publication in IMA journal of numerical analysis following peer review. The
version of record Jiachuan Cao, Buyang Li, Yanping Lin, A new second-order low-regularity integrator for the cubic nonlinear Schrédinger equation, IMA
Journal of Numerical Analysis, 2023;, drad017 is available online at: https://doi.org/10.1093/imanum/drad017.

A NEW SECOND-ORDER LOW-REGULARITY INTEGRATOR
FOR THE CUBIC NONLINEAR SCHRODINGER EQUATION

JIACHUAN CAO , BUYANG LI, AND YANPING LIN

ABsTRACT. This article is concerned with the question of whether it is possible to con-
struct a time discretization for the one-dimensional cubic nonlinear Schrodinger equa-
tion with second-order convergence for initial data with regularity strictly below HZ2.
We address this question with a positive answer by constructing a new second-order
low-regularity integrator for the one-dimensional cubic nonlinear Schrédinger equation.
The proposed method can have second-order convergence in L? for initial data in H %,
and first-order convergence up to a logarithmic factor for initial data in H'. This signif-
icantly relaxes the regularity requirement for second-order approximations to the cubic
nonlinear Schrodinger equation, while retaining the by far best convergence order for
initial data in H!. Numerical experiments are presented to support the theoretical
analysis and to illustrate the performance of the proposed method in approximating
nonsmooth solutions of the nonlinear Schrodinger equation. The numerical results show
that, among the many time discretizations, the proposed method is the only one which
has second-order convergence in L? for initial data strictly below H?2.

1. Introduction

In this article we consider the numerical approximation of the cubic nonlinear Schrodinger
(NLS) equation

i0pu(t, z) + 02u(t, ) = Au(t,z)[*u(t,z) for z € T and t € (0, 7],
u(0,2) = u’(z) forz €T,

(1.1)

on the one-dimensional torus T = [—7, ] with initial value u® € H"(T) for 1 < r < 2, where
A= —1or 1is a given parameter corresponding to the focusing and defocusing cases of the NL.S
equation, respectively. It is known that problem is locally well-posed in H"(T) for r > 0,
i.e., for u® € H"(T) problem has a unique solution in some subspace of C'([0,T]; H"(T))
satisfying the following relation:

t

u(t,-) = €020 — i)\/ ei(t=5)0z [|u(s, ~)‘2u(s, ]ds for t € 0,77,
0

see [6,27].

The numerical approximation to the solutions of the NLS equation has been studied in many
articles with different numerical schemes, including the Lie splitting schemes [18,37], the Strang
splitting [13}24], the Crank-Nicolson methods [2}/15,35] and exponential integrators [5,9}/16].
It is well understood that optimal-order convergence of the numerical approximation can be
established for each of these methods if the solution of is sufficiently smooth. For instance,
the first-order Lie splitting method can be written as

52
un+1/2 _ ezfazun7

1.2
un+1 — e*iAT’u”+1/2}2un+1/2 ( )
where 7 denotes the temporal stepsize. If we denote T'(u) = i0%u and V(u) = —i\|u|?u, then

the local error of the Lie splitting scheme contains a principle term of type 7°[T, V](u), where
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the Lie commutator [T, V] can be expressed as follows (see [24])

1

2\
Due to the presence of 92u in the local error, the first-order convergence of the Lie splitting
method requires the exact solution of the NLS equation to be in C ([0, T]; H%(T)); see the frac-
tional error estimates of splitting schemes in [13]. For the second-order Strang splitting method,
the second-order convergence in L?(T) requires the solution to be in C([0,T]; H*(T)); see the
foundational analysis of splitting methods in [24]. The regularity conditions are also required
by the classical exponential integrators and finite difference methods; see [1635L[39]. In general,
kth-order convergence in L?(T) of the classical numerical methods, including splitting methods,
finite difference methods and exponential integrators, require at least u € C([0, T]; H**(T)) and
therefore requires u’ € H?*(T).

In various real-world applications, the initial data can be nonsmooth and therefore may
not satisfy the smoothness conditions above. For example, in the field of nonlinear optics, the
propagation of light in optical fibers can be modeled by the NLS equation. The roughness of
the initial data is one of the causes of the formation of rare, large amplitude waves known as
rogue waves [1,38]. Therefore, accurate simulation of the NLS equation for rough initial data is
crucial for studying the formation and propagation of these phenomena. Since the Schrédinger
group ¢it9%2 does not have the smoothing property as the heat semigroup etaﬂ%, the convergence
order of the classical numerical methods is generally reduced when the initial values are not
sufficiently smooth.

To overcome this difficulty, Ostermann & Schratz |28] introduced a low-regularity integrator

for the NLS by utilizing the twisted variable v(t) = e~ u(t) and the equivalent formulation
10 (t) = Ae 102 Ueitagv(t)feimgv(t)}, v(0) = u°. (1.3)

[T, V](u) = (0zu - Opt)u + (Oputr) - Opu + (u0zt) - Opu + (u%)u

The solution of this equation can be written as follows by using the variation-of-constants
formula:

vty +7) = v(tn) — iA / e~ itn+9)0; [\ei<tn+s>8%v<tn + 5)| 2l tnt D%y (1, + s)] ds,  (1.4)
0

where t, = n7. By using the Fourier series expansion, Ostermann & Schratz extracted the
main oscillation terms from the right-hand side of , which are computed explicitly such
that the remainders only require the boundedness of one additional spatial derivative of the
exact solution. Correspondingly, the method can have first-order convergence in H"(T) for
initial value u® € H"T(T) when r > % More recently, Wu and Yao [41] proposed a new low-
regularity integrator for the one-dimensional NLS equation with different harmonic analysis
techniques, with first-order convergence in H"(T) for initial value u® € H"(T) when r > 2.

The combination of twisted variable and harmonic analysis was also used in the development
of low-regularity time discretizations for other nonlinear dispersive equations, such as the KdV
equation, the Dirac equation, the Klein-Gordon equation, and the Boussinesq equation. We
refer to [17},25,29,33.36},40,42,143] and the references therein.

By introducing and utilizing the discrete Bourgain space, Ostermann, Rousset & Schratz
[26,27] proved that some filtered Fourier based integrator methods can have convergence order
6(s) in L?(T) for initial value u® € H*(T9), where 6(s) is a piecewise function ranging from 0 to
% —e when s € (0, 1]. This proves the existence of certain convergence order for some numerical
methods under minimal regularity conditions. A fully discrete low-regularity integrator for the
NLS equation was constructed in [22] based on harmonic analysis techniques, with almost first-
order convergence in L2(T) for initial value u® € H'(T), which is by far the minimal regularity
condition for first-order convergence in L?(T). Ostermann & Yao [31] proposed a different fully

discrete low-regularity integrator with convergence order %s — % — € in L?(T) for initial value

u® € H*(T?) with s € (3,1], relaxing the regularity condition of [22] to v’ € H*(T?) with
s € (3,1) without affecting the convergence order in the case s = 1. For the NLS equation
under the Neumann boundary condition, when the Fourier transform based frequency analysis
cannot be used, the Littlewood-Paley decomposition technique was used in [3] to construct a
low-regularity integrator with first-order convergence for H' initial data.
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Based on the high-order resonance analysis, several second-order low-regularity integrators
for the NLS equation were developed in [8,(19,[30]. The best result so far is to have second-order
convergence in L?(T) for initial value in H?(T). A natural question is whether it is possible
to construct low-regularity integrators for the NLS equation with second-order convergence in
L?(T) for solutions with regularity strictly below H?(T).

The objective of this paper is to address this question by constructing a new time discretiza-
tion for the NLS equation which can have second-order convergence in L?(T) for initial value

u € H3 (T), while keeping to have first-order convergence in L?(T) under the weaker regularity
condition u® € H'(T) as in [22,31]. Our methodology is based on two main techniques:

(1) Substituting v(t, + s) =~ v(ty) + @7 (v(ty), s) into the right-hand side of (1.4), where
v(ty) + @7 (v(tn), s) denotes the first-order low-regularity integrator constructed by Os-
termann & Schratz [28].

(2) With the aid of harmonic analysis techniques and a temporal averaging technique de-
veloped in [8,23,130], we construct the low-regularity integrator by carefully selecting
the tractable terms from the exponential integral such that the spatial derivatives are
almost uniformly distributed to the product terms in the remainder.

As a result, we manage to prove second-order convergence in L?(T) for the proposed method

under the by far minimal regularity condition, i.e., u € C([0,T]; H %(’]I‘)) The numerical ex-
periments in this article indicate that, among the many existing time-stepping methods, the
proposed low-regularity integrator is the only method which can have second-order convergence
in L?(T) for initial data below H?(T). Beyond the numerical analysis, the numerical experiments
also indicate that the proposed new time discretization, combined with the Fourier spectral dis-
cretization with the number of degrees of freedom N = O(77 1), has convergence order s for
initial data in H*(T) with s € (0,1). The rigorous analysis for the stability and convergence of
the proposed time discretization in combination with filtered spatial discretizations for initial
data in H*(T) with s € (0, 1) is more challenging and will be investigated in the future.

The rest of this article is organized as follows. In section 2, we present the numerical
algorithm and the main theoretical result on the convergence of the algorithm. In section 3,
we present the construction of the second-order low-regularity integrator based on the analysis
of the consistency errors. The error bounds of the proposed method are proved in section 4.
Finally, numerical experiments are presented in section 5 to illustrate the convergence of the
proposed method for both smooth and nonsmooth initial data.

2. Notations and main result

In this section we introduce the notations which will be frequently used in this article.
Then we present the new low-regularity integrator and the main convergence result.

2.1. Some notations

We denote by A < B or A 2 B the statement “A < C'B for some constant C' > 0 which is
independent of 7 or n”. The inner product and norm on L?(T) are denoted by

(f.9) = /T f@)g@dz and | fllz = VF.J), respectively.

The Fourier transform of a function f € L?(T) is defined as Fi[f] = o [ e % f(z)dx.
For the simplicity of notations, we denote

flz) = Z eikxfk with fk = fk[f]
keZ
It is well known that
1£172 =27 |fil? (Plancherel identity),
keZ
(fg)(k) = Z Frty 0k (Fourier transform of a product).
ki1€Z



For any function ¢ : Z — C such that |[p(k)| < Cy(1 + |k|)™ for some constants C,, and
m > 0, we define the operator p(i~19,) as follows

p(i710:)f = (k) fre™

keZ
We denote )
(k) =(1+k*>2 and J° = (i"19,)%.
Then, the equivalent norm on the Sobolev space H?® is denoted by
1 1Fre = 15F 172 = 20 ) (1 + K2 ful.
keZ
By using the Fourier expansion, the free Schrédinger group €% for t € R can be written by
zt@ —itk?
@)= e et
keZ
Since |e~**| = 1, it follows that € is a linear isomerty on H*(T).

Furthermore, for any integer m > 1 we define a regularization of 9;™ : H® — H*™™ by

Felo;™ :{ ()" fy. when k 70,

0, when k = 0.
The following functions will be used in the definition of the numerical scheme:
e —1
fi 0
p1(z) = ;o frz#0 (2.1)
1, for z =0,
and
1 —e? z 21—
%, for z # 0, %, for z # 0,
hi(z) =9 1 ° Pa(z) =9 1 ~ (2.2)
5 for z =0, 2 for z = 0.

It is straightforward to verify that, 1, 11 and 9 are bounded on the imaginary axis of the
complex plane. Therefore, ¢1(itd?), 11 (itd?) and 1) (itd?) are all bounded operators on H*(T),
s > 0, uniformly with respect to t € R.

2.2. The low-regularity integrator and main result

Let t, =n7,n=0,1,..., L, be a uniform partition of the time interval [0, T] with stepsize
7 =T/L, where L is any given positive integer. The low-regularity integrator proposed in this
paper can be written as

uTH-l :\AI}T(UW/)’ n:Ojl’... 7L_1’ (2'3)
with
U (f) = {1 = 20T (£0, F)O; " — 20ArTIo (I 2) e f

A { e (@R ) (o7 1)) + v o) T
n /\agl{eifagf _ 690—1(’ei78§f‘2) _ i {f . 8;1(’f’2)]}
_ga;z{e—waz Foem(p)? - e (110P)}

Aot 1 (0,7 ek (im0 )~ 0,7 (07 1)7)

meaxa ( ) + 22')\7_1—[0(1") . eiq—agaz—l(axf. f)



— T (TIo(f)) o (€79 F) (2.4)

i ?8;3{6_7;7—8%8;1]?' (ei'ragf)Q _ e—z‘r@%a;lf. eifaf-f?}
-

A o2 o —17 _—it02( i102 )2 -1z

_Ee 818563{8551]0'6 805(6 8zf) _axlfo}

_ ﬂ o2l —iT07 £\ . (1702 £\ _ 1T —iT02 7\ . iTd2 £2
20,2 {TLg (¢ ) - (7% ) Ty 7% 1) - 7%
IAT 152 A T ird2 ( ird2 o\ 2 7

- CreBor o, f e (@ f) 0, - 2]

+ 22 (<2im02) (F1F12) - 12+ [a(~2im02) — (2002 £ - 111"}

[

— N2 O Ly (<20r02) [ - S22+ F2 IS [al—2im02) — S] T

\]

where . o
Mof =fo and Tef= Y e*f

kEZ,k#0
Remark 2.1. Although the definition of the algorithm in seems complicated, it consists
of only O(1) simple terms which can be computed by the fast Fourier transform (FFT) with
only O(N In N) computational cost at every time level, where N is the degrees of freedom in a
spatial discretization; see [11,22,31] for more details of the spatial discretization by the Fourier
spectral method. For the simplicity of presentation, we focus on semi-discretization in time for
the construction of the time-stepping method in this paper.

The main theoretical result in this paper is the following theorem.

Theorem 2.2. Let u™ be the numerical solution of the NLS equation given by (12.3])—(2.4]).

Then, under the reqularity condition u® € H %(’]1“)7 there exist positive constants 1o and Cy such
that for any T € (0, 1] there holds

Y — e < 2 .
1r§nna§XL”u(tm ) u HL2 < Cot7, (2 5)

where Cy and 19 depend only on the final time T and HuOHH%

In addition, under the weaker regularity condition u® € H'(T), the following error estimate
holds:
max ||u(ty, ) —u"| 2 < Ci7VIinT1, (2.6)

1<n<L
for any T € (0,71, where C1 and 71 depend only on T and ||u®|| g1 .

The construction of the algorithm in (2.3)—(2.4)) and the proof of Theorem [2.2|are presented
in the rest of this paper.

Remark 2.3. The proposed method presented in the next section has the potential to be
extended to seek a new scheme similar to (2.3)) in higher space dimensions. Compared to the

second-order schemes in [8,/19,30], which require uy € H g“(’]l‘d) for d = 2,3, the proposed
method has a lower regularity requirement for the initial data for the numerical solutions to
have second-order convergence. If the spatial derivatives are almost uniformly distributed in
the consistency error of the new scheme, then the regularity requirement of the initial data

might be improved to H ER (T?) for second-order convergence in L?(T¢). However, it should be
noted that one of the main difficulties in extending the proposed method to higher dimensions is
the problem of resonance, which becomes more complicated in higher dimensions, as discussed
in [19]. Therefore, further research is needed to address this issue and develop efficient and
accurate low-regularity integrators for higher-dimensional problems.

Remark 2.4. The spatial discretization of (3.1) can be handled using trigonometric interpo-
lation, and a fully discrete error estimate can be established by combining the current proof
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for semi-discretization in time and the approach of [22] for full discretizations, albeit with some
additional technicral details. Specifically, assuming that the initial data u” satisfies the regularity
condition v € H3 (T), there exist positive constants 79, No, and Cj such that for any time step
size 7 € (0, 79] and any number of spatial grid points N > Ny, the error between the numerical
solution u}; obtained by the fully discrete scheme and the exact solution u(t,,-) at each time
step t, = n7 satisfies .

max [u(tn, ) — w2 < Co(r* + N7F),

where 79, Np, and Cy depend only on the final time 7" and ||u?||

3. The construction of the method

For simplicity, we only consider the case A = 1; the case A = —1 can be treated in the same
way. We will frequently use the following version of the Kato—Ponce inequalities, which were
originally proved in [20] and further improved in [7,21].

Lemma 3.1. (The Kato—Ponce inequalities).
(i) If v > 3 and f,g € H'(T) then
I fgllzr S Nl Nz
(ii) If v > 0, v1 > &, f € HY™(T) and g € H(T), then
1f gl S W e llgll -

From the previous articles (for example, see [22,28,31,/41]) it is known that the twisted

function v(t) = e #9%Zu(t), with u(t) being the solution of the NLS equation (1.1), can be
expressed as follows:

V(tn +7) = v(ty) — z/ e i (tnt5)02 [‘ei(tnﬁ)agv(tn + 5)|2ei(t”+s)aﬂgv(tn + s)} ds. (3.1)
0

The objective of this section is to construct a fully explicit approximation of (3.1) with
local error O(73). To this end, we first reformulate v(t,, + s) as

V(ty + 8) = v(tn) + PT(v(tn), s) + R*(tn), (3.2)
where
. , . 2
0lta) + @ (0(tn), 5) = v(tn) — ise™ % [y (<2is02)e (1) ("% t,)) |, (33)
is the first-order low-regularity integrator constructed in [28]. For the remainder term R*(t,),
Ostermann & Schratz [28] have proved the following estimate for any r > %:
IR ()l rr-1my < - C(l0lleqorym))s (34)

where C(||v]lc(jo,r;7)) denotes a constant which depends only on [|v]|¢(jo.77;#7)-
By inserting (3.2)) into the right-hand side of (3.1)) we derive that

v(tn . 7_) _ v(tn) - Z‘/T e_z‘(tn—&-s)ag{ei(tn—i-s)a?( (tn) + o ( ( ) ) + Rs(tn))

A . (3.5)

[ (o(t) + B ((t), 5) + R*(8a) | bds.

Then direct calculation yields the following expression:

U(tn +7) = v(ty) —i / it )02 [tk )0 (g, ) (0TI (1)) ds
0

Z/ o—iltnt5)32 [e_i(thrs)a;m(ei(tn+s)agv(tn))2] e
0
T ) 2
—2i/ e~ iltn+5)0 [ el(t”+s)6£v(tn)‘ (ez(t”“)ag O (v(ty), s))} ds
0
+R1(tn)
=: U(L‘n) + IT(tn) + J{(tn) + Jg(tn) + R{(tn)

(3.6)




The remainder R](t,) is estimated below.

Lemma 3.2. Letr > % and T € (0,1]. Then the following estimate holds:
IRT (tn) || grr—2 < C72, (3.7)

where C is some constant which only depends on ||v||c(jo,r);mr)-

Proof. By comparing (3.5) and (3.6) we see that the remainder R () is a sum of following

terms:
—i/ e i(tn+5)07 [e—i(tn+s)8§Wj(tn) . ei(tn+s)agwk(tn) . €i(tn+s)8%Wl(tn)}d8 (3.8)
0

for j + k+ 1> 2, where

Wo(tn) = v(tn), Wiltn) = @1 (v(tn),s), Wa(tn) = R*(tn). (3.9)
Note that ¢ is bounded on the imaginary axis, by applying (i) of Lemma we get
WDl < IV Gl = 197 (0(t), ) e S 5+ ooy (3:10)

where we have used the equality .|e’w§ fllzr = | fllg- for all t € R and > 0. Then (3.7) is an
easy consequence of (3.4, (3.8)), (3.10) and the Kato-Ponce inequality. O

The main objective is to find some computable second-order approximations of I7(t,),
JT (tn) and JJ () in the expression (3.6)).

3.1. Approximation of I7(t,)

We begin with decomposing I7(t,) into two parts based on its Fourier series expansion,
ie.,

T . . . 2
IT(tn) — —i/ 677,(tn+s)892C |:672(tn+s)6§@(tn) (ez(tn+s)8iv(tn)> }ds

0 T
- Z ei(tn+s)[k2+k‘%—k§—k§}dsﬁkl (tn)@kz (tn)@kg (tn)eikx

kEZ k1.ko.kzez 20
k=Fk +ko+ks

=i Y Ty (tn) By (bn) Oy (tn) - / "% ds (3.11)

k1 kg, k3 €7 0
0=kq+ko+k3

-
_iz Z elt"wﬁkl (tn) g, (tn)ﬁkg (tn)ezkx / 01563 I

k€Z ky,kg,k3€L 0
k#0 k=ky+ko+kg

=17 (tn) + I3 (tn),
where ¢3 = ¢3(k; k1, k2, k3) denotes the following expression:
b3(ks k1, ko, k3) = k2 + k3 — k3 — k3. (3.12)
Since k = k1 + ko + ks, it follows that ¢s3(k; k1, ko, k3) = 2(kk1 + koks). In the case k =0

and koks # 0 we have
T 1 )
zsd)gd — 2iTkoks 1).
/0 s = o (e )

By using the expression above, I7 (¢,) can be decomposed into three parts corresponding to the
following four cases (the second and third cases can be combined): ko # 0 and k3 # 0, ko # 0
and k3 =0, ko =0 and k3 # 0, and ko = k3 =0, i.e.,

. . 2_1.2_ 1.2~ ~ ~
Oty =—i Y el k3]vk1(tn)vk2(tn)vk3(tn)(
0=k1+ka+k3
ko#0,k3#0

—2iT Z eitn(kfikg)@kl (tn)@lm (tn)@ﬂ(tn) + Z'TéO (tn)QA}O (tn)ﬁo (tn)
k1+ko=0

1

2iTkoks
Yikgks (e U)
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By using the relation 2koks = (ko + k3)? — k3 — k3, we note that I7 (t,) can be expressed in the
physical space as

1 4 .
17 () = 5To (e %0 (ty) - 7% (120 Lo ,)?)

—%Ho (e*“n@%@(tn) : (e“nf’% a;lv(tn))Q) (3.13)

. . 2
—2irTIo (|v(t)]?) - To(v(tn)) + i |[Ho (v(tn)) | o (v(tn))-
In order to approximate the integral I3 (t,), we divide €?*?3 into the following three parts:

(B1+K2) ispe | (B1+K3) jons K1 sps
A e + A e A ers.
By the symmetry between ko and ks, we can collect the first two parts and obtain the following
expression:

- . i ~ N N i T (kl + k2) 7
tn) = —2i Z Z e t”¢3vk1 (tn)Oky (tn) kg (tn)e ko, / e 593

KEZ  ky,ko ks €Z 0
kA0 k=kq +ko+ks

A Ty
HY D ey () Dy (£n) B (tn)e”“”-/ ?le“‘b?’ds (3.15)
0

kEZ  ky,ko,k3€Z
k#0 k=kjtky+ks

=151 (tn) + I35(tn).
From Section 4 in [22], we see that I7,(t,) can be calculated explicitly as follows

Baltn) =3 .

kEZ k=ki+ko+ks
E#£0  ki+k3#0

2 33 (B 1) (), ()

_ e*itn+1892¢871 [(eit,L+1B%v(tn)) . 8;1( eitn+1aagcy(tn)‘2)]

g ) e )
—QZTHO(( 2)0:0(tn)) 05 Mo (ty,)
—2i7Ho (|v(tn)[?)v(tn) + 2i7Ho ([o(tn)[*) o (v(tn)).-

However, Ig’z(tn) can not be integrated in the physical space explicitly. We need to find a
“sufficiently good” approximation of I7,(t,) with desired consistency error.

(3.14)

eltny103 _ pitngs

ik - i(kl + k3)

'f)lﬁ (tn) Ok, (tn) Uky (tn) e’

(3.16)

ki1 .
Firstly, since ¢3 = 2kk1+2koks, the integrand %e’sm can be decomposed into the following
three parts:

%621'516161 4 %(BQiSkaB o 1) 4 %(€2i8kk1 _ 1) (€2i8k2k3 _ 1) (317)

Next, inspired by Ostermann, Yao & Wu [30], we furthermore split the third term of (3.17)
into two parts, i.e.,

?1(@2”’“’“ — 1) (ePiheks 1) = 912278 ]j 22k €M (k) + RO (ks by, ko, ),

where
M, (a) = = / o(e*® —1)do (3.18)
0

is a temporal average of s(e** — 1), and

R®(k; k1, ko, k3) = ?1(62’8’*1 — 1) (ePishes — 1) — 21%&“’“2’%/\47(%1). (3.19)



Therefore, I3 5(tn) can be decomposed into the following four terms:

I3 5(tn)
.
iy Y e”"d)?’vkl(tn)v@(tn)vk?,(tn)e’km'/ ?lemskklds

KEZ  ky,ko ks €T 0
kA0 k=hy hotks

) i 7 1 - ikx "k is
FY LD B (ta) O (1) (0n) ™ /0 o Bk~ 1)ds

kEZ Ky ko, k3 €L

(3.20)

k#0 k=kj tky+ks

. ) 2 ~ ~ ik T kikok iskoks:
—HZ Z O3y (t)Oky (£ ) Oy (£ ) €F '/0 910208 o2 k2ks M (Kky)ds

kEZ  kq,ko,k3EZ
k#£0 k=kq +kg+k3

+R3(tn)
= 1591(tn) + 1329(tn) + 155 5(tn) + R5(tn),
where

W) =0) > €T () Oy (bn) By (£n) e - / RS (ks k1, ko, k3)ds. (3.21)
0

kEZ  kq,ko,k3€Z
k#0 k=kq+ko+k3

We note that 75 (tn), 135 4(tn) and I3, 3(t,) are tractable. For the remainder term R} (%),
we shall prove the following estimates in subsection 3.3,:
IRE(t)ll2 < T°Clllvlloqoayary) and  [[RE(E)ar < 72 C(|[vlloqoryam)) for > 5.

(3.22)

3.2
We can evaluate the integral in I3, (t,) by using the relation 2kky = k* + kf — (k2 + k3)?,
i.e.,

"k oiskiy 1 ( ir[k2+ k2 — (ko +ks)?] )
L gRiski g — i —1). 2
/0 € ds HEAG (3.23)

Then, by using this expression, we can write I3, (t,) in the physical space as follows:
1 . 4 , , 2
I35 (ta) = —5e 02 (e a(t,) ) - e (et )|

, (3.24)
eitnagv(tn) ‘ eit"agv(tn)] .

1 .

As for I3, 5(tn), we note that its integrand satisfies e2isk2ks _ 1 = 0 when kg = 0 or k3 = 0.
Therefore, 17, 5(t,) can be written as

B}
. it b n . . ; k1, oiskok:
Boolta) =iy > "0y, (8) bk, (tn) Oy (tn) ™ - /0 @(62“]"’2’% —1)ds

k€EZ k=ki+ko+ks
k#0  kg#£0,k3#£0

ik itn 2itkok A . . ik

== > %k iky ik’ ?3 (2178 — 1) g, (n) Ok (t0) Ok (t0) €™
kE€Z k=ky+kg+tks
k#0  ko#0,k37#0

. ik N R A )
- Z Z %eltn% Vky (tn)vk’z (tn)vks (tn)elkx

kEZ k=k1+ka+ks

+2ZTZ > '”“1 €3 B, () Oy ()0 (£n)e™ — i3 35 (1,) (o () et

kEZ f= k1+k2 keZ
k£0 k#£0
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By using the identity 2koks = (ko + k3)? — k3 — k3, we have
1

. . 2
157272@”) = _5 —ztn828 |:( —ztnagﬁx@(tn)> . e—rr@% (eztn+1agax—lv(tn)> ]

1 . . . 2
+§€_Ztn8£ (9;1 [(e—ztnag 8@(%)) . (eztnag 8;1’0(15”)) }
_iTe—itn(?% 836—1 (e—itnag aw@(tn) (eitnagv(tn))2> (3.25)
—|—2iTH0v(tn)e_it"83 o (e_it”a% Oxﬁ(tn)e’tnaw(t ))

—ir(Tou(ty))2e O 40 (e % 5(1,) ).
As for 1277273(75”), we know from (3.18) that M, (kki) = 0 when k; = 0. This implies that

ky . o R R .
Lot =iy Y ?MT(kkl)(em haks _ 1)e”n¢sv,€1 (tn) 0, (tn) Ok () €57
kEZ k=kq+ko+ks
k#0 k1 #0

From the definition of M;(«) in (3.18) we can calculate that
eQiTkkl -1 Z'e2i7'kk1 le

ki kv [T 0 sickk
M, (kky) = L iokky _ 1) g = _ _hr
g MRk = o /0 o(e Jdo = — o 2% 2k

Then, I3, 5(t,) can be decomposed into the following three terms

2iTkk;
e -1 . . . .
) Z Z W <€227k2k’3 _ 1) eztn¢3,l—)k1 (tn)'f)kQ (tn)ﬁkg (tn)ezkzx (326&)
keZ k=ky+ko+ks T 1
k#0 k1#0
62i7‘kk‘1 ) ) . .
+ Z Z 572 <6227—k2k3 _ 1) eltn¢3 Ekl (tn)ﬁkg (tn)ﬁkg (tn)elkx (326b)
kEZ k=ki+ko+ks
k#0 k170
k - ~ R .
3 Z Z 21]: (6217k2k3 _ 1) eztn¢3 Ekl (tn)@kz (tn)@kd (tn)ezkx. (3260)
k€Z k=Fky+ko+ks
k0 k170

By using the two relations 2kk; = k% + k? — (ko + k3)? and 2koks = (ko + k3)? — k2 — k3, we
can find the following explicit expression of I7 , 5(t,) in the physical space:

o . , 2

]572’3(@1) = ﬁefztn+18%a;3 [<€fztn+18§8;1@(tn)> . (eztn+18§v(tn)> }
b ity 102 =3[ —itn 102 1 702 (itn 02 2
—Ee 1 =0, {(e 1 =0, v(tn)) e x(e” ﬂcv(tn)) ]

e O R G N
*ﬁe*it"agaﬂ?g[( o ta(n)) - (¢ ottn))
Mo (e - (4% |
2 Mo (¢ (0) e (ot |
oo ()]
C

e (o). ()]

3.26a

ﬂthaz a

3.26b,
+ _ltn+l

3.26¢
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We see that the explicit expressions of 174, (tn), I3 45(tn) and I3, 5(t,) in the physical
space can be found. Then, by combining (3.11) and (3.20]), we obtain the following result:
I (ty) = 9T (v(tn), ) + R5(tn), (3.27)
where
Vi (v(tn), 7) = I{ (tn) + 131 (tn) + 1391 (tn) + 139 2(tn) + 13 5 3(tn)

has an explicit expression in the physical space and therefore can be effectively computed.

3.2. Approximations of J (¢,) and JJ (t,)

It remains to find computable approximations of J7 (t,,) and JJ (¢,) defined in (3.6)), which
have the following expressions:

JT (tn) = _2-/ o~ iltn+5)02 [e—i(tn—f—s)agm_ (ei(tn—i-s)@%v(tn))Q] ds,
T 2 (3.28)

I3 (b)) = —2i 0 o~ i(tnts)02 [ ei(tn+s)6§v(tn)‘ ) (ei(tn-i-s)(’)%(brf(v(tn)’8))}ds,
where
DY (0(tn), 5) = —ise 0% [ (~2isdR)e " F (1) (eitnaiu(tn)ﬂ, (3.29)
and
7 (v(ty),s) = iseitn?z [gol(%sag)eit”agv(tn) : (e*itnaﬂ%@(tn)y} . (3.30)

By substituting (3.30)) into (3.28)) we obtain the following updated expression of J7 (¢,):

Ji () = / s eii(t”‘Ls)ag{e*isa% [gpl(Qis@i)eit"agv(tn) : (efitnagf)(tn))z} (3:31)
0 .
.(ei(tn+s)8%v(tn))2}ds.

The Fourier series expansion of (3.31) can be written as

I (tn) = Z Z Ki - eitn¢5®k1 (tn)ikz (tn)@% (tn)@lm (tn)@l% (tn)eilm? (332)
keZ k=ki1+---+ks
where
b5 = k* — ki + k3 + k3 — kI — k2, (3.33)
1 — e~ 2iski
2isk?

Note that J7 (t,) can not be explicitly integrated in the physical space. Hence to select the

dominant terms from (3.34]), we use the relation

k2 4 (ky + ko + k3)? — k3 — k2 = 2(ky 4 ko + k3)? + 204, (3.35)

where 81 = (k1 + k2 + k3) (k4 + ks5) + kqks is a summation of cross terms. Then we decompose

the integrand of (3.34)) into

_ ds. (3.34)

-
KT _/ s - islk? (ki thoths)?—ki—k3] |
0

—2isk?
s - e2isl(k1thkatks)®+51] | 1-e™
2i5k%
‘ ) 1— e—2isk;f
—g- 6228[(k1+k2+k3)2+[31] +s- 6215[(k1+k‘2+k3)2+,31} . ( _ 1)
2isk:%
= S - eQiS(k1+k2+k3)2 + S - €2i8(k1+k2+k‘3)2 (eQisﬁl _ 1) (336)
—2isk?
2isk? l1—e !
bt (Lo )
223k%

—2isk?
L. 25K (€2i8[(7€1+k2+k3)2*k%+51] _ 1) . (ﬁ _ 1>7
QZSk%
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Then K7 can be split into the following three terms

T ] ) T - 1— 6—2i5k%
KI :/ s - 6213(k1+k2+k3) ds +/ s - 2iskT (72 _ 1>d8 + KIR? (337)
0 0 2@8]{31 ’

where

K{"R — /T s - 62is(k1+k2+k3)2 (62isﬂ1 o 1)d5
0 1 — o~2isk? (3.38)

+/TS L Q2isk? | (ezz‘s[(k1+k2+k3)2_k%+61] _ 1) , ( - - 1)d5_
0 2usky

From the definitions of 11 and 9 in (2.2)), we can calculate that

1 1 et — 1
P1(z) = / s-e*ds, and a(z) = /
0 0 z
and therefore (3.37)) implies
KT = 72 (2ir(ky + ko + k3)?) + 72 (wg(%mf) - wl(zwk%)) + K] g (3.40)
Substituting (3.40) into (3.32)), we derive that
Ji (tn) =77 Z Z eitn(%@kl (tn)'ﬁ’m (tn)ﬁks (tn)®k4 (tn)ﬁks) (t’VZ)eikx

k€Z k=k1+-+ks

ds, (3.39)

P1 (2iT(/€1 + ko + k3)2)
+7° Z Z e/tn®s By (tn) Oy (tn) Oy () Ok () O (tn)eikx

kEZ k=k1+-+ks
(v22irk?) - vn (2i7kD))
+R3 ()
et i [ ot (e ()] (o))
472 n0z {(%( 2@'7‘8§) - ¢1(—2i78§))6it"8317(tn) ’ ’e Ztnamv(t") 4}
+R3 ()
= W5 (v(tn), 7) + R5(ta),

where

Ri(ta) =D S KT g €0 (t) Oy (tn) Ok, (tn) 0k, (b)) O (£n) ™. (3.41)
k€Z k=k1+---+ks

In subsection 3.3 we shall prove the following estimate of the remainder R (¢,):

3
IRGEze S P Noleqoryary,  forany 75, (3.42)

Meanwhile, it follows from Lemma (i) and the boundedness of 1)1 and 19 on the imaginary
axis that

1
15 (v(tn), ™)l < 72||v||%([07T];HT), for any r > 7 (3.43)

As for JJ (), we substitute (3.29) into (3.28]). This yields

T : 2
Jy (tn) = —2/0 5 - efz(t”Jrs)aﬂ%{ e ‘

1503 [(e’tnaﬂﬂv(t ))2 - 1(—2i50%)e Ztnazv(t )} }ds.

The Fourier series expansion of JJ (¢,,) is

QZ Z K7 - Zt”¢5vk (tn) Oky (tn) Dks (tn)@m(tn)ﬁk:s(tn)eim’ (3.45)

kEZ k=k1+---+ks

i(tn+s)02 v (tn)

(3.44)



where
b5 = k> + k> — k2 — k2 — k2 4+ k2,
K5 = [ ot harior. 1
0 2iskg
By using the equality k = k1 + - - - + ks, we get
kK + kT — k5 — (ks + ka + ks)?

= 2k} + 2ky (ko + k3 + kg + ks) + 2ko(ks + kg + ks5)

=: 2k? + 2.
As before, we decompose the integrand of (3.47) by
62i5k}§ -1

2isk?2
5. 2is(ki+62) | s —1 1)

=5 e2H g PR (2P 1) 4. (

2isk? 2isk?
62i5k§ 1
- (2is(ki+B2) _ 1) . (7* _ 1>'
e (e ) 2isk?
Hence
1
K3 = r1 (2irk?) + 72 (2 (2irkd) - 5 ) + K3 5.
where
T sk 2is8 T 2is (K24 fa) e2isk§ -1
Kip= [ - (2502 _1)q - (2isthE 2—1-(7—1>d.
SR /0 s-e (e ) s+/0 s- (e ) 2isk? s
We get
, . , 2 . 2
JZ(tn) = —2726_”"85{wl(—QiTﬁg)e_”"agT}(tn)- (e””agv(tn)) et d2u(t,,) }

2

) ) 2 )
*27’26_””892”{(6“"83’[)@”)) . eztnagv( n)

(wal-2ir?) - %)e—“naia(tn)}

where

RZ (tn) =2 Z Z K;,R ’ eitn¢5 6161 (tn){)kz (tn){)kd (tn){)/m (tn)ﬁl% (tn)eikx'
k€EZ k=k1+---+ks

In subsection 3.3 we shall prove the following result:
IR: ()2 S ooy for any 7>

Therefore, by the similar argument as that for (3.43)), we have

| W

1
195 (w(tn), D)l S 7210l o ), for amy 7> 2

Overall, by collecting all the cases together, we obtain
O(tnt1) = U™ (v(tn), 7) + Ri(tn) + R3(tn) + R5(tn) + Ri(tn),

where

U (v(tn), 7)

o(tn) + 97 (0(tn), 7) + U3 (0(tn), 7) + U3 (0(tn), 7),

13

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)
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and
3
IRtz < IRl < 7+ C(IWloqoam), foramy v >3,
5 3.58
IRS ez S TPl oyrys IR Imr S 7 oleoyaryy foramy r23, (339
3
[R5 (ta) 22 + IR (t0) 122 S Tlloleqo zyprrys  for any 722,
1
195 (0(t), Dlar + 105 (), )l S 720l o zyrrys for any 7> 3. (3.59)

The numerical scheme can be defined by dropping the remainders R (), R3(tn), R5(t,) and
Ri(tn), ie.,
v =" 1), n>0; for® =l (3.60)

Then, by substituting v = e~#%y" into (3.60), we obtain
un+1 _ eitn_,_lag\]:/n(efitnunﬂ_) _. \AI}T('LL"),

where the expression of U, (u") is given in (2.4). This yields the method in (2.3)—(2.4).

4. Proof of Theorem

In this section, we prove the error estimates in (2.5) and (2.6) for H % and H' initial data,
respectively.

4.1. Proof of (2.5): Error estimates in the case v € C’([O,T];Hg(']l‘))

The consistency errors of the proposed method consists of R](t,), R5(tn), R5(t,) and
R (tn), where the estimate of R (¢,) has already been proved in Lemma In this subsection,
we prove the estimates in (3.22)), (3.42) and (3.54) for the remainders R3 (), R3(t,) and R} (ty),
respectively. The following lemma will be frequently used.

Lemma 4.1. For any o € R and v € [0,1], there hold

e —1| S lal?, and | —1—ia| < Jof'F7. (4.1)
Proof. Note that
(03
e —1] <2, |e"*—1|= ‘/ ie’sds‘ <lal. (4.2)
0
Hence, we have |e/® — 1| < 2177|a|? for v € [0, 1]. Moreover, we have
e — 1 —ial < 2|al, [ —1—ia|= ‘ / / ze“’dads‘ < \a\g (4.3)
It follows that |e’® — 1 —ia| < 2'727|a|'*7 for 4 € [0, 1]. O

The estimate of R} (¢,,) is presented in the following lemma.

Lemma 4.2. Let r > 2 and v € C([0,T]; H"). Then the remainder R5(t,) defined in (3.21)
has the following upper bounds:

1IR3 (ta)ll 2 S T2 N0l 0.0y (4.4)
RSl < 72 oz (4.5
Proof. We first recall the following expression of R*(k; k1, ko, k3):
RS (ks ky, ko, k3) = %(62“% — 1) (e%sk2hs — 1) — 21'%6%’“2’%/\47(%1), (4.6)
which can be divided into the following three terms

_ ﬁ(e%skkl —1) (62"8’“2"33 -1) - Qi%e%‘s“k?’/\&(k/ﬁ)

R*(k; k1, ko, k3) i
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_ %(622'516161 _ 1) (€2isk2k3 —1— 2i8k2k362i5k2k3) (47&)

+2i%(eziskkl 1) (iskeks 1) (4.7b)
k1kok , kikaks o

+2Z'817k23 (eQZSkk’l _ 1) _ 21.%62131@1%/\47(]{]{1) (4'70)

=: R‘i(k, ki, ko, k3) + Rg(k', ki, ko, k3) + Rg(k‘, ki, ko, k3).
The second factor in the expression of Rj(k; ki, k2, k3) can be written as
e2iskaks _ 1 _ 2i3k2k362i5k2k3 — gZiskaks 1 2iskoks + 2i5k2k3(1 — 62i8k2k3).
This and Lemma imply that
| RS (K; ki, ko, k)| S ||k1|| |skkq |7 - |skoks|*™7 = 82|k Eq |7 | koks 27, (4.8)
for v € [0,1]. Analogously,
‘Sk’lkgkg‘

‘RQ k k17k27k3)’ ‘k|

|skky |7 - |skoks|tTY = 2|k ke |1 |koks )T, (4.9)
To summarize, we have

(/ R} (k; k1, ko, k3)ds SR k| ks |27 (4.10)
0

n ‘/ Ry (K; k1, ko, ky)ds
0

Direct calculation of the integral of R5(k; k1, k2, k3) yields the following result:

/ R3 (ks k1, ko, k3)ds = 2i kl]jjk?’/ s(e2Fkr _ 1)ds —%M (k:k:l)/ Qikokse?sk2ks dg
0 0 0

= %<2i7k2k3 — 62iTk2k3 + 1)M7(kk1)'

Meanwhile, by the definition of M (kk;) in (3.18) and Lemma we have
1 (7 , 1 (7
‘Mr(kkl)‘ = ‘/ S(e%kkls _ 1)d8) < / 31+7|k‘k‘1|wd8 < 7-1"'7‘]6]{:1’7,
T Jo T Jo
for -y € [0,1]. This implies that

‘/ R (ks Ky, ke, s ds’ < B ksl P [ = PR e ks P (4.11)

\k\
By substituting the inequalities (]4.10[) and (]4.11[) into (]3.21[), we see that 7@5,0 =0 and
(Rek(t)| S 72 D (R ka7 kaks P[0y (80)] - [0k (t)] - |90 (80)] - for & # 0,

k1,ko,k3€Z
k=kq +ko+ks

(4.12)
where we have used the inequality |k[7~! < (k)77L, for k € Z such that k # 0.
Now, we take v = % +¢efor 0 <e <1 and denote

Raolta) = S (k)G ka|2 - [kaks| 2% - [T, (tn)] - [0k (t)] - [0k, (1) €.

kEZ ki,ka,k3€L
k=ky Fko+ks

Since the Sobolev embedding W,"*(T) < L?(T) holds for p = (1—¢) ™! and m = §—¢ (see [4,14]),
where W (T) denotes the Sobolev space endowed with the norm

e D

keZ
it follows from (4.12)) and the Sobolev embedding theorem that

IRE ()22 S T2 Ratn)llze S 717G IR (k)|

Lp(T)

. (4.13)
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If we denote

Viltn) = > [KI2 0k ()€™ and  Va(tn) = Y k|25 [ok(t) ]2, (4.14)
keZ keZ
then the following equality holds:

JEORt) =3 Y [kalZTE - kakal2E |y (B - (9 (B0)] - [0y ()€

kEZ ki.ko.k3€Z
k;klik§+k3 (4~15)

= Vi(t) (Va(ta))’.
Substituting (4.15) into (4.13)) and employing the Hélder inequality, we get

. 2
IRG(ta) 22 S 7°(|[Va(tn) (Va(tn) S P IValta)llza - (IIVa(ta)llze:)”, (4.16)
where ¢ = (1/3+¢)~! and g2 = (1/3—¢)~!. Then the Sobolev embedding theorem shows that
H5~5 < L% and Hi+e — L% consequently, by 1) and 1' one has
. 2
RS (tn)llz2 < T2 IVA(E) 3 - (IVa(ta)l,300)” S PNl (4.17)

c(oTiEY)
Therefore, we finish the proof of (4.4)).
Next, observing the expression of R*(k; ki, ko, k3) and the equalities

e2isk2k3 N 1‘ S 8|/€2k3‘, ‘€2isk2k3 Mq—(kkl)‘ S T,

g/

‘eQisk‘kl _ 1‘ 5 1’ 5 1,

we have R
RS p(tn)] S 720 Y (k) M kakoksl[Dr, (tn)] - [0k, (tn)] - |0k (£n)]. (4.18)

k1,ko,k3€Z
k=kq +hko+ks

Hence, by using the notation

V(tn) =D [ok(tn)|e™, (4.19)
keZ
we obtain from Lemma (3.1] (i) that
T 2 3
IR E)llar S 72101V (ta) - (0:V(E))%]| ) S P2eliEoyny forr >3,  (4:20)
This completes the proof of Lemma [4.2] O

We now present estimates for Rj(¢,) and R} (ty,).

Lemma 4.3. Let r > 2 and v € C([0,T]; H'(T)). Then the remainders R5(t,) and Rj(tn)
defined in (3.41)) and (3.53)), respectively, have the following upper bound:

IRE(t)llz2 + IRE(En) |2 S TV o0,7,00m (4.21)
Proof. We recall the expression of R (¢,) in (3.41]), which implies that
3
IREu(ta)] < D KT R| ok ()] - [Ors (t)] - [ky ()] - [0y (80)] - 1805 ()] (4.22)
k=k1+-+ks
In order to estimate the upper bound of | R%(t,)||12, we observe from (3.38]) that
KT < 2 ‘ 2i8(k1+k2+k3)2 2isP1 1 ‘ 4.23
} I,Rl <7 sgl[g,}i]{ e (e ) (4.23a)
—2isk?
+ 72 max ‘e%s’“% . (e2is[(k1+k2+k3)2_k%+6ﬂ — 1) . (71 —'e ;5 . 1)‘ . (4.23b)
s€[0,7] 218](31

We now estimate (4.23a) and (4.23b|) respectively. For the term (4.23al), we note that f; is a

summation of cross terms. Thus, it follows from Lemma that

jeisthrthath)® (2055 1) | < s18y| S s [kl (4.24)
il
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For the term , we recall the expression of 81 in and consider the following identity:
(ki + ko + k3)* — K + B1 = 2k (ko + ks) + (k2 + k3)* + S
= 2k (ky + k3) + (ko + k3)? + (k1 + ko + k3) (kg + ks) + ksks (4.25)
= [(k2 + k3)(kz + ks + ka + ks) + kaks| + k1(2ka + 2ks + ks + ks),
which implies

2
[t + Rz + k)2 = i+ 81| < (3 Ikyl) + 20 D Il (4.26)
A1 #1
By using Lemma [4.1] we get

‘6215[(k1+k2+k3)2,k$+51] _ 1’ < 53|(ky + ke + ks)2 — K2+ 51‘%

‘ 1 — o—2isk? 1) ‘1 _ e 2iski _ 22'5]{:%’ < s2 121k l\k | (4.27)
_— = = 82 .
Disk? |25%7] S ek
Hence -
‘eziskf ' (eQis[(k1+k2+k3)2—k%+61] _ 1) . (71 — eI 1)’
2
2isk
1
<L (S Il) Ik 1} (4.28)
7#1 #1
(Zw [+ lE 3 IRy 2) - ol
J#l J¢1
Then substituting (4.24]) and ( into , we get
\KLR| S 73(2 31k 5+ [y ). (4.29)
i#1 .

Again, by denoting V(t,) = Zkezwk(tn)\eikx as in , inequalities |D 1} and

Plancherel’s identity imply that
IR (t) 22 S 7 (11022 - 10u 3V - V| o+ [[(10a1V)? - V22
3 1
< P ([10al3 V]| - 103V e - [V 7 + 0V - 101V V)

3
< T3||UH%([O,T];HT) for 7 > 9

(4.30)
For the remainder R} (t,) defined in (3.53)), it follows from the inequalities in Lemma
that

‘e%skf (622'852 _ 1)‘ < )(62“’52 — 1)‘ < s/l

- 1.2 ;o2 .
‘(ezz's(karBz) —1) (eZZSkS_l _ 1)‘ _ ‘(e2is(k§+ﬁg) —1) <e2zsk5 —-1- 21514:52,)‘ 131
2isk? 2isk? (4.31)
3
1 1 s2|ks|? 2 1
< g2 k2 2 . = slk 2 - |ksl.
S s2lki + o ST 2 skt + B2|2 - |ks|
Analogously, we have
3. 1
K581 S (3 Ihs Bkl + D Ikl ). (4.32)
J#5 i#l
Moreover there holds
IRtz S 721101 0,791 (4.33)
for any r > % This estimate together with 1) give the desired result in l’ O

The difference between ([3.56) and (3.58) gives the following error equation:
Ultns1) — 0" = U (u(ta), 7) — W, ) + R (ta) + RE(tn) + RE(t) + R (b, (4.34)
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where the consistency errors R;(tn), j = 1,2,3,4, have been estimated in Lemma and
Lemmas ie.,

5
IRT(ta)ll 22 + IRE (tn)ll 2 + IRE ()l 2 + IRE(a) 2 S 72 for v e C((0,T]; HS).  (4.35)

The following stability estimate can be proved in the same way as [22,[31] (therefore the detailed
proof is omitted):

0" (v(tn), 7) — ¥ (0", 7)|[2 < (L4 C7)[lo(tn) — v"| 2. (4.36)
By combining the consistency estimates and the stability estimates, we obtain
[o(ta1) = 0" g2 < (14 C1)[o(tn) = 0"l 2 + CT°, (4.37)

which implies (2.5)). This completes the error estimates in the case v € C([0,T]; H %(']I‘))

4.2. Proof of (2.6): Error estimates in the case v € C([0,T]; H'(T))

In this subsection, we sketch the error estimates for initial data in H*(T), i.e., the solution
is in C([0,7]); H'(T)). In this case, we split the consistency error into the following three parts:

V(tns1) = U (0(tn), 7)= (v(tns1) — v(tn) = I7(tn)) + (I7(tn) — LT (v(tn), 7))

FUL(u(tn), 7) + WS (0(tn), 7). (4.38)

Firstly, by substituting the variation-of-constants formula ([1.4) into the first term on the
right-hand side of (4.38]) and applying the Kato—Ponce inequality, we can obtain the following
result (the details are similar as [22,28,|41] and therefore omitted)

Hv(tn—i-l) —v(tn) — I (t, HHl ~ HUHC ([0,T);H)* (4.39)

Secondly, for the term R3(t,) = I7(t,) — VT (v(t,), ), which is related to R*(k, k1, k2, k3)
through (3.21)), we consider the following triangle inequality:

‘/ (ks bz, k)| < / ‘kl 2isky 1) (¢2iskeks 1) |ds
(4.40)
+ ‘%(62”’@’% 1) M (k).
In order to estimate , we consider the following two cases
k] = min{|ksl, [ksl} and [k| < min{|ksl, |ks]}.

For the moment we assume that min{|ks|, |k3|} = k3 and consider the two cases |k| > |k3| =
min{|ks|, |k3|} and |k| < |k3| = min{|ks2|, |k3|}, respectively.
Case 1: If |k| > |k3| = min{|k2/|, |k3|}, then we apply the following estimates

‘€2iskk1 - 1} <2, ‘eQiskzkzs _ 1‘ < 23’]§2k3|,

1 [m 17
| M. (kk1)| = ‘/ o (eXiotkr 1)da‘ < ‘/ 2ada‘ =T,
T Jo T Jo
which imply that
‘/ S(k; Ky, ko, k3 ds‘ < A2\ k|7 Ky || o | R3] S 72K TV k| |2 k3| for a €[0,1].  (4.41)

Case 2. If |k| < |k3| = min{|k2]|, |k3|}, then the relation k = k; + ko + ks implies that
[ka| < k[ + k2| + |ks| S |ka.
We use the inequality above and the following inequalities in estimating the right-hand side of
(14.40):
‘62i8kk1 _1} §2S|kk1|, |€2’isk2k3 _1| §2’

. (4.42)

| M. (kky)| < ’/ 23]kk1]ada‘ = 7lkk1],
T Jo
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which imply the following result:

" s 21712 2 2 k3|
( R (k:;kl,k:g,kg)ds‘ < 472k < 72 k| [ko| S 7 |k1||k2|(m> for a € [0,1]. (4.43)
0
The assumption min{|ks|, |k3|} = k3 above actually does not lose generality when we use
the symmetry between ko and k3 in the expression of (3.21)). In fact, by using the symmetry
between ko and ks, substituting (4.41)) and (4.43]) into (3.21)) yields the following estimate:

REREI ST Y kI RallkallRs] 19k, (t)] - [k, (6n)] - [0, (£)]
ky+ko+kz=k
lka|>|k3l, k][> k3]
Y kallRallOk ()] [0k, (t)] - [k, ().

ky+ko+kg=Fk
lko|>1k3|,|kI<|k3]

(4.44)

Thirdly, the following results can be proved by following the lines in the proof of Lemma 4
in [22] (the details are omitted):

1IR3 (t)llze S 72VIRT 0l o1 (4.45)
T 3 1
IRS ()l e S 72 ol oy for s € (5,1). (4.46)

Finally, substituting (3.59)), (4.39) and (4.45)—(4.46|) into (4.38) yields
[0(tng1) = U™ (0(tn), Dl S 72VInr=t - C([vlloqo.z)8m)) X
3
[o(tan) = " @ta) Dlas S 75 - C(Iwloqomem) for se (5.1).

This proves the desired estimates for the consistency errors in the case v € C([0, T]; H'(T)).
The stability estimate (4.36]) can be proved in the same way as [22,31] and therefore omitted
here. The error estimate in (2.6) can be obtained by combining the consistency estimate in

(4.47)) with the stability estimate (4.36]).
The proof of Theorem [2.2]is complete. O

(4.47)

5. Numerical experiments

In this section, we present numerical experiments to test the convergence of the proposed
method for both smooth and nonsmooth initial data. We consider the NLS equation (L.1)) with
A =1 and the following initial value:

1 — —r _ikx
Wa) = 15 D2 [0k, (5.1)

0£kEZ

which satisfies that u® € H"(T) but u® ¢ H"t%01(T). We compare the numerical solution given
by the proposed method ([2.3)) and several existing time-stepping methods, including the Strang
splitting method, i.e.,

w00y,

| nt1/2]2
“Tl/z _ et L2, (5.2)
u"tl = eigaﬂ%u?}flﬂ,

a mass- and energy-conservative Crank-Nicolson method (which conserves the mass and energy
of the NLS equation; see [10,|12]), i.e.,

'ttt —ut 1 2 1 2 1 12 2 1
i g (B o) = (P ) ), (6

the first-order low-regularity integrator in |22] (which we refer to as First-order LRI), and two
second-order low-regularity integrators in [19] and [830] (referred to as Second-order LRI_1
and Second-order LRI_2, respectively). The reference solution is computed by the proposed
method with a sufficiently small stepsize T = 27 2.
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The L? errors of these methods at T = 1 are shown in Figure [l| for H" initial data with
r =1, g, 2 and 3, where a sufficiently large degrees of freedom N = 2'2 is chosen in the
spatial discretization (by the Fourier spectral method with FFT). The numerical results in
Figure |1{ show that the proposed method in can have second-order convergence when u° €
H %(']r) and first-order convergence when u? € H'(T). This is consistent with the theoretical
results in Theorem Moreover, the proposed method is the only one which has second-order
convergence for H 3 initial data.

107! 4

= o
g g

error in L2

H
2
1

107° 4
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10-2 4

107
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FIGURE 1. L? error of several time-stepping methods for H* initial data, with
s> 1.
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For lower-regular H" solutions with = 0.4 and 0.6, we present the L? errors of the several
numerical methods at 7= 1 in Figure [2] where the numerical solutions are computed with the
CFL condition N = 7!, which improves the stability of the numerical solutions for extremely
nonsmooth solutions like filters; see [32]. The numerical results show that all methods perform
similarly for such extremely nonsmooth initial data.

Overall, the numerical results show that the proposed method improves the convergence
order for nonsmooth initial data in H"(T) with 1 <r < 2, and is equally accurate as the other
low-regularity integrators for extremely nonsmooth initial data in H"(T) with 0 < r < 1.
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