
 

Abstract—Gaussian process regression (GPR) is an emerging 
machine learning model with potential in a wide range of trans-
portation system estimation and prediction problems, especially 
those where the uncertainty of estimation needs to be measured, 
for instance, traffic flow analysis, the transportation infrastruc-
ture performance estimation problems and transportation sim-
ulation-based optimization problems. The kernel function is the 
core component of GPR, and the radial basis function (RBF) 
kernel is the most commonly used one, suitable for tasks without 
special knowledge about the patterns of data, like trend and pe-
riodicity. However, an inappropriate hyperparameter of the 
kernel function may lead to over-fitting or under-fitting of GPR. 
During hyperparameter optimization, the usage of the RBF ker-
nel often suffers from the issue of failing to find the optimal hy-
perparameter. This paper aims to address this problem by pro-
moting the use of the hat kernel, which can reduce the risk of 
under-fitting. Moreover, we propose the notion of deformation, 
corresponding to severe over-fitting of a GPR. To further ad-
dress this issue, we investigate the connection between defor-
mation and the Bayesian generalization error of GPR. Two 
lower bounds for the hyperparameter of the hat kernel are also 
proposed to avoid deformation of GPR. 

Index Terms—Hat kernel, Hyperparameter optimization, 
Gaussian process, Kernel machine, Lower bound 

I. INTRODUCTION

ACHINE learning models have drawn increasing attention 
from the transportation community in recent years [1-4]. 

The foremost reason for the burst of research on this topic can be 
attributed to the data richness. Apart from common loop detec-
tors and floating car data, a variety of new data sources are cur-
rently available, including cell phone location data and social 
media data, which significantly enlarge the possibility to sense 
full-time citywide traffic dynamics [5-9]. In addition, another 
motivation for the use of machine learning tools lies in the grow-
ing demand for accuracy in real-time traffic system estimation 
and traffic management, e.g., the infrastructure deterioration 
evaluation. travel demand prediction, though weak in interpreta-
bility, can give highly accurate results so as to facilitate traffic 
management optimization, e.g., improved traffic safety, reduced 
delay for travellers and increased revenue for transportation ser-
vice providers [10-13]. Finally, huge advances in computing ca-
pability provide strong support for practical applications of these 
new models with large amount of data. Among the machine 

learning models, Gaussian process regression is an emerging and 
efficient model potential in transportation system etimation and 
prediction problems [14, 15]. This paper focuses on Gaussian 
process regression and discusses issues pertaining to its training 
process. 

Gaussian process regression (GPR) is a Bayesian modelling 
approach that adopts Gaussian process as a prior over prediction 
labels, any subset of which follows a multivariate Gaussian dis-
tribution [16]. Despite the Gaussian prior over labels, it does not 
assume the functional form of the mapping from inputs to outputs 
as models like linear regression do. Therefore, GPR is able to 
model complex nonlinear relationship between variables, and it 
has been proven that many types of neural networks with strong 
predictive ability converge to Gaussian process [17-19]. Also, 
compared with neural networks, the Gaussian prior allows GPR 
to make prediction using a limited number of hyperparameters, 
which is much easier to analyse and optimize. GPR has a wide 
range of applications, including traffic flow modelling, spatio-
temporal prediction, and simulation-based optimization [20, 21]. 
Adaptations can also be made on GPR to solve classification 
problems [16]. 

The core component that grants GPR the ability of prediction 
is the kernel function. It determines the covariance between dif-
ferent samples in order to shape the similarity between them. The 
hyperparameters of the kernel function can significantly influ-
ence the prediction results. By maximising the marginal likeli-
hood function, GPR can find the optimal hyperparameters that 
achieve a balance between model complexity and data-fitting 
quality. However, due to the nonconvexity of the objective func-
tion, i.e., marginal likelihood, it is prone to be stuck in local op-
timum, leading to severe over-fitting or under-fitting issue. The 
inappropriate selection of hyperparameters results in deformed 
GPR, limits the use of GPR on solving transportation problems  

To overcome the above issue, it is necessary to study what 
will happen when inappropriate kernel hyperparameters are used 
and methods to alleviate it. To achieve this goal, we will show 
the advantage of the hat kernel over commonly used radial basis 
function (RBF) kernel, and present two lower bounds for its hy-
perparameter to avoid severe over-fitting of the model. 

A． Literature Review 
Research on GPR originates from the work by Williams and Ras-
mussen (1995) [22]. GPR is capable of employing limited sam-
ples to predict outputs of unseen inputs in the feasible set. There 
has been an increasing interest of using GP to solve problems in 
the transporation discipline. Two types of problems are usually 
addressed using GPR: traffic prediction problems [14, 23] and 
traffic management/control problems [24-26]. In traffic predic-
tion problems, GPR is employed to capture the relationship be-
tween spatio-temporal features and traffic conditions . The traffic 
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management/control problems are mainly concerned with deter-
mining the optimal decision among various transport manage-
ment and control strategies[27]. In solving traffic manage-
ment/control problems, GPR, as the most commonly used surro-
gate model in Bayesian optimization, is generally used to con-
struct surrogates of the objective function. 

As introduced above, the kernel function is one of the es-
sences of GPR, which, however, has been extensively studied 
early before. Machine learning models involving the kernel func-
tion are often termed kernel machines [28], such as kernel ridge 
regression and support vector machine. The aim of the kernel 
function is finding a mapping function to map the input data to a 
new vector space, such that their new representations can reflect 
the latent nonlinear characteristics of the data. Early research 
studied the kernel function in a purely mathematic way, mainly 
focusing on the properties of various kernel functions, the condi-
tion for a kernel function to be valid, and the rule of constructing 
new kernel functions. Genton [29] presented an overview of typ-
ical types of kernel functions commonly used by kernel ma-
chines. Based on the properties of the kernel, the author catego-
rised kernel functions into anisotropic stationary kernels, iso-
tropic stationary kernels, compactly supported kernels, locally 
stationary kernels, nonstationary kernels, and separable nonsta-
tionary kernels. Of all these types of kernel functions, researchers 
are mostly concerned about the former four, which are all sta-
tionary kernels. Stationary kernels express the similarity between 
samples as a function of their distance, which is translation in-
variant. 

Another line of research studied the kernel machine in a more 
pragmatic way. Most recent studies on GPR focus on four topics, 
namely the fast approximation of GPR, the adaptation to noisy 
or discrete data, the combination with Bayesian optimization, 
and its practical applications in various subjects. The demand for 
the fast approximation of GPR arises from its high time complex-
ity involved in matrix inversion. A general solution is to sample 
a limited set of points instead of the full dataset and use the sam-
pled points to estimate the GPR [30]. One of its improvements is 
the combination with variational inference, which approximates 
the GPR by minimising the discrepancy between variational dis-
tribution and original posterior distribution [31]. The second 
topic arises because a standard GPR addresses data in a continu-
ous space and does not allow for noises in the training data. Mod-
ifications were made on the kernel to solve the problem. For ex-
ample, Tomczak et al. [32] defined the kernel function value to 
be zero between inputs of different categories. As for the third 
topic, Bayesian optimization is an emerging method for black-
box optimization, often applied in simulation-based optimiza-
tions [33] and hyperparameter tuning of deep neural networks 
[20]. GPR is generally adopted as the base surrogate model to 
describe the surface of optimization target. Finally, GPR was ap-
plied in many practical problems as a predictive tool, such as 
traffic volume prediction [21] and route planning. 

Selecting appropriate parameters to avoid underfitting/over-
fitting issues is critical for constructing machine learning meth-
ods. Specially, the overfitting issue, making the model fail to 
generalize from observed data to unseen data, has been a major 
area of interest within the field of machine learning [34, 35]. Alt-
hough one of the most important applications of GPR is hyperpa-
rameter optimization, its own kernel hyperparameter also needs 
optimizing. The limited number of hyperparameters has long 

been labelled an advantage of GPR over neural networks due to 
less effort devoted to hyperparameter optimization. However, it 
is practically found that optimizing these hyperparameters is a 
nontrivial task. It has been revealed in transportation practice that 
inappropriate hyperparameters affect the performance of GPR 
significantly both in prediction and optimization tasks. It can be 
further enhanced if there is a guidance on the choice of its hy-
perparameter.  
B. Objectives and Contributions 
The objective of this paper is to offer a thorough analysis of the 
hyperparameter optimization process of GPR. The contributions 
of this study are three-fold. First, we analyse the possible cause 
of over-fitting and under-fitting of a GPR model in terms of the 
choice of kernel hyperparameter. Then, we attempt to amend the 
under-fitting issue by promoting the use of the hat kernel. To fur-
ther alleviate the risk of over-fitting, we identify the deformation 
problem of GPR given small hyperparameter value and propose 
the lower bound for optimizing the hyperparameter of the hat 
kernel.  

The nonconvexity of the optimization objective of GPR, i.e., 
marginal likelihood function, is often resolved using a multi-start 
gradient-based optimizer, which lacks theoretical guidance. To 
better address the problem, we investigate the objective function 
and decompose it into two key components, one for model com-
plexity and another for data-fitting quality. Both of the identifi-
cation of the deformation problem as well as the lower bound 
analysis are based on the analysis and interpretation of the objec-
tive function. 

The remainder of the paper is organised as follows. Section II 
provides a brief introduction to GPR. Section III presents the 
properties of two kernel functions and discusses the difficulty in 
optimizing kernel hyperparameters. Then, a thorough analysis of 
the optimization objective function, the definition of defor-
mation, and its connection with Bayesian generalization error are 
elucidated in Section IV. Two lower bounds of kernel hyperpa-
rameter are also proposed in this section. Finally, conclusions are 
shown in Section V. 

II. PRELIMINARIES OF GAUSSIAN PROCESS REGRESSION 
This section provides a preliminary introduction to Gaussian pro-
cess regression (GPR), including the prior and posterior of GPR, 
as well as the basic concept concerning the kernel function. 
 
A. Prior and posterior 
Similar to other machine learning models for the task of super-
vised learning, GPR aims at identifying a mapping :f yx  , 

where m∈x   is an m -dimensional input vector, and y∈  is 
the output label. As a Bayesian approach, GPR models each out-
put label y  as a random variable Y . A Gaussian process (GP) 

assumes that any label Y   follows a Gaussian distribution 
2( , )µ σN , and any collections of multiple labels Y  together 

follows a multivariate Gaussian distribution ( , )μ ΣN .  
Before training a GPR model, we need to place a prior over 

the outputs. For an arbitrary input *
m∈x  , the random variable 

*Y   corresponding to the output *( )f x   is assumed to follow a 
prior distribution, 



  

 

 * * * *( ( ), ( , ))~Y µ κx x xN  (1) 

where ( )µ ⋅   denotes the mean function and ( , )κ ⋅ ⋅   denotes the 
kernel function. For simplicity, the mean function is often as-
sumed to be constantly zero, that is, 
 * * *(0, ( , ))~Y κ x xN  (2) 
Such simplification does not affect the model as the mean func-
tion is merely an offset of the label. If an arbitrary mean function 
is needed, the subtraction of the mean function value from the 
label can be modelled instead. 

Denote a training dataset containing n   samples as 

1: 1:( , )n nD = x y  , where 1: 1 2 , ,[ ],n n= …x x xx ú  , 

1: 1 2 ], ,[ ,n ny yy …=y ú , and the random vector corresponding to 

1:ny  as 1:nY . The joint prior distribution of *Y  and 1:nY  can be 
written as follows, 

 1: *

* ***

~ ,n

Y κ
  
 

 
 

 

 

Y K κ
0

κúN  (3) 

where K   is a n n×   kernel matrix, whose element on the i  th 
row and j  th column is ( , )i jκ x x  , * =κ

1 * * *2( , ( ,[ ), ), , )]( ,nκ κ κ…x x x x x x ú , and ** * *( , )κ κ= x x . 
By conditioning the joint distribution on observed sample 

data, the posterior distribution of *Y  can be obtained, 

 1 1
* * 1: 1: * ** * *, ( )| , ~ ,n nY x κ− −−x y Kκ κ K κyú úN  (4) 

where the posterior mean 1
*

−κ K yú  is the point estimate of *Y  

and the posterior variance 1
** * *κ −−κ K κú  is a measure of the es-

timation uncertainty. 
 
B. Kernel function and hyperparameter optimization 
It can be observed from the prior and posterior distribution of *Y  
that the kernel function plays a crucial role in GPR estimation. 
We notice that the kernel function essentially determines the co-
variance matrix of the multivariate Gaussian distribution in a GP, 
indicating the similarity between each two samples. For generic 
tasks without prior knowledge about special patterns in data (e.g., 
periodicity and a growing trend), we tend to assume that similar 
input vectors lead to similar outputs, and the similarity only cor-
relates with the relative distance between two samples. Here, we 
would like to present two definitions. 
Definition 1 (Stationary kernel). A kernel function ( , )κ ′x x   is 

stationary if it is a function only of the distance between two 
input samples | ' |d = −x x .  

Definition 2 (Monotonic kernel). A kernel function ( , )κ ′x x  is 
monotonic if it is stationary and is monotonically nonin-
creasing with respect to the distance between two input 
samples | ' |d = −x x .  

A monotonic kernel can well suit many practical applications, 
such as the hyperparameter optimization of deep neural net-
works, hence the focus of this study. 

Once the functional form of the kernel function is determined, 
training a GPR model becomes a search for the optimal hyperpa-
rameter of the kernel function. Denote the hyperparameter of the 
kernel function as θ  . The optimal hyperparameter *θ   can be 

obtained by maximising the probability of observing 1:ny  given 

input training data 1:nx  and the kernel function, i.e., the marginal 

likelihood (ML) of GPR. As 1:nY   also follows a multivariate 

Gaussian distribution ( , )0 KN  , the ML can be formulated as 
follows, 

 1
1: 1: /2 1/2

1 1) exp
2( |

( | ;
2 ) |n n np

K
θ

π
− = − 

 
y Ky yx ú  (5) 

To facilitate calculation, its logarithm form, i.e., the log mar-
ginal likelihood (LML), is often adopted instead, 

 

1: 1:

1
/2 1/2

/2 1/2 1

1

l

l

| )

1 1log exp
2(2 ) | |

1og (2 ) | |
2

1 1g

og (

lo (2 ) log | |
2 2

;

2

n n

n

n

K

K

p

n

θ

π

π

π

−

− − −

−

  = −  
  

 = − 

= − − −

y y

y y

K y

y x

K

K

y K

ú

ú

ú

 (6) 

The optimization problem 1: 1: )arg max log ( | ;n npθ θy x  does 
not have a closed-form solution. As the gradient of LML can be 
evaluated, gradient based optimizers, such as the Newton method 
can be adopted to search for the optimal hyperparameter. How-
ever, the nonconvexity of the optimization objective brings diffi-
culty to the problem. A common compromised solution is to try 
multiple initial points for the Newton method and may still ex-
perience failure if the initial points are not properly sampled. 
More discussions on this issue are presented in the following sec-
tion. 

III. HAT KERNEL FOR GAUSSIAN PROCESS REGRESSION 
In this section, we discuss the issues on the hyperparameter op-
timization of the GPR, and comparison between the radial basis 
function (RBF) kernel and the hat kernel is presented. 
A. RBF kernel 
One of the most common kernel functions used in GPR is the 
RBF kernel, also referred to as the Gaussian kernel. 

 ( )
2

2
RBF

1, exp
2

i j
i j l

κ
  −  = −  

   

x x
x x  (7) 

where 2|| ||⋅  denotes the 2  norm, and the length scale l  is the 
hyperparameter of the RBF kernel. 

The RBF kernel is popular in a variety of tasks and is used 
as the default setting in various machine learning toolboxes (e.g., 
Scikit-learn [36]) since it is infinitely differentiable and can yield 
a smooth posterior estimate. However, optimizing the hyperpa-
rameter for the RBF kernel can be uneasy. For the sake of demon-
stration, a simple sinusoidal function is presented as an example 
(see Figure 1, the x-axis displays the variable x, the y-axis dis-
plays the function sin 5y x= +  ). We also randomly sampled 

50  points on the function curve between 20−  to 20 . 
 



  

 

 
Figure 1: An example sinusoidal function sin 5y x= +   and sampled 
points. 

Then, the LML curve with respect to the length scale of the 
RBF kernel is plotted in Figure 2. We transform the y-axis to 
100 LML−   for the readability of the figure. The candidate 
length scale values range from 510−  to 510 . Obviously, the LML 
curve stays nearly constant for a wide range of length scale val-
ues. If a gradient-based optimizer is used for hyperparameter op-
timization, it is prone to be stuck in the local optimum. The LML 
curve suggests that the global optimum can be hopefully found 
only when the initial value of the optimizer falls between 110−  
and 10 . 

 
Figure 2: Log marginal likelihood curve with respect to the length scale of 
the RBF kernel. 

B. Hat Kernel 
As an attempt to address this problem, we present the use of the 
hat kernel, as defined below. 

 ( )hat

|
, 1

|i j
i j l

κ
+

− 
= − 
 

x x
x x  (8) 

where ( )+⋅   represents ( )max 0, ⋅  . Both the hat kernel and the 
RBF kernel are monotonic kernels since they are both nonin-
creasing functions of the distance between two sample points, 
| |i j−x x  . The property of monotonicity allows them to be 
widely applicable as no strong prior assumptions are embedded 
except the simple one that similar inputs generate closer outputs. 

There are two major differences between the hat kernel and 
the RBF kernel in terms of differentiability and influencing 
threshold. First, it is obvious that the hat kernel function is non-
differentiable when | |i j−x x  equals l , implying that the poste-
rior mean function is highly likely to be also nondifferentiable. 
Second, the hat kernel is a kernel function with a compact sup-
port, indicating the function value will always be zero when the 

distance between two input points is larger than a specific thresh-
old. 

The hat kernel is a special case of piecewise polynomial func-
tions . Some examples of valid piecewise polynomial functions 

pp , ( ),R q i jκ x x  are presented below.  
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 (9) 
where 2||| |i jd = −x x   and / 2 1s R q= + +    . The piecewise 

polynomial function becomes the hat kernel when 0q = , 1s = , 
and 1R = . It is worth noting that it is nontrivial to ensure piece-
wise polynomial functions to be positive definite. They can be 
safely used only when the number of feature dimensions does not 
exceed R  (Wendland, 2004). Therefore, to ensure the validity of 
the hat kernel, it should not be applied to problems with more 
than one input dimension. The discussion in this paper below fo-
cuses on the one-dimensional case, and input vectors like ix  will 

be written as scalars like ix . 
We also apply the hat kernel to the same example problem as 

experimented using the RBF kernel. The LML curve with respect 
to the length scale is plotted in Figure 3. Numerical instability 
can be observed around the length scale value of 10 , which does 
not affect the general trend of the curve. In comparison to the 
LML curve of the RBF kernel, the length scale range that is easy 
to optimize, i.e., between 110−  to 510 , is much larger when us-
ing the hat kernel. 

 
Figure 3: Log marginal likelihood curve with respect to the length scale of 
the hat kernel. 

According to Figure 3, the hat kernel does not solve all the 
problems involved in hyperparameter optimization. When the 
length scale value is small, say, less than 110− , the LML curve of 
the hat kernel still stays nearly constant. 

IV. DEFORMATION OF GAUSSIAN PROCESS REGRESSION 
The deformation phenomenon of GPR is observed based on our 
investigations on some transportation problems. In this section, 
we are going to examine the reason why the LML curve is nearly 
constant when the length scale of the kernel is small, and the re-
lated phenomenon of deformation in GPR. 



  

 

A. Interpretation of LML 
Recall that the LML of GPR is composed of three terms, namely 

the model complexity term 1 log
2

− K  , the data-fitting term 

11
2

−− y K yú  and the constant term ( )log 2
2
n π− . Optimizing the 

hyperparameters of a kernel is essentially a trade-off between 
model complexity and data-fitting quality. An extremely complex 
model can perfectly fit all the training samples with zero error. 
However, severe over-fitting issue will arise since the model can-
not generalize to any other data, and reducing the model complex-
ity can alleviate this issue. If we turn to the other extreme of a sim-
ple model that always yields constant outputs, the data-fitting qual-
ity will be unsatisfactory, and the model is of little value in appli-
cations. Therefore, it is expected to find an appropriate set of hy-
perparameters that fit the data well without adding more complex-
ity to the model. 

Let us consider the model complexity term first. The core com-
ponent of this term is the determinant of the kernel matrix K . 
Think of a case in which there are two sample points, i.e., 2n =  
and 2 2×∈K R . The kernel matrix can be visualised through eigen-
decomposition, as demonstrated in Figure 4. 

 
1

n

i i i
i

λ
=

= ∑K u uú  (10) 

where we denote the two eigenvalues of K  by 1λ  and 2λ  and as-

sume 1 2λ λ≥  without loss of generality. For each eigenvalue iλ , 

its corresponding unit eigenvector is denoted by iu . The ellipsoid 

in the figure has a major axis in the same direction as 1u , and the 
length of its semi-major axis equals to the corresponding eigen-
value 1λ . Regarding the minor axis, it has the same direction as 

the other eigenvector 2u , and the length of the semi-minor axis 

equals to 2λ . 

 
(a): 0.1l =  

 
(b): 5l =  

 
(c): 10l =  

Figure 4: Ellipsoid of a hat kernel matrix with different length scales. 
 

As can be observed, the larger the length scale, the flatter the 
ellipsoid. Correspondingly, we can conclude that K  is a mono-

tonically non-decreasing function of the length scale l  , if the 
kernel function is the function of /d l  and monotonically non-
decreasing with respect to l , where d  is the sample distance. 
This is obvious in the two-dimensional case. Given two length 
scale values 1l   and 2l  , and suppose 1 2l l<  . The kernel matrix 
can be written as 

 1 1 2 2

1 2

1 1 2 2

11, 12, 11, 12,

21, 22, 21, 22,

,l l l l
l l

l l l l

k k k k

k k k k
   

= =      
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K K  (11) 

where 
1 1 2 211, 22, 11, 22,l l l lk k k k= = =  are all constant with respect to 

l   since 1 2 0x x− =  . Also, we have 
1 212, 12,l lk k≤   and 

1 222, 22,l lk k≤ . Since the kernel matrix is symmetric, we have 

 
( ) ( )1 2 1 1 2 2

2 1

2 2 2 2
11, 21, 11, 21,

2 2
21, 21, 0.

l l l l l l

l l

k k k k

k k

− = − − −

= − ≥

K K
 (12) 

This conclusion can be generalized to more samples. The co-
variance between sample points is more likely to be zero when a 
small length scale is adopted, indicating the samples are loosely 
correlated or even uncorrelated even when they are close to each 
other. It results in a flexible model and high model complexity. 



  

 

Conversely, the covariance will increase as the length scale in-
creases, leading to a kernel matrix with highly correlated row 
vectors and, accordingly, a small determinant. The following 
proposition and proof will provide a more rigorous presentation 
of the monotonicity of K  with respect to length scale using its 
derivative. 

 
Proposition 1. Given a kernel matrix K   parameterised by 

length scale l , where the kernel function is a function of 
/d l  and monotonically non-decreasing with respect to l , 

the determinant of the kernel matrix K  is monotonically 

non-increasing with respect to l .  

Proof. The derivative of K  is computed by, 

 11 tr .
l l

−∂ ∂ =  ∂ ∂ 

K KK
K

 (13) 

As K   is positive definite, we have 0>K   and 

( )1tr 0− >K  . Since the kernel function is a function of 

/d l , its value equals 0  when 0d = . Hence, / l∂ ∂K  is a 
hollow matrix, following that ( )tr / 0l∂ ∂ =K  . Using the 
trace inequality of symmetric matrices, we have 

 ( )1 1tr tr tr 0.
l l

− −∂ ∂   ≤ =   ∂ ∂   

K KK K  (14) 

Therefore, / 0l∂ ∂ ≤K , indicating that the determinant of 

the kernel matrix K  is monotonically non-increasing with 

respect to l . 

The other term of the LML, 11
2

−− y K yú , reflects the fitting 

performance of the model on the training data. Again, consider 
the simple case with two sample points. The vector of sample 
labels 1 2[ , ]y y=y ú   is further added to the figure, as demon-
strated in Figure 5. 

 
(a): 0.1l =  

 
(b): 5l =  

 
(c): 10l =  

Figure 5: Ellipsoid of a hat kernel matrix and the vector of sample labels. 
 

The blue vector in the figure represents the label vector. The 
ellipsoid plot can intuitively show whether a kernel matrix is po-
tential to fit the data well. It is expected that the ellipsoid tilts 
towards the direction of y  , otherwise 1−y yKú   will be large. 

Based on (7) the term 1−y yKú  can be rewritten as 

 1 2

1

1 .
n

i
i iλ

−

=

= ∑y K y u y ú ú  (15) 

Therefore, it is the weighted sum of squared length of y ’s 
projection on each eigenvector. For instance, in Figure 5, if 
length scale l  keeps growing to a large value, the projection of 
y  on 2u  will be penalised due to the large eigenvalue of 1−K , 

i.e., 21 / λ . Among the three subfigures of Figure 5, (b) gives the 
best fitting as the kernel matrix achieves a reasonable balance 
between squared projected length. 

B. Deformation and over-fitting 

1) Intuitive demonstration of deformation 
It can be concluded from the previous section that, when the 
length scale l  of the kernel function is small, the model can fit 
the training data well while the model complexity is high, indi-
cating the over-fitting issue of the model. If we plot the posterior 
mean curve of the model, as demonstrated in Figure 6 (a), we can 
observe that a small length scale corresponds with an extremely 



  

 

distorted curve, which stays near the prior mean except the 
neighbourhood of training samples. Many jerks show up in the 
posterior mean curve as the model is too complex and overly 
flexible. Therefore, this phenomenon is referred to as the defor-
mation of GPR, meaning that severe over-fitting occurs. In com-
parison, an undeformed curve can better restore the shape of the 
ground truth behind training samples, as demonstrated in Figure 
6 (b). The deformation phenomon is usually revealed in transpor-
tation practice, in which the inputs data set is generally large and 
with noise, leading to inappropriate value of length scales. 

 
(a): Hat kernel, 0.3l =  

 
(b): Hat kernel, 10l =  

Figure 6: Posterior mean curve using the hat kernel with different length 
scales. 

2) Bayesian generalization error 
More formally, we will look into the deformation and over-fitting 
issue in terms of the generalization error. In the example above, 
this phenomenon is described by observing whether the fitted 
curve is distorted or not, which does not give a rigorous and uni-
versal criterion. Instead, the generalization error is a better indi-
cator, which measures the estimation error of the model on un-
seen samples. Denote the posterior mean estimate at *x  of a GPR 

trained on dataset D   as *( )Dh x  . The empirical generalization 

error at *x  of this model is written as,  

 ( ) [ ]2
* * * * *( ),) (( )D D Dh x y h x yx = = −E  (16) 

where the loss function   is set as mean squared error (MSE), 
and *y  denotes the true label at *x . 

Before acquiring the ground truth labels of all test samples, 
we are not able to compute the exact empirical generalization er-
ror. It should be aware that it is impossible and meaningless to 
evaluate the model over all samples in the input space. The indi-
cator of more interest in real applications is the expected gener-
alization error. The Bayesian generalization error, i.e., the expec-
tation of the empirical generalization error, at *x  of this model is 
written as,  

 [ ] ( ) [ ]2
* * * * *(( ) ), ( )D D Dh x y h x yx  = = −    E E EE  (17) 

Recall the expression for the posterior mean estimate of GPR 
in (4), and substitute *( )Dh x  with it, which yields, 
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Here, the training labels follow the prior distribution 
~ ( , )Y 0 KN . Therefore, ( ) =yy KE ú , and (18) can be fur-

ther simplified as, 
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Concerning the second term, it can be rewritten as, 
 [ ]1 1

* * * *y y− −  = K Kκ y κ yE Eú ú  (20) 

Similarly, according to the joint prior in (3), we have 
[ ]* *y =y κE . Then, (20) can be further simplified, 
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Concerning the third term, it can be rewritten as, 
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where ( )⋅V  denotes the variance of a random variable. 
Combine all three terms together, the Bayesian generalization 

error is, 
 [ ] 1

* ** * *( )D x κ −= −κ κKE úE  (23) 
Nonetheless, the Bayesian generalization error above is the 

value in ideal case. In most common cases, we do not know the 
exact covariances between each two input vectors; if we know, 
they can hardly be accurately described by simple kernel func-
tions such as the RBF kernel and the hat kernel. Our prior about 
the use of the kernel function, which might be biased, only en-
codes our belief in the relationships between different inputs. 

Denote the Bayesian generalization error at *x  using an un-
biased kernel function and a biased kernel function as 

*( )u
D x  E E  and *( )D

b x  E E , respectively. It was argued that the 

use of a biased kernel function leads to an increased Bayesian 
generalization error [37]. We first write the empirical generaliza-
tion error *( )u

D xE , 



  

 

 ( )21
* *( ) ( ) *( )u

D u u yx −= −κ K yúE  (24) 

where the subscript ( )u  indicates the use of an unbiased kernel 
function, i.e., the latent true kernel function that determines the 
covariance between input vectors. And its Bayesian generaliza-
tion error is, 
 1

* **( ) *( ) ( ) *( )) =(u
D u u u ux κ −−   Kκ κE úE  (25) 

The other empirical generalization error *( )u
D xE  can be ex-

pressed as, 

 ( )21
* *( ) ( ) *( ) b

b
D b yx −= −κ K yúE  (26) 

where the subscript ( )b  indicates the use of a biased kernel func-
tion, i.e., the designated prior kernel function. And its Bayesian 
generalization error is, 
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where detailed reduction is provided in Appendix A. 
 
Proposition 2： * *( ) ( )u b

D Dx x   ≤   E EE E . 

Proof: Denote the difference between two generalization errors 
as * *( ) ( )b u

D D Dx x∆ = −E E E . Therefore, we have, 
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Considering that ( )uK  is a positive-semidefinite matrix, it 

can be concluded that [ ] 0D∆ ≥E E  . Hence, 

* *( ) ( )u b
D Dx x   ≤   E EE E . 

3) Definition of deformation  
It can be noticed that the Bayesian generalization error in the un-
biased case, which is a lower bound of the Bayesian generaliza-
tion error in real applications, precisely equals the posterior var-
iance, as shown in (4). Hence, a large posterior variance is related 
to a higher risk of deformation. Moreover, we also notice that the 
posterior variance 1

** * *κ −−κ K κú   can never exceed the prior 

variance **κ . Therefore, the GPR is more likely to be deformed 
if the posterior variance is close to the prior variance. 

Similar to over-fitting, it seems that we can only approach de-
formation of GPR as a qualitative notion. However, based on the 
findings above, a threshold-based quantitative definition can be 
provided. 
Definition 3 (Deformation). A GPR trained on dataset D  is de-

formed with threshold dδ   when the following two condi-
tions hold, 

(1) ( ) 0D ix =E , ( , )i ix y D∀ ∈ . 

(2) [ ]( )
*

** *min ( )D dx
xκ δ

∈
− ≤E

X
E . 

where ( )D ⋅E  refers to the error corresponding to a biased 
kernel function, and X  denotes the input space. 

The first condition in Definition 3 ensures that the GPR is not 
under-fitting, as all training samples are perfectly fitted. The sec-
ond condition limits the minimum gap dδ  between the posterior 

and prior variance. If a strict minimum gap 0dδ =  is adopted, 
the GPR becomes completely deformed. 
Definition 4 (Complete deformation). A GPR trained on dataset 

D  is completely deformed when it is deformed with thresh-
old 0dδ = . 

Since we can never know the exact covariances between each 
two input vectors, almost all kernels suffer the risk of defor-
mation in GPR. Selecting proper values for hyperparameters is 
critical for GPR. As has been shown in Figure 2 and 3, the LML 
curve of GPR stays constant when the length scale of the kernel 
function is not adequately large. As a result, the model becomes 
deformed and over-fitted for a wide range of small length scale 
values. In addition, the gradient of the LML curve in this range 
corresponding to deformation is close to zero, making gradient-
based optimization algorithms easily stuck in local optimum 
when the initial point of the algorithm locates here. Therefore, it 
is necessary to find a lower bound of length scale to avoid the 
appearance of deformation. 

C. Lower bounds of length scale to avoid deformation 
To jump over the region that corresponds with deformation, it is 
natural to seek for a lower bound of length scale values, which 
can help narrow the range where we place the initial point of gra-
dient-based optimizers. The property of being compactly sup-
ported indicates the possibility that the use of hat kernel may lead 
to complete deformation of a GPR. 

The hat kernel function is a function with a compact support, 
whose value will be constantly zero when the sample distance 
exceeds a specific threshold, and we can write its support, i.e., 
the influencing range of a sample, as follows, 
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For each unobserved point of interest *x , its posterior mean 

can be written as 1
*

−κ K yú  according to (4). Since 1−K y  is con-

stant with respect to *x , we denote it by a . This expression can 
be rewritten as follows, 
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The equation above expresses the posterior mean as the 
weighted sum of kernel function values between the new point 
and every sample point. 

Similarly, the second term of the posterior variance 
2 1
post ** * *σ κ −= − Kκ κú  is a quadratic form. It can be rewritten as 

follows, 
 ( ) ( ) ( )( )1

* * hat * hat * hat *1 2 ,po , , ,l , ,yn nx x x x x xκ κ κ− …=κ κKú

 (31) 
where poly ( )n ⋅   denotes a n  -order polynomial function. Thus, 

the posterior variance at *x  will equal the prior variance when 
all kernel function values equal zero. 

Without loss of generality, we assume all training samples are 
sorted in ascending order, i.e., 1 2 nx x x< <…< , and we limit 

the input space of our interest to 1, ][ nx x=X . To avoid the ap-
pearance of complete deformation, we should ensure that, for all 

[ ]* 1, \nx x x∈ x , ( )hat *max , 0i ix xκ > . 

Proposition 3. For all [ ]* 1, \nx x x∈ x  , 

sup min / 2i j i jl x x> −   is a sufficient condition of 

( )hat *max , 0i ix xκ > . 

Proof. Given an arbitrary point [ ]* 1, \nx x x∈ x , find its nearest 
sample point 

 
  *,nr *arg min .

i

i
x

x x x
∈

= −
x

 (32) 

And their distance is *,nr *,nr *d x x= − . Due to the mono-

tonicity of the hat kernel function with respect to sample 
distance, for any point { }*,nr\x x∈x , we have 

  ( ) ( )hat * hat *,nr *, , .x x x xκ κ≤  (33) 

Additionally, [ ] ( )*,nr 11, 1max i ii nd x x+∈ −≤ −  , which can be 

generalized to an unsorted x  , i.e., 

*,nr sup min / 2i j i jd x x≤ − . 

According to the inequality in (13), 
[ ] ( )* 1 hat *, \ ,max , 0n i ix x x x xκ∀ ∈ >x   is equivalent to 

[ ] ( )* 1 hat *,nr *, \ , , 0nx x x x xκ∀ ∈ >x  . This requires that 

*,nrd l< , which means that sup min / 2i j i jl x x> − .  

Although vector a  is constant with respect to *x , it is asso-
ciated with the length scale of the kernel function. Consequently, 
the posterior estimate of a specific point can be influenced by 
sample points far away. In the case of deformation other than 
complete deformation, each sample point has limited influencing 
range, and the posterior mean curve can still show jerks near 
some of sample points. A stronger condition can be adopted to 
reduce the risk of deformation; that is, for all [ ]* 1, \nx x x∈ x , its 

posterior mean ( )post *m x   can be affected by the label of any 
sample point. 

The crucial point of this condition lies in vector a , since the 
value of the hat kernel function between two points with a larger 

distance than l  will be zero, and requiring that 1nl x x> −  is ap-
parently unreasonable. Considering that y  is a constant vector, 

we focus on the inverse of kernel matrix 1−K . A comparison be-
tween two hat kernel matrices with different length scale values 
is demonstrated in Figure 7, where both ordinate and abscissa 
represent the index of the sample point, and a bluer colour in the 
figure indicates a larger covariance between two sample points. 
When the length scale value is small, e.g., Figure 7 (a), the kernel 
matrix is block diagonal and can be written in the following form, 
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To compute 1−K  in vector a , one may compute the inverse 
of each sub-matrix, 
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Suppose the shape of 1K   is 1 1n n×  , label 1{ | }iy i n≤   will 
have no influence on the posterior estimate of points 

{ }1
| nx x x l> +  . Therefore, to ensure that the posterior mean 

( ) [ ]post * * 1, , \nm x x x x∀ ∈ x  can be affected by the label of any 

sample point, we have to ensure that the kernel matrix K  is not 
block diagonal. 
Proposition 4. sup mini j i jl x x> −  is a sufficient condition of 

the kernel matrix K  being not block diagonal. 
Proof. The kernel matrix K  is block diagonal means that there 

exists [ ]1, 1s n∈ −   such that, for all [ ]1,i s∈   and 

[ ]1,j s n∈ +  , ( )hat , 0i jx xκ =  . This is equivalent to 

1s sl x x+> − . 
Therefore, one sufficient condition of the kernel matrix K  
being not block diagonal is that [ ] ( )11, 1max s ss nl x x+∈ −> − , 

which can be generalized to an unsorted x  , i.e., 
sup mini j i jl x x> − .                    



  

 

V. CONCLUSION 
Gaussian process regression is an emerging and efficient model 
in transportation system estimation and prediction problems. 
This paper investigates the hyperparameter optimization prob-
lem of GPR. We focus on monotonic kernel functions widely 
used in a variety of common tasks, such as the hyperparameter 
optimization of deep neural networks and simulation-based opti-
mization. The most frequently adopted monotonic kernel func-
tion is the RBF kernel, which is infinitely differentiable and can 
yield smooth estimation results. However, one issue often ne-
glected in practical applications is the over-fitting and under-fit-
ting of GPR due to inappropriate hyperparameter of the RBF ker-
nel. The hyperparameter of the kernel function in GPR is often 
determined by optimizing the nonconvex LML function, where 
plateaus can be observed in the function curve of LML when the 
hyperparameter is either too small or too large. A question arises 
that whether we can find a kernel function similar to the RBF 
kernel that can alleviate the risk of causing the issue above at the 
same time. Towards this question, our study suggests the use of 
the hat kernel instead of the RBF function. It is found that the hat 
kernel can avoid under-fitting of GPR due to overly large hy-
perparameter, but the over-fitting issue due to overly small hy-
perparameter is still unattended. 

To further address the over-fitting issue, a lower bound anal-

ysis on the hyperparameter of the hat kernel is performed. Graph-
ical interpretations on the LML are first presented to help under-
standing the objective of the hyperparameter optimization prob-
lem of GPR. Then, we show that a too small hyperparameter of 
the hat kernel leads to the deformation of the posterior mean 
curve. Two lower bounds are derived, which are hopeful to re-
duce the risk that the hyperparameter optimization is stuck in the 
local optimum.  

The proposed hat kernel as well as the lower bounds of the 
hyperparameter overcome the overfitting/underfitting issues of 
GPR. As an alternative/improvement of the RBF kernel, the hat 
kernel is of considerable significance in that it helps to further 
improve the use of GPR in solving transportation problems. For 
future work, it is worth studying how the hat kernel can be gen-
eralized to input vectors with higher feature dimensions and 
whether a stronger bound can be found for the kernel function. 
This study has not employed the hat kernel to address transpor-
tation problems. Applying GPR with hat kernel to solve traffic 
volume prediction problems with noisy data or high-dimensional 
transportation optimization problems is suggested as a meaning-
ful extension of this study. 
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APPENDIX A 
Proposition 5. The Bayesian generalization error using a biased 

kernel function is, 
  (36) 
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Concerning the first term, it can be rewritten as, 
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Here, the training labels follow the unbiased prior distribu-
tion ( )~ ( , )u0 KY N  . Therefore, ( ) ( )u=yy KE ú  , and 

(38) can be further simplified as, 
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Concerning the second term, it can be rewritten as, 
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The joint prior distribution of the training labels and the new 
sample label uses the biased kernel function, so we have 
[ ]* *( )by =y κE . Then, (40) can be further simplified, 
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Concerning the third term, similar to (22), it still equals 
**( )uκ . 

Combine all three terms together, the Bayesian generaliza-
tion error is, 
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APPENDIX B 
Table I Notation Table 

Notations  
x  The input vector y  The output label 

*x  An arbitrary input vector ( , )κ ⋅ ⋅  The kernel function 
l  The hyperparameter of the kernel 

dδ  the minimum gap  between the posterior and 
prior variance. 

D  Dataset contains n samples 1: 1:( , )n nD = x y  , 
where 1: 1 2 , ,[ ], nn = …x x xx ú  , 

1: 1 2 ], ,[ , nn y yy …=y ú  
K  The covariance matrix, whose element on the i

th row and j th column is ( , )i jκ x x  
*κ  The vector denotes covariances between *x  an 

x , 2* 1 * * *[ ), )( , ( , , , )]( ,nκ κ κ…=κ x x x x x x ú  
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