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Abstract 11 

Bus exterior advertising provides a powerful way to establish brand awareness since it can reach 12 

a mass of audiences with a high frequency. For a certain advertisement category, the advertising 13 

effectiveness is largely depended upon its exposure times to the target audience who takes interests of 14 

the advertisement, which is termed as targeted advertising. Given that the distribution of target 15 

audiences over a city varies among different advertisement categories, a practical way of enhancing 16 

overall advertising effectiveness is to deploy the bus with certain advertisement category to the bus 17 

line that best fits it “target area”. This gives rise to a decision-making problem of targeted bus exterior 18 

advertising and bus scheduling. In this paper, the problem is formulated as a bi-objective optimization 19 

model with objectives of maximizing the quantified advertising effectiveness and minimizing the 20 

number of bus fleet size to cover all trips. The advertising effectiveness is quantified using the audience 21 

demographic data. The deadheading of buses is also enabled in the scheduling process to facilitate both 22 

objectives. The NSGA-II-LNS algorithm is developed to solve the bi-objective problem with the 23 

incorporation of large neighborhood search operators into the framework of the NSGA-II to improve 24 
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solution quality. Various experiments are set up to verify the proposed model and solution algorithm. 25 

Keywords: Targeted bus exterior advertising; bus scheduling; bus deadheading; bi-objective 26 

optimization; NSGA-II-LNS. 27 

Introduction 28 

Transit advertising is a form of out-of-home (OOH) media that displays advertisements on the 29 

public transportation vehicles or in any related public transportation areas. For its high visibility and 30 

frequent exposure to the audiences, transit advertising is still a competitive and powerful way to win 31 

their attention despite the fast emergence of many new media, e.g., online media (Huang et al. 2022a). 32 

According to the American Public Transportation Association (APTA), the transit advertising can 33 

reach up to 83% of audiences on weekdays and 69% on weekends (APTA 2019). Out of all sorts of 34 

transit advertising, the bus exterior advertising is of particular advantage because it can cover a broad 35 

range of city areas through the mobility of bus and impact not only the passenger but anyone who can 36 

see the advertisement along the bus line (Roux 2014). Hence, more emphasis should be placed on the 37 

bus exterior advertising in launching a transit advertising campaign. 38 

When considering bus exterior advertising, it is very important to assess the demographic that the 39 

bus line system can reach. Specifically, some audiences might not be interested in the content of certain 40 

advertisements even though they are constantly exposed. There also exists a variance in the number of 41 

interested audiences across different city areas. For example, in the tech hub of a city, people are more 42 

likely to prefer the advertisements related with high-tech products. Therefore, the concept of “targeted 43 

advertising” is proposed with the intention of maximizing the effectiveness of advertising (Johnson 44 

2013; Tucker 2014; Wang et al. 2019), in which the core task is to expose the advertisement as many 45 

times as possible to its real “target audience”. Furthermore, massive researches on transportation big 46 

data in recent years have enabled to capture the number and distribution of target audience across the 47 

city (Wang et al. 2022; Huang et al. 2021b; Rajput et al. 2022). As for the targeted bus exterior 48 

advertising, the exposure times directly determined by the bus scheduling plan, which gives space for 49 
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optimization. For example, for an advertisement category which takes one certain region as the target 50 

market, the total exposure times can be increased by deploying more buses that are applied with this 51 

advertisement to serve the line passing this region.  52 

The conventional bus scheduling assumes that each bus can serve only one bus line, in which 53 

sense the effectiveness of bus exterior advertising is relatively consistent (Huang et al. 2022b; Teng et 54 

al. 2020; Jiang and Zhang 2022). While in the paper, a more practical situation is considered that the 55 

buses are allowed to shifted the service from one line to another (interlining). As deadheading trips (a 56 

bus departs empty from a dispatching terminal stop to a designated stop) are usually demanded for 57 

accomplishing the line change, we name this scenario as “bus scheduling under deadheading scheme”. 58 

The original intention of introducing deadheading was to reduce the bus fleet size that can cover all 59 

the trips, in that the vehicle resources could be arranged in a more flexible and efficient way (Ceder 60 

2016; Huang et al. 2021a; Zhang et al. 2021). Meanwhile, as the deadheading scheme enables line 61 

change, it is possible for the buses to reach a wider range of city areas and thus absorb more target 62 

audiences. 63 

Hence, it is natural to raise a decision-making question based on the discussion above: under the 64 

deadheading scheme, how to properly schedule the buses on a service timetable and select the 65 

advertisement category applied on each bus, so as to maximize the overall effectiveness of bus exterior 66 

advertising as well as maintain a small bus fleet size. It has to be clarified that the improvement of 67 

advertising effectiveness is only an added value, rather than the purpose of bus scheduling. The 68 

solution does not violate any basic constraints of normal bus scheduling, but provides an alternative 69 

option from the perspective of advertising. In this paper, a bi-objective optimization program is 70 

proposed with the objectives of maximizing advertising effectiveness and minimizing the bus fleet 71 

size. 72 

Literature review 73 

Transportation economics is an emerging intersectional research field that has attracted attention 74 
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from both public transportation research and marketing and advertising research (Wexler and Fan 75 

2022). For the topic of transit advertising, existed studies mainly focused either on the quantitative 76 

evaluation of target audiences and potential effects from transit advertising, or the maximization of 77 

advertising effectiveness through different methods. Zhang et al. (2017a) captured the patterns of 78 

passengers and bus stations to quantitatively measure the advertising effectiveness from the Smart 79 

Card Transaction (SCT) data, geographic data and point of interests (POIs) data. A bus route 80 

recommendation model was then proposed to maximize the advertising effectiveness. A similar work 81 

was done by Zhang et al. (2017b), where the motion patterns and user interests were learnt by a 82 

probabilistic data model, and the top-k retrieval problem for advertisement recommendation was 83 

solved to support real-time decision making. Faroqi et al. (2019) used the smart card data to model the 84 

passengers’ travel behavior and then proposed two behavioral advertising models regarding different 85 

optimization targets. Both models are formulated as linear programming models. They extended their 86 

work by clustering passengers with similar activities as a targeted group, and then developed an 87 

optimization model to allocate advertisements to the activity-trip groups (Faroqi et al. 2021). Huang 88 

et al. (2022a) estimated the distribution of target audiences by mobile phone data and land use data. 89 

Then, two distinct bus selection model were created to maximize the advertising effectiveness. For 90 

well-established brands, the goal was to expand the coverage of audiences, while for new brands, the 91 

goal was to acquire a high level of exposure. 92 

Deadheading has been viewed and studied as an operational strategy in bus vehicle scheduling by 93 

the authors (Mahdavi Moghaddam et al. 2019; Wang et al. 2020; Huang and Wang 2022c; Liu et al. 94 

2022; He et al. 2022). Ceder and Stern (1981) first introduced the concept of deadheading trips. They 95 

constructed a deficit function as the graphical interactive interface and considered to insert an empty 96 

trip between two terminals aiming at reduce the bus fleet size with respect to the original departures 97 

from the terminals. Furth (1985) applied the concept on a single bus line with a directional imbalance 98 

in passenger demand. For the direction with lower demand, some buses were selected to return empty 99 



5 

(skip the whole trip), while the others returned in service. In this way, they found that the number of 100 

vehicles needed was reduced, as well as the waiting time of passengers. Yu et al. (2012) presented a 101 

two-phase partway deadheading strategy to improve the bus service on peak directions. The first phase 102 

assessed whether a partway deadheading was necessary based on the service reliability, and the second 103 

phase determined the beginning stop for the service of a deadheading vehicle. Liu et al. (2013) 104 

developed a bus stop-skipping scheme and considered the deadheading problem as a special case. The 105 

stop-skipping (deadheading) was formulated as an optimization model with objectives of minimizing 106 

costs of both passengers and bus operators. Tang et al. (2019) developed a model based on the deficit 107 

function which combined deadheading with other trip adjustment strategies, including limited stop and 108 

short turning, to reduce the required number of vehicles for a single line. 109 

A research gap is identified from the previous studies. Although an increasing awareness of the 110 

potential market value in bus exterior advertising has led to a growing body of literature on this domain, 111 

and some studies have already sought to improve the effectiveness of advertising through proper bus 112 

scheduling or route selection, there is still no study that puts this problem under a deadheading scheme. 113 

According to the literature, the deadheading can successfully reduce the fleet size, and it is speculated 114 

that it can help to boost bus exterior advertising due to a wider coverage on the city area. Besides, in 115 

view of practical meaning, the deadheading scheme provides the most direct and cost-effective way to 116 

enhance the transit system given that the bus resources are always limited. Consequently, it is 117 

worthwhile to study this untouched problem. 118 

Objectives and contributions 119 

This study has two main contributions. First, to remedy the gap in the existing literature, it 120 

proposes a joint bus scheduling and advertisement selection problem under the deadheading scheme. 121 

The problem is then formulated as a bi-objective optimization model with aims of (1) maximizing the 122 

advertising effectiveness of bus exterior advertisements, and (2) minimizing the bus fleet size to cover 123 

all the trips. Second, due to the NP-hardness of the proposed bi-objective model, it is difficult to find 124 
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an exact method. So, a heuristic-based method named NSGA-II-LNS is designed as the solution 125 

algorithm. This method embeds the large neighborhood search operator into the framework of NSGA-126 

II to refine individual solutions. Also, a piecewise linear approximation method is adopted to solve the 127 

advertisement selection subproblem which determines the optimal advertising plan for a given 128 

scheduling solution. 129 

The remainder of this paper is structured as follows. Section “Problem description” describes the 130 

basic concepts in the problem, including the quantitative measurement of advertising effectiveness and 131 

the bus scheduling under deadheading scheme. Section “Model formulation” provides the bi-objective 132 

formulation of joint bus scheduling and advertisement selection problem, with elaboration on the 133 

model constraints. Section “Solution algorithm” develops a solution algorithm for the bi-objective 134 

problem based on the NSGA-II. Section “Numerical example” presents the numerical example to 135 

verify the proposed model and the solution algorithm. Finally, we conclude this paper in section 136 

“Conclusions” and point out some directions for future research. 137 

Problem description 138 

Advertising effectiveness measurement 139 

The effectiveness of bus exterior advertising relates to many factors such as the target audience 140 

distribution, the exposure frequency, and the advertising format. Consequently, it is complicated to 141 

measure the overall advertising effectiveness (AE) quantitatively (Huang et al. 2022a).  142 

For the purpose of modeling AE in a practical manner, the study area is first divided into several 143 

zones and each of them has a unique bus stop inside. The shape and size of divided zones are 144 

determined by the configuration of streets and blocks in the city. Then, the bus stops are looked as the 145 

centroids of their corresponding zones, aggregating the people who live in this region and may become 146 

the potential audience of bus exterior advertisements. Fig. 1 provides a simple illustration of the zone 147 

division strategy. The number of zones is identical to the number of bus stops. Thus, the term bus stop 148 

is used to refer to a zone hereafter. For a given bus stop p  in the bus stop set P  and advertisement 149 
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category set A , the target audience profile is denoted as follows, 150 

 ( ) ( ) ( ){ }1 21 2, , ,..., , ,...a p a p apa a aτ τ τ， , (1) 151 

where a  is an advertisement category, a A∈ , and apτ  represents the number of target audiences of 152 

a   around the stop p  . Existing studies have verified that the target audience profile has a close 153 

relationship to the land use type of that location (Zhang et al. 2017a; Sun et al. 2020). 154 

[Insert Fig. 1 here] 155 

Then, the AE of a particular advertisement category a   at bus stop p   is measured by the 156 

accumulative exposure times within the time period (a target audience view the advertisement once is 157 

counted as one exposure), which is denoted as, 158 

 
a

ap ap kp
k K

nβ τ
∈

= ∑ , (2) 159 

where apβ  is the value of AE for advertisement category a  at bus stop p . kpn  is the number of 160 

times the bus applied with advertisement category a  pass by the bus stop p . aK  is a subset of the 161 

bus set K . Note that those values are in essence determined by the transit route structure and the bus 162 

scheduling plans. Then, by accumulating the AEs at all stops, we acquire the global effectiveness of 163 

advertising of category a , which is denoted as, 164 

 a ap
p P

β β
∈

= ∑ . (3) 165 

Further, this study considers a non-linear extension of Eq. (2). Wells (2014) claimed that multiple 166 

exposures to an advertisement increase audience awareness of the advertising message and facilitate 167 

consumer processing of the included information. However, the audience’s attitude towards a brand 168 

does not increase linearly with the times getting exposed to the advertisement. Instead, the attitude 169 

displays a diminishing marginal utility or even excessive exposure times can cause a side effect on the 170 

advertisement. Schmidt and Eisend (2015) modelled the effect of advertising repetition as a nonlinear 171 
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quadratic course of effect which shaped as an inverted U curve. Following this principle, the expression 172 

of AE (Eq. (2)) is reconstructed as follows, 173 

 ( )ap ap apnβ τ ϕ= , (4) 174 
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, (5) 175 

where ( )ϕ ⋅   is a non-decreasing piecewise function which maps the actual exposure times to the 176 

“effective exposure times” to better describe the practical influence of bus exterior advertisements. Fig. 177 

2 illustrates the function curve. The effective exposure times grows gradually before leveling off at a 178 

constant value 0ϕ  when the actual exposure times reach the upper limit 0n , implying that no more 179 

advertising benefit can be made from more bus visiting. 180 

[Insert Fig. 2 here] 181 

Bus scheduling under deadheading scheme 182 

The classic vehicle scheduling problem (VSP) in public transportation is defined as establishing 183 

the daily working schedules (rotations) for a fleet of buses, to cover a coordinated timetable. Each trip 184 

in the timetable with specified departure time, arrival time, start stop, and terminal stop is covered by 185 

exactly one rotation (Kliewer et al. 2006). Many previous studies on VSP make the preliminary 186 

assumption that the bus vehicle are tied with the bus route, while in this study we tackle with a more 187 

practical situation where buses can be dispatched across the lines. Since additional deadheading trips 188 

are inserted into the rotation plan when the terminal stop of the former trip and the start stop of the 189 

subsequent trip are different, this problem is named as VSP under deadheading scheme. The minimum 190 

required fleet size of bus can be reduced as long as the deadheading trips are properly arranged within 191 

the scheduling plan, despite the increased total working load (Ceder 2016). Another important reason 192 

to consider deadheading trips is from the perspective of advertisement spreading. As it breaks the 193 
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bindings between bus and route, there is higher chance for the bus exterior advertisement to reach a 194 

wider range of city areas and to reach the actual target audiences. 195 

Consider a graph representation of the VSP under deadheading scheme (see Fig. 3). The 196 

scheduling network is denoted as ( ),G N E= . Each node i N∈  represents a trip (or depot) and is 197 

associated with a beginning time ibt , an ending time iet , and the bus line it operates on. The set of 198 

arcs E  contains the possible connections between nodes. Two types of arcs are involved: for the case 199 

where a pair of nodes ( ),i j   are set up on the same line, as long as their time periods are not 200 

overlapped, there will be an in-line arc to connect them; for the other case where ( ),i j   are on 201 

different lines, there will be a deadheading arc if their time interval is longer than the minimum 202 

required deadheading time ijδ  (i.e., j i ijbt et δ− ≥ ). Note that the deadheading can take place either 203 

within one single bus stop (implying that there is no extra time duration for line changing) or between 204 

two distances stops (the bus needs to take an actual deadheading trip for line changing). A daily rotation 205 

of a bus is then modelled as a path starting from the depot, passing by a sequence of nodes, and 206 

returning to the depot eventually. 207 

[Insert Fig. 3 here] 208 

Model formulation 209 

In this paper, optimization of the bus scheduling and the bus exterior advertisement selection are 210 

considered jointly. The three-index binary decision variables k
ijx  are introduced as the bus scheduling 211 

variable that equals to 1 if bus k   serves trip j   after i  , and 0 otherwise. The two-index binary 212 

decision variables k
ay   reflect the advertising strategy that equal to 1 if bus k   is applied with 213 

advertisement category a , and 0 otherwise. 214 

Two objectives are addressed in this model. First, from the side of bus advertising, the objective 215 
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is to maximize the total AE of bus exterior advertisements. Second, from the side of bus scheduling, 216 

we seek to minimize the bus fleet size because it is a direct reflection of the efficiency of bus utilization. 217 

With smaller number of buses needed to run all the trips, it means the bus scheduling plan is executed 218 

under a compact and smart timetable. Since the optimization of both objectives are facilitated by the 219 

introduction of deadheading trips as discussed in section “advertising effectiveness measurement”, it 220 

is assumed that the increased operating costs (driver and vehicle travel cost) for the transit company 221 

to add deadheading trips into the timetable is far less than the capital cost of saving a bus. Furthermore, 222 

as those two objectives are speculated to contradict in nature (e.g., improving the AE generally needs 223 

a larger bus fleet size), rather than addressing them via the weighted sum method, it is more reasonable 224 

to formulate the problem as a Bi-objective Optimization Problem (BOP) and then solve it using pareto-225 

based algorithms. 226 

The mathematical formulation of joint bus scheduling and advertisement selection problem [P1] 227 

is provides as follows. 228 

[P1] 229 

 1max ap
a A p P

z β
∈ ∈

=∑∑  (6) 230 

 2 0min k
i

k K i N
z x

∈ ∈

= ∑∑  (7) 231 

s.t. 232 
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c x MaxCr k K
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≤ ∀ ∈∑∑ , (12) 237 

 { },  , 0 ,k
i j ij ijet bt Mx M i j N k Kδ− + + ≤ ∀ ∈ ∈ , (13) 238 

 1,  k
a

a A
y k K

∈

= ∀ ∈∑ , (14) 239 

 0 ,  k k
i a

k K i N
LB x y UB a A

∈ ∈

≤ ≤ ∀ ∈∑∑ , (15) 240 

 { }0,1 ,  , ,k
ijx i j N k K∈ ∀ ∈ ∈ , (16) 241 

 { }0,1 ,  ,k
ay a A k K∈ ∀ ∈ ∈ . (17) 242 

Eq. (6) is the first objective function which is to maximize the AE of bus exterior advertisements. 243 

Eq. (7) is the second objective function which is to minimize the bus fleet size to cover the trips. Note 244 

that the expression 0
k
ix  stands for the arc from the virtual depot node to the rest trip nodes in the 245 

network. Constraint (8) specifies the expression of the AE as elaborated earlier in Eqs. (4) and (5). 246 

ipλ  is a binary parameter which equals to 1 if trip i  contains stop p , and equals to 0 otherwise. 247 

Constraint (9) enforces the rotations to cover every trip. Each trip must be served by exact one bus. 248 

Constraints (10) and (11) define the trip chain of a bus. A valid trip chain must start from the depot 249 

node, pass by a string of nodes one by one (or none), and return to the depot node again finally. 250 

Constraint (12) restricts the upper limit of deadheading trips for a bus within the study time period as 251 

too much deadheading maybe impractical even though the extra costs are ignored. ijc  is a binary 252 

parameter which equals to 1 if serving trip j  after trip i  incurs a deadheading trip, and equals to 0 253 

otherwise. MaxCr  denotes the maximum number of deadheading trips for each bus within the time 254 

period. Constraint (13) ensures the layover time between two consecutive trips must be no less than 255 

the minimum required deadheading time. Note that this constraint together with the former constraints 256 

also forbids subtours in the solution. Constraint (14) stipulates that each bus is only allowed to be 257 

applied with one advertisement category during the planned period. Constraint (15) ensures the total 258 
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number of buses that are applied with the same advertisement category should be within a determined 259 

range. This constraint indicates the fairness consideration among all the advertisement categories. If 260 

there wasn’t such a constraint, most or even all of the buses would be applied with one advertisement 261 

category, which in general has more target audience compared to other categories to maximize the total 262 

AE. Constraints (16) and (17) define the binary decision variables. 263 

Solution algorithm 264 

Since constraint (8) is non-linear and contains the multiplication of decision variables, the bi-265 

objective programming model is a non-linear integer BOP. It has been noted that a single-objective 266 

bus vehicle scheduling problem is already NP-hard (Kliewer et al. 2006; Liu et al. 2013; Bie et al. 267 

2021). The proposed problem also includes the selection of bus exterior advertisement and a bi-268 

objective structure that is more complicated to address than the general single-level VSP. Thus, the 269 

joint bus scheduling and advertisement selection problem is also NP-hard. 270 

Given the extreme difficulty of applying an exact algorithm for the NP-hard problem, a new 271 

heuristic-based solution algorithm named NSGA-II-LNS is proposed to solve the bi-objective problem. 272 

The main idea lies on the integration of the group evolution mechanism and the neighborhood search 273 

operator into one algorithm. The non-dominated sorting genetic algorithm with the elitist strategy 274 

(NSGA-II) is a well-developed multi-objective optimization algorithm and has been used widely for 275 

its strong global search ability and robustness (Deb et al. 2002). To further refine the solutions that are 276 

produced by standard NSGA-II during each iteration, a large neighborhood search (LNS) operator is 277 

incorporated into the framework to search for new elite individuals. The algorithm also includes a 278 

piecewise linear approximation method for the nonlinear convex objective to make use of the mixed-279 

integer linear programming solvers to solve the advertisement selection subproblem. Details of the 280 

algorithm are described in the rest of this section. 281 
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Overview of NSGA-II-LNS 282 

First, some preliminary knowledges are provided on the multi-objective problem and the Pareto 283 

optimal solution. Consider a multi-objective problem, 284 

 ( ) ( )1 2min ( ), ( ),..., ( )tF f f f=x x x x  (18) 285 

s.t. 286 

 ∈Ωx , (19) 287 

where x   is the decision variable vector, t   is the number of objective functions, and Ω   is the 288 

feasible space. The dominance rule between solutions is defined as follows. Let two solution vectors 289 

, ∈Ωu v , u  is said to dominate v  if and only if ( ) ( )i if f≤u v  for every objective function index 290 

{ }1,2,...,i t∈  and ( ) ( )j jf f<u v  for at least one objective function index { }1,2,...,j t∈ . u  and v  291 

are said to be non-dominated if neither of solution dominates the other. A solution vector ∗x  is a 292 

Pareto optimal solution if there exists no other solution in the decision space that can dominate ∗x . 293 

Since typical multi-objective problems involve competing objectives, and no solution may make all 294 

objectives optimal simultaneously, we can obtain a set of non-dominated Pareto optimal solutions 295 

which is termed as the Pareto Front (PF) of the problem. 296 

The NSGA-II operates and evolves on a population of solutions towards the better approximation 297 

of the PF. The core advantage of NSGA-II is its elitist strategy within the population. In particular, the 298 

fast non-dominated sorting procedure and the crowding distance calculation are applied in this 299 

algorithm. The fast non-dominated sorting ranks the solutions based on a hierarchical order with 300 

multiple levels. Solutions within the same level are non-dominated but dominate at least one solution 301 

in the lower levels. Further, on each non-dominated level, the non-dominated solutions are ranked by 302 

the crowding distance according to the descending order. The crowding distance is expressed as, 303 

 ( ) ( )( )
1

1 1
t

r i i
i

D F r F r
=

′ ′= + − −∑ ， (20) 304 
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where rD   is the crowding distance of solution r  , ( )1iF r′ +   and ( )1iF r′ −   represent the 305 

normalized value of its next and previous solutions at objective function i , assuming that the solutions 306 

are sorted accordingly. The crowding distance of all marginal solutions are set as a very high value. 307 

The steps of the NSGA-II-LNS algorithm can be described as follows. 308 

Step 0: (Initialize input parameters) Set the parameters, including the population size PN , the 309 

value of crossover probability cρ , the value of mutation probability mρ , and the maximum number 310 

of iterations maxI . Set the iteration counter 0I = .  311 

Step 1: (Initialize population) Generate the solutions as the number of population size PN  via 312 

the subroutine described in section “Solution generation subroutine”, and form the initial population 313 

(the first parent population). A checking procedure is then carried out to avoid duplicated solutions in 314 

the population. 315 

Step 2: (Large Neighborhood Search) Perform the LNS for each solution in the current parent 316 

population. Evaluate the fitness of the newly-generated neighbor solutions. If the neighbor solution is 317 

not dominated by its original solution, it is added to the population as a new individual. 318 

Step 3: (Genetic operators) Select two candidate solutions µ   and ν   from the parent 319 

population based on the tournament strategy. Set a uniformly distributed random number cγ  between 320 

[0,1]. If c cγ ρ< , we conduct the crossover operation as follows. For each trip in the offspring solution, 321 

randomly pick one assigned bus from µ  and ν  conditioned that at least one of them is feasible, 322 

otherwise a third feasible bus is used. Similarly, if another random number m mγ ρ< , we conduct the 323 

mutation operation which is identical to the LNS in step 2 on the offspring solution. After that, the 324 

offspring solution is added to the child population. The former procedures are done for multiple times 325 

until a complete child population is generated. 326 

Step 4: (Generate new parent population) Combine the parent population and the child 327 

population, and conduct the fast non-dominated sorting and crowding distance calculation as 328 
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aforementioned. The best PN  solutions in the combined population are retained and formed as the 329 

new parent population. 330 

Step 5: (Stopping criterion) If the iteration counter maxI I= , terminate the algorithm and output 331 

the final PF; otherwise, let 1I I= +  and return to Step 2. 332 

Solution generation subroutine 333 

In the NSGA-II-LNS algorithm, new solutions need to be generated in the phase of population 334 

initialization. As described in section “Model formulation”, each solution is comprised of two elements, 335 

namely, the bus scheduling variables (i.e., k
ijx ) and the advertisement selection variables (i.e., k

ay ). 336 

The following procedures are adopted to generate values for both of them. 337 

Generation of bus scheduling solution 338 

As for the bus scheduling variables, the mission of establishing the rotation for a fleet of buses is 339 

equivalent to assigning an available bus for each of the trip to be served. First, sort all the trips by the 340 

trip beginning time in an ascending order. Then, for each trip i  in the sorted trip list, a candidate bus 341 

set is created to contain all the available bus that can be currently assigned to trip i , complying to the 342 

trip chain constraints (10) and (11), and the deadheading constraints (12) and (13). Hence, to ensure 343 

the feasibility of the bus scheduling, a bus k  is randomly chosen from the candidate set for this trip. 344 

When there is no available bus for this trip, it has to be served by a dummy bus, implying the solution 345 

is infeasible. Besides, when choosing, priorities are given to the bus which has been already deployed 346 

for some trips, which is likely to leave more buses unused after finishing all trips and thus reduce the 347 

fleet size of bus to cover the trip. 348 

Approximation of advertisement selection solution 349 

A notable feature of the bi-objective model [P1] is that, once fixing the value of bus scheduling 350 

variables, the bus fleet size (the second objective function) is then determined as a constant, and [P1] 351 

is therefore reduced to a single-objective optimization problem with only decisions on the 352 
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advertisement selection variable to maximize the AE, which should be much easier to solve. While on 353 

the other hand, fixing the value of advertisement selection variables will not decrease the complexity 354 

of the model as much. Even though each bus has a designated advertisement category, the problem 355 

still remains an VSP with two objective functions. Given the inherent asymmetry of the solution 356 

elements, we can determine the value of k
ay  after the generation of k

ijx  in the way of mathematical 357 

programming. 358 

Consider a reduced problem [P2] of [P1], which is denoted as, 359 

[P2] 360 

 max k
ap ap kp a

a A p P a A p P k K
n yβ τ ϕ

∈ ∈ ∈ ∈ ∈

 =  
 

∑∑ ∑∑ ∑   (21) 361 

s.t. 362 

 1,  k
a

a A
y k K

∈

= ∀ ∈∑ , (22) 363 

 0 ,  k k
i a

k K i N
LB x y UB a A

∈ ∈

≤ ≤ ∀ ∈∑∑  , (23) 364 

 { }0,1 ,  ,k
ay a A k K∈ ∀ ∈ ∈ . (24) 365 

In [P2], kpn  is the number of times that the bus k  passes by the bus stop p . With the known 366 

values of decision variable x  , it is also fixed as 
{ }0

k
kp ip iji N j N

n xλ
∈ ∈

=∑ ∑ 
   . So, the only decision 367 

variable contained in this problem is k
ay . It is also noticed from Fig. 3 that the function ( )ϕ ⋅  shown 368 

in Eq. (5) is concave, therefore it is not difficult to prove that the maximization problem [P2] is an 369 

integer programming problem with linear constraints and a convex objective function. In order to 370 

efficiently solve this problem in practice, an approximation of the convex objective function is made 371 

by a piecewise linear function. The commercial solvers, such as CPLEX, is then applied to solve the 372 

approximation problem and output the optimal solution value of the bus advertising variable as y . 373 

Together with the bus scheduling variable, it forms a complete initial solution, denoted as ( ),x y  . 374 
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Large Neighborhood Search 375 

It is acknowledged that the Large Neighborhood Search (LNS), which basically perform destroy 376 

and repair operators repetitively on a single solution, has several advantages on enhancing the solution 377 

quality. As long as the operators are properly designed, the searching space can contain a large variety 378 

of neighborhoods with better solutions inside. Since the problem is over-constrained, to ensure the 379 

neighbor solution is still feasible, A tailored swap operator is designed to generate new bus scheduling 380 

solution and also use the method described in section “Approximation of advertisement selection 381 

solution” to determine the corresponding advertisement selection solution. Detailed steps are as 382 

follows. 383 

Step 1: (Swap operator) For a solution ( ),x y   in the population, define a set Φ  that consists 384 

of all the trip pairs that can swap their locations in the bus scheduling solution x , meaning that the 385 

new solution after swapping is still feasible. Specifically, there are arcs in the graph to connect the 386 

corresponding nodes after swapping, and the deadheading constraint (12) and the layover constraint 387 

(13) are still satisfied. 388 

Step 2: (Generate neighbor solution) For the set Φ , a greedy strategy is applied by sorting all 389 

the trip pairs based on the increment in the total AE (the first objective function value) once the trips 390 

are swapped in a descending order. In this way, the trip pair with the maximum potential to improve 391 

the solution is preferred for swapping. Based on the new bus scheduling solution, update the bus 392 

advertising solution via the approximation method as aforementioned. The new solution is denoted as 393 

( )ˆ ˆ,x y . 394 

Step 3: (Check acceptance rule) Calculate the value of the two objectives for the solution ( )ˆ ˆ,x y  395 

according to Eqs. (6) and (7). Subsequently, check the dominance relationship between the two 396 

solutions. If ( )ˆ ˆ,x y  is not dominated by ( )ˆ ˆ,x y , add ( )ˆ ˆ,x y  into the current population; otherwise 397 

give up this neighbor solution. 398 
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Numerical example 399 

Data settings 400 

The proposed joint bus scheduling and advertisement selection problem and the NSGA-II-LNS 401 

algorithm are numerically verified in this section. Since the proposed problem is relatively new and 402 

there is no existing benchmark instances, we construct a test transit system on the Sioux-Falls network, 403 

which has been widely used in transportation studies (Meng and Yang 2002; Wang et al. 2013). The 404 

network has 24 bus stops and 38 undirected links as depicted in Fig. 4. The link travel time is also 405 

labeled next to each link. 406 

Five bus lines are manually designed within the transit system. Table 1 shows the route structures 407 

and headway settings of them. Once the route structure is decided, the one-way trip time of a line is 408 

also determined by summing up the time of each link it travels by. As the lines are bi-directional, a 409 

total of 10 distinct trips (i.e., both inbound and outbound trips) are involved. It should be noted that 410 

only the stops 1, 2, 13, 20 are taken as the beginning/terminal stop. Those four bus stops are indicated 411 

by red and dashed line in the figure. To establish the bus service timetable under the network, the study 412 

time period is set as [ ]0,720T =   and it is assumed that each line starts the first (inbound and 413 

outbound) trip at time 0, arrange the following trips sequentially according to the headway shown in 414 

Table 2, and the ending time of the last trip must not exceed the upper time limit. In this way, a unique 415 

timetable is generated. There are 144 trips in total encoded from 1 to 144. As for the connection 416 

between trips, both in-line arcs and deadheading arcs are created according to the definitions in 417 

problem description. And in order to avoid long-distance deadheading, the deadheading trips are only 418 

allowed in the following three situations (let itp  and jbp  be the terminal stop of the former trip and 419 

the beginning stop of the subsequent trip respectively): (1) itp = jbp  , and trip i  and j  belong to 420 

different lines; (2) itp  and jbp  are in the bus stop pair (1, 2); (3) itp  and jbp  are in the bus stop 421 

pair ( )13 20，  . The value set of minimum deadheading time between trip i   and j   is therefore 422 
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determined as { }0,6min,13minijδ ∈ . 423 

Regarding the input data related to bus advertising, consider a total of three bus advertisement 424 

categories (i.e., 3A = ). It is assumed that the number of target audiences of a category around the 425 

bus stop follows a normal distribution, namely, ( )2,ap a aNτ µ σ , where aµ  and aσ  are the mean 426 

and standard deviation specific to the advertisement category a  , respectively. aµ   is uniformly 427 

generated between [ ]80,120 , and aσ  also follows a uniform distribution between [ ]10,20 . Hence, 428 

a synthetic dataset on target audience distribution is formed. 429 

[Insert Fig. 4 here] 430 

[Insert Table 1 here] 431 

Optimization results for the bi-objective problem 432 

We use the NSGA-II-LNS algorithm to solve the proposed problem. Some parameters inside the 433 

algorithm are set as follows. The population size and the maximum number of iterations are 100PN =  434 

and max 50I =  . The value of crossover probability and mutation probability are 0.8cρ =   and 435 

0.05mρ = . Also, the lower bound and upper bound shown in constraint (15) are set as 5LB =  and 436 

10UB =  respectively based on the rough estimation of the solution value. The parameters that affect 437 

the shape of AE function (seen in Eq. (5)) are set as 0 20n =  and 0 10ϕ = . The maximum number of 438 

total deadheading trips allowed for each bus is set as 5MaxCr = . The algorithm is coded in Python 439 

and implemented on a personal computer with AMD Ryzen 7-5800HS @ 3.20 GHz and 16 GB RAM. 440 

The approximation problem is solved by the commercial solver CPLEX 20.1.0, invoking its functions 441 

on the piecewise linear optimization. 442 

When the algorithm terminates, it returns a Pareto Front with 5 non-dominated solutions inside, 443 
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which possess different bus scheduling plans and exterior advertisement selections. Table 3 presents 444 

the value of both objectives for them as shown in the second and third column respectively. The overall 445 

result confirms the hypothesis that the two objectives optimized in the model are contradictive in nature. 446 

The solution with larger value of AE also has a larger bus fleet size (see Eqs. (6) and (7) for the 447 

expressions of objective functions). The inherent causes of this phenomenon could be attributed to two 448 

aspects: First, increasing the fleet size enlarges the decision space of both the bus scheduling variable 449 

and the advertisement selection variable, implying that there is higher chance to assign a proper 450 

advertisement category on the bus, thus to improve the total AE achieved from bus advertising. Second, 451 

given that the effective exposure time function, as shown in Eq. (5), displays a diminishing marginal 452 

utility with the number of actual exposure times, increasing the fleet size may decrease the average 453 

times of each advertisement category being exposed at the bus stops. Therefore, the exterior bus 454 

advertisements are promoted in a more efficient way. 455 

Table 2 also provides the statistics on the trips, as shown in the right three columns. It is observed 456 

that the number of deadheading trips increases in general with the bus fleet size. Recall that the total 457 

number of trips is the same for each solution, this result may indicate that with more deadheading trips 458 

inserted into the scheduling plan, the effectiveness of advertising can be boosted. It is also noted that 459 

there is no significant difference on the average number of deadheading trips per bus of each solution. 460 

However, nearly all of them are close to the upper limit of the deadheading trips ( 5MaxCr = ). 461 

[Insert Table 2 here] 462 

Sensitivity analysis 463 

Effect of deadheading scheme 464 

To further investigate the impact of the deadheading scheme on the optimization result, a group 465 

of comparative tests are carried out by setting the maximum number of deadheading trips for each bus 466 

at different values ( 2,3, 4,5,MaxCr = ∞ ). Still, the NSGA-II-LNS algorithm is adopted as solution 467 
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algorithm. Fig. 5 presents the optimal Pareto Front of each test group. It shows apparently that the 468 

results are better in the group with higher value of MaxCr . The variance in total AE for each group 469 

is quite large when the bus fleet size is small, while it gets narrower with increasing number of bus 470 

fleet size. This is because the maximum deadheading trips constraint is easier to be satisfied when the 471 

bus serves fewer trips on average. Besides, since the total number of trips is fixed, we cannot improve 472 

the optimization results by infinitely raising the value MaxCr . This explains why the Pareto Front of 473 

5MaxCr =  almost coincide with that of the group with infinite value of MaxCr  (constraint (12) is 474 

said to be removed from the formulation).  475 

Fig. 6 shows the number of deadheading trips and bus fleet size for each test group. As expected, 476 

the group with larger value of MaxCr  generally takes more deadheading trips in the bus scheduling 477 

plan, which means that the deadheading trip is preferable for its potential in reducing the bus fleet size 478 

and improving advertising effectiveness as long as the number does not exceed the upper limit. 479 

However, it does not necessarily mean more deadheading is always better in practice. If so, the bus 480 

drivers have to get familiar with more bus line and the whole scheduling plan gets more difficult to 481 

operate. 482 

[Insert Fig. 5 here] 483 

[Insert Fig. 6 here] 484 

Effect of approximation method 485 

 In the NSGA-II-LNS algorithm, the approximation method acts as the main component for 486 

strengthening the solution quality. To investigate its performance, another comparative test is carried 487 

out in this subsection. As aforementioned, when the bus scheduling variable is given, the 488 

approximation method is then invoked to determine the advertisement selection variable by solving 489 

the piecewise linear approximation of the convex subproblem [P2]. A random generation method is 490 
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designed to replace this procedure for the comparison. The bus advertisement category for each bus is 491 

randomly assigned and the overall advertising still needs to satisfy constraints (22) and (23). The 492 

objective values and the detailed advertising plan of the Pareto Front provided by each method are 493 

presented in Table 3. Clearly, the result from approximation method is superior to that from random 494 

generation method with higher values of total AE under the same bus fleet size. This indicates that the 495 

performance of a heuristic solution algorithm can be greatly improved by incorporating the 496 

mathematical programming approach. 497 

[Insert Table 3 here] 498 

Conclusions 499 

In this paper, the joint bus scheduling and advertisement selection problem under deadheading 500 

scheme is proposed. The problem is formulated as a bi-objective optimization problem with the 501 

objectives of maximizing the advertising effectiveness of bus exterior advertisements and minimizing 502 

the bus fleet size. Both the trip chain and the advertisement category of each bus are taken into 503 

consideration as decision variables. The NSGA-II-LNS algorithm is applied to solve the proposed 504 

problem by incorporating a large neighborhood search operator into the standard framework of the 505 

NSGA-II. Also, a piecewise linear approximation method is used to solve the advertisement selection 506 

subproblem determining the optimal advertising plan for a given scheduling solution. To test the 507 

performance of the NSGA-II-LNS algorithm, A synthetic bus line system is built on the Sioux-Falls 508 

network and randomly generate the target audience profile following the normal distribution. A Pareto 509 

Front with 5 non-dominated solutions is obtained from the experiment, indicating that better 510 

advertising effectiveness needs a larger bus fleet size to realize. Moreover, the sensitivity test on the 511 

deadheading scheme shows that adding more deadheading trips can produce solutions with better 512 

values at both objectives. 513 

It should be acknowledged that this study still has limitations. Due to the unavailability of field 514 
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data, the experiments are conducted on an artificial network and the size of it is relatively small. Future 515 

works may seek to verify the model on a real-world transit network with more bus stops and lines. The 516 

mobile phone location data and land use data could be gathered to estimate the potential target audience 517 

distribution. The scheduling problem considered in this study is quite trivial, and more complicated 518 

scenario and more operational constraints should be considered. In addition, traffic dynamics (Cheng 519 

et al. 2021, 2022; Zhou et al. 2022) can be taken into consideration for the bus scheduling problem in 520 

future studies. 521 

Data Availability Statement 522 

Some or all data, models, or code that support the findings of this study are available from the 523 

corresponding author upon reasonable request. 524 
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Fig. 1. An illustration of the concept of zone division. 632 

Fig. 2. An illustration of nonlinear advertising effectiveness function. 633 

Fig. 3. An illustration of bus scheduling network with deadheading trips. 634 

Fig. 4. Sioux-Falls network. 635 

Fig. 5. Optimal Pareto Front resulted from different values of maximum deadheading trips for each 636 

bus. 637 

Fig. 6. Number of deadheading trips and bus fleet size resulted from different values of maximum 638 

deadheading trips for each bus. 639 
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 640 
Table 1. Bus line information of the transit network 

Line id Stop sequence 
Trip time 

(min) 

Headway 

(min) 

1 1-3-12-11-10-16-17-19-15-14-23-24-13 45 10 

2 1-3-4-5-6-8-9-10-17-19-15-22-21-24-13 54 15 

3 1-3-4-11-14-23-22-20 31 10 

4 2-6-8-7-18-16-17-19-20 23 15 

5 2-6-5-9-10-15-22-23-24-13 36 20 
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Table 2. Solutions inside the optimal Pareto Front 

Solution id TAE BFS Trips/bus 
Deadheading 

trips 

Deadheading 

trips/bus 

1 78705.2 10 14.4 37 3.7 

2 78800.8 11 13.1 40 3.6 

3 78943.8 12 12.0 47 3.9 

4 78952.2 13 11.1 58 4.5 

5 78967.2 14 10.3 56 4.0 

Note: TAE = total advertising effectiveness; and BFS = bus fleet size. 
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Table 3. Comparisons of optimization results between approximation method and random generation 

method 

Approximation method Random generation method 

TAE BFS Advertisement plan TAE BFS Advertisement plan 

78705.2 10 0,0,1,2,0,0,2,2,1,1 78636.8 10 0,1,2,2,2,1,1,0,0,0 

78800.8 11 2,0,1,2,0,2,0,1,2,1,1 78679.6 11 2,0,2,2,1,1,0,0,1,2,1 

78943.8 12 2,2,2,0,1,1,0,0,0,2,1,1 78879.9 12 1,2,0,1,1,2,1,0,1,0,2,0 

78952.2 13 0,2,1,1,0,0,2,1,1,0,2,1,2 78932.4 13 0,0,1,2,2,0,1,1,2,2,2,1,0 

78967.2 14 1,2,1,1,2,1,2,0,0,0,2,0,1,0    

Note: TAE = total advertising effectiveness; and BFS = bus fleet size. 
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