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Abstract17

Semi-empirical satellite method is widely used in estimating global horizontal irradiance (GHI), where various

clear-sky models, cloud index (CI) and clear-sky index (CSI) derivation methods are available. This study aims

to optimize the semi-empirical satellite model for 5-minute GHI estimation from four aspects: satellite-bands, CI

and CSI derivation methods, and clear-sky models. The results show that it achieves better GHI estimates using

the blue band, CI derived from monthly fixed upper and lower bounds, and a piecewise CI-to-CSI function. There

is no significant difference in all-sky GHI estimation for the clear-sky models regarding normalized root mean

squared error (nRMSE, 25.19%-25.53%), which is comparable with the referenced physical model. Clouds cause

the largest uncertainty, where the nRMSE is in the range of 37.60%-38.36% in cloudy days and 31.12%-31.54%

in cloudy periods. In the application of semi-empirical method with different clear-sky models, Ineichen-Perez

has the highest bias of -4.62% in clear days and -3.93% in cloudless periods. REST2 outperforms McClear with

slightly lower nRMSE and normalized mean bias error (nMBE) under all sky conditions. McClear is recom-

mended due to its global availability. Modified Ineichen-Perez produces the lowest nRMSE and nMBE using

clear-sky GHI as the GHI estimates for clear periods, therefore has the potential for improvements in physical

methods.

Keywords: Solar resourcing, global horizontal irradiance, clear-sky model, semi-empirical method18

1. Introduction19

Solar radiation is a significant source of renewable energy systems, which can be directly captured to produce20

heat and electricity. It is reported that solar thermal technologies produced 479 TWh energy in 2019, which is21

an equivalent energy savings of 43 million tons of oil and 130 million tons emissions of CO2 [1]. Meanwhile,22

solar photovoltaic (PV) has also been one of the most promising renewable energy technologies in recent years23

with an estimated average yearly growth of 15% between 2019 and 2030 [2]. However, the power output of24

a solar energy system is highly variable due to the intermittent and uncertainty of local irradiance conditions25

[3–6]. The variability in power production also introduces difficulties in system operation [7]. Considering the26

rapid expansion of solar energy conversion applications, it is important to have reliable and accurate ground solar27
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irradiance data at the location of interest. Historical data is essential for the feasibility and optimal system design28

phases of a solar power conversion project to support decision making and reduce the risk [8].29

Ground-based measurement is the most reliable irradiance data source for solar energy applications. However,30

due to difficulties in routine calibration, data quality control, as well as the high cost associated with the instrumen-31

tation, complete and long-term ground-based measurements are scarce [9]. Therefore, solar irradiance estimation32

and reanalysis from satellite offer an alternative to the ground measurements for evaluating and designing the solar33

energy projects [10]. Despite the general belief that solar irradiance data based on satellite observation and model34

reanalysis is less accurate than ground-based measurements, satellite-derived solar irradiance data can help with35

model development [9].36

As an essential part for solar irradiance modelling, geostationary satellites are widely used for resource mon-37

itoring and assessment as they observe continuously the same part of the Earth [8]. The advancement in modern38

remote sensing technique brings data in finer temporal and spatial resolutions as well as new insights in solar39

irradiance modelling. Satellite-based solar irradiance models can be broadly classified as physical, empirical, and40

semi-empirical methods [8]. Physical methods usually apply radiative transfer models (RTMs) through different41

layers in the atmosphere, which requires detailed and accurate information of the atmospheric constituents, such as42

cloud optical properties, aerosol optical depth (AOD), and water vapor content [8]. Pure empirical models attempt43

to simulate the regression between the satellite measurements and ground based records [8]. While semi-empirical44

models are a combination of physical and empirical method, which apply a simple RTM and regression approach45

to fit the observations [8].46

Many studies have been conducted to estimate the global horizontal irradiance (GHI) from geostationary47

satellites images [11–14]. Both physical and semi-empirical models are extensively used in estimating GHI while48

simple empirical methods are barely applied due to their inferior performance caused by the lack of generality49

[14, 15]. Physical models usually have better performance than semi-empirical methods [14], as they technically50

need the details of atmospheric compositions. For instance, the national solar radiation database (NSRDB) [11], as51

a widely accessed and publicly available data source, provides broadband irradiance and other auxiliary variables.52

NSRDB is produced using the physical solar model (PSM) and products from a number of associations [11].53

The Heliosat-4 method [12] is also a fully physical model using a fast, approximated, but still accurate RTM54

approach. Heliosat-4 consists of two models based on libRadtran [16] and look-up tables: the McClear [17] for55

solar irradiance under cloud free conditions and the McCloud for irradiance attenuation due to clouds. However,56

apart from the complexity and high computing resource requirement, the essential inputs of physical models,57

such as water vapor, AOD, and cloud properties are difficult to obtain and generally associated with uncertainties58

[8, 18, 19].59

On the other hand, semi-empirical methods typically deal with the irradiance attenuation of atmospheric con-60

stituents and cloud extinction separately, with a clear-sky model for clear-sky irradiance and a cloud index (CI)61

derived from satellite image to account for cloud attenuation [8, 13]. Heliosat method series [20–22] are examples62

of semi-empirical models, which offer easy implementation, fast calculation and operation [14]. Many clear-sky63

models have been used in semi-empirical models for GHI estimation, such as the Ineichen-Perez model [23] in64

the operational model (SUNY model) developed by Perez et al. [24], the McClear model in the work of Jia et al.65

[25], and the REST2 [26] model in Solcast [27]. There are also different methods proposed to calculate the GHI66
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based on clear-sky index (CSI) and CI in the literature [13, 24, 28].67

Given that a variety of clear-sky models are available for estimating GHI in semi-empirical satellite models68

with different regressions between CSI and CI, there has been a dearth of study to compare the performance of69

different clear-sky models and empirical relationships for GHI estimation. Some related studies from the literature70

are summarized as follows, Rigollier and Wald [29] compared several clear-sky models developed at the early71

stages and selected the ESRA [30] model for the HelioClim project [31], which was later replaced by McClear72

for improvements [32]. Laguarda et al. [15] applied the ESRA and McClear model in hourly GHI estimation73

over the Pampa Húmeda with different locally adjusted CI methods. McClear model performs better than ESRA74

model under clear-sky conditions, and both ESRA and McClear models have small negative biases of -1.1% for75

all-sky GHI estimates while McClear yields a slightly lower relative root mean square deviation (rRMSD, 12.5%76

versus 12.1%). Garniwa et al. [14] analyzed the performance of different semi-empirical models for hourly GHI77

estimation in Korea and found the Hammer model presented in [13] has a better result. Meanwhile, a hybrid78

model was also proposed with smaller root mean square error (RMSE) than the Hammer model (97.08 W m−2
79

versus 103.92 W m−2). However, limited studies have been conducted to compare and evaluate the performance80

of different clear-sky models, CI and CSI derivation methods in solar resourcing. Considering the advanced clear-81

sky models have been developed with high performance and much finer resolution of the data (e.g., 5-minute82

images) provided by modern satellites, it would be of interest to compare and evaluate the methods and clear-sky83

models used in semi-empirical model for GHI estimation with a fine spatiotemporal resolution (i.e., 5-minute and84

1 km).85

This study aims to optimize the semi-empirical satellite model for 5-minute GHI estimation via comparing86

and evaluating the performance of different clear-sky models, CI and CSI derivation methods, and satellite bands.87

Ineichen-Perez, McClear, and REST2 are compared as the representatives of average, good and best clear-sky88

models to keep the generality [33]. The main contributions of this work are summarized as follows:89

• Evaluates the performance of 5-minute all-sky GHI estimate based on different bands of GOES-16 and90

different empirical relationships between CSI and CI.91

• Compares different methods to derive the CI based on GOES-16 data for 5-minute GHI estimation, in92

particular, the used time window, determinations of upper and lower bounds.93

• Introduces the modified Ineichen-Perez clear-sky model based on estimated turbidity from local meteoro-94

logical measurements [34] in all-sky GHI estimation.95

• Compares and evaluates the four aforementioned clear-sky models for estimating 5-minute GHI using semi-96

empirical methods under different sky conditions.97

The remainder of this work is structured as follows: Section 2 describes the used data, semi-empirical GHI98

estimation method, and the details of the compared clear-sky models. The performance of different CI, CSI99

calculation methods, and different clear-sky models for GHI estimation and discussions are presented in Section100

3. Finally, the key findings of this study and recommendations are summarized in Section 4.101
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2. Data and methods102

This section describes the used data and the semi-empirical satellite method for GHI estimation. The satellite103

data will first undergo a radiance conversion to eliminate the negative points, then the CI and CSI are determined104

using different strategies and methods that are described in Section 2.2. Finally, the GHI is calculated via the CSI105

and clear-sky GHI (GHIcs) from the clear-sky model as shown in Fig.1. Four clear-sky models are compared,106

the GHIcs of REST2 and McClear are publicly available, Ineichen-Perez documented in PVLIB [35] adopts the107

default calculations, while Ineichen-Perez TL model uses the estimated turbidity based on local meteorological108

measurements [34]. The detailed method for estimating turbidity is presented in Section 2.3.109
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Figure 1: The flowchart of GHI estimation using semi-empirical methods with different clear-sky models.

2.1. Data110

The satellite data used in this work is from GOES-16, operated by National Oceanic and Atmospheric Ad-111

ministration (NOAA). GOES-16 has 16 spectral bands, the Advanced Baseline Imager (ABI) provides data with112

temporal resolution of 5 - 15 minutes, and spatial resolution of 0.5 - 2 km at the sub-satellite point [36]. In this113

study, the data from two visible bands (blue, red) and one near-infrared band (veggie) in the year of 2019 are114

retrieved from publicly available sources and then georeferenced to the ground location of interest, the detailed115

information about the aforementioned bands is presented in Table 1. There are three UTC (Universal Time Co-116

ordinated) timestamps referring the time of file creation, start and end of the scan. To be compatible with ground117

measurements and real-time applications, the end timestamp is applied to index the data after rounded to the next118

nearest 5-minute interval.119
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Table 1: Summary of the blue, red, veggie bands of GOES-16. All the information is obtained from the GOES-R

Series Product Definition and User’s Guide (PUG) [37].

Band No. Type Center wavelength

(Range) [µm]

Resolution

[km]

Valid range* Scale factor Add offset

1 (Blue) Visible 0.47 (0.450-0.490) 1.0 0-1022 0.8121 -25.9366

2 (Red) Visible 0.64 (0.590-0.690) 0.5 0-4094 0.1586 -20.2899

3 (Veggie) Near-Infrared 0.87 (0.846-0.885) 1.0 0-1022 0.3769 -12.0376

* Valid range is in packed and scaled integer form. Scale factor and add offset are used to convert scaled

integer to physical quantity, which is radiance [W m−2 sr−1 µm−1] in this case.

The corresponding ground irradiance measurements are from the stations in Surface Radiation Budget Net-120

work (SURFRAD) [38]. Detailed information of the seven stations are summarized in Table 2. The initial dataset121

includes a variety of 1-minute averaged solar irradiance as well as meteorological information. Ambient air tem-122

perature, relative humidity, wind speed and atmospheric pressure are averaged on a daily basis (when solar zenith123

angle is less than 85°) for turbidity estimation, and GHI is averaged on a basis of 5-minute. The quality control124

(QC) for meteorological recordings is available in the original dataset, any data point does not meet the QC is125

excluded when calculating the daily average. The QC procedure for GHI follows the steps detailed in [39], any126

1-minute data points do not pass the QC are discarded when aggregating the GHI to 5-minute resolution in the127

round way (i.e., data points from 13:58, 13:59, 14:00, 14:01, 14:02 are aggregated and indexed as 14:00).128

Table 2: Summary of the seven SURFRAD stations.

Station Latitude (°) Longitude (°) Altitude (m) Timezone Snow-free period

BON 40.05 -88.37 230 UTC-6 2019-04-01 - 2019-10-31

DRA 36.62 -116.02 1007 UTC-8 2019-01-01 - 2019-12-31

FPK 48.31 -105.10 634 UTC-7 2019-05-03 - 2019-09-30

GWN 34.25 -89.87 98 UTC-6 2019-01-01 - 2019-12-31

PSU 40.72 -77.93 376 UTC-5 2019-04-01 - 2019-10-31

SXF 43.73 -96.62 473 UTC-6 2019-05-01 - 2019-09-30

TBL 40.12 -105.24 1689 UTC-7 2019-05-02 - 2019-09-30

The 5-minute satellite-derived GHI at the SURFRAD stations in the year of 2019, provided by NSRDB [11],129

is also used in this work for comparison. NSRDB is produced using the PSM and REST2 [26] clear-sky model130

(the GHIcs estimation from REST2 is also available in NSRDB), the spatiotemporal resolution is improved to131

5-minute and 2 km.132

Without extra algorithm for cloud and snow detection, semi-empirical models (e.g., Heliosat method) could133

not account for the significant changes in the ground surface albedo due to the snow cover, which may introduce134

large uncertainty and unreliability in deriving surface solar irradiance [40]. Therefore, the GHI estimation and135

5



comparison are performed in the snow-free periods for all the SURFRAD stations. The information of snow depth136

is available from the dataset of National Aeronautics and Space Administration (NASA) National Snow and Ice137

Data Center (NSIDC) [41, 42]. We use data in full months, however, a month having only a few days detected138

with snow cover at the beginning (or ending) is also included after removing the snow-present days. The detailed139

information of snow-free periods at all SURFRAD stations could be found in Table 2.140

2.2. Semi-empirical models141

Semi-empirical models are typically developed to exploit data recorded by the visible channel of a geosta-142

tionary satellite [8], which can be traced from the contribution of Cano et al. [43]. Compared with physical143

methods, semi-empirical models use a simplified radiative-transfer approach [8], which are extensively used in144

solar resourcing [44–46] and forecasting [40, 47, 48] applications.145

The underlying idea of semi-empirical method is to estimate the global surface solar irradiance from satellite146

measurements considering atmospheric and cloud attenuation separately [13]. In the first step the clear-sky irra-147

diance is derived for a given location and time via a clear-sky model. In the second step the cloud attenuation is148

determined from the visible radiance by introducing CI, which is then correlated to CSI. Finally, the global surface149

solar irradiance is calculated from the clear-sky irradiance and CSI [13].150

The CI for the SURFRAD stations are calculated following the methods presented in [24]. First, the pixel151

value is normalized:152

norpix = pix · AM · soldist (1)

where pix is the satellite pixel intensity, AM is the absolute airmass, and soldist [AU] is the Sun-Earth distance.153

In the original proposed method in [24], the raw data such as digital number (digital count) is used as the pixel154

intensity. In this work, we first convert the digital number (scaled integer) to the radiance via the scale factor and155

add offset as shown in Table 1, and eliminate the negative data points considering the radiance measured by the156

ABI sensor should not be negative. Note that this step does not show much difference with the original method157

but discarding some data points, as the raw pixels are proportional to the Earth’s radiance observed by the satellite158

[24] and the linear transformation does not introduce any non-linearity.159

To account for high airmass effect, the normalized pixels considered for dynamic range maintenance are sub-160

jected to a secondary normalization:161

npix = norpix/(2.283h−0.26 · exp(0.004h)) (2)

where h [°] is the solar elevation, which is in the range of 1.5° to 65° and the value is set to be 65° when the solar162

elevation is greater than 65°. Note that although solar elevations of low and medium airmass are included, they163

have different normalization extents, where the high airmass effects could be accounted for.164

Then the CI value is determined by:165

CI =
npix − low
high − low

(3)

where high is equal to the mean of the 10 highest npix values in a month to estimate the upper dynamic range,166

while low is calculated as the mean of the second to the fifth lowest values for that time of the day in a month, the167

lowest value is excluded due to its variation and the undetected defects in the original image [21, 44]. Our method168

for determining the upper and lower bond is different from the methods presented in [23, 45, 48], the time window169
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is one month to better account for the seasonal variations of the ground reflectance [13, 49]. Meanwhile, the low170

is calculated every 5 min for time in the day (when the solar zenith angle is less than 80°) taking advantage of the171

improved time resolution of GOES-16. Four strategies for CI derivation are compared in this work, where Table172

3 details the used time window, the determinations of upper and lower bounds in each strategy.173

Table 3: Summary of the strategies used to derive CI for GHI estimation.

Strategy Time window* Upper bound Lower bound Reference

1 90 days (moving) mean of 20 highest values mean of 40 lowest values Perez et al. [24]

2 60 days (moving) mean of 20 highest values mean of 40 lowest values Harty et al. [48]

3 30 days (moving) mean of 10 highest values mean of second to fifth lowest values

4 1 month (fixed) mean of 10 highest values mean of second to fifth lowest values

* Time window is used to determine the dynamic range, a moving time window means it moves with the time of interest,

so the upper and lower bound will change. While the monthly fixed time window means it is fixed in the month of

interest, so the upper and lower bounds remain constant in the month.

After the derivation of CI, the next step is the conversion from CI to CSI and then to GHI. Similarly, there174

are also different methods proposed as shown in Table 4. In general, CI is first converted to CSI via an empirical175

method, GHI is then calculated based on CSI and GHIcs, where GHIcs [W m−2] is the clear-sky GHI estimated176

from the chosen clear-sky model. In the development of the CI-to-CSI methods, Perez et al. [24] compares the177

old method (Method 1) and newly-developed method (Method 2) using GOES-8 and GOES-10 satellites, and178

the involved ground stations are Albany (New York), Burlington (Kansas), Eugene, Gladstone, and Hermiston179

(Oregon). Method 3 presented in Hammer et al. [13] and Method 4 proposed in Mueller et al. [28] are developed180

using Meteosat series of satellites and ground stations in Europe. Therefore, the use of SURFRAD stations in the181

comparison of the CI-to-CSI methods is acceptable since they are not involved in the methods development.182
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Table 4: Different methods to calculate GHI via CSI, CI and GHIcs. GHIcs is estimated from a selected clear-sky

model.

Method GHI calculation Reference

1
GHI = GHIcs · CSI

CSI = 0.02 + 0.98 · (1 − CI)
Perez et al. [24]

2
GHI = CSI · GHIcs · (0.0001 · CSI + 0.9)

CSI = 2.36 · CI5 − 6.3 · CI4 + 6.22 · CI3 − 2.63 · CI2 − 0.58 · CI + 1
Perez et al. [24]

3

GHI = GHIcs · CSI

CSI = 1.2,CI ≤ −0.2;

CSI = 1.0 − CI,−0.2 < CI ≤ 0.8;

CSI = 2.0667 − 3.6667 · CI + 1.6667 · CI2, 0.8 < CI ≤ 1.1;

CSI = 0.05, 1.1 < CI.

Hammer et al. [13]

4

GHI = GHIcs · CSI

CSI = 1.2,CI ≤ −0.2;

CSI = 1.0 − CI,−0.2 < CI ≤ 0.8;

CSI = 1.1661 − 1.781 · CI + 0.73 · CI2, 0.8 < CI ≤ 1.05;

CSI = 0.09, 1.05 < CI.

Mueller et al. [28]

In this study, we apply and compare four clear sky models, namely, the Ineichen-Perez model [24] documented183

in PVLIB [35] using default turbidity interpolated from SoDa monthly climatology mean database [50], the Mc-184

Clear model [17], the REST2 model [26], and the Ineichen-Perez model using turbidity estimated from the local185

meteorological measurements [34] (hereafter referred as Ineichen-Perez TL model). Table 5 summarizes the input186

parameters for the aforementioned clear-sky models. The detailed method of estimating the turbidity is introduced187

in the following subsection. McClear model and REST2 model are physical models, which might be generally188

superior to those models taking reduced forms or using approximations [33]. However, the physical models are189

of much more complexity due to their prevailing atmospheric conditions on the attenuation constituents and the190

application of RTMs. For instance, the REST2 model has repeatedly been validated as one of the models with191

high-perfromance [33], but it requires at least nine input parameters, and some of them such as AOD at 550 nm,192

amount of ozone, and precipitable water are difficult to obtain [18, 33]. The clear-sky irradiance of REST2 used193

in this work is from the database of NSRDB. The McClear is also a fully physical model requiring input param-194

eters regarding the optical property of the atmosphere, e.g., the amount of ozone, precipitable water, and AOD at195

550 nm [17]. McClear applies a lookup table to speed up the calculation of RTMs, and the clear-sky irradiance196

is available from the Copernicus Atmosphere Monitoring Service (CAMS) [51]. The time resolution is from 1197

minute to 1 month in the time range of 2004-01-01 up to two days ago.198
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Table 5: Input parameters for the used clear-sky models. The variables are the solar constant I0 [W m−2], solar

zenith angle θ [◦], altitude h [m], Linke turbidity TL, surface albedo ρg, local pressure Pa [mb], ambient tempera-

ture Ta [K], AOD at 550 nm τ550, Ångström exponent α, total ozone amount uO3 [atm-cm], total precipitable water

vapor uH2O [cm], total nitrogen dioxide amount uNO2 [atm-cm], relative humidity ϕ [%], wind speed V [m s−1].

Clear-sky model Input parameters Data source Reference

Ineichen-Perez I0, θ, h, TL SoDa database [50] Ineichen and Perez [24]

McClear I0, θ, h, ρg, Pa, Ta, τ550, α ,uO3 , uH2O CAMS [51] Lefèvre et al. [17]

REST2 I0, θ, ρg, Pa, τ550, α, uO3 , uNO2 , uH2O NSRDB [11] Gueymard [26]

Ineichen-Perez TL* I0, θ, h, Pa, Ta, ϕ, V Local measurements Chen and Li [34]

* Ineichen-Perez TL model is also based on TL. Instead of using the SoDa database, the TL is estimated from

local meteorological measurements (Pa, Ta, ϕ, V) [34].

2.3. Turbidity estimation199

The original method of estimating turbidity via local meteorological measurements is presented in [34]. Al-200

though the original model is trained based on the data samples focused on clear-sky days, the results show that the201

method can also be applied to estimate the turbidity in partially clear days. In this work, the data samples from202

partially clear days are also included in the model training following the same methodology described in [34]. In203

specific, the data used in turbidity estimation for SURFRAD stations are in the year range of 2010 to 2018. The204

clear-sky instants are detected by the Bright-Sun method described in [52], and the solar zenith angle is set to205

be less than 85° as the turbidity exhibits high variations during sunrise and sunset [34]. To better represent the206

GHIcs-derived turbidity on a daily basis, only a day with more than one third clear-sky instants detected of the207

daytime are included (e.g., if the daytime of a day is 8 hours, only when the detected clear-sky instants are more208

than 2.4 hours, the day will be included in the dataset). It is also necessary to mention that the turbidity typically209

varies between 1 and 10 [53], so any derived turbidity with the value less than 1 (or extremely high) should be ex-210

cluded. The turbidity estimation model for each station is trained and validated separately. However, it is possible211

to build a more universal model by involving more locations using the same methodology. The estimated turbidity212

is then used as the input to calculate the GHIcs using PVLIB.213

Since semi-empirical model (e.g., Heliosat-2 method) can be adapted to geostationary satellite in the visible214

band (0.4 - 1.1 µm) [54], the GOES-16 blue band (visible, 0.47 µm), red band (visible, 0.64 µm), and veggie215

band (near-infrared, 0.87 µm) are applied and compared for 5-minute GHI estimation in this work. Apart from216

different strategies described in Table 3 for determining CI, there are also different methods proposed to calculate217

the GHI (see Table 4). The detailed comparisons of the reported strategies, the proposed methods, as well as the218

applied clear-sky models for GHI estimation are presented in the following section. The performance evaluation219

metrics are RMSE, mean bias error (MBE), and their normalized counterparts nRMSE and nMBE defined by the220

following equations:221

RMSE =

√
1
N

∑
(ei − oi)2
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nRMSE =

√
1
N
∑

(ei − oi)2

1
N
∑

oi

MBE =
1
N

∑
(ei − oi)

nMBE =
∑

(ei − oi)∑
oi

where ei and oi are the pair of GHI estimation and ground observation, N is the total number of compared data222

points.223

3. Results and discussion224

Despite difficulties associated in acquiring the input parameters, the REST2 model has been proved as the one225

of the best clear-sky models for estimating clear-sky irradiance [55]. Given that the clear-sky irradiance of REST2226

is available in the dataset of NSRDB and the fact that a better clear-sky model (i.e., McClear) can lead to better227

GHI estimation results [32], we use the REST2 GHIcs in the comparison of the GHI estimation performance228

based on different ABI bands, empirical regressions between CSI and CI, and methods to determine the CI. The229

information of used ABI bands is presented in Table 1, Table 3 details the strategies used for deriving CI, and the230

methods for GHI calculation via GHIcs, CSI, and CI are listed in Table 4. The comparison of different clear-sky231

models used in GHI estimation with semi-empirical method is then based on the combined approach (i.e., the ABI232

band, CI derivation, and GHI calculation) that is likely to obtain superior GHI estimation results.233

3.1. Comparison of ABI bands and derivation methods for CI and CSI234

Since the GOES-16 ABI bands have different spatial resolution, Band 2 (red) is re-scaled to the same resolution235

as Band 1 and Band 3. The comparison of upper and lower bounds determination based on different ABI bands236

and strategies at DRA is presented in Fig. 2. The upper bound from Band 1 has higher values than Bands 2 and 3,237

while Band 3 results in relatively lower upper bounds no matter what strategy is applied. Similarly, lower bound238

based on Band 1 turns to be higher, followed by Band 2 and Band 3 has the comparatively lower value. Unlike239

upper bounds that do not show many fluctuations, lower bounds have relatively larger variations. Compared with240

Strategies 1 and 2, Strategies 3 and 4 generally leads to larger upper bound and smaller lower bound. The reason241

could be the shorter periods and less points used for determining upper and lower bounds as shown in Table 3.242

This also results in wider dynamic ranges, i.e., the differences between upper and lower bounds, which exhibit243

similar trends with the upper bound, Band 1 leads to higher value than Bands 2 and 3, while Band 3 has the lowest244

value.245
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Figure 2: Comparison of the upper bound and lower bound determination using different ABI bands (see Table 1)

and strategies at DRA (2019-01-01 to 2019-05-31). S1-S4 are the symbols of strategies presented in Table 3. The

differences between upper and lower bounds are also included for comparison.

Upper and lower bounds are used to determine CI, CSI is then calculated from CI using empirical regressions246

(see Table 4). Fig. 3 shows the comparison of CSI calculations from different bands, CI derivation strategies, and247

CI-to-CSI methods, where the CSI reference is the ratio between GHI measurement and GHIcs from REST2 clear-248

sky model. Generally, the CSI derived from Band 1 has smaller divergences in terms of nRMSE and nMBE with249

the referenced CSI compared with the other two bands, while Band 3 shows relatively larger differences no matter250

what CI derivation strategy and CI-to-CSI method are applied. Among the used CI derivation strategies, they have251

comparable results in terms of nRMSE, while Strategies 3 and 4 produce lower biases compared with Strategies 1252

and 2. Similarly, there is no huge difference when comparing the CI-to-CSI methods regarding nRMSE. However,253

Methods 3 and 4 are more likely to yield lower nMBE values. It is worthwhile to mention that the combination254

of Band 1, Strategy 4, and Method 3 (or Method 4) outperforms other combinations with comparatively smaller255
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nRMSE and nMBE.256
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Figure 3: The nRMSE and nMBE of the CSI reference and estimation based on different bands, dynamic range and

CI derivation, and empirical regressions between CSI and CI at DRA (2019-01-01 to 2019-05-31). The reference

CSI is determined using GHI measurements and REST2 clear-sky model. S1-S4 are the symbols of strategies

presented in Table 3, and M1-M4 represent the empirical methods described in Table 4.

A detailed comparison of different bands and methods used to estimate GHI is illustrated in Fig. 4. Using257

Method 2 generally yields GHI estimation with larger nRMSE and nMBE values, while the rest three methods258

have comparable GHI estimation results with similar nRMSE. Method 1 leads to slightly higher nMBE values259

than Methods 3 and 4. When it comes to the dynamic range and CI determination, all the strategies generate GHI260

estimation with nRMSE greater than 20% no matter which method is used, while Strategies 1 and 2 have slightly261

lager values. Moreover, Strategies 1 and 2 comparatively show larger discrepancies in nMBE than Strategies 3262

and 4, while Strategy 4 produces the lowest nMBE. There is no significant difference (i.e., nRMSE and nMBE)263

in Methods 3 and 4 to calculate GHI via the relationship between CSI and CI regardless of which strategy is264

applied to derive the dynamic range and CI. The combination of Strategy 4 and Method 3 (or Method 4) is likely265

to generate GHI estimations with lower nRMSE and nMBE. Strategies 1 and 2 are proposed for GHI estimation at266

a rough time resolution (e.g., hourly), which might be inappropriate when the time resolution is much improved267

to 5-minute. Therefore, the subsequent results and discussion are based on the combination of Strategy 4 and268

Method 3 in 5-minute GHI estimation.269
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Figure 4: The nRMSE and nMBE between the GHI measurements and estimations based on different bands,

dynamic range and CI derivation, and empirical regressions between GHI and CI using REST2 clear-sky model at

DRA (2019-01-01 to 2019-05-31). S1-S4 are the symbols of strategies presented in Table 3, and M1-M4 represent

the empirical methods described in Table 4.

It is shown in Fig. 4 that Band 1 generally produces lower nRMSE and nMBE values than Bands 2 and 3 no270

matter which combination of method and strategy is applied in estimating GHI. The possible explanation could be271

that Band 1 results in higher upper and lower bounds as well as wider dynamic ranges (see Fig. 2), which are less272

sensitive to the uncertainties in sensor’s measurements when determining the dynamic range for CI derivation.273

Therefore, the estimated CSI from Band 1 show comparatively lower discrepancies than Bands 2 and 3 (see Fig.274

3) and thus better GHI estimations. To further evaluate the performance of GHI estimation using different ABI275

bands, it is necessary to ensure that the used methods, data points, and time periods are the same. Therefore, the276

REST2 clear-sky model, Strategy 4, and Method 3 are set as the preconditions for comparing the ABI bands used277

in semi-empirical model for GHI estimation.278

Table 6 details the performance of different ABI bands used for GHI estimation. Band 1 generates the lowest279

divergence with a nRMSE of 21.47% and a nMBE of 1.41%, while Band 3 produces the largest nRMSE of280

24.35% and nMBE of 4.46%. The reflective spectral radiance measured by the ABI sensor used in GHI estimation281

with semi-empirical models leads to decreased performance when using bands with larger wavelength. It is282

worthwhile to mention that the GHI estimates based on Band 1 using semi-empirical model have slightly lower283

errors of nRMSE and nMBE than the results from NSRDB, which means the semi-empirical model may produce284

comparable results with physical models but with less complexity.285
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Table 6: Summary of the ABI band performance in 5-minute GHI estimation using RSET2 clear-sky model,

Strategy 4, and Method 3 at DRA (2019-01-01 to 2019-05-31). The GHI estimation from NSRDB is also included

as reference.

Band RMSE [W m−2] nRMSE [%] MBE [W m−2] nMBE [%]

1 109.37 21.47 7.18 1.41

2 117.73 23.11 15.21 2.99

3 124.05 24.35 22.75 4.46

NSRDB 110.79 21.74 -13.44 -2.64

3.2. Comparison of clear-sky models for GHI estimation286

Based on the results from the previous subsections, a better GHI estimation is achieved using the measurements287

of ABI Band 1, the Strategy 4 for danymic range and CI determination, and the Method 3 for CI to GHI conversion.288

At this stage, the prerequisites for evaluating the performance of different clear-sky models in GHI estimation289

using semi-empirical model have been settled. The following sections present the comparisons between different290

clear-sky models applied in semi-empirical method under different sky conditions. We use two types of methods291

for classifying sky conditions here: one is based on days, in which the days are classified as cloudy, partially292

cloudy, and clear days [56]; The other one is based on periods, where the instants are grouped as cloudy and293

clear periods [19]. In specific, clear and cloudy instants are detected using the Bright-Sun method with ground294

irradiance measurements[52] and then clustered as clear/cloudy/partially cloudy days and clear/cloudy periods.295

3.2.1. Comparison under cloudy, partially cloudy and clear days296

The overall performance of GHI estimation using semi-empirical method with different clear-sky models is297

shown in Table 7. There is no significant discrepancy between clear-sky models in GHI estimation under condi-298

tions of all-sky, cloudy, and partially cloudy. REST2 is likely to generate slightly lower nRMSE in all-sky and299

partially cloudy conditions, while Ineichen-Perez yields the lowest nRMSE when only cloudy days are considered.300

Compared with the physical model based GHI estimation results in NSRDB, using semi-empirical model produces301

GHI estimates with similar or slightly larger nRMSE no matter which clear-sky model is applied. However, there302

are comparatively larger biases (i.e., nMBE) in semi-empirical methods under most conditions. Semi-empirical303

methods are more possibly to have overestimated results, especially in the cloudy days. Although Ineichen-Perez304

produces the lowest nMBE in all-sky and cloudy conditions, it does not mean Ineichen-Perez provides better305

clear-sky irradiance estimations. The low overall bias of Ineichen-Perez in GHI estimations is a compromise of306

the overestimation in semi-empirical methods and the underestimation in Ineichen-Perez’s clear-sky irradiance,307

since the Ineichen-Perez based GHI estimations in partially cloudy and clear-sky days show negative biases of308

-1.61% and -4.62%, respectively.309

The primary uncertainty for GHI estimation is caused by the clouds for both physical and semi-empirical meth-310

ods. The nRMSE of GHI estimates in cloudy days are in the range of 37.60%-38.37%, which is approximate two311

times of the nRMSE in partially cloudy days (18.75%-19.54%). The nRMSE in clear-sky days are around 2.50%312

besides Ineichen-Perez, which has a larger value of 5.77%. Since clouds are the primary factor affecting the solar313
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irradiance reaching the ground level, it is necessary to improve the method to account the irradiance attenuation314

caused by clouds for both physical and semi-empirical models. That said, the future research on satellite-based315

solar resourcing could be the improvements of satellite-derived cloud properties (for physical model) and cloud316

attenuation determinations (for semi-empirical model).317

Table 7: The overall nRMSE [%] and nMBE [%] between GHI estimations and measurements at seven SURFRAD

stations using semi-empirical method with different clear-sky models under four evaluation cases (all-sky, cloudy

days, partially cloudy days, and clear days). The GHI estimation from NSRDB is also included for comparison.

All-sky1 Cloudy days2 Partially cloudy days3 Clear days4

nRMSE nMBE nRMSE nMBE nRMSE nMBE nRMSE nMBE

Ineichen-Perez 25.43 2.03 37.60 9.20 19.54 -1.61 5.77 -4.62

McClear 25.38 5.42 38.03 11.87 19.23 1.94 2.55 0.62

REST2 25.19 4.87 37.68 11.32 19.13 1.45 2.53 -0.15

Ineichen-Perez TL 25.53 5.22 38.36 12.80 19.24 1.23 2.53 -1.11

NSRDB 25.25 -0.45 38.37 -1.50 18.75 0.23 2.37 0.45

1 ‘All-sky’ means the whole time period with cloudy, partially cloudy and clear days.
2 ‘Cloudy days’ means the days without clear-sky periods or the detected clear-sky instants are less than one

third of the daytime.
3 ‘Partially cloudy days’ includes the days with cloudless periods (more than one third of the daytime).
4 ‘Clear days’ only involves the cloudless days.
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Figure 5: The nRMSE and nMBE between the measured and estimated GHI for four clear-sky models in semi-

empirical method, seven SURFRAD stations, and four evaluated conditions (all-sky, cloudy days, partially cloudy

days, and clear days). GHI estimation from NSRDB is also included for comparison.
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Fig. 5 presents the detailed comparison of different clear-sky models for GHI estimation using semi-empirical318

method at seven SURFRAD stations under four sky conditions. The GHI estimations based on four clear-sky319

models have comparable results in terms of nRMSE under all-sky, cloudy and partially cloudy conditions, while320

Ineichen-Perez tends to generate larger nRMSE values in clear-sky days. Compared with the physical model based321

GHI estimation results in NSRDB, using semi-empirical model produces GHI estimates with similar or slightly322

lower nRMSE at most SURFRAD stations except TBL, where the occurrence of cloudy days is comparatively323

higher. For each individual station, the GHI estimation under cloudy days is most likely associated with the324

largest uncertainties of nRMSE and nMBE. The lower biases of Ineichen-Perez based GHI estimations under all-325

sky and cloudy conditions are shown in some of the stations (i.e., BON, GWN, PSU, and SXF), whose biases326

are apparently higher in partially cloudy and clear conditions compared with other clear-sky models, proving the327

overestimation in semi-empirical methods and the underestimation in Ineichen-Perez’s clear-sky irradiance.328

3.2.2. Comparison under cloudy and clear periods329

To further evaluate the performance of GHI estimation using semi-empirical model under different conditions,330

the sky is divided into cloudy and clear based on periods. The overall comparison at seven SURFRAD stations331

is shown in Table 8. Similarly, the GHI estimation in cloudy periods is associated with larger uncertainties (e.g.,332

nRMSE), and semi-empirical model is likely to yield higher bias than the physical model. In cloudless periods, all333

the clear-sky models except Ineichen-Perez produce comparable results with NSRDB. When using GHIcs directly334

as the GHI estimates, Ineichen-Perez generates the largest errors, and Ineichen-Perez TL yields better results than335

other three clear-sky models.336

Table 8: The overall nRMSE [%] and nMBE [%] between GHI estimations and measurements at seven SURFRAD

stations using semi-empirical method with different clear-sky models under three evaluation cases (all-sky, cloudy

periods, and clear periods). The GHI estimation from NSRDB is also included.

All-sky1 Cloudy periods2 Clear periods3 GHIcs4

nRMSE nMBE nRMSE nMBE nRMSE nMBE nRMSE nMBE

Ineichen-Perez 25.43 2.03 31.23 5.03 5.37 -3.93 4.86 -3.29

McClear 25.38 5.42 31.36 8.87 2.98 0.56 2.54 1.22

REST2 25.19 4.87 31.12 8.23 2.91 -0.07 2.43 0.52

Ineichen-Perez TL 25.53 5.22 31.54 9.20 2.81 -0.86 2.16 -0.20

NSRDB 25.25 -0.45 31.21 -1.01 2.43 0.52 - -

1 ‘All-sky’ means the whole time period with cloudy and clear instants.
2 ‘Cloudy periods’ contains the periods are detected as cloudy.
3 ‘Clear periods’ includes all the detected cloudless periods.
4 ‘GHIcs’ is to use GHIcs directly as GHI estimation in clear periods.

The detailed comparison of GHI estimation under cloudy and clear instants for all the SURFRAD stations is337

presented in Fig. 6. Semi-empirical model tends to overestimate GHI with comparatively larger positive biases338

in cloudy periods, and the highest bias can be about 15% at TBL. In the application of semi-empirical method,339
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Ineichen-Perez generally produces lower bias than the other three clear-sky models under cloudy conditions.340

However, in cloudless periods, Ineichen-Perez is likely to produce GHI estimation with larger discrepancies. The341

possible explanation for this is the same as the phenomenon that Ineichen-Perez produces GHI estimation with342

lower biases in all-sky and cloudy days as discussed in the Section 3.2.1.343
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Figure 6: The nRMSE and nMBE between the GHI measurements and estimates using semi-empirical method

for four clear-sky models, seven SURFRAD stations, and three evaluation conditions (all-sky, cloudy periods, and

clear periods).

3.2.3. Comparison between physical and semi-empirical methods for GHI estimation344

In physical model for GHI estimation, the GHIcs is directly used as the GHI estimate when the sky is free345

from cloud. Where the accuracy of used clear-sky model is crucial for the overall GHI estimation performance.346

Generally, physical GHI estimation methods apply physical clear-sky models, for instance, REST2 in NSRDB,347

McClear in Heliosat-4. It might be of interest to compare the performance of GHI estimation using semi-empirical348

and physical models under clear-sky conditions. As shown in Table 8, it is more likely to generate GHI results with349

relatively lower nRMSE values using GHIcs as GHI estimates (nRMSE ranges from 2.16% to 4.86% ) than CI350

based method (nRMSE varies from 2.81%-5.37%). The situation of nMBE differs, McClear and REST2 produce351

larger biases, while Ineichen-Perez and Ineichen-Perez TL yield slightly lower nMBE values. It is worthwhile352

to mention that Ineichen-Perez TL has the lowest nRMSE and nMBE, which means Ineichen-Perez TL has the353

potential to improve GHI estimation in physical models.354

The detailed comparison of GHI estimates using semi-empirical model and GHIcs for SURFRAD stations355

is presented in Fig. 7. Generally, both estimated and GHIcs of Ineichen-Perez show larger nRMSE and nMEB356

at most of the stations except FPK. Better clear-sky models, such as McClear and REST2, are likely to produce357

better GHI estimations with relatively lower nRMSE and nMBE in cloudless periods using both semi-empirical358

and physical models. Ineichen-Perez tends to yield negative biases in GHI estimations or using GHIcs directly due359
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to its underestimation of clear-sky irradiance. Ineichen-Perez TL produces comparable results with McClear and360

REST2 in terms of nRMSE, while the biases tend to be smaller. For McClear, REST2, and Ineichen-Perez TL,361

using the semi-empirical model is probably to generate GHI estimation with larger nRMSE and nMBE compared362

with the direct GHI estimates from GHIcs. Which means another challenge of semi-empirical method is how to363

improve the CI and CSI derivation considering the variations in clear-sky irradiance caused by the dynamics of364

aerosol and water vapor in the atmosphere.365
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Figure 7: The nRMSE and nMBE between the GHI measurements and estimates in clear periods for four clear-sky

models, and seven SURFRAD stations. ‘ALL’ means all the seven stations are included. ‘Estimated GHI’ means

the GHI estimates of semi-empirical model. ‘Clear-sky GHI’ means the GHIcs directly calculated from clear-sky

models.

All the applied clear-sky models yield comparable overall results of GHI estimations (see Table 7 and Table366

8) using semi-empirical method, REST2 has the lowest nRMSE of 25.19% while Ineichen-Perez TL has the367

highest nRMSE of 25.53%. Ineichen-Perez performs better than other clear-sky models in terms of nRMSE and368

nMBE under cloudy conditions, while Ineichen-Perez TL produces the largest nRMSE and nMBE. Although369

Ineichen-Perez has the lowest biases in GHI estimation under all-sky and cloudy conditions, it does not mean370

that Ineichen-Perez provides better clear-sky irradiance, as there is a compromise of the overestimation of GHI371

using semi-empirical model and the underestimation of Ineichen-Perez’s GHIcs. Ineichen-Perez tends to generate372

negative biases in clear conditions, with the largest nMBE of -4.62% in clear-sky days and -3.93% in cloudless373

periods. When comparing the two physical clear-sky models of McClear and REST2 in the application of semi-374

empirical method, REST2 outperforms McClear in all the sky conditions with slightly lower nRMSE and nMBE.375

Compared with Ineichen-Perez, Ineichen-Perez TL has lower values of nRMSE and nMBE in partially cloudy376

days and clear conditions. The GHI estimation in each individual station (see Fig. 5 and Fig. 6) exhibits similar377

results as the overall picture but with some site-specific divergences. It is important to note that Ineichen-Perez TL378

generally performs better than other clear-sky models when using GHIcs as the GHI estimations in clear periods379

with comparatively lower nRMSE and nMBE.380
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4. Conclusions381

In this work, different strategies for dynamic range and CI determination, methods to calculate GHI via GHIcs,382

CSI and CI are compared in 5-minute averaged GHI estimation using semi-empirical model and GOES-16 images.383

Then, a comparison of three different ABI bands (i.e., blue, red, veggie) in GHI estimation is performed. Finally,384

the performance of four clear-sky models in GHI estimation using the same semi-empirical method is evaluated385

under different sky conditions. The key findings are:386

• More accurate 5-minute averaged GHI estimates are achieved using a fixed time window (i.e., Strategy 4),387

Method 3 (or Method 4) of GHI conversion from CI and CSI, and Band 1 for solar resourcing applications388

(e.g., GHI assessment). A fixed time window is easy to implement without much computing resource, but389

it is not suitable for operational applications, such as solar forecasting, where a moving time window is390

required.391

• There is no significant difference in GHI estimation using different clear-sky models, the semi-empirical392

model yields comparable results compared with the NSRDB, but with comparatively larger biases. Semi-393

empirical model tends to overestimate the GHI in cloudy conditions, the uncertainties in cloudy periods are394

noticeably higher than cloud free conditions. Therefore, it is crucial to determine the irradiance attenuation395

caused by clouds for both physical and semi-empirical models.396

• In the application of semi-empirical method, Ineichen-Perez has lower biases under all-sky and cloudy397

conditions, this does not mean Ineichen-Perez provides better clear-sky irradiance due to the compromise398

of overestimation in semi-empirical model and Ineichen-Perez’s underestimation of clear-sky irradiance.399

REST2 generally outperforms McClear under all sky conditions.400

• Ineichen-Perez TL, as a modified model based on estimated turbidity, provides GHI estimation using semi-401

empirical method with slightly larger values of nRMSE and nMBE in all-sky and cloudy conditions. The402

performance of Ineichen-Perez TL under partially cloudy day and clear periods is comparable with McClear403

and REST2, and comparatively better than Ineichen-Perez. When using clear-sky irradiance as the direct404

estimation of GHI, Ineichen-Perez TL has a better performance.405

• A better clear-sky model (e.g., REST2 versus McClear) can generally lead to better GHI estimation us-406

ing semi-empirical method. Considering the difficulties associated in obtaining the atmospheric inputs of407

REST2, and the limited divergences in GHI estimation between these two clear-sky models, McClear is408

more appropriate due to its global availability. Ineichen-Perez TL provides better clear-sky irradiance for409

clear-sky conditions, therefore has the potential for the improvements in physical models where clear-sky410

irradiance is directly used as GHI estimation.411
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