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Abstract In this paper, we study the stochastic Hamiltonian flow in Wasserstein manifold, the probability
density space equipped with L2-Wasserstein metric tensor, via the Wong–Zakai approximation. We begin
our investigation by showing that the stochastic Euler–Lagrange equation, regardless it is deduced from
either the variational principle or particle dynamics, can be interpreted as the stochastic kinetic Hamiltonian
flows in Wasserstein manifold. We further propose a novel variational formulation to derive more general
stochastic Wasserstein Hamiltonian flows, and demonstrate that this new formulation is applicable to various
systems including the stochastic Schrödinger equation, Schrödinger equation with random dispersion, and
Schrödinger bridge problem with common noise.
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1 Introduction

The density space equipped with L2-Wasserstein metric forms an infinite dimensional Riemannain man-
ifold, often called Wasserstein manifold or density manifold in literature (see e.g. [40]). It plays an im-
portant role in optimal transport theory [54]. Many well-known equations, such as Schrödinger equation,
Schrödinger bridge problem and Vlasov equation, can be written as Hamiltonian systems on the density
manifold. In this sense, they can be considered as members of the so-called Wasserstein Hamiltonian flows
([54,4,29,17,14,15,20]).
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The study of Wasserstein Hamiltonian flow can be traced back to Nelson’s mechanics ([47–49]), where
a probabilistic interpretation of the linear Schrödinger’s equation is given. The rigorous probabilistic con-
tents in Quantum Physics were understood as stochastic variation boundary problems for the probability
densities with given marginals (cf. [3,16]). The work of Bismut [7], which is closely related to the prin-
ciples of stochastic optimal transport theory, showed how the random perturbations affects the classical
optimization problem in the expectation sense for both Lagrangian and Hamiltonian formalism. Motivated
by the ideas of Schrödinger [51] and Bernstein [6], the connection between the Nelson’s approach and hy-
drodynamics on the Wasserstein space was first discovered by [45]. For more contents on the stochastic
optimal transport problem, we refer to [46]. By using Madelung transformation, it is known that a polar
representation reveals the Hamiltonian structure of classical Schrödinger equations. We refer to [36] for a
more comprehensive review on the geometric hydrodynamics and its relationship with the optimal trans-
port theory. Another framework of second-order differential geometry to derive stochastic Lagarangian and
Hamiltonian mechanics and to establish their related Hamilton–Jacobi–Bellman equations are presented in
[33]. Recently, it is shown in [15] that the kinetic Hamiltonian flows in density space are probability transi-
tion equations of classical Hamiltonian ordinary differential equations (ODEs). In other words, this reveals
that the density of a Hamiltonian flow in sample space is a Hamiltonian flow on density manifold.

In the existing works on Wasserstein Hamiltonian flows, random perturbations of common noise type
(see e.g. [21,22]) to the Lagrangian functional are not considered in the continuous space. Consequently,
the theory is neither directly applicable to the Wasserstein Hamiltonian flows subjected to random pertur-
bations, nor to the systems whose parameters are not given deterministically. The main goal of this article
is developing a theory to cover these scenarios in which the stochasticity is presented. More precisely, we
mainly focus on the stochastic perturbation of the Wasserstein Hamiltonian flow,

dρt =
δ

δSt
H0(ρt ,St)dt,

dSt =− δ

δρt
H0(ρt ,St)dt,

with a Hamiltonian H0 on the density manifold and δ

δS ,
δ

δρ
being the variational derivatives, which is

proposed by only imposing randomness on the initial position in the phase space [15]. This is different
from the Hamiltonian flows considered in [4], where the authors construct the solutions of the ODEs in the
measure space of even dimensional phase variables equipped with the Wasserstein metric. More precisely,
the Hamiltonian functional in [4] is defined on the Wasserstein manifold P2(R2d), which contains densities
of joint distributions of both position and momentum variables, while the system in the current study is
mainly defined on the density manifold for the position variable only.

To study the stochastic variational principle on density manifold, we may confront several challenges.
First and the foremost, the Wasserstein Hamiltonian flow studied in [15] is induced based on the princi-
ple that the density of a Hamiltonian flow in sample space is a Wasserstein Hamiltonian flow in density
manifold. This principle may no long hold if the Hamiltonian flow in sample space is perturbed by ran-
dom noise. Second, the stochastic variational framework must be carefully designed in order to induce
stochastic dynamics that possess Hamiltonian structures on Wasserstein manifold. As indicated in [15,43],
the Christoffel symbol in Wasserstein space plays an important role in the typical kinetic Hamiltonian dy-
namics since it induces a certain velocity-momentum transformation that allows us to transfer between the
second order Euler–Lagrange equations and the Hamiltonian system in density manifold. However, for the
noise perturbed Wasserstein Hamiltonian flows, it is complicated and difficult to introduce such tools for
transforming the Euler–Lagrange equations into Hamiltonian dynamics in general.
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To overcome the difficulties, we begin our study by investigating the classical Lagrangian functional
perturbed by the Wong–Zakai approximation (see e.g. [52,57]) on the phase space, and show that its critical
point gives the stochastic Hamiltonian flow driven by the Wong–Zakai approximation. With the help of
the equivalence of the particle stochastic ODE system and the macro density formulation, in section 3 we
prove that the stochastic Hamiltonian flow driven by the Wong–Zakai approximation coincides with the
critical point of a stochastic variational principle (see e.g. [55]). In particular, Proposition 3.3 presents the
convergence result of the Wong–Zakai approximation to the stochastic Wasserstein Hamiltonian system in
Stratonovich sense. However, in general stochastic case, it is still hard to use the Christoffel symbols to
derive the stochastic Hamiltonian dynamics.

Furthermore, based on the cotangent bundles of density manifold, we propose a general variational prin-
ciple to derive a large class of stochastic Hamiltonian equations on density manifold via Wong–Zakai ap-
proximation, such as stochastic nonlinear Schrödinger equation (see, e.g., [5,26,38,53]), nonlinear Schrödinger
equation with white noise dispersion (see, e.g., [1,2]), and the mean-field game system with common noise
(see, e.g., [30,9,10]). We would like to mention that although the Wong–Zakai approximation of stochastic
differential equations has been studied for many years (see, e.g., [57,52,8,56]), few results are known for
the convergence on the density manifold. In this work, we also provide some new convergence results of
Wong–Zakai approximation for the continuity equation induced by stochastic Hamiltonian system and the
stochastic Schrödinger equation on density space under suitable assumptions.

Another main message that we would like to convey in this paper is that the stochastic Hamiltonian flow
on phase space, when viewed through the lens of conditional probability, induces the stochastic Wasserstein
Hamiltonian flow on density manifold, and it is hard to observe those stochastic Hamiltonian structures in
the density manifold without the help of conditional probability (see section 3).

The organization of this article is as follows. In section 2, we review the formulation and derivation
of Hamiltonian ordinary differential equations (ODEs), and use the Wong–Zakai approximation of the La-
grangian functional to connect the classic and stochastic variational principles on phase space. In section 3,
we study the macro behaviors of stochastic Hamiltonian ODE and its Wong–Zakai approximation, includ-
ing the stochastic Euler–Lagrange equation on density space, Vlasov equation, as well as the generalized
stochastic Wasserstein Hamiltonian flow. Several examples are demonstrated in section 4. Throughout this
paper, we denote C and c as positive constants which may differ from line to line.

2 Stochastic Hamiltonian ODEs

In this section, we briefly review the classical and stochastic Hamiltonian flows on a finite dimensional
Riemannian manifold.

The classical Hamiltonian flow on a smooth d-dimensional Riemannian manifold (M ,g) with g being
the metric tensor of M , is derived by the variational problem

I(x0,xT ) = inf
(x(t))t∈[0,T ]

{
∫ T

0
L0(x, ẋ)dt : x(0) = x0, x(T ) = xT}.

Here the Lagrangian L0 is a functional (also called Lagrange action functional) defined on the tangent
bundle of M . Its critical point induces the Euler-Lagrange equation

d
dt

d
dẋ

L0(x, ẋ) =
d
dx

L0(x, ẋ).
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When L0(x, ẋ) = 1
2 ẋ⊤g(x)ẋ− f (x) with a smooth potential functional f on M , the Euler-Lagrange equation

can be rewritten as a Hamiltonian system,

ẋ = g(x)−1 p, ṗ =−1
2

p⊤dxg−1(x)p−dx f (x)

Here ⊤ denotes the transpose, p = g(x)ẋ and the Hamiltonian is

H0(x, p) =
1
2

p⊤g−1(x)p+ f (x).

However, the Lagrange action functional L0(x, ẋ) may not be homogeneous or it can by impacted by random
perturbations in some problems, which is the reason to introduce stochastic Hamiltonian flows.

Let us start with the case that L(x, ẋ) is composed by the deterministic Lagrange functional L0(x, ẋ) and
a random perturbation ησ(x)ξ̇δ (t). Here ξδ can be chosen as a piecewise continuous differentiable function
which obeys certain distribution law in a complete probability space (Ω ,F,P) with a filtration {Ft}t≥0, σ(·)
is a potential function and η ∈R characterizes the noise intensity. In this paper, ξδ is taken as a Wong-Zakai
approximation (see e.g. [57]) of the standard Brownian motion B(t) such that ξ̇δ is a real function. When
δ → 0, ξδ (t) is convergent to B(t) in pathwise sense or strong sense [57]. For fixed ω ∈ Ω , since ξδ (t)
is a stochastic process on (Ω ,F,P) with piecewise continuous trajectory, the value of the action functional∫ T

0 L0(x, ẋ)−ησ(x)ξ̇δ (t)dt is finite for any given x(0) = x0,x(T ) = xT .
Throughout this paper, we assume that the initial position x0 of the particle system is a F0-measurable

random variable with the density ρ0. Let Ft , t ≥ 0 be the completion of the filtration generated by the stan-
dard Brownian motion. For convenience, we also suppose that x0 is independent of B(t), t ≥ 0. To satisfies
the above assumptions, we let (Ω ,F,P) = (ΩB,{Ft}t≥0,PB)× (Ω̃ , F̃, P̃), where B(·) is the Brownian mo-
tion on ΩB and x0 is a random variable on Ω̃ independent of ΩB. Denote E the expectation with respect to
(Ω ,P) and E

Ω̃
the conditional probability with respect to (Ω̃ , P̃).

Newton’s law can be used to derive the Euler–Lagrange equation or the Hamiltonian system in the
stochastic case. In order to find out the critical point of

∫ T
0 L0(x, ẋ)−ησ(x)ξ̇δ (t)dt, we calculate its Gâteaux

derivative (see, e.g., [31]). Set xε(t) = x(t)+εh(t), h(0) = h(T ) = 0, the Newton’s law indicates the critical
point satisfies

d
dt

∂

∂ ẋ
L(x, ẋ) =

∂

∂x
L(x, ẋ) =

∂

∂x
L0(x, ẋ)−η

∂

∂x
σ(x)ξ̇δ t ,

which is equivalent to the integral equation

∂

∂ ẋ
L(x(t), ẋ(t))− ∂

∂ ẋ
L(x(0), ẋ(0)) =

∫ t

0

∂

∂x
L0(x, ẋ)ds−η

∫ t

0

∂

∂x
σ(x)dξδ t .

One can also introduce the Legendre transformation p = g(x)ẋ,, and get

ẋ = g(x)−1 p, ṗ =−1
2

p⊤dxg−1(x)p−dx f (x)−ηdxσ(x)ξ̇δ . (2.1)

Since it can be rewritten as

ẋ =
∂

∂ p
H0(x, p)+

∂

∂ p
H1(x, p)ξ̇δ , ṗ =− ∂

∂x
H0(x, p)− ∂

∂x
H1(x, p)ξ̇δ ,

where H1(x, p) = σ(x), the equations form a stochastic Hamiltonian system.

Remark 2.1 When ξ̇δ is a constant, the Hamilton’s principle gives a Hamiltonian system with a homoge-
nous perturbation. Otherwise, for a fixed ω, the Hamilton’s principle leads to a Hamiltonian system with
an inhomogenous perturbation.
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2.1 Wong–Zakai approximation in M = Rd

In this part, we show that the limit of the Wong-Zakai approximation (2.1) is a stochastic Hamiltonain
system.

Lemma 2.1 Let M = Rd and T > 0, g be the identity matrix Id×d . Assume that f ,σ ∈ C 2
b (M ), ξδ is the

linear interpolation of B(t) with width δ and that x0, p0 is F0-apdated. Then (2.1) on [0,T ] is convergent to

dx = p, d p =−dx f (x)−ηdxσ(x)◦dB(t), a.s., (2.2)

where ◦ denotes the stochastic integral in the Stratonovich sense.

Proof The condition of σ , f ensures the global existence of a unique strong solution for (2.1) and (2.2) by
using standard Picard iterations. Then one can follow the classical arguments (see e.g. [52]) to show that
the solution of (2.1) is convergent to that of (2.2) and that the right hand side of (2.1) is convergent to that
of (2.2).

The following lemma relaxes the classical conditions on the convergence of Wong–Zakai approximation
whose proof is presented in Appendix. We call that g is equivalent to Id×d if g ∈ C ∞

b (Rd ;Rd) is symmetric
satisfying ΛId×d ⪰ g(x)⪰ λ Id×d for some constant 0 < λ ≤ Λ . In the following, we will use the standard
notation for the matrix product, that is, g(x) · (y,z) = y⊤g(x)z and g(x) · y = g(x)y.

Lemma 2.2 Let M = Rd , T > 0, g be equivalent to Id×d . Assume that f ,σ ∈ C 2
p (M ), ξδ is the linear

interpolation of B(t) with the width δ , that x0, p0 are F0-apdated and possess any finite q-moment, q ∈N+,
and that

H0(x, p)≥ c0|p|+ c1|x|, for large enough |x|, |p|
η

2|∇ppH0(x, p) · (∇xσ(x),∇xσ(x))|+η |∇ppH0(x, p) · (p,∇xσ(x))| (2.3)

+η |∇ppH0(x, p) · (∇xσ(x),−1
2

p⊤dxg−1(x)p−∇x f (x))|+η |∇pxH0(x, p) · (∇xσ ,g−1(x)p)|

+η |∇pH0(x, p) ·∇xxσ(x)g−1(x)p| ≤C1 + c1H0(x, p).

Then the solution of (2.1) on [0,T ] is convergent in probability to the solution of

dx = g−1(x)p, d p =−1
2

p⊤dxg−1(x)p−dx f (x)−ηdxσ(x)◦dB(t). (2.4)

Denote the solution of (2.1) by (xδ (·,x0, p0), pδ (·,x0, p0)). According to Lemma 2.2, by studying the
equation of ∂

∂x0
xδ (t,x0, p0) and ∂

∂ p0
xδ (t,x0, p0), one could obtain the following convergence result.

Corollary 2.1 Under the condition of Lemma 2.2, let f ,σ ∈ C 3
p (M ). Then for any ε > 0, it holds that

lim
δ→0

P
(

sup
t∈[0,T ]

| ∂

∂x0
xδ (t,x0, p0)−

∂

∂x0
x(t,x0, p0)|

+ sup
t∈[0,T ]

| ∂

∂ p0
xδ (t,x0, p0)−

∂

∂ p0
x(t,x0, p0)| ≥ ε

)
= 0.
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Remark 2.2 One may impose more additional conditions on the coefficients f ,σ to obtain the strong con-
vergence order 1

2 of the Wong–Zakai approximation, that is,

E
[

sup
t∈[0,T ]

|xδ (t)− x(t)|p
]
+E

[
sup

t∈[0,T ]
|xδ (t)− x(t)|p

]
≤Cδ

p
2 .

The convergence in probability yields that there exists a pathwise convergent subsequence. In this sense,
the limit equation of (2.1) is (2.4) on [0,T ]. When the growth condition (2.3) fails, one could also obtain
the convergence in probability of (xδ , pδ ) before the stopping time τR ∧ τR1 (see Appendix for the definition
of τR and τR1 ). One could also choose different type of Wong–Zakai approximation of the Wiener process
and obtain similar results (see, e.g., [57]).

2.2 Wong–Zakai approximation on a differential manifold M

Assume that M ⊂ Rk is a d-dimensional differential manifold of class C α ,α ∈ N+∪∞ without boundary.
Given a C α -diffeomorphism φ : W → V ⊂ M from an open subset W of Rd to an open set V of M , the
inverse φ−1 : V →W is called a chart or coordinate system on M . The coordinate components are denoted
by Φ1,Φ2, · · · ,Φd , d ∈N+. The tangent bundle of M is denoted by T M := {(x,y) ∈Rk ×Rk|x ∈ M ,y ∈
Tx(M )}. Moreover, dimTx(M ) = d. The canonical projection is denoted by π : T M → M .

In the following, we start from the deterministic Hamiltonian system

ẋ = p,

ṗ =−dx f (x),

where the vector field (p,−dx f (x)) ∈ T(x,p)T M for all (x, p) ∈ T M . We show how the random force
can be added to the system so that (ẋ, ṗ) ∈ Rk ×Rk is still tangent to T M at (x, p). As a physical
interpretation, this tangent condition represents the constrain of the motion equations and is to ensure
that the physical motion is living in T M by the Kamke property of the maximal solutions (see e.g.
[28, Chapter 3]). Consider M which is regularly defined as the zero level set of a C ∞ map F from
Rk to Rk−d . Then we have that the tangent space to M at x is T TxM := {p ∈ Rk|F ′(x)p = 0}, and
TM = {(x, p) ∈ Rk ×Rk|F(x) = 0,F ′(x)p = 0}. We can also obtain

T T M = {(x, p, ẋ, ṗ)|F(x) = 0,F ′(x)p = 0,F ′(x)ẋ = 0,F ′′(x)(ẋ, p)+F ′(x)ṗ = 0}.

Therefore, if the added random force satisfies,

F ′(x)ṗ =−F ′′(x)(ẋ, p) = ψ(x; p, ẋ), ẋ ∈ Tx(M ), (2.5)

we have (ẋ, ṗ) ∈ T(x,p)(TM ). Following [28], we denote a smooth mapping ψ from the vector bundle
{(x;u,v) ∈ Rk × (Rk ×Rk)|x ∈ M ,u,v ∈ Tx(M )} to Rk−d . Given any vector z ∈ Rk−d , denote by Az ∈
(Ker F ′(x))⊥ = (TxM )⊥ the unique solution of F ′(x)ṗ = z. Hence, the solution of (2.5) satisfies

ṗ = µ(x; p, ẋ)+w,

where µ(x; p, ẋ)=Aψ(x; p, ẋ)∈ (Tx(M ))⊥ and w∈Tx(M ). We observe that to ensure (ẋ, ṗ)∈T(x,p)(T M ),
it suffices to take u,w ∈ Tx(M ) and define (ẋ, ṗ) = (u,µ(x; p,u)+w). In Eq. (2.1) with the driving noise
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being −dxσ(x)ξ̇δ , using the above condition, we can verify that it satisfies that (ẋ, ṗ) ∈T(x,p)(T M ). Sim-
ilarly, a second order differential equation with random force satisfies

ẍ = µ(x; ẋ, ẋ)+R(t,x, ẋ),

where Rt : T M ∋ (x, ẋ) 7→ R(t,x, ẋ) ∈ Rk is a tangent vector field on M . A typical example is that
R =−α ẋ+a(t,x) with the frictional force −α ẋ and applied random force a(t,x) =−dxσ(x)ξ̇δ (t). When
R = 0, the above equation is inertial and is so-called geodesic equation on M , which plays an important
role in the optimal transport theory (see e.g. [54,29,17,13]).

Lemma 2.3 Suppose that M is a d-dimensional compact smooth differential manifold. Let g = I, f ,σ be
smooth functions on M , ξδ be the linear interpolation of B(t) with width δ , and that x0, p0 are F0-adapted
and possess any finite q-moment, q ∈N+. Then (xδ , pδ ) is convergent in probability to the solution (x, p) of
(2.4).

Proof The existence and uniqueness of (x, p) can be found in [32]. The global existence of (xδ , pδ ) could
be also obtained by the fact that g = I, f and σ are globally Lipschitz and that the growth condition
(2.3) holds. We only need to show the convergence of (xδ , pδ ) in probability to (x, p). Since T M is
2d-dimensional manifold which could be embedding to R2k, we can extend the vector field V (x, p) :=
(p,−dx f (x)−ηdxσ(x)) to a vector field Ṽ (·, ·) on R2k. And thus the equations of (x, p) and (xδ , pδ ) can
be viewed as the equations on R2k. The global existence of (x, p) and (xδ , pδ ), together with Lemma 2.2,
yield the convergence in probability of (xδ , pδ ).

Remark 2.3 The above result relies on the particular structure of g = I and the growth condition (2.3). If
this condition (2.3) fails, the explosion time e(xδ , pδ ) of (xδ , pδ ) may depend on δ . And the convergence
in probability may only hold before e(x, p)∧ inf

δ>0
e(xδ , pδ ). When applying different type of Wong–Zakai

approximations, the different type of stochastic ODEs could be derived (see e.g. [34]).

To end this section, we give a special example of stochastic Hamiltonian flows which concentrates on a
submanifold with conserved quantities.

Example 2.1 Let M =Rd , g and g̃ be metrics equivalent to Id×d . Define an action functional with random
perturbation in dual coordinates,

−
∫ T

0
(⟨p, ẋ⟩−H0(x, p))dt +

∫ T

0
H1(x, p)dξδ (t),

where H0(x, p) = 1
2 p⊤g−1(x)p+ f (x), H1(x, p) = η

1
2 p⊤g̃−1(x)p+ησ(x) with smooth potentials f and σ .

Then the critical points under the constrain x(0) = x0,x(T ) = xT satisfies the stochastic Hamiltonian flows

ẋδ =
∂H0

∂ p
(x, p)+

∂H1

∂ p
(xδ , pδ )ξ̇δ ,

ṗδ =−∂H0

∂ p
(xδ , pδ )− ∂H1

∂ p
(xδ , pδ )ξ̇δ .

The solution (xδ , pδ ) and its limit (x, p) lie on the manifold {H0(x, p) = H0(x0, p0),H1(x, p) = H1(x0, p0)}
when the Hamiltonians satisfies that {H0,H1}= 0 with {·, ·} being the Possion bracket. Similar to Lemma
2.2, it can be shown that (xδ , pδ ) converges globally to (x, p) in probability if H0 or H1 satisfies the growth
condition (2.3).
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3 Stochastic Wasserstein Hamiltonian flow

In this section, we study the behaviors of the inhomogenous Hamiltonian system (2.1) and stochastic Hamil-
tonian system (2.4) on the density manifold. To illustrate the strategy, let us focus on the case that (M ,g)
equals (Td ,I) or (Rd ,I). Given the filtered complete probability space (Ω ,F,(Ft)t≥0,P), recall that ξδ (t)
is the piecewisely linear Wong–Zakai approximation of a standard Brownian motion. For a fixed ω̃ ∈ Ω̃ ,
we denote τδ := inf{t ∈ (0,T ]|xδ

t is not a smooth diffeomorphism on M }, pδ
t = v(t,xδ

t ) is the vector field
depending on the position and time. Here we view the momentum p as the function v depending on both
time and space. Eq. (2.1) becomes

d
dt

xδ
t = v(t,xδ

t ),

d
dt

v(t,xδ
t ) =−∇ f (xδ

t )−η∇σ(xδ
t )ξ̇δ (t).

Differentiating v(t,xδ
t (x0)) before τδ leads to

∂tv(t,xδ
t (x0))+∇v(t,xδ

t (x0)) ·
d
dt

xδ
t = ∂tv(t,xδ

t (x0))+∇v(t,xδ
t (x0)) · v(t,xδ

t (x0))

=−∇ f (xδ
t (x0))−η∇σ(xδ

t (x0))ξ̇δ (t).

Taking x0 = (xδ
t )

−1(x), we obtain the following conservation law with random perturbation,

∂tv(t,x)+∇v(t,x) · v(t,x) =−∇ f (x)−η∇σ(x)ξ̇δ (t). (3.1)

Taking any test function ψ in C∞(M ), it holds that

d
dt
E

Ω̃
[ψ(xδ

t (x0))] =
d
dt

∫
M

ψ(x)ρ(t,x)dx =
∫

M
∇ψ(xδ

t (x)) · v(t,xδ
t (x))ρ0(x)dx

=
∫

M
∇ψ(x) · v(t,x)ρt(x)dx,

which implies that for ωB ∈ ΩB, ρt = xδ
t #ρ0, i.e., ρt equals the distribution generated by the push-forward

map xt(·) on ρ0, satisfies the continuity equation,

∂tρ(t,x)+∇ · (ρ(t,x)v(t,x)) = 0. (3.2)

Introducing the pseudo inverse (−∆ρ)
† (see e.g. [15]) of the operator

∆ρ(·) :=−∇ · (ρ∇(·)) (3.3)

for a positive density ρ , we denote St = (−∆ρt )
†∂tρt . When there exists a potential S such that v = ∇S,

the conservation law with random influence (3.1) and the continuity equation (3.2) induce a Hamiltonian
system in density manifold before τδ ,

∂tρt =
δ

δSt
H0(ρt ,St) =−∇ · (ρt∇St), (3.4)

∂tSt =− δ

δρt
H0(ρt ,St)−

δ

δρt
H1(ρt ,St)ξ̇δ (t)+C(t)

=−1
2
|∇St |2 −

δ

δρt
F (ρt)−

δ

δρt
ηΣ(ρt)ξ̇δ (t)+C(t),



Stochastic Wasserstein Hamiltonian Flows 9

where C(t) is an arbitrary stochastic process on (ΩB,PB) independent of the spatial position x and initial
velocity v(0, ·) = ∇S(0, ·). Here the dominated average energy is

H0(ρ,S) := K(ρ,S)+F (ρ) =
∫

M

1
2
|∇S(x)|2ρ(x)dx+

∫
M

f (x)ρ(x)dx,

and the perturbed average energy is

H1(ρ,S, t) = ηΣ(ρt) = η

∫
M

σ(x)ρ(x)dx.

Taking δ → 0, the limit system becomes a stochastic Hamiltonian system,

dρt =
δ

δSt
H0(ρt ,St)dt, (3.5)

dSt =− δ

δρt
H0(ρt ,St)−

δ

δρt
H1(ρt ,St)⋆dξ +C(t)dt,

where ξ is the limit process of ξδ in the pathwise sense. We would like to remark that the solution of (3.5)
may be not Ft -measurable in general, for example when x0 is not independent of B(t). We refer to [50,
section 3.3] for more discussions on the anticipating stochastic differential equations. We also would like
to remark that the Stratonovich integral is nature in the study of stochastic Hamiltonian system due to the
presence of the chain rule [21–23]. In our particular case, since ξδ (t) is a piecewisely linear Wong-Zakai
approximation of B(t) and x0 is independent of B(t), the limit of (3.1), (3.2) is the following system in
Stratonovich sense,

dρt =−∇ · (ρ(t,x)v(t,x))dt, (3.6)
dv(t,x)+∇v(t,x) · v(t,x)dt =−∇ f (x)dt −η∇σ(x)◦dBt .

We would like to emphasize that the above analysis indicates a principle for deriving the stochastic Hamilto-
nian system on Wasserstein manifold: The conditional probability density of stochastic Hamiltonian flow in
phase space is a stochastic Hamiltonian flow in density manifold almost surely. In the following we always
assume that the initial distribution ρ(0, ·) of x0 and the initial velocity v(0, ·) are smooth and bounded.

Proposition 3.1 Suppose that M is a d-dimensional compact smooth differential submanifold and T > 0.
Let g = I, v(0, ·) be a smooth vector field, f ,σ be smooth functions on M , ξδ be the linear interpolation
of B(t) with width δ , and that x0, p0 are F0-adapted and possess any finite q-moment, q ∈ N+. Then there
exists a stopping time τ such that there exists a subsequence of (ρδ ,vδ ) which converges in probability to
the solution (ρ,v) of (3.6) before τ.

Proof Applying Lemma 2.3, we have that (xδ
t ,v(t,x

δ
t )) is convergent to (xt ,v(t, xt)) in [0,T ], a.s., up to

a subsequence. Define the stopping time τ = inf{t ∈ (0,T ]|xt is not smooth diffeomorphism on M }. For
convenience, let us take a subsequence such that for almost ω ∈ Ω , (xδ

t ,v(t,x
δ
t )) converges to (xt ,v(t,xt))

and ∂

∂x0
xδ

t (x0) convergences to ∂

∂x0
xt(x0). Before τ(ω), there exists α > 0 such that det( ∂

∂x0
x−1

t (x0)) > α.

The pathwise convergence of xδ implies that for any ε > 0 there exists δ0 = δ (ε,ω) > 0 such that when
δ ≤ δ0, det( ∂

∂x0
(xδ

t )
−1(x0))> α − ε > 0. Notice that the density function ρδ (t,y) of xδ

t satisfies ρδ (t,y) =

|det(∇xδ
t (y))|ρ(0,xδ

t (y)). Since ρ(0, ·) is smooth for any fixed ω and the pathwise convergence of xδ holds,
it follows that ρδ (t,y) converges to the density function of xt , which is ρ(t,y) = |det(∇xt(y))|ρ(0,xt(y)).
Similarly, the pathwise convergence of vδ (t,xδ

t (y)) to v(t,xt(y)), together with invertibility of xδ
t and xt ,

implies the convergence of vδ (t,x) to v(t,x). Consequently, the solution of (ρδ ,vδ ) is convergent to (ρ,v)
in pathwise sense up to a subsequence.
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3.1 Vlasov equation

We would like to present the connections and differences between the classic Vlasov equation and stochastic
Wasserstein Hamiltonian flow in this part. For simplicity, let us consider the case that M = Rd . We fix
ω̃ ∈ Ω̃ , and consider (2.1). Taking differential on EΩ [φ(xδ

t , pδ
t )] where φ is a sufficient smooth test function,

we get

d
dt
EΩ [φ(xδ

t , pδ
t )] = EΩ [∇xφ(xδ

t , pδ
t )

d
dt

xδ
t +∇pφ(xδ

t , pδ
t )

d
dt

pδ
t ]

= EΩ [∇xφ(xδ
t , pδ

t )pt +∇pφ(xt , pt)(−∇x f (xδ
t )−η∇xσ(xδ

t )ξ̇δ )].

Denoting the initial joint probability density function by F0(x, p), it holds that

d
dt

∫
Rd×Rd

φ(xδ
t , pδ

t )F0(x, p)dxd p

=
∫
Rd×Rd

(
∇xφ(xδ

t , pδ
t )pδ

t +∇pφ(xδ
t , pδ

t )(−∇x f (xδ
t )−η∇xσ(xδ

t )ξ̇δ )
)

F0(x, p)dxd p

Thus the joint distribution on Ω , Fδ
t = (xδ

t , pδ
t )

#F0, satisfies∫
Rd×Rd

φ(x, p)
d
dt

Fδ
t (x, p)dxd p

=
∫
Rd×Rd

(
∇xφ(x, p)p+∇pφ(x, p)(−∇x f (x)

)
Ft(x, p)dxd p

+EΩ [∇pφ(xδ
t , pδ

t )(−η∇xσ(xδ
t ))ξ̇δ (t)

]
.

Notice that the solution process xδ
t is Ftk+1 -measurable when t ∈ (tk, tk+1], tk = kδ t and Ftk -measurable

when t = tk, and xt is Ft -measurable. By applying the chain rule, we have that for t ∈ (tk, tk+1],∫ t

0
EΩ [∇pφ(xδ

s , pδ
s )(−η∇xσ(xδ

s ))ξ̇δ (s)
]
ds

=
k−1

∑
j=0

∫ t j+1

t j

EΩ [∇pφ(xδ
s , pδ

s )(−η∇xσ(xδ
s ))ξ̇δ (s)

]
ds

+
∫ t

tk
EΩ [∇pφ(xδ

s , pδ
s )(−η∇xσ(xδ

s ))ξ̇δ (s)
]
ds

=
k−1

∑
j=0

∫ t j+1

t j

EΩ [∇pφ(xδ
t j
, pδ

t j
)(−η∇xσ(xδ

t j
))

Bt j+1 −Bt j

δ

]
ds

+
k−1

∑
j=0

∫ t j+1

t j

EΩ

[(
∇pφ(xδ

s , pδ
s )(−η∇xσ(xs))−∇pφ(xδ

t j
, pδ

t j
)(−η∇xσ(xδ

t j
))
)Bt j+1 −Bt j

δ

]
ds

+
∫ t

tk
EΩ [∇pφ(xδ

tk , pδ
tk)(−η∇xσ(xδ

tk))
Btk+1 −Btk

δ

]
ds

+
∫ t

tk
EΩ [

(
∇pφ(xδ

s , pδ
s )(−η∇xσ(xδ

s ))−∇pφ(xδ
tk , pδ

tk)(−η∇xσ(Xδ
s ))

)Btk+1 −Btk

δ

]
ds
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Then repeating similar arguments in the proof of Lemma 2.2, we have that∫ t

0
EΩ [∇pφ(xδ

t , pδ
t )(−η∇xσ(Xδ

t ))ξ̇δ (t)
]
ds

=
∫ t

0
EΩ [∇pφ(xδ

[t]δ δ
, pδ

[t]δ δ
)(−η∇xσ(xδ

[t]δ δ
))ξ̇δ (t)

]
ds

+
∫ t

0

1
2
EΩ [(∆ppφ(Xδ

[t]δ δ
, p[t]δ δ )(−η∇xσ(xδ

[t]δ δ
))(−η∇xσ(xδ

[t]δ δ
))(ξ̇δ (t))

2
]
ds

+o(δ β ),

where β ∈ (0, 1
2 ). Taking δ → 0 yield that the second order Vlasov equation

∂tF(t,x, p) =−∇x · (F(t,x, p)
∂H0

∂ p
)+∇p · (F(t,x, p)

∂H0

∂x
)

+
1
2

∆ppF(t,x, p) · (∂H1

∂x
,

∂H1

∂x
).

This implies that when we consider the joint distribution on Ω , the density function satisfies the second order
Vlasov equation. However, when we consider the conditional probability on Ω̃ instead of Ω , the conditional
joint probability of Wong–Zakai approximation satisfies the following first order Vlasov equation,

∂tFδ (t,x, p) =−∇x · (Fδ (t,x, p)
∂H0

∂ p
)+∇p · (Fδ (t,x, p)

∂H0

∂x
)

+∇p · (Fδ (t,x, p)
∂H1

∂x
)ξ̇δ .

Its limit equation becomes

dF(t,x, p) =−∇x · (F(t,x, p)
∂H0

∂ p
)dt +∇p · (F(t,x, p)

∂H0

∂x
)dt

+∇p · (F(t,x, p)
∂H1

∂x
)◦dBt .

3.2 Stochastic Euler-Lagrange equation in density space

In this section, we consider the kinetic Wasserstein Hamiltonian flow with random perturbation, i.e., the
second order stochastic Euler-Lagrange equation from the Lagrange functional on density manifold. Let
M = (Td ,I). The density space P(M ) is defined by

P(M ) = {ρdvolM |ρ ∈ C ∞(M ),ρ ≥ 0,
∫

M
ρdvolM = 1}.

Its interior of P(M ) is denoted by Po(M ). The tangent space at ρ ∈ Po(M ) is defined by

TρPo(M ) = {κ ∈ C ∞(M )|
∫

M
κdvolM = 0}.

Define the quotient space of smooth functions F (M )/R= {[Φ ]|Φ ∈ C ∞(M )}, where [Φ ] = {Φ + c|c ∈
R}. Then one could identify the element in F (M )/R as the tangent vector in TρPo(M ) by using the map
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Θ : F (M )/R→ TρPo(M ), ΘΦ = −∇ · (ρ∇Φ). The boundaryless condition of M and the property of
elliptical operator ensures that Θ is one to one and linear [15]. This implies that F (M )/R∼= T ∗

ρ Po(M ),
where T ∗

ρ Po(M ) is the cotangent space of Po(M ). The L2-Wasserstein metric on density manifold
gW : TρP(M )×TρP(M )→ R is defined by

gW (κ1,κ2) =
∫

M
⟨∇Φ1,∇Φ2⟩ρdvolM =

∫
M

κ1(−∆ρ)
†
κ2dvolM ,

where κ1 =ΘΦ1 , κ2 =ΘΦ2 , and (−∆ρ)
† is the pseudo inverse operator of −∆ρ . In the deterministic case, it

is known that the critical point of

1
2

W 2(ρ0,ρ1) := inf
ρt∈Po(M )

{∫ 1

0

∫
M

1
2

gW (∂tρt ,∂ρt)dvolM dt
}

satisfies the geodesic equation in cotangent bundle on density manifold (see e.g. [18]), that is,

∂tρt =−∇ · (ρt∇Φt),

∂tΦt =−1
2
|∇Φt |2 +Ct ,

where Φt = (−∆ρt )
†∂tρt , Ct is independent of x ∈ M . The above geodesic equation in primal coordinates

is the Euler–Lagrange equation,

∂t
δ

δ∂tρt
L (ρt ,∂tρt) =

δ

δρt
L (ρt ,∂tρt)+Ct ,

where L (ρt ,∂tρt) =
1
2 gW (∂tρt ,∂tρt).

Next, we consider the Lagrangian in density manifold with random perturbation,

L (ρt ,∂tρt) =
1
2

gW (∂tρt ,∂tρt)−F (ρt)−Σ(ρt)ξ̇δ (t),

and its variational problem Iδ (ρ
0,ρT ) = inf

ρt
{
∫ T

0 L (ρt ,∂tρt)dt|ρ0 = ρ0,ρT = ρT}. Recall that by (3.3), we

have that

∆ρt (·) =−∇ · (ρt∇(·)), ∆∂t ρt (·) =−∇ · (∂tρt∇(·)).

Theorem 3.1 The Euler Lagrangian equation of the variational problem Iδ (ρ
0,ρT ) satisfies

∂ttρt +ΓW (∂tρt ,∂tρt) =−gradW F (ρt)−gradW Σ(ρt)ξ̇δ , (3.7)

where gradW F (ρt) =−∇ · (ρt∇
δ

δρt
F (ρt)), ΓW (∂tρt ,∂tρt) = ∆∂t ρt (−∆ρt )

†∂tρt +
1
2 ∆ρt |∇(−∆ρt )

†ρt |2. Fur-
thermore, Eq. (3.7) can be formulated as the following Hamiltonian system

∂tρt +∇ · (ρt∇Φt) = 0, (3.8)

∂tΦt +
1
2
|∇Φt |2 =− δ

δρt
F (ρt)−

δ

δρt
Σ(ρt)ξ̇δ ,

where Φt = (−∆ρt )
†∂tρt up to a spatially constant stochastic process shift.
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Proof Consider a smooth perturbation εht satisfying
∫
M htdvolM = 0, t ∈ [0,T ] and h0 = hT = 0. Applying

Taylor expansion with respect ε and integration by parts, using h0 = hT = 0 and the fact that M is compact,
we get ∫ T

0
L (ρt + εht ,∂tρt + ε∂tht)dt

=
∫ T

0
L (ρt ,∂tρt)dt + ε

∫ T

0

∫
M
(

δ

δρt
L (ρt ,∂tρt)−∂t

δ

δ∂tρt
L (ρt ,∂tρt)) ·htdvolM dt +o(ε).

Similar to the proof of [15, Theorem 1], direct calculations lead to

∂t
δ

δ∂tρt
L (ρt , ρ̇t) = ∂t((−∆ρt )

†
∂tρt)

= (−∆ρt )
†
∂ttρt − (−∆ρt )

†(−∆∂t ρt )(−∆ρt )
†
∂tρt ,

δ

δρt
L (ρt , ρ̇t) =−1

2
∇|(−∆

†
ρt )∂tρt |2 −

δ

δρt
F (ρt)−

δ

δρt
Σ(ρt)ξ̇δ (t),

which, together with the property
∫
M htdvolM = 0, yields (3.7) up to a spatially-constant stochastic process

shift by multiplying ∆ρt on both sides. By introducing the Legendre transformation Φt = (−∆ρt )
†∂ρt , we

obtain Eq. (3.8) from Eq. (3.7).

Note that the formulation ΓW for ∂tρ is called as the Christoffel symbol in density manifold [15]. The
dual coordinate Φt = (−∆ρt )

†∂tρt is obtained via the Legendre transformation, which is the key to derive
the kinetic Hamiltonian formulation. However, it is still hard to use the Christoffel symbol and Lagrangian
functional to derive general stochastic Wasserstein Hamiltonian systems.

Proposition 3.2 The Euler–Lagrange equation of the variational problem I(ρ0,ρT ),

I(ρ0,ρT ) =
∫ T

0
(

1
2

gW (∂tρt ,∂tρt)−F (ρt))dt −
∫ T

0
Σ(ρt)◦dB(t)

satisfies

∂ttρt +ΓW (∂tρt ,∂tρt) =−gradW F (ρt)−gradW Σ(ρt)◦dBt , (3.9)

where ρt is Ft -measurable. Furthermore, Eq. (3.9) can be formulated as the following Hamiltonian system

∂tρt +∇ · (ρt∇Φt) = 0, (3.10)

∂tΦt +
1
2
|∇Φt |2 =− δ

δρt
F (ρt)−

δ

δρt
Σ(ρt)◦dBt ,

where Φt = (−∆ρt )
†∂tρt up to a spatially constant stochastic process shift.

Proof Consider a smooth perturbation εht satisfying
∫
M htdvolM = 0, t ∈ [0,T ] and h0 = hT = 0. Denote

L0(ρt ,∂tρt) =
1
2 gW (∂tρt ,∂tρt)−F (ρt). Recall the equivalence of stochastic integrals between Itô sense

and Stratonovich sense (see e.g. [37]), i.e., for M(t) =
∫ t

0 X(s)◦dW (s), it holds that M(t) =
∫ t

0 X(s)dW (s)+
1
2 ⟨M(·)⟩t . Here X(s) is Ft -measurable such that the quadratic variation process ⟨M(·)⟩s is well-defined for
s ≥ 0. By our assumption that ∂tρt ∈ Tρt P(M ), there exists some Φt such that Φt = (−∆ρt )

†∂tρt . This
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yields that
∫ t

0 Σ(ρt) ◦ dB(t) =
∫ t

0 Σ(ρt)dB(t) and that
∫ t

0
∫
M

δ

δρt
Σ(ρt) · htdvolM ◦ dB(t) =

∫ t
0
∫
M

δ

δρt
Σ(ρt) ·

htdvolM dB(t) since their quadratic variation processes are 0. As a consequence, we have that

∫ T

0

1
2

gW (∂tρt + εht ,∂tρt + εht)−F (ρt + εht)dt −
∫ T

0
Σ(ρt + εht)dBt

=
∫ T

0
L0(ρt ,∂tρt)dt +

∫ T

0
Σ(ρt)dBt

+ ε

∫ T

0

∫
M
(

δ

δρt
L0(ρt ,∂tρt)−∂t

δ

δ∂tρt
L0(ρt ,∂tρt)) ·htdvolM dt

+ ε

∫ T

0

∫
M

δ

δρt
Σ(ρt) ·htdvolM dBt +o(ε).

Similar to the proof of Theorem 3.1, we obtain (3.9) and its equivalent Hamiltonian system (3.10).

3.3 Generalized stochastic Wasserstein–Hamiltonian flow

In the last section, we show that the density of a Hamiltonian ODE with random perturbation satisfies
the stochastic Wasserstein Hamiltonian flow. In this section, We derived the general stochastic Wasserstein
Hamiltonian flow via the random perturbation in the dual coordinates in density space. It provides a more
general framework that can derive a large class of stochastic Wasserstein Hamiltonian flows which can not
be obtained from the classic dynamics with perturbations.

Let M = (Td ,I). We introduce the following variational problem

Iδ (ρ
0,ρT ) = inf{S (ρt ,Φt)|∆ρt Φt ∈ Tρt Po(M ),ρ(0) = ρ

0,ρ(T ) = ρ
T} (3.11)

whose action functional is given by the dual coordinates,

S (ρt ,Φt) =−
∫ T

0
⟨Φ(t),∂tρt⟩+H0(ρt ,Φt)dt +

∫ T

0
H1(ρt ,Φt)dξδ (t).

Here H0(ρt ,Φt) =
∫
M

1
2 |∇Φt |2ρtdvolM +F (ρt), H1(ρt ,Φt) = η

∫
M

1
2 |∇Φt |2ρtdvolM +ηΣ(ρt), F and

Σ are smooth potential functions.

Theorem 3.2 The critical point of the variational problem Iδ (ρ
0,ρT ) satisfies the following Hamiltonian

system

∂tρt +∇ · (ρt∇Φt)+η∇ · (ρt∇Φt)ξ̇δ = 0, (3.12)

∂tΦt +
1
2
|∇Φt |2 +η

1
2
|∇Φt |2ξ̇δ =− δ

δρt
F (ρt)−η

δ

δρt
Σ(ρt)ξ̇δ ,

where (1+ ξ̇δ (t))Φt = (−∆ρt )
†∂tρt up to a spatially constant stochastic process shift.



Stochastic Wasserstein Hamiltonian Flows 15

Proof Consider the perturbations on ρ and Φ . Following the arguments in the proof of Proposition 3.2, the
critical point satisfies that

S (ρt + εδρt ,Φt + εδΦt)

= S (ρt ,Φt)− ε

∫ T

0
⟨Φ(t),∂tδρt⟩dt − ε

∫ T

0
⟨δΦ(t),∂tρt⟩dt

+ ε

∫ T

0

δ

δρt
H0(ρt ,Φt)δρt +

δ

δΦt
H0(ρt ,Φt)δΦtdt

+ ε

∫ T

0

δ

δρt
H1(ρt ,Φt)δρt +

δ

δΦt
H1(ρt ,Φt)δΦtdξδ (t)+o(ε)

= S (ρt ,Φt)+ ε

∫ T

0
⟨∂tΦ(t),δρt⟩dt − ε

∫ T

0
⟨δΦ(t),∂tρt⟩dt

+ ε

∫ T

0
⟨ δ

δρt
H0(ρt ,Φt),δρt⟩+ ⟨ δ

δΦt
H0(ρt ,Φt),δΦt⟩dt

+ ε

∫ T

0
⟨ δ

δρt
H1(ρt ,Φt),δρt⟩+ ⟨ δ

δΦt
H1(ρt ,Φt),δΦt⟩dξδ (t)+o(ε).

Taking ε → 0, we obtain that

∂tρt =
δ

δΦt
H0(ρt ,Φt)+

δ

δΦt
H0(ρt ,Φt)ξ̇δ (t)

∂tΦt =− δ

δρt
H0(ρt ,Φt)−

δ

δρt
H0(ρt ,Φt)ξ̇δ (t),

which leads to (3.12).

Similarly, consider the action functional

S̃ (ρt ,Φt) =−
∫ T

0
⟨Φ(t),◦dρt⟩+H0(ρt ,Φt)dt +

∫ T

0
H1(ρt ,Φt)◦dBt

over the Ft -adapted feasible set, we obtain the following result.

Theorem 3.3 The critical point of the variational problem I(ρ0,ρT ) defined by

I(ρ0,ρT ) = inf{S̃ (ρt ,Φt)|ρ(0) = ρ
0,ρ(T ) = ρ

T}

satisfies the following Hamiltonian system

∂tρt +∇ · (ρt∇Φt)+η∇ · (ρt∇Φt)◦dBt = 0, (3.13)

∂tΦt +
1
2
|∇Φt |2 +η

1
2
|∇Φt |2 ◦dBt =− δ

δρt
F (ρt)−η

δ

δρt
Σ(ρt)◦dBt

up to a spatially constant stochastic process shift on Φt .

Next, we show that the continuity equation and the velocity equation generated by Φ ,

∂tρt +∇ · (ρtvt)+η∇ · (ρtvt)ξ̇δ = 0, (3.14)

∂tvt +∇vt · vt +η∇vt · vt ξ̇δ =−∇
δ

δρt
F (ρt)−η

δ

δρt
∇Σ(ρt)ξ̇δ

is convergent to the corresponding system driven by the Brownian motion.
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Proposition 3.3 Assume that v(0, ·),ρ(0, ·) is F0-measurable and smooth, F (ρt) =
∫
M f ρtdvolM and

Σ(ρt) =
∫
M σρtdvolM with f ,σ ∈C3

p(M ). Let ρδ ,vδ be the solution of (3.14), and ρ,v be the solution of

∂tρt +∇ · (ρtvt)+η∇ · (ρtvt)◦dBt = 0, (3.15)

∂tvt +∇vt · vt +η∇vt · vt ◦dBt =−∇
δ

δρt
F (ρt)−η∇

δ

δρt
Σ(ρt)◦dBt .

Then there exists a stopping time τ > 0 such that for any δ > 0,

lim
δ→0

P( sup
t∈[0,τ)

[|ρδ
t −ρt |L∞(M )+ |vδ

t − vt |L∞(M )]> ε) = 0.

Proof Since M is compact, f ,σ ∈ C3
p(M ), similar to the proofs of Lemma 2.2 and Lemma 2.3, we can

obtain the global well-posedness of the particle ODE systems

dXt = v(t,Xt)dt +ηv(t,Xt)◦dBt ,

dv(t,Xt) =−∇ f (Xt)dt −η∇σ(Xt)◦dBt ,

and

dXδ
t = vδ (t,Xδ

t )dt +ηv(t,Xδ
t )dξδ ,

dvδ (t,Xδ
t ) =−∇ f (Xδ

t )dt −η∇σ(Xδ
t )dξδ .

Following the arguments in the proof Proposition 3.1, we can obtain that there exists a stopping time τ > 0
such that Xt is a smooth diffeomorphism before τ . Notice that the density function ρδ (t,y) of Xδ

t satisfies
ρδ (t,y) = |det(∇Xδ

t (y))|ρ(0,Xδ
t (y)). Since ρ(0, ·) is smooth for any fixed ω and the pathwise convergence

of Xδ holds, it follows that ρδ (t,y) converges to the density function of Xt before τ , which is ρ(t,y) =
|det(∇Xt(y))|ρ(0,Xt(y)). Similarly, the pathwise convergence of vδ (t,Xδ

t (y)) to v(t,Xt(y)), together with
invertibility of Xδ

t and Xt , implies the convergence of vδ (t,x) to v(t,x) before τ.

Remark 3.1 If one obtains the convergence of the Wong–Zakai approximations of the mean-field SODEs,

dXt = v(t,Xt)dt +ηv(t,Xt)◦dBt ,

dv(t,Xt) =−∇
δ

δρ(t,Xt)
F (ρ(t,Xt))dt −η∇

δ

δρ(t,Xt)
Σ(t,Xt)◦dBt ,

then the convergence of (3.14) to (3.15) can be shown similarly before the stopping time τ , that is, the first
time Xt is not a smooth diffeomorphism on M or Xt escapes M .

4 Examples

In this section, we show that both the stochastic nonlinear Schrödinger (NLS) equation, which models the
propagation of nonlinear dispersive waves in random or inhomogenous media in quantum physics (see e.g.
[5,23,26,38,53]), and nonlinear Schrödinger equation with random dispersion, which describes the propa-
gation of a signal in an optical fibre with dispersion management (see e.g. [1,2]), are stochastic Wasserstein-
Hamiltonian flows. We also discuss that the mean-field game system with common noise (see e.g. [57,52,
56]) is a stochastic Wasserstein-Hamiltonian flow under suitable transformations.
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4.1 Stochastic NLS equation

The dimensionless stochastic NLS equation is given by

du = i∆udt + iλ f (|u|2)udt + iu◦dWt , (4.1)

where Wt is a Q-Wiener process on the Hilbert space L2(M ;R) and f is a real-valued continuous function.
Since the Q-Wiener process W has the Karhunen–Loève expansion W (t,x) = ∑i∈N+ Q

1
2 ei(x)βi(t) (see e.g.

[24]), where {ei}i∈N is an orthonormal basis of L2(M ;R), and {βi}i∈N is a sequence of linearly indepen-
dent Brownian motions on (Ω ,F,{Ft}t≥0,P). We denote Wδ (t,x) = ∑i∈N+ Q

1
2 ei(x)β δ

i (t) as the piecewise
linear Wong–Zakai approximation (or other type Wong–Zakai approximation) of W and consider the ap-
proximated NLS equation of (4.1)

∂tu(t,x) = i∆xxu(t,x)+ iλ f (|u(t,x)|2)u(t,x)+ iu(t,x)Ẇδ (t,x). (4.2)

We aim to prove that (4.2) is a stochastic Wasserstein Hamiltonian flow for any δ > 0, and thus its limit
(4.1) is also a stochastic Wasserstein Hamiltonian flow. In the following, we assume that f is a real-value
function, W is smooth with respect to the space variable, and (4.2) possesses a mild solution or a strong
solution on [0,T ].

Denote the L2-inner product by ⟨u,v⟩= ℜ
∫
M ūvdvolM, where ℜ is the real part of a complex number.

The variational problem on density manifold of (4.2) is

Iδ (ρ
0,ρT ) = inf{S (ρt ,Φt)|∆ρt Φt ∈ Tρt Po(M ),ρ(0) = ρ

0,ρ(T ) = ρ
T} (4.3)

whose action functional is given by the dual coordinates,

S (ρt ,Φt) =−
∫ T

0
⟨Φ(t),∂tρt⟩dt +

∫ T

0
H0(ρt ,Φt)dt + ∑

i∈N+

∫ T

0
Hi(ρt ,Φt)dβ

δ
i (t).

Here H0(ρt ,Φt) =
∫
M |∇Φt |2ρtdvolM + 1

4 I(ρ) +F (ρt), Hi(ρt ,Φt) = −Σi(ρt) = −
∫
M Q

1
2 eiρtdvolM ,

F (ρ) =−λ

2
∫
M

∫ ρ

0 f (s)dsdvolM with a smooth function f , and I(ρ) =
∫
M |∇ log(ρ)|2ρdvolM .

In the following, we show the relationship between the the variational problem (4.3) and nonlinear
Schrödinger equation with Wong–Zakai approximation (4.2) by using the Madelung transform [44].

Proposition 4.1 The critical point of the variational problem (4.3) satisfies the Madelung system of (4.2)
on the support of ρt . Conversely, the Madelung transform of (4.2) satisfies the critical point of (4.3) on the
support of |ut |.

Proof By studying the perturbation on the dual coordinates, the arguments in the proof of Theorem 3.2
yield that the critical point of (4.3) satisfies

∂tρt +2∇ · (ρt∇Φt) = 0,

∂tΦt + |∇Φt |2 =−1/4
δ

δρt
I(ρt)−

δ

δρt
F (ρt)−Ẇδ .

Define a complex valued function by û(t,x) =
√

ρ(t,x)eiΦ(t,x). One obtains the equation of û(t,x) satisfying
(4.2) on the support of ρt by direct calculations.
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Conversely, using the Madelung transform of the solution
√

ρ(t,x)eiS(t,x) = u(t,x) where ρ = |u|2 for
(4.2). Then direct calculation leads to

e
1
2 log(ρ)+iS(

1
2

∂tρ

ρ
+ i∂tS)

= ie
1
2 log(ρ)+iS(

1
2

∇ρ

ρ
+ i∇S)2 + ie

1
2 log(ρ)+iS(

1
2

∆ρ

ρ
+ i∆S− 1

2
|∇ρ

ρ
|2)

+ ie
1
2 log(ρ)+iS(λ f (ρ)+Ẇδ )

= ie
1
2 log(ρ)+iS(

1
4
(

∇ρ

ρ
)2 − (∇S)2 + i

∇ρ

ρ
·∇S)+ ie

1
2 log(ρ)+iS(

1
2

∆ρ

ρ
+ i∆S− 1

2
|∇ρ

ρ
|2)

+ ie
1
2 log(ρ)+iS(λ f (ρ)+∂tWδ ).

This implies that on the support or |ut |, it holds that

∂tρ =−2∇ · (ρ∇S), (4.4)

∂tS =−|∇S|2 − 1
4

δ

δρ
I(ρ)+λ f (ρ)+Ẇδ .

Based on the above result, taking spatial gradient on the potential S, we get the following system with
the conservation law

∂tρ =−∇ · (ρv), (4.5)

∂tv =−∇xv · v−∇x
1
2

δ

δρ
I(ρ)+2λ∇x f (ρ)+2∇xẆδ ,

where v(t,x) = 2∇S(t,x).
The following theorem indicates that the stochastic NLS equation is a stochastic Wasserstein Hamilto-

nian flow due to the convergence of the Wong–Zakai approximation. For convenience, let us assume that
M = Td or Rd and consider the case that W consists of a finite combinations of independent Brownian
motions, i.e., W (t,x) = ∑

N
k=1 qk(x)βk(t), with qk(x) ∈ Hm(M )∩W k,∞(M ) for some m ∈ N and k ∈ N+.

Here Hm(M ),W k,∞(M ) are the standard Sobolev space.

Theorem 4.1 Let m ∈ N and k ∈ N+. Suppose that the initial value of (4.2) and (4.1) u0 ∈ Hm is F0-
measurable and has any finite p-moment, p ∈ N+, and that f is a real-valued continuous function satisfies

∥ f (|u|2)u− f (|v|2)v∥ ≤ L f (R)∥u− v∥, ∥u∥,∥v∥ ≤ R,

∥ f (|u|2)u∥H1 ≤ L f (R)(1+∥u∥H1), ∥u∥H1 ≤ R,

where limR→∞ L f (R) = ∞. The Wong–Zakai approximation (4.2) is convergent almost surely to the stochas-
tic NLS equation (4.1) up to a subsequence.

Proof Since the driving noise is real-valued, the skew-symmetry of the NLS equation leads to the mass
conservation laws for both (4.2) and (4.1). By the local Lipschitz property of f (| · |2)(·), one can obtain the
existence of the unique mild solutions for both (4.2) and (4.1) in C ([0,T ],L2) by a standard argument in
[24]. In order to study the converge in L2, let us define an approximation sequence uR1

0 ∈H1,R1 → ∞ of the
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initial value u0, which can be taken by using truncated Fourier series or spectral Galerkin method (see e.g.
[19]). The growth condition of f in H1 and the uniform boundedness assumption of qk lead to

E
[

sup
t∈[0,T ]

∥uR1
t ∥2p

H1

]
≤C(T,R1, p)< ∞,E

[
sup

t∈[0,T ]
∥uδ ,R1

t ∥2p
H1

]
≤C(T,R1,δ , p)< ∞,

where p≥ 1, limR1→∞ C(T,R1, p) =∞, limR1→∞ C(T,R1,δ , p) =∞. Meanwhile, uR1
t ,uδ ,R1

t are convergent to
ut ,uδ

t , a.s. in C ([0,T ];L2) as R1 →∞, respectively up to a subsequnce. The continuity estimate of uR1
t ,uR1,δ

t ,

E
[
∥uR1(t)−uR1(s)∥2p

]
≤C(T,R1, p)|t − s|p,

E
[
∥uR1,δ (t)−uR1,δ (s)∥2p

]
≤C(T,R1,δ , p)(|t − s|p + |δ |p),

can be obtained due to the mass conservation law and the continuity of ei∆ t . However, to get the convergence
of (4.2), we need a priori estimate of uR1,δ which is independent of δ . To this end, we study the enegry of

the Wong–Zakai approximation, H(u) =
∫
M

1
2 |∇u|2dvolM − λ

2
∫
M

∫ |u|2
0 f (s)dsdvolM , and obtain

H(uδ (t)) = H(uδ (0))+
∫ t

0
⟨∇uδ (s), iuδ (s)∇dW δ (s)⟩.

By taking expectation, we get that

E
[

sup
t∈[0,T ]

H(uδ (t))
]

≤ E
[
H(uδ (0))

]
+E

[
sup

t∈[0,T ]
|
∫ [t]δ

0
⟨∇uδ ([s]δ ), iuδ ([s]δ )∇dW δ (s)⟩|

]
+E

[
sup

t∈[0,T ]
|
∫ t

[t]δ
⟨∇uδ ([s]δ ), iuδ ([s]δ )∇dW δ (s)⟩|

]
+E

[
sup

t∈[0,T ]
|
∫ [t]δ

0
⟨∇uδ ([s]δ ), i(uδ (s)−uδ ([s]δ ))∇dW δ (s)⟩|

]
+E

[
sup

t∈[0,T ]
|
∫ t

[t]δ
⟨∇uδ ([s]δ ), i(uδ (s)−uδ ([s]δ ))∇dW δ (s)⟩|

]
+E

[
sup

t∈[0,T ]
|
∫ [t]δ

0
⟨∇(uδ (s)−uδ ([s]δ )), iuδ (s)dW δ (s)⟩|

]
+E

[
sup

t∈[0,T ]
|
∫ t

[t]δ
⟨∇(uδ (s)−uδ ([s]δ )), iuδ (s)dW δ (s)⟩|

]
= E

[
H(uδ (0))

]
+V1 +V2 +V3 +V4 +V5 +V6.

Below we show the estimates of Vi (i = 1, · · · ,6). The Burkholder’s inequality and mass conservation law
lead to

V1 ≤ E
[∫ T

0
C(H(uδ ([t]δ ))+C(∥u0∥))ds

]
.
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Applying the Burkholder and Minkowski inequalities, and the mass conservation law, we achieve that for
T = Kδ ,

V2 ≤ 1+E
[

sup
t∈[0,T ]

|
∫ t

[t]δ
⟨∇uδ ([s]δ ), iuδ ([s]δ )∇dW δ (s)⟩|2

]
≤ 1+

K−1

∑
k=0

E
[

sup
t∈[tk,tk+1]

|
∫ t

tk
⟨∇uδ (tk), iuδ (tk)∇dW (s)⟩|2

]
≤ 1+C

K−1

∑
k=0

E
[ N

∑
i=1

∫ tk+1

tk
⟨∇uδ (tk), iuδ (tk)∇qi(x)⟩2dt

]
≤ 1+C

N

∑
i=1

E
[
∥∇uδ ([t]δ )∥2∥uδ ([t]δ )∥2∥qi∥2

W 1,∞dt
]

≤ 1+C∥u(0)∥2
N

∑
i=1

∥qi∥2
W 1,∞

∫ T

0
E
[
∥∇uδ ([t]δ )∥2

]
dt.

The definition of H leads to that there exists a constant C(∥u0∥) depending on ∥u0∥ such that

E
[

sup
t∈[0,T ]

|
∫ t

[t]δ
⟨∇uδ ([s]δ ), iuδ ([s]δ )∇dW δ (s)⟩|2

]
≤ 2C∥u0∥2

N

∑
i=1

∥qi∥2
W 1,∞

∫ T

0
E
[
H(uδ ([t]δ ))

]
dt +C(∥u0∥).

The mild form of uδ (s)−uδ ([s]δ ),

uδ (s)−uδ ([s]δ )

= (ei∆(s−[s]δ )− I)uδ ([s]δ )+
∫ s

[s]δ
ei∆(s−r)iλ f (|uδ (r)|2)uδ (r)dr

+
∫ s

[s]δ
iei∆(s−r)uδ (r)dW δ (r),

together with the mass conservation law and ∥ei∆ t − I∥L (H1,L2) ≤Ct
1
2 (see, e.g., [24]), yields that

∥uδ (s)−uδ ([s]δ )∥ ≤C∥uδ ([s]δ )∥H1δ
1
2 +L f (∥u0∥)(1+∥u0∥)δ (4.6)

+C∥W ([s]δ +δ )−W ([s]δ )∥∥u0∥.

By making use of (4.6) and the Burkholder’s inequality, we obtain

V3 ≤C(1+E
[∫ T

0
∥∇uδ ([s]δ )∥2ds

]
)

+C(∥u0∥)E
[∫ T

0
∥∇uδ ([s]δ )∥(1+∥u0∥)

(∥W ([s]δ +δ )−W ([s]δ )∥2
L∞

δ

+∥W ([s]δ +δ )−W ([s]δ )∥L∞

)
ds
]

≤C(∥u0∥)(1+E
[∫ T

0
H(uδ ([s]δ ))ds

]
).
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Similar arguments yield that

V4 ≤CE
[

sup
t∈[0,T ]

∫ t

[t]δ
∥∇uδ ([s]δ )∥2∥W ([s]δ +δ )−W ([s]δ )∥δ

− 1
2 ds

]
+C(∥u0∥)E

[
sup

t∈[0,T ]

∫ t

[t]δ
∥∇uδ ([s]δ )∥(1+∥u0∥)

(∥W ([s]δ +δ )−W ([s]δ )∥2
L∞

δ

+∥W ([s]δ +δ )−W ([s]δ )∥L∞

)
ds
]

≤CδE
[

sup
s∈[0,T ]

H(uδ ([s]δ ))
]
+C(∥u0∥)δ .

The estimates of V5 and V6 are omitted here since they are very similar to those of V3 and V4. We conclude
that

V1 +V2 +V3 +V4 +V5 +V6

≤CδE
[

sup
t∈[0,T ]

H(uδ (t))
]
+CE

[∫ T

0
(H(uδ ([t]δ ))dt

]
+C(∥u0∥).

Thus, we obtain E
[

sup
t∈[0,T ]

H(uδ (t))
]
≤ C(T,R1,∥u0∥) by using Gronwall’s inequality and taking δ small

enough. Similarly, it holds that for any p ≥ 1,

E
[

sup
t∈[0,T ]

H p(uδ (t))
]
≤C(T,R1,∥u0∥, p),

E
[
∥uR1,δ (t)−uR1,δ (s)∥2p

]
≤C(T,R1, p)(|t − s|p + |δ |p).

Next, it suffices to prove the convergence of the Wong–Zakai approximation. To this end, we consider a
stopping time τ = inf{t ∈ [0,T ]|∥uR1(t)∥ ≥ R or ∥uδ ,R1([t]δ )∥ ≥ R}. In the following, we omit the supindex
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R1. Applying the chain rule, we obtain that for t ≤ τ,

∥u(t)−uδ (t)∥2 = ∥u(0)−uδ (0)∥2 +2
∫ t

0
⟨i f (|u(s)|2)u(s)− i f (|uδ (s)|2)uδ (s), u(s)−uδ (s)⟩ds

+2
∫ t

0
⟨u(s)−uδ (s),−1

2

N

∑
k=1

|qk|2u(s)⟩ds

+2
∫ t

0
⟨u(s)−uδ (s), iu(s)dW (s)− iuδ (s)dWδ (s)⟩

+
∫ t

0

N

∑
k=1

∫
M

|u(s)|2|qk|2dvolMds

≤
∫ t

0
2L f (∥u(0)∥)∥u(s)−uδ (s)∥2ds+

∫ t

0
⟨uδ (s),

N

∑
k=1

|qk|2u(s)⟩ds

−2
∫ t

0
⟨u(s), iuδ (s)dW δ (s)⟩−2

∫ t

0
⟨uδ (s), iu(s)dW (s)⟩

≤
∫ t

0
2L f (∥u(0)∥)∥u(s)−uδ (s)∥2ds+

∫ t

0
⟨uδ (s),

N

∑
k=1

|qk|2u(s)⟩ds

−2
∫ t

0
⟨u(s), iuδ ([s]δ )dW δ (s)⟩−2

∫ t

0
⟨u(s), i(uδ (s)−uδ ([s]δ ))dW δ (s)⟩

−2
∫ t

0
⟨uδ ([s]δ ), iu(s)dW (s)⟩−2

∫ t

0
⟨uδ (s)−uδ ([s]δ ), iu(s)dW (s)⟩

=:
∫ t

0
2L f (∥u(0)∥)∥u(s)−uδ (s)∥2ds+ III1 + III2 + III3 + III4 + III5.

For the term III2, the property of Wiener process, the mass conservation law, Hölder’s and Young’s
inequality, as well as the property of the martingale, yield that

E[III2]≤−2
∫ [t]δ

0
E
[
⟨u(s)−u([s]δ ), iuδ ([s]δ )dW δ (s)⟩

]
−2

∫ [t]δ

0
E
[
⟨u([s]δ ), iuδ ([s]δ )dW δ (s)⟩

]
+Cδ

1
2

≤C(1+CR)δ
1
2 −2

∫ [t]δ

0
E
[
⟨
∫ s

[s]δ
iu([r]δ ))dW (r), iuδ ([s]δ )dW δ (s)⟩

]
−2

∫ [t]δ

0
E
[
⟨
∫ s

[s]δ
(exp(i∆(r− [s]δ ))− I)iu([r]δ ))dW (r), iuδ ([s]δ )dW δ (s)⟩

]
≤−2

∫ [t]δ

0
E
[
⟨
∫ s

[s]δ
iu([r]δ )dW (r), iuδ ([s]δ )dW δ (s)⟩

]
+C(1+CR)δ

1
2 .

Similar to III2, we have that E[III4]≤C(1+CR)δ
1
2 .



Stochastic Wasserstein Hamiltonian Flows 23

For the terms III3 and III5, by taking expectation and using the property ∥ei∆ t − I∥L (H1,L2) ≤Ct
1
2 , the

continuity estimate of u and the property of martingale, we arrive at

E
[
III3

]
≤−

∫ [t]δ

0
2E

[
⟨u(s)−u([s]δ ), i(uδ (s)−uδ ([s]δ ))dW δ (s)⟩

]
−

∫ [t]δ

0
2E

[
⟨u([s]δ ), i(uδ (s)−uδ ([s]δ ))dW δ (s)⟩

]
+C(1+CR)δ

1
2 .

=−
∫ [t]δ

0
2E

[
⟨u([s]δ ), i

(∫ s

[s]δ
iuδ ([r]δ )dW δ (r)

)
dW δ (s)⟩

]
+C(1+CR)δ

1
2 ,

E[III5]≤−2E
[∫ [t]δ

0
⟨
∫ s

[s]δ
iuδ ([r]δ )dW δ (r), iu([s]δ )dW (s)⟩

]
+C(1+CR)δ

1
2 .

Due to the independent increments of W and the property of conditional expectation, we obtain that

2
∫ [t]δ

0
E
[
⟨
∫ s

[s]δ
iu([r]δ ))dW (r), iuδ ([s]δ )dW δ (s)⟩

]

= 2

[t]
δ

δ
−1

∑
k=0

E
[∫ tk+1

tk
⟨u(tk)(W (s)−W (tk)),uδ (tk)(W (tk+1)−W (tk))⟩δ−1

]
ds

= 2

[t]
δ

δ
−1

∑
k=0

E
[∫ tk+1

tk

s− tk
δ

N

∑
i=1

⟨u(tk),uδ (tk)|qi|2⟩
]
ds

=
∫ [t]δ

0
E
[
⟨uδ ([s]δ ),

N

∑
k=1

|qk|2u([s]δ )⟩
]
ds.

On the other hand,
∫ t
[t]δ

E
[
⟨uδ ([s]δ ),∑

N
i=1 |qi|2u([s]δ )⟩

]
ds ≤ Cδ due to the mass conservation law and as-

sumption on qi.
Combining the above estimates, we obtain that

E
[
∥u(t)−uδ (t)∥2

]
≤

∫ t

0
2L f (R)E

[
∥u(s)−uδ (s)∥2

]
+C(1+CR)δ

1
2 +

∫ t

0
E
[
⟨uδ (s),

N

∑
i=1

|qi|2u(s)⟩
]
ds

−2
∫ [t]δ

0
E
[
⟨
∫ s

[s]δ
iu([r]δ ))dW (r), iuδ ([s]δ )dW δ (s)⟩

]
≤

∫ t

0
2L f (∥u(0)∥)E

[
∥u(s)−uδ (s)∥2

]
+C(1+CR)δ

1
2 +

∫ t

0
E
[
⟨uδ (s),

N

∑
i=1

|qi|2u(s)⟩
]
ds

−
∫ [t]δ

0
E
[
⟨uδ ([s]δ ),

N

∑
i=1

|qi|2u([s]δ )⟩
]
ds.

Applying the Gronwall’s inequality and the continuity estimate of u and uδ , we get

E[∥u(t)−uδ (t)∥2]≤C(1+CR)exp(2L f (∥u(0)∥)T )δ
1
2 .
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It follows that

P(∥u(t)−uδ (t)∥> ε)

≤ P(∥uR1(t)−u(t)∥> ε

3
)+P(∥uR1,δ (t)−uδ (t)∥> ε

3
)

+P(∥uR1(t)−uR1,δ (t)∥> ε

3
, t ≤ τ)+P(∥uR1(t)−uR1,δ (t)∥> ε

3
, t > τ).

Taking limit on δ → 0, R,R1 → ∞, using the strong convergence estimate and Chebyshev’s inequality, we
obtain

lim
δ→0

P(∥u(t)−uδ (t)∥> ε)

≤ lim
δ→0

9
ε2 C(1+CR)exp(2L f (∥u0∥)T )δ

1
2

+ lim
R→∞

P( sup
s∈[0,t]

∥u(s)∥ ≥ R)+ lim
R→∞

P( sup
s∈[0,t]

∥uδ ([s]δ )∥ ≥ R) = 0.

Similarly, following the above arguments, we further obtain

lim
δ→0

E[ sup
t∈[0,T ]

∥u(t)−uδ (t)∥2] = 0,

which implies that

lim
δ→0

P( sup
t∈[0,T ]

∥u(t)−uδ (t)∥> ε) = 0.

Remark 4.1 Similar to the stochastic Wasserstein Hamiltonian flow induced by classical Stochastic ODEs,
one may expect the particle version of the stochastic nonlinear Schrödinger equation (4.1), that is,

dXt = v(t,Xt), (4.7)

dv(t,Xt) =−∇Xt

1
2

δ

δρ
I(ρ(t,Xt))+2λ∇Xt f (ρ(t,Xt))+2∇Xt ◦dW (t).

But we have not found a rigorous way to prove it. This will be studied in the future.

4.2 NLS equation with random dispersion

The dimensionless NLS equation with random dispersion is given by

du = i∆u
1
ε

m(
t

ε2 )dt + iλ f (|u|2)udt, (4.8)

where m is a real-valued centered stationary random process. Under ergodic assumptions on m, it is expected
that the limiting model when ε → 0 is the following stochastic NLS equation with white noise dispersion

du = σ0i∆u◦dBt + iλ f (|u|2)udt, (4.9)

where σ2
0 = 2

∫
∞

0 E[m(0)m(t)]dt (see e.g. [25]). For simplicity, we set σ0 = 1 in (4.9) throughout this sub-
section.
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To see (4.9) as a stochastic Wasserstein Hamiltonian flow, let us use (4.8) instead of Wong–Zakai ap-
proximations. Assume that the real valued centered stationary process m(t) is continuous and such that

for any T > 0, t 7→ ε
∫ t

ε2
0 m(s)ds converges in distribution to a standard real-valued Brownian motion B in

C ([0,T ]) (see e.g. [25]).
First, using Madelung transform u(t,x) =

√
ρ(t,x)eiS(t,x) gives

e
1
2 log(ρ)+iS(

1
2

∂tρ

ρ
+ i∂tS)

= ie
1
2 log(ρ)+iS

(1
2

∇ρ

ρ
+ i∇S)2 +(

1
2

∆ρ

ρ
+ i∆S− 1

2
|∇ρ

ρ
|2)

)1
ε

m(
t

ε2 )

+ ie
1
2 log(ρ)+iS

λ f (ρ)

= ie
1
2 log(ρ)+iS

(1
4
(

∇ρ

ρ
)2 − (∇S)2 + i

∇ρ

ρ
·∇S)+(

1
2

∆ρ

ρ
+ i∆S− 1

2
|∇ρ

ρ
|2)

)1
ε

m(
t

ε2 )

+ ie
1
2 log(ρ)+iS

λ f (ρ).

We obtain that

∂tρ =−2∇ · (ρ∇S)
1
ε

m(
t

ε2 ), (4.10)

∂tS = (−|∇S|2 − 1
4

δ

δρ
I(ρ))

1
ε

m(
t

ε2 )+λ f (ρ),

which can be rewritten as

∂tρ =−∇ · (ρv)
1
ε

m(
t

ε2 ),

∂tv = (−∇xv · v−∇x
1
2

δ

δρ
I(ρ))

1
ε

m(
t

ε2 )+2λ∇x f (ρ).

Based on the above calculations, following the similar steps in the proof of Proposition 4.1, we conclude
the following result.

Proposition 4.2 The critical point of the variational problem

Iε(ρ
0,ρT ) = inf{S (ρt ,Φt)|∆ρt Φt ∈ Tρt Po(M ),ρ(0) = ρ

0,ρ(T ) = ρ
T} (4.11)

whose action functional is given by the dual coordinates,

S (ρt ,Φt) =−
∫ T

0
⟨Φ(t),∂tρt⟩dt +

∫ T

0
H0(ρt ,Φt)dt +

∫ T

0
H1(ρt ,Φt)

1
ε

m(
t

ε2 )dt,

satisfies (4.10). Here H0(ρt ,Φt)=−λ
∫
M

∫ ρ

0 f (s)dsdvolM with a smooth function f , H1(ρt ,Φt)=
∫
M |∇Φt |2ρtdvolM

+ 1
4 I(ρ), where I(ρ) =

∫
M |∇ log(ρ)|2ρdvolM .

It has been shown in [25] that the limit of (4.10) is the NLS equation with white noise dispersion.
Therefore, (4.10) is also a stochastic Wasserstein Hamiltonian flow on density manifold.
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Remark 4.2 The above system is also expected to have a particle version. By applying the push-forward
map in section 3 on Ω̃ , the particle version of (4.9) is expected to be

dXt = v(t,Xt)◦dBt

dv(t,Xt) =−∇Xt

1
2

δ

δρ
I(ρ(t,Xt))◦dBt +2λ∇Xt f (ρ(t,Xt)).

We plan to study the well-poseness of the above mean-field stochastic ODEs in the future.

4.3 Schrödinger Bridge Problem (SBP) with common noise

In this part, we indicate that the critical point of the Schrödinger bridge problem (SBP) with common noise
may also be a stochastic Wasserstein Hamiltonian flow. The SBP with common noise is inspired by [9,
58] for the Schrödinger Bridge type problem in stochastic case, where the common noise is added into the
classical Schrödinger Bridge type problem [42,12]. This problem can be formulated as a stochastic control
problem on Wasserstein manifold:

min
{vt}t∈[0,T ]

[∫ T

0

∫
Rd

1
2
|vt(x)|2ρt(x,ω) dx dt

]
(4.12)

Subject to:
∂ρt(x,ω)

∂ t
+∇ · (ρt(x,ω)(vt +A(x, t)Ẇt(ω))) = ∆ρt . (4.13)

and ρ0(·,ω) = ρa, ρT (·,ω) = ρb. (4.14)

The continuity equation (4.13) can be viewed as an SDE on the Wasserstein manifold P2(Rd), which reads

dXt = v(t,Xt)dt +
√

2dB(t)+A(t,Xt)dW (t).

Here B is the Brownian motion which corresponding to the diffusion effect in (4.13), and W is another
Brownian motion which is independent of B and is called the common noise.

In the following, we consider the Wong–Zakai approximation of (4.12), i.e,

min
{vt}t∈[0,T ]

[∫ T

0

∫
Rd

1
2
|vt(x)|2ρt(x,ω) dx dt

]
(4.15)

Subject to:
∂ρt(x,ω)

∂ t
+∇ · (ρt(x,ω)(vt +A(x, t)ξ̇δ (t)) = ∆ρt .

and ρ0(·,ω) = ρa, ρT (·,ω) = ρb,

and show that its critical point is a stochastic Wasserstein Hamiltonian flow.

Proposition 4.3 Assume that W is d-dimensional Brownian motion, ξ δ is the piecewisely linear Wong–
Zakai approximation of W. Let A(·, t) ∈ C 1

b (Rd),ρa,ρb ∈ Po(Rd) be smooth. Then the critical point of
(4.15) satisfies

∂tρt =
δ

δΦ
H0(ρt ,Φt)+

d

∑
i=1

δ

δΦ
Hi(ρt ,Φt)(ξ̇δ )i(t), (4.16)

∂tΦt =− δ

δρ
H0(ρt ,Φt)−

d

∑
i=1

δ

δρ
Hi(ρt ,Φt)(ξ̇δ )i(t),
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where H0(ρ,Φ) = 1
2
∫
M |∇Φ |2ρdvolM − 1

8 I(ρ), Hi(ρ,Φ) =
∫
M ρAi

t∂xiΦdvolM . Here Ai
t denotes the i-th

column of the matrix At .

Proof By using the Lagrangian multiplier method, the critical point satisfies

∂tρt +∇ · (ρ(∇St +At ξ̇δ (t))) =
1
2

∆ρt , (4.17)

∂tSt +
1
2
|∇St |2 +∇St ·At ξ̇δ (t) =−1

2
∆St . (4.18)

Applying the “Hopf-Cole” transform (see e.g. [41]) Φt = St − 1
2 log(ρt), we obtain

∂tρt +∇ · (ρt∇Φt)+∇ · (ρtAt ξ̇δ (t)) = 0,

∂tΦt +
1
2
|∇Φt |2 +∇Φ ·At ξ̇δ (t) =

1
8

δ

δρ
I(ρ),

which implies (4.16).

The above result also coincides with the generalized variational principle (3.11) with the action func-
tional

S (ρt ,Φt) =−
∫ T

0
⟨Φ(t),∂tρt⟩dt +

∫ T

0
H0(ρt ,Φt)dt +

d

∑
i=1

∫ T

0
Hi(ρt ,Φt)dξδ (t),

whose critical point is the stochastic Hamiltonian system (4.16). From the proof of Proposition 4.3, (4.16)
is equivalent to the forward and backward system which contains the backward stochastic Hamilton-Jacobi
equation (4.18) and a forward stochastic Kolmogorov equation (4.17), and plays the role of characteristics
for the master equation [9]. The derivation of (4.16) may be extended to the mean-field game systems
with common noise in [9,11] up to an Itô-Wentzell correction term [39]. If the Wong–Zakai approximation
(4.15) is convergent to (4.12), then the critical point of (4.12) is expected to be a stochastic Wasserstein
Hamiltonian flow. This will be our future research.

5 Conclusions

In this paper, we study the stochastic Wasserstein Hamiltonian flows, including the stochastic Euler–Lagrange
equations and its Hamiltonian flows on density manifold. First, we show that the classical Hamiltonian mo-
tions with random perturbations and random initial data induce the stochastic Wasserstein Hamiltonian
flows via Wong–Zakai approximation with Lagrangian formalism. Then we propose a generalized vari-
ational principle to derive and investigate the generalized stochastic Wasserstein Hamiltonian flows, in-
cluding the stochastic nonlinear Schrödinger equation, Schrödinger equation with random dispersion and
stochastic Schrödinger bridge problem. The study provides rigorous mathematical justification for the prin-
ciple that the conditional probability density of stochastic Hamiltonian flow in sample space is stochastic
Hamiltonian flow on density manifold.
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A Appendix

Proof of Lemma 2.2

The local existence of (2.4) and (2.1) is ensured thanks to the local Lipschitz condition of f and σ . To obtain a global solution, a
priori bound on H0(x, p) is needed. Denote the solutions of (2.1) and (2.4) with same initial condition (x0, p0) by (xδ

t , pδ
t ),δ > 0 and

x0
t , p0

t , respectively. Applying the chain rule to H0(xδ
t , pδ

t ) for (2.4) and (2.1), we get that

H0(xδ
t , pδ

t ) = H0(x0, p0)+
∫ t

0
η∇pH0(xδ

s , pδ
s ) ·∇xσ(xs)ξ̇δ (s)ds

H0(xt , pt) = H0(x0, p0)+
∫

τ

0
η∇pH0(xs, ps) ·∇xσ(xs)dBs

+
1
2

∫
τ

0
η

2
∇ppH0(xs, ps) · (∇xσ(xs),∇σ(xs))ds.

By applying growth condition (2.3) and taking expectation on the second equation, we derive that

H0(xδ
t , pδ

t )≤ (H0(x0, p0)+ηC1T )exp(
∫ t

0
c1η |ξ̇δ (s)|ds),

E
[
H0(xt , pt)

]
≤ (E

[
H0(x0, p0)

]
+

η2

2
C1T )exp(

∫
τ

0
c1

η2

2
ds).

The first inequality leads to H0(xδ
t , pδ

t ) < ∞ since ξ̇δ (s) =
Btk+1−Btk

δ
, if s ∈ [tk, tk+1]. Furthermore, taking expectation on the first

inequality, applying Fernique’s theorem (see, e.g. [27]) for Gaussian variable and independent increments of Bt , we get that

E
[
H0(xδ

t , pδ
t )
]
≤C(T,η ,c1)(2[

t
δ
](E

[
H0(x0, p0)

]
+1),

where [w] is the integer part of the real number w. The second inequality yield that H0(xt , pt)< ∞,a.s, and the global existence of the
strong solution of (2.4). Similarly, for p ≥ 2, we have that

E
[
H p

0 (x
δ
t , pδ

t )
]
≤C(T,η ,c1,C1, p)2p[ t

δ
](E

[
H p

0 (x0, p0)
]
+1),

E
[
H p

0 (xt , pt)
]
≤C(T,η ,c1, p)(E

[
H p

0 (x0, p0)
]
+1).

Furthermore, applying the above bounded moment estimate, we obtain that for s ≤ t,

E
[
|x(t)− x(s)|2p + |p(t)− p(s)|2p

]
≤C(T,η ,c1,C1,c0,C1, p,x0, p0)|t − s|p

E
[
|xδ (t)− xδ (s)|2p + |p(t)− p(s)|2p

]
≤C(T,η ,c1,C1,c0,C1, p,x0, p0)2[

t
δ
]|t − s|p.

However, the above estimate of xδ is too rough and exponentially depending on 1
δ

. As a consequence, we can not expect any conver-
gence result. A delicate estimate of (xδ , pδ ) is needed.
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Assume that t ∈ [tk, tk+1], tk = kδ . Then by using the expansion of (2.1), we have that

H0(xδ
t , pδ

t ) = H0(x0, p0)−
k−1

∑
j=0

∫ t j+1

t j

η∇pH0(xδ
s , pδ

s ) ·∇xσ(xδ
s )dξδ (s)

−
∫ t

tk
η∇pH0(xδ

s , pδ
s ) ·∇xσ(xδ

s )dξδ (s)

= H0(x0, p0)−
k−1

∑
j=0

∫ t j+1

t j

η∇pH0(xδ
t j
, pδ

t j
) ·∇xσ(xδ

t j
)dξδ (s)

−
∫ t

tk
η∇pH0(xδ

tk , pδ
tk ) ·∇xσ(xδ

tk )dξδ (s)

−
k−1

∑
j=0

∫ t j+1

t j

η

(∫ s

t j

∇ppH0(xδ
r , pδ

r ) · (∇xσ(xδ
r ),−η∇xσ(xδ

r )ξ̇δ (r))drξ̇δ (s)

+
∫ s

t j

∇ppH0(xδ
r , pδ

r ) · (∇xσ(xδ
r ),−

1
2
(pδ

r )
⊤dxg−1(x)pδ

r −∇x f (xδ
s ))drξ̇δ (s)

+
∫ s

t j

∇pH0(xδ
r , pδ

r ) ·∇xxσ(xδ
r )g

−1(xδ
r )pδ

r drξ̇δ (s)

+
∫ s

t j

∇pxH0(xδ
r , pδ ) · (∇xσ(xδ

r )ξ̇δ (s),g
−1(xδ

r )pδ
r )dr

)
ds

−
∫ t

tk
η

(∫ s

tk
∇ppH0(xδ

r , pδ
r ) · (∇xσ(xδ

r ),−η∇xσ(xδ
r )ξ̇δ (r))drξ̇δ (s)

+
∫ s

tk
∇ppH0(xδ

r , pδ
r ) · (∇xσ(xδ

r ),−
1
2
(pδ

r )
⊤dxg−1(xδ

r )pδ
r −∇x f (xδ

s ))drξ̇δ (s)

+
∫ s

tk
∇pH0(xδ

r , pδ
r ) ·∇xxσ(xδ

r )g
−1(xδr )pδ

r drξ̇δ (s)

+
∫ s

tk
∇pxH0(xδ

r , pδ ) · (∇xσ(xδ
r )ξ̇δ (s)),g

−1(xδ
r )pδ

r )dr
)

ds

=: H0(x0, p0)+
k−1

∑
j=0

I1
j + I1

k (t)

+
k−1

∑
j=0

(I21
j + I22

j + I23
j + I24

j )+ I21
k (t)+ I22

k (t)+ I23
k (t)+ I24

k (t).

Making use of the growth condition (2.3), we have that

k−1

∑
j=0

(I21
j + I22

j + I23
j + I24

j )+ I21
k (t)+ I22

k (t)+ I23
k (t)+ I24

k (t)

≤
k−1

∑
j=0

∫ t j+1

t j

(C1 + c1H0(xδ
s , pδ

s ))|ξ̇δ (s)|2δds+
k−1

∑
j=0

∫ t j+1

t j

(C1 + c1H0(xδ
s , pδ

s ))|ξ̇δ (s)|δds

+
∫ t

tk
(C1 + c1H0(xδ

s , pδ
s ))|ξ̇δ (s)|2δds+

∫ t

tk
(C1 + c1H0(xδ

s , pδ
s ))|ξ̇δ (s)|δds

=
∫ t

0
(C1 + c1H0(xδ

s , pδ
s ))|ξ̇δ (s)|2δds+

∫ t

0
(C1 + c1H0(xδ

s , pδ
s ))|ξ̇δ (s)|δds.

By using the Gronwall–Bellman inequality, we obtain that

H0(xδ
t , pδ

t )≤ exp(
∫ t

0
c1(|ξ̇δ (s)|2 + |ξ̇δ (s)|)δds)(H0(x0, p0)+CT + |

k−1

∑
j=0

I1
j + I1

k (t)|).

For simplicity, assume that T = Kδ . Denote [t]δ = tk = kδ if t ∈ [tk, tk+1). The definition of ξδ (s) yields that s ∈ [t j, t j+1]

|ξ̇δ (s)|2δ + |ξ̇δ (s)|δ = |
B(t j+1)−B(t j)

δ
|2δ + |B(t j+1)−B(t j)|.
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Define a stopping time τR = inf{t ∈ [0,T ]|
∫ [t]δ

0 |ξ̇δ |2δds ≥ R}. The stopping time is well-defined since the quadratic variation
process of Brownian motion is bounded in [0,T ]. Then taking t ≤ τR and using Hölder’s inequality, then it holds that

H0(xδ
t , pδ

t )≤ exp(
∫ t

[t]
c1(|ξ̇δ (s)|2 + |ξ̇δ |ds)exp(C(R+T ))(H0(x0, p0)+CT + |

k−1

∑
j=0

I1
j + I1

k (t)|) (A.1)

≤ exp(
∫ t

[t]
c1(

3
2
|ξ̇δ (s)|2)ds)exp(C(R+T ))H0(x0, p0)

+ exp(C(R+T ))exp(
∫ t

[t]
c1

3
2
|ξ̇δ (s)|2ds)

∣∣∣∣∫ [t]

0
−η∇pH0(xδ

[s]δ
, pδ

[s]δ
) ·∇xσ(x[s]δ )dB(s)

∣∣∣∣
+ exp(C(R+T ))exp(

∫ t

[t]
(c1

3
2
|ξ̇δ (s)|2ds)

∣∣∣∣∫ t

[t]
−η∇pH0(xδ

[s]δ
, pδ

[s]δ
) ·∇xσ(x[s]δ )ξ̇δ (s)ds

∣∣∣∣ .
Similarly, one could obtain a analogous estimate of (A.1) with the integral over [tk−1, tk], where tk , k ≤ K, tK ≤ τR. By the Cauchy

inequality and taking expectation on both sides of (A.1), applying the Burkholder–Davis–Gundy inequality (see e.g, [35]) and using
the independent increments of Brownian motion, we get

E[H2
0 (x

δ
tk , pδ

tk )]

≤ 3E
[

exp(
∫ tk

tk−1

(3c1|ξ̇δ (s)|2ds)
]

exp(2C(R+T ))E
[
H2

0 (x0, p0)
]

+3exp(2C(R+T ))E[exp(
∫ tk

tk−1

3c1|ξ̇δ (s)|2ds)]E
[∣∣∣∫ tk−1

0
−η∇pH0(xδ

[s]δ
, pδ

[s]δ
) ·∇xσ(x[s]δ )dB(s)

∣∣∣2]
+3exp(2C(R+T ))E

[
exp(

∫ tk

tk−1

3c1|ξ̇δ (s)|2ds)|B(tk)−B(tk−1)|2

×
∣∣η∇pH0(xδ

tk−1
, pδ

tk−1
) ·∇xσ(xtk−1 )

∣∣2]
≤ 3E

[
exp(

∫ tk

tk−1

(3c1|ξ̇δ (s)|2ds)
]

exp(2C(R+T ))E
[
H2

0 (x0, p0)
]

+3exp(2C(R+T ))E[exp(
∫ tk

tk−1

3c1|ξ̇δ (s)|2ds)]E
[∫ tk−1

0
(C1 + c1H0(xδ

[s]δ
, pδ

[s]δ
))2ds

]
+3exp(2C(R+T ))E

[
exp(

∫ tk

tk−1

3c1|ξ̇δ (s)|2ds)|B(tk)−B(tk−1)|2
]

×E
[
(C1 + c1H2

0 (x
δ
tk−1

, pδ
tk−1

))
]
.

Applying the Fernique theorem and choosing sufficient small δ such that 12c1δ < 1, then we have that

E[exp(
∫ tk

tk−1

3c1|ξ̇δ (s)|2ds)]≤C,

E
[

exp(
∫ tk

tk−1

3c1|ξ̇δ (s)|2ds)|B(tk)−B(tk−1)|2
]

≤

√
E[exp(

∫ tk

tk−1

6c1|ξ̇δ (s)|2ds)]

√
E
[
|B(tk)−B(tk−1)|4

]
≤Cδ .

The above estimation gives

E[H2
0 (x

δ
tk , pδ

tk )]≤ 3exp(2C(R+T ))CE[H2
0 (x0, p0)]

+6exp(2C(R+T ))C
∫ tk−1

0
E
[
(C2

1 + c2
1H2

0 (x
δ

[s]δ
, pδ

[s]δ
))
]
ds

+6exp(2C(R+T )CδE
[
C2

1 + c2
1H2

0 (x
δ
tk−1

, pδ
tk−1

)
]
.



Stochastic Wasserstein Hamiltonian Flows 31

Then the Grownall’s inequality yield that

E[H2
0 (x

δ
tk , pδ

tk )]≤ exp(6TCc2
1 exp(2C(R+T )))

×
(

3exp(2C(R+T ))CE[H2
0 (x0, p0)]+6C2

1 TC exp(2C(R+T ))
)

Combining the above estimates with (A.1) and the Burkholder–Davis–Gundy inequality, we conclude that

sup
t∈[0,τR)

E[H2
0 (x

δ
t , pδ

t )]≤ (exp(6TCc2
1 exp(2C(R+T )))+C)

×
(

3exp(2C(R+T ))CE[H2
0 (x0, p0)]+6C2

1 TC exp(2C(R+T ))
)

=: CR.

Similarly, by choosing sufficient small δ , we have that for t ∈ [0,τR),

E[H p
0 (x

δ
t , pδ

t )]≤CR,p < ∞.

As a consequence, by again using (A.1), we obtain that

E
[

sup
t∈[0,τR)

H p
0 (x

δ
t , pδ

t )
]
≤CR,p < ∞.

Next we show the convergence in probability of the solution of (2.1) to that of (2.4). Introduce another stopping time τR1 :=
inf{t ∈ [0,T ]||xt |+ |pt | ≥ R1, |xδ

[t]δ
|+ |pδ

[t]δ
| ≥ R1}. Let t ∈ [0,τR ∧τR1 ). By using the polynomial growth condition of f ,σ and the fact

that σ is independent of p, we obtain that

|xδ (t)− x(t)|2

= |xδ (0)− x(0)|2 +
∫ t

0
2⟨xδ (s)− x(s),g−1(xδ (s))pδ (s)−g−1(x(s))p(s)⟩ds

≤ |xδ (0)− x(0)|2 +
∫ t

0
Cg(1+ |p(s)|)(|xδ (s)− x(s)|2 + |pδ (s)− p(s)|2)ds,

|pδ (t)− p(t)|2

=
∫ t

0
⟨−(pδ (s))⊤dxg−1(xδ (s))pδ (s)+ p(s)⊤dxg−1(x(s))p(s), pδ (s)− p(s)⟩ds

+
∫ t

0
2⟨−∇x f (xδ (s))+∇x f (x(s)), pδ (s)− p(s)⟩ds

−
∫ t

0
2η⟨pδ (s)− p(s),∇xσ(xδ (s))dξδ (s)−∇xσ(x(s))dBt⟩

≤Cg

∫ t

0
(1+ |xδ (s)|)(|pδ (s)|2 + |p(s)|2)(|pδ (s)− p(s)|2 + |xδ (s)− x(s)|2)ds

+C f

∫ t

0
(1+ |x(s)|p f + |xδ |p f )(|pδ (s)− p(s)|2 + |xδ (s)− x(s)|2)ds

−
∫ t

0
2η⟨pδ (s)− p(s),∇xσ(xδ (s))dξδ (s)−∇xσ(x(s))dBs⟩,
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where Cg and C f are constants depending on f and g. To deal with the last term, we split it as follows,

∫ t

0
2η⟨pδ (s)− p(s),∇xσ(xδ (s))dξδ (s)−∇xσ(x(s))dBs⟩

= 2η

∫ t

0
⟨pδ ([s]δ )− p([s]δ ),∇xσ(xδ (s))dξδ (s)−∇xσ(x(s))dBs⟩

+2η

∫ t

0
⟨pδ (s)− p(s)− pδ ([s]δ )+ p([s]δ ),∇xσ(xδ (s))dξδ (s)−∇xσ(x(s))dBs⟩

= 2η

∫ t

0
⟨pδ ([s]δ )− p([s]δ ),∇xσ(xδ ([s]δ ))dξδ ([s]δ )−∇xσ(x([s]δ ))dBs⟩

+2η

∫ t

0
⟨pδ ([s]δ )− p([s]δ ),(∇xσ(xδ (s))−∇xσ(xδ ([s]δ )))dξδ (s)− (∇xσ(x(s))−∇xσ(x([s]δ )))dBs⟩

+2η

∫ t

0
⟨pδ (s)− p(s)− pδ ([s]δ )+ p([s]δ ),∇xσ(xδ ([s]δ ))dξδ (s)−∇xσ(x([s]δ )dBs⟩

+2η

∫ t

0
⟨pδ (s)− p(s)− pδ ([s]δ )+ p([s]δ ),(∇xσ(xδ (s)−∇xσ(xδ ([s]δ )))dξδ (s)

− (∇xσ(x(s)−∇xσ(x([s]δ ))dBs⟩

=: II1 + II2 + II3 + II4.

Taking expectation on II1, using the property of the discrete martingale, the a prior estimates for H0(xt , pt) and H0(xδ
t , pδ

t ) and Hölder’s
inequality, we have that

E[II1] = 0,

E[II2]≤ 2η

∫ t

0
E
[
⟨pδ ([s]δ )− p([s]δ ),

∫ s

[s]δ
(∇xxσ(xδ (r)) · (g−1(xδ (r))pδ (r))drdξδ (s)⟩

]
−2η

∫ t

0
E
[
⟨pδ ([s]δ )− p([s]δ ),

∫ s

[s]δ
(∇xxσ(x(r)) · (g−1(xδ (r)pδ (r))drdBs⟩

]
≤C(R1)δ

1
2 .

Similar arguments lead to E[II4] ≤C(R1)δ
1
2 . For the term II3, applying the continuity estimate of xt and xδ

t , as well as independent
increments of the Brownian motion, we get

E[II3]

≤C(R1)δ
1
2 +2η

2E
[∫ [t]δ

0
⟨
∫ s

[s]δ
∇xσ(xδ

[r]δ
)dξδ (r)−

∫ s

[s]δ
∇xσ(x[r]δ )dBr,

∇xσ(xδ ([s]δ ))dξδ (s)−∇xσ(x([s]δ )dBs⟩
]

≤C(R1)δ
1
2 +2η

2E
[∫ [t]δ

0
|∇xσ(xδ

[s]δ
)|2 s− [s]δ

δ 2 (B([s]δ +δ )−B([s]δ ))
2ds

]
−2η

2E
[∫ [t]δ

0
⟨∇xσ(xδ

[s]δ
),∇xσ(x[s]δ )⟩

s− [s]δ
δ 2 (B([s]δ +δ )−B([s]δ ))

2ds
]

−2η
2E

[∫ [t]δ

0
⟨∇xσ(xδ

[s]δ
),∇xσ(x[s]δ )⟩

B([s]δ +δ )−B([s]δ )
δ

(B(s)−B([s]δ ))ds
]

+2η
2E

[∫ [t]δ

0
⟨∇xσ(x[s]δ ),∇xσ(x[s]δ )⟩

B([s]δ +δ )−B([s]δ )
δ

(B(s)−B([s]δ ))ds
]

≤C(R1)δ
1
2 +2η

2
∫ [t]δ

0
E
[
|∇xσ(xδ

[s]δ
)−∇xσ(x[s]δ )|

2
]
ds

≤C(R1)δ
1
2 +

∫ t

0
C(R1)E

[
|xδ

s − xs|2
]
ds,
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where C(R1)> 0 is monotone with R1. Combining the above estimates, we achieve that

E[|xδ (t)− x(t)|2]≤
∫ t

0
Cg(1+CR1 )(E[|x

δ (s)− x(s)|2]+E[|pδ (s)− p(s)|2])ds

E[|pδ (t)− p(t)|2]≤
∫ t

0
(Cg +C f )(1+CR1 )(E[|x

δ (s)− x(s)|2]+E[|pδ (s)− p(s)|2])ds+C(R1)δ
1
2 .

Then the Gronwall’s inequality implies that

E[|xδ (t)− x(t)|2]+E[|pδ (t)− p(t)|2]≤ exp(2(Cg +C f )(1+CR1 )T )C(R1)δ
1
2 . (A.2)

By making use of (A.2) and Chebshev’s inequality, we conclude that

P(|xδ (t)− x(t)|+ |pδ (t)− x(t)| ≥ ε)

≤ P({|xδ (t)− x(t)|+ |pδ (t)− x(t)| ≥ ε}∩{t < τR}∩{t < τR1})

+P({|xδ (t)− x(t)|+ |pδ (t)− x(t)| ≥ ε}∩{t ≥ τR})

+P({|xδ (t)− x(t)|+ |pδ (t)− x(t)| ≥ ε}∩{t < τR}∩{t ≥ τR1})

≤ 2
E
[
|xδ (t)− x(t)|2 + |pδ (t)− x(t)|2

]
ε2

+
E
[∫ t

0 |ξ̇δ (s)|2δds
]

R
+

E
[
|x(t)|+ |p(t)|+ |xδ (t)|+ |pδ (t)|

]
R1

≤ 2
ε2 exp(2(Cg +C f )(1+CR1 )T )C(R1)δ

1
2 +

C
R
+C

1+CR

R1
.

Here, E[|x(t)|+ |p(t)|+ |xδ (t)|+ |pδ (t)|]<C(1+CR) is ensured by E[ sup
t∈[0,τR)

H2
0 (x

δ
t , pδ

t )]≤CR. Taking limit on δ → 0, R1 → ∞, and

R → ∞ leads to

lim
δ→0

P(|xδ (t)− x(t)|+ |pδ (t)− p(t)|> ε) = 0.

Similarly, one could utilize the properties of martingale and obtain the following estimate, for large enough q > 0,

E[|xδ (t)− x(t)|q]+E[|pδ (t)− p(t)|q]≤Cq exp(Cq(Cg +C f )(1+CR1 )T )C(R1)δ
q
2 −1.

This implies that for large enough q > 4,

E[sup
k≤K

sup
t∈[tk−1 ,tk ]

|xδ (t)− x(t)|q]+E[sup
k≤K

sup
t∈[tk−1 ,tk ]

|pδ (t)− p(t)|q]

≤
K−1

∑
k=0

E[ sup
t∈[tk−1 ,tk ]

|xδ (t)− x(t)|q]+E[ sup
t∈[tk−1 ,tk ]

|pδ (t)− p(t)|q]

≤CqK exp(Cq(Cg +C f )(1+CR1 )T )C(R1)δ
q
2 −1

≤Cq exp(Cq(Cg +C f )(1+CR1 )T )C(R1)δ
q
2 −2.

Combining the above estimate and applying the Chebshev’s inequality, we further obtain

lim
δ→0

P( sup
t∈[0,T ]

|xδ (t)− x(t)|+ sup
t∈[0,T ]

|pδ (t)− p(t)|> ε) = 0.

⊓⊔
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