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Abstract. It is shown that for a parabolic problem with maximal Lp-regularity (for 1 < p <
∞), the time discretization by a linear multistep method or Runge–Kutta method has maximal
`p-regularity uniformly in the stepsize if the method is A-stable (and satisfies minor additional
conditions). In particular, the implicit Euler method, the Crank–Nicolson method, the second-order
backward difference formula (BDF), and the Radau IIA and Gauss Runge–Kutta methods of all
orders preserve maximal regularity. The proof uses Weis’ characterization of maximal Lp-regularity
in terms of R-boundedness of the resolvent, a discrete operator-valued Fourier multiplier theorem by
Blunck, and generating function techniques that have been familiar in the stability analysis of time
discretization methods since the work of Dahlquist. The A(α)-stable higher-order BDF methods
have maximal `p-regularity under an R-boundedness condition in a larger sector. As an illustration
of the use of maximal regularity in the error analysis of discretized nonlinear parabolic equations, it
is shown how error bounds are obtained without using any growth condition on the nonlinearity or
for nonlinearities having singularities.
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1. Introduction. Maximal regularity is an important mathematical tool in
studying existence, uniqueness, and regularity of the solution of nonlinear parabolic
partial differential equations (PDEs) [6, 27, 28, 34, 38]. A generator A of an analytic
semigroup on a Banach space X is said to have maximal Lp-regularity if the solution
of the evolution equation

(1.1)

{
u′(t) =Au(t) + f(t), t > 0,

u(0) = 0,

satisfies

‖u′‖Lp(R+;X) + ‖Au‖Lp(R+;X) ≤ Cp,X‖f‖Lp(R+;X) ∀ f ∈ Lp(R+;X)(1.2)

for some (or, as it turns out, for all) 1 < p <∞. On a Hilbert space, every generator
of a bounded analytic semigroup has maximal Lp-regularity [18], and Hilbert spaces
are the only Banach spaces for which this holds true [25]. Beyond Hilbert spaces, a
characterization of the maximal Lp-regularity was given by Weis [42, 43] onX = Lq(Ω)
(with 1 < q <∞ and Ω a region in Rd) and more generally on UMD spaces in terms of
the R-boundedness of the resolvent operator. Operators having maximal Lp-regularity
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A-STABLE PRESERVES MAXIMAL PARABOLIC REGULARITY 3601

include elliptic differential operators on Lq(Ω) with general boundary conditions, and
operators that generate a positive and contractive semigroup on Lq(Ω,dµ) spaces for
an arbitrary measure space (Ω,dµ), as do many generators of stochastic processes;
see [27] and references therein.

In this paper we address the following question: Given an operator A that has
maximal Lp-regularity, for which time discretization methods for (1.1) is the maximal
Lp-regularity preserved in the discrete `p-setting, uniformly in the stepsize?

We will show that this holds for A-stable multistep and Runge–Kutta methods,
under minor additional conditions. In particular, the implicit Euler method, the
Crank–Nicolson method, the second-order backward difference formula (BDF), and
higher-order A-stable implicit Runge–Kutta methods such as the Radau IIA and
Gauss methods all preserve maximal regularity.

We recall that a numerical time discretization method is called A-stable if for
every complex λ with Reλ ≤ 0, for every stepsize τ > 0, and for arbitrary starting
values, the numerical solution of the scalar linear differential equation y′ = λy remains
bounded as the discrete time goes to +∞. It is remarkable that this deceivingly simple
and well-studied concept, which was introduced by Dahlquist [16], essentially suffices
to yield maximal `p-regularity, uniformly in the stepsize for every operator A that has
maximal Lp-regularity (1.2), not only on Hilbert spaces but on a large class of Banach
spaces known as UMD spaces, which include in particular Lq(Ω) spaces for 1 < q <∞.

Our proofs rely on Weis’ characterization of maximal Lp-regularity on UMD
spaces [42], on a discrete operator-valued Fourier multiplier theorem of Blunck [11],
and on generating function techniques for time discretization methods, which have
been familiar for linear multistep methods since the work of Dahlquist [15, 16], but
are less common for Runge–Kutta methods [35].

The question of discrete maximal `p-regularity has received attention in a number
of publications previously. In the following we give a brief overview of this literature:

• Discrete maximal `2-regularity on Hilbert spaces X for the implicit Euler
method applied to (1.1) is obtained directly from Parseval’s identity and a
resolvent bound. In the book by Ashyralyev and Sobolevskĭı [8], which is
largely based on earlier work of the authors going back to the early 1970s,
this was nontrivially extended to discrete maximal `p-regularity (there called
`p coercivity inequality) for 1 < p < ∞ on Hilbert spaces X for the implicit
Euler method and for Padé schemes.

• Discrete maximal `p-regularity restricted to a subspace that interpolates be-
tween a Banach space X and the domain of the operator A on X was also
shown in [8].

• A characterization of discrete maximal `p-regularity for recurrence relations
un+1 = Tun + fn (n ≥ 0) on UMD spaces was given by Blunck [11, 12].
However, this characterization does not lend itself directly to studying the
question of stepsize-uniform discrete maximal `p-regularity of numerical time
integration methods for (1.1).

• Ashyralyev, Piskarev, and Weis [7] showed discrete maximal `p-regularity
for the implicit Euler method on UMD spaces. They also gave a variant of
discrete maximal `p-regularity for the Crank–Nicolson method.

• A generalization of the results in [11, 12] to the explicit Euler scheme with
certain nonconstant time step sequences was given in [40]; also see [2].

• `p-bounds for 1 ≤ p ≤ ∞ on general Banach spaces X, which show quasi-
maximal regularity up to a factor that is logarithmic in the time step, were
given in [7] for the implicit Euler and Crank–Nicolson methods and in [29]
for discontinuous Galerkin time-stepping methods.
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In another line of research, discrete maximal regularity in temporally weighted
Hölder spaces has been studied using semigroup techniques in numerous papers from
the 1970s onward; see again the book by Ashyralyev and Sobolevskĭı [8] and also the
review in [7] and [21, 22, 23].

Maximal Lp-regularity of finite element spatial semidiscretizations of parabolic
PDEs has been used in the analysis of numerical methods for PDEs with minimal
regularity assumption on the solution [19, 20, 30] or on the diffusion coefficient [33].
In order to prove the convergence of fully discrete solutions of some nonlinear PDEs,
e.g., the dynamic Ginzburg–Landau equations [31], maximal Lp-regularity in the
time-discrete setting as given here is needed. Discrete maximal Lp-regularity has
also proved fundamental in the study of time discretizations of quasi-linear parabolic
equations [3] and large classes of fully nonlinear parabolic equations [26].

The paper is organized as follows.
In section 2 we recall important notions and results from the theory of maximal

parabolic regularity: Weis’ characterization of maximal Lp-regularity on UMD spaces,
R-boundedness, and operator-valued Fourier multipliers in a Banach space setting
[11, 27, 42, 43].

In section 3 we give discrete maximal `p-regularity estimates for two simple one-
step methods, the backward Euler method and the Crank–Nicolson scheme. This
allows us to show basic arguments in a technically simpler setting than for the other
methods considered in later sections.

In sections 4 and 5 maximal `p-regularity results are shown for higher order meth-
ods, BDFs, and A-stable Runge–Kutta methods, respectively. While linear multistep
methods have a scalar differentiation symbol in the appearing generating functions,
the differentiation symbol of Runge–Kutta methods is matrix-valued, which makes
the analysis more complicated. All our results of discrete maximal `p-regularity are
stated and proved for constant stepsizes.

In section 6 we briefly discuss maximal regularity of full discretizations and show
how uniformity of the bounds in both the spatial gridsize h and the temporal stepsize
τ can be obtained.

In section 7 we give `p-bounds for 1 ≤ p ≤ ∞ on general Banach spaces, which
show maximal regularity up to a factor that is logarithmic in the number of time
steps considered. These bounds are obtained for a subclass of methods that includes
the BDF and Radau IIA methods but not the Crank–Nicolson and Gauss methods.
These bounds rely on the convolution quadrature interpretation of linear multistep
methods [37] and Runge–Kutta methods [35].

Finally, in section 8 we use discrete maximal `p-regularity for deriving error
bounds for discretizations of nonlinear parabolic differential equations. We illus-
trate this for a class of semilinear equations with the Laplacian as a dominant linear
term and a pointwise nonlinear term f(u,∇u). We show that in contrast to previ-
ously existing techniques, the approach via discrete maximal regularity enables us to
obtain optimal-order error bounds without any growth condition on the nonlinearity
f(u,∇u) and also for nonlinearities having singularities, in arbitrary space dimension.
This becomes possible because via the discrete maximal `p-regularity we can control
the `∞(W 1,∞)-norm of the error, provided the exact solution of the parabolic problem
has sufficient regularity. This proof requires the full discrete maximal `p-regularity
for the given operator A and cannot be used with the logarithmically quasi-maximal
`p-regularity of section 7. The latter permits us, however, to further refine the error
bounds.
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2. Preliminaries. Here we collect basic results on maximal Lp-regularity and
related concepts, which will be needed later on. For further background and details,
proofs, and references we refer to the excellent lecture notes by Kunstmann and
Weis [27].

2.1. Characterization of maximal Lp-regularity in terms of the resol-
vent. As was shown by Weis [43], maximal Lp-regularity of an operator A on a
Banach space X can be characterized in terms of its resolvent (λ − A)−1 = R(λ,A)
for a large class of Banach spaces that includes Hilbert spaces and Lq(Ω,dµ)-spaces
with 1 < q <∞. We begin with formulating the notions that permit us to state this
fundamental result.

A Banach space X is said to be a UMD space if the Hilbert transform

Hf(t) = P.V.

∫
R

1

t− s
f(s) ds

is bounded on Lp(R;X) for all 1 < p < ∞; see [27]. From [9, 10] we know that
this definition is equivalent to the definition by using the unconditional martingale
differences approach, which explains the abbreviation UMD. Examples of UMD spaces
include Hilbert spaces and Lq(Ω,dµ) and its closed subspaces, where (Ω,dµ) is any
measure space and 1 < q < ∞. Throughout the paper X always denotes a UMD
space, unless otherwise stated.

A collection of operators {M(λ) : λ ∈ Λ} is said to be R-bounded if there is a
positive constant CR, called the R-bound of the collection, such that any finite sub-
collection of operators M(λ1),M(λ2), . . . ,M(λl) satisfies (see [27, section 1.9, p. 75])

∫ 1

0

∥∥∥∥ l∑
j=1

rj(s)M(λj)vj

∥∥∥∥2

X

ds ≤ C2
R

∫ 1

0

∥∥∥∥ l∑
j=1

rj(s)vj

∥∥∥∥2

X

ds ∀ v1, v2, . . . , vl ∈ X,

where rj(s) = sign sin(2jπs), for j = 1, 2, . . ., are the Rademacher functions defined
on the interval [0, 1]. In view of the Kahane–Khintchine inequality [5, Theorem 6.25,
p. 134], the definition above is equivalent to the definition in [42, 43].

In the special case X = Lq(Ω,dµ) a simpler condition suffices: there, a collection
of operators {M(λ) : λ ∈ Λ} is R-bounded if and only if there is a positive constant
C∗R such that any finite subcollection of operators M(λ1), M(λ2), . . . , M(λl) satisfies∥∥∥∥( l∑

j=1

|M(λj)vj |2
) 1

2
∥∥∥∥
Lq
≤ C∗R

∥∥∥∥( l∑
j=1

|vj |2
) 1

2
∥∥∥∥
Lq
∀ v1, v2, . . . , vl ∈ Lq(Ω,dµ).

For Hilbert spaces, a collection of operators is R-bounded if and only if it is bounded,
and the R-bound equals its bound.

We can now state Weis’ characterization of maximal Lp-regularity. Here Σϑ
denotes the sector Σϑ = {z ∈ C\{0} : | arg z| < ϑ}.

Theorem 2.1 (Weis [43, Theorem 4.2]). Let X be a UMD space and let A be the
generator of a bounded analytic semigroup on X. Then A has maximal Lp-regularity
if and only if for some ϑ > π/2 the set of operators {λ(λ − A)−1 : λ ∈ Σϑ} is
R-bounded.

2.2. Operator-valued multiplier theorems. The “if” direction of Theorem
2.1 is obtained from the following result, which extends a scalar-valued Fourier
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3604 BALÁZS KOVÁCS, BUYANG LI, AND CHRISTIAN LUBICH

multiplier theorem of Mikhlin. Here, F denotes the Fourier transform on R: for
appropriate f ,

Ff(ξ) =

∫
R
e−iξtf(t) dt, ξ ∈ R.

B(X) denotes the space of bounded linear operators on X.

Theorem 2.2 (Weis [43, Theorem 3.4]). Let X be a UMD space. Let M :
R \ {0} → B(X) be a differentiable function such that the set

{M(ξ) : ξ ∈ R \ {0}} ∪ {ξM ′(ξ) : ξ ∈ R \ {0}} is R-bounded,

with R-bound CR. Then, Mf = F−1
(
M(·)(Ff)(·)

)
extends to a bounded operator

M : Lp(R, X)→ Lp(R, X) for 1 < p <∞.

Moreover, there exists a constant Cp,X independent of M such that the operator norm
of M is bounded by Cp,XCR.

On noting that the resolvent is the Laplace transform of the semigroup, with
M(ξ) = iξ(iξ − A)−1 it is seen that Mf = u′, for the solution u of (1.1). By
Theorem 2.2, R-boundedness of λ(λ − A)−1 on the imaginary axis therefore yields
maximal Lp-regularity of A.

In this paper we will use the discrete version of Theorem 2.2. Here, F denotes
the Fourier transform on Z, which maps a sequence to its Fourier series on the torus
T = R/2πZ: for appropriate f = (fn)n∈Z,

Ff(θ) =
∑
n∈Z

eiθnfn, θ ∈ T.

Theorem 2.3 (Blunck [11, Theorem 1.3]). Let X be a UMD space. Let M̃ :
(−π, 0) ∪ (0, π)→ B(X) be a differentiable function such that the set

(2.1)
{
M̃(θ) : θ ∈ (−π, 0)∪(0, π)

}
∪
{

(1−eiθ)(1+eiθ)M̃ ′(θ) : θ ∈ (−π, 0)∪(0, π)
}

is R-bounded, with R-bound CR. Then, Mf = F−1
(
M̃(·)(Ff)(·)

)
extends to a

bounded operator

M : `p(Z, X)→ `p(Z, X) for 1 < p <∞.

Moreover, there exists a constant Cp,X independent of M̃ such that the operator norm
of M is bounded by Cp,XCR.

We will encounter the situation where the generating function of a sequence
{Mn}n≥0 of operators on X converges on the complex unit disk:

M(ζ) =

∞∑
n=0

Mnζ
n, |ζ| < 1,

and the radial limits

(2.2) M̃(θ) = lim
r↗1

M(reiθ)

exist for θ 6= 0, π and satisfy the conditions of Theorem 2.3. For a sequence f =
(fn)n≥0 ∈ `p(X) := `p(N, X), extended to negative subscripts n by 0, the operator
M is then given by the discrete convolution

(Mf)n =

n∑
j=0

Mn−jfj , n = 0, 1, 2, . . . .
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2.3. Enlarging R-bounded sets of operators. By the definition of R-boun-
dedness, it is clear that if {M1(λ) : λ ∈ Λ} and {M2(λ) : λ ∈ Λ} are two R-bounded
collections of operators on X, then {M1(λ) + M2(λ) : λ ∈ Λ} and {M1(λ)M2(λ) :
λ ∈ Λ} are also R-bounded. Moreover, the union of two R-bounded collections is
R-bounded, and the closure of an R-bounded collection of operators in the strong
topology of B(X) is again R-bounded.

The following lemma is often used to prove the R-boundedness of a collection of
operators.

Lemma 2.4 (see [13, Lemma 3.2]). Let T be an R-bounded set of linear operators
on X, with R-bound CR. Then the absolute convex hull of T , that is, the collection
of all finite linear combinations of operators in T with complex coefficients whose
absolute sum is bounded by 1, is also R-bounded, with R-bound at most 2CR.

A simple consequence of this lemma is the following, which we will use later.

Lemma 2.5. Let {M(z) : z ∈ Γ} ⊂ B(X) be an R-bounded collection of opera-
tors, with R-bound CR, where Γ is a contour in the complex plane. Let f(λ, z) be a
complex-valued function of z ∈ Γ and λ ∈ Λ. If∫

Γ

|f(λ, z)| · |dz| ≤ C0,

where C0 is independent of λ ∈ Λ, then the collection of operators in the closure of
the absolute convex hull of {M(z) : z ∈ Γ} in the strong topology of B(X),{

1

C0

∫
Γ

f(λ, z)M(z) dz : λ ∈ Λ

}
,

is R-bounded with R-bound at most 2CR.

3. Implicit Euler and Crank–Nicolson method. We first present basic ideas
to prove discrete maximal parabolic regularity on two simple methods. Later these
ideas will be carried over to higher-order BDF and Runge–Kutta methods, where the
key properties remain R-boundedness and A- or A(α)-stability.

We consider the backward Euler and Crank–Nicolson method applied with step-
size τ > 0,

un − un−1

τ
= Aun + fn, n ≥ 1, u0 = 0,(3.1)

and

un − un−1

τ
= A

un + un−1

2
+
fn + fn−1

2
, n ≥ 1, u0 = 0.(3.2)

In this section, we use the following notation for the backward difference:

u̇n =
un − un−1

τ
.

The following result for the implicit Euler method is given in [7]. We include a
proof that shows basic ideas which will later be used for higher-order methods.

Theorem 3.1 (Ashyralyev, Piskarev, and Weis [7, Remark 5.2]). If A has max-
imal Lp-regularity, for 1 < p < ∞, then the numerical solution (un)Nn=1 of (3.1),
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obtained by the backward Euler method with stepsize τ , satisfies the discrete maximal
regularity estimate∥∥(u̇n)Nn=1

∥∥
`p(X)

+
∥∥(Aun)Nn=1

∥∥
`p(X)

≤ Cp,X
∥∥(fn)Nn=1

∥∥
`p(X)

,

where the constant is independent of N and τ .

Proof. We use the generating functions u(ζ) =
∑∞
n=0 unζ

n and f(ζ) =
∑∞
n=0 fnζ

n.
Since the initial value is zero, we obtain(

1− ζ
τ
−A

)
u(ζ) = f(ζ)

and hence u̇(ζ) =
∑∞
n=0 u̇nζ

n is given by

u̇(ζ) =
1− ζ
τ

u(ζ) = M(ζ)f(ζ) with M(ζ) =
1− ζ
τ

(
1− ζ
τ
−A

)−1

.

In view of Theorem 2.3, we only have to show analyticity of M(ζ) in the open

unit disk |ζ| < 1 and the R-boundedness of the set (2.1), with M̃(θ) = M(eiθ) for
θ 6= 0 modulo 2π. To this end we show that the set

(3.3)
{
M(ζ) : |ζ| ≤ 1, ζ 6= 1

}
∪
{

(1− ζ)M ′(ζ) : |ζ| ≤ 1, ζ 6= 1
}

is R-bounded

with an R-bound independent of τ . Since Re (1 − ζ) ≥ 0 for |ζ| ≤ 1, with strict
inequality for ζ 6= 1, we have that

{M(ζ) : |ζ| ≤ 1, ζ 6= 1} ⊂ {λ(λ−A)−1 : Reλ > 0},

where the latter set is R-bounded by the “only if” direction of Theorem 2.1. Since

(1− ζ)M ′(ζ) = −M(ζ) +M(ζ)2,

we obtain (3.3), with an R-bound independent of the stepsize τ . The stated result
therefore follows from Theorem 2.3.

The following result for the Crank–Nicolson method improves on [7, Remark 5.2],

where a bound for
∥∥(A(un + un−1)/2

)N
n=1

∥∥
`p(X)

was given.

Theorem 3.2. If A has maximal Lp-regularity, for 1 < p <∞, then the numer-
ical solution (un)Nn=1 of (3.2), obtained by the Crank–Nicolson method with stepsize
τ , is bounded by∥∥(u̇n)Nn=1

∥∥
`p(X)

+
∥∥(Aun)Nn=1

∥∥
`p(X)

≤ Cp,X
∥∥(fn)Nn=0

∥∥
`p(X)

,

where the constant is independent of N and τ .

Proof. We only have to slightly modify the previous proof. In contrast to before,
now the factor 1 + eiθ in condition (2.1) becomes important. Using the generating
functions we obtain (

1− ζ
τ
−A1 + ζ

2

)
u(ζ) =

1 + ζ

2
f(ζ),
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A-STABLE PRESERVES MAXIMAL PARABOLIC REGULARITY 3607

which can be rewritten as (
2

τ

1− ζ
1 + ζ

−A
)
u(ζ) = f(ζ).

Introducing δ(ζ) = 2(1− ζ)/(1 + ζ), we arrive at

u̇(ζ) =
1− ζ
τ

u(ζ) =
1 + ζ

2
M(ζ)f(ζ) with M(ζ) =

δ(ζ)

τ

(
δ(ζ)

τ
−A

)−1

and
Au(ζ) =

(
M(ζ)− 1

)
f(ζ).

To apply Theorem 2.3, it suffices to show that the set

{
M(ζ) : |ζ| ≤ 1, ζ 6= ±1

}
∪
{

(1 + ζ)(1− ζ)M ′(ζ) : |ζ| ≤ 1, ζ 6= ±1
}

is R-bounded.

(3.4)

For the Crank–Nicolson method, we have Re δ(ζ) ≥ 0 for |ζ| ≤ 1, ζ 6= −1, and δ(ζ) 6= 0
for ζ 6= 1, so that{

M(ζ) : |ζ| ≤ 1, ζ 6= ±1
}
⊂
{
λ(λ−A)−1 : Reλ ≥ 0, λ 6= 0

}
,

where the latter set is again R-bounded by Theorem 2.1. Since

(1− ζ)(1 + ζ)M ′(ζ) = −2M(ζ) + 2M(ζ)2,

we then obtain (3.4), and hence Theorem 2.3 yields the stated result.

4. Backward difference formulae. We consider general k-step BDFs for the
discretization of (1.1):

(4.1)
1

τ

k∑
j=0

δjun−j = Aun + fn, n ≥ k,

where the coefficients of the method are given by

δ(ζ) =

k∑
j=0

δjζ
j =

k∑
`=1

1

`
(1− ζ)`.

The method is known to have order k for k ≤ 6 and to be A(α)-stable with angle
α = 90◦, 90◦, 86.03◦, 73.35◦, 51.84◦, 17.84◦ for k = 1, . . . , 6, respectively; see [24,
Chapter V]. A(α)-stability is equivalent to | arg δ(ζ)| ≤ π − α for |ζ| ≤ 1. Note that
the first- and second-order BDF methods are A-stable, that is, Re δ(ζ) ≥ 0 for |ζ| ≤ 1.

In this section, we use the notation

u̇n =
1

τ

k∑
j=0

δjun−j

for the approximation to the time derivative. We consider the method with zero
starting values,

(4.2) u0 = · · · = uk−1 = 0.

Like for the continuous problem, the effect of nonzero starting or initial values needs
to be studied separately, but this is not related to the notion of maximal Lp- or `p-
regularity. We will discuss the case of an initial value u0 = 0 and possibly nonzero
starting values u1, . . . , uk−1 in Remark 4.3.
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3608 BALÁZS KOVÁCS, BUYANG LI, AND CHRISTIAN LUBICH

4.1. BDF method of order 2. We obtain preservation of maximal Lp-regularity
also for time discretization by the A-stable second-order BDF method.

Theorem 4.1. If A has maximal Lp-regularity, for 1 < p <∞, then the numer-
ical solution (un)Nn=k of (4.1) with (4.2), obtained by the two-step BDF method with
stepsize τ , is bounded by∥∥(u̇n)Nn=k

∥∥
`p(X)

+
∥∥(Aun)Nn=k

∥∥
`p(X)

≤ Cp,X
∥∥(fn)Nn=k

∥∥
`p(X)

,

where the constant is independent of N and τ .

Proof. We consider the generating function of both sides of (4.1) and obtain

(4.3) u(ζ) =

(
δ(ζ)

τ
−A

)−1

f(ζ)

so that

δ(ζ)

τ
u(ζ) = M(ζ)f(ζ) with M(ζ) =

δ(ζ)

τ

(
δ(ζ)

τ
−A

)−1

.

Since Re δ(ζ) ≥ 0 for |ζ| ≤ 1 (this expresses the A-stability of the method) and
δ(ζ) 6= 0 for ζ 6= 1, it follows as before from Theorem 2.1 that the set

{M(ζ) : |ζ| ≤ 1, ζ 6= 1} is R-bounded.

We also have that

{(1− ζ)M ′(ζ) : |ζ| ≤ 1, ζ 6= 1} is R-bounded,

because, with µ(ζ) = δ(ζ)/(1− ζ) = 1
2 (3− ζ),

(1− ζ)M ′(ζ) = − (1− ζ)
δ′(ζ)

τ
A

(
δ(ζ)

τ
−A

)−2

= − 1− ζ
τ

(
−µ(ζ) + (1− ζ)µ′(ζ)

)
A

(
δ(ζ)

τ
−A

)−2

=

(
1− (1− ζ)

µ′(ζ)

µ(ζ)

)
δ(ζ)

τ
A

(
δ(ζ)

τ
−A

)−2

=

(
1− (1− ζ)

µ′(ζ)

µ(ζ)

)
M(ζ)

(
1−M(ζ)

)
,

where (1 − ζ)µ′(ζ)/µ(ζ) is a bounded scalar function, since µ(ζ) 6= 0 for |ζ| ≤ 1.
Therefore, Theorem 2.3 yields the result.

Remark 4.1. The above proof extends in a direct way to yield discrete maximal
`p-regularity for A-stable linear multistep methods,

k∑
j=0

αjun+j = τ

k∑
j=0

βj(Aun+j + fn+j), n ≥ 0,

that have the further property that the quotient of the generating polynomials,

δ(ζ) =
α0ζ

k + α1ζ
k−1 + · · ·+ αkζ

0

β0ζk + β1ζk−1 + · · ·+ βkζ0
,
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A-STABLE PRESERVES MAXIMAL PARABOLIC REGULARITY 3609

has no poles or zeros in the closed unit disk |ζ| ≤ 1, with the exception of a zero
at 1. We note that here A-stability is equivalent to Re δ(ζ) ≥ 0 for |ζ| ≤ 1, and
the requirement that δ(ζ) has no pole for |ζ| ≤ 1 is equivalent to stating that ∞ is
an interior point of the stability region on the Riemann sphere; cf., e.g., [24]. Note,
however, that by Dahlquist’s order barrier [16], A-stable linear multistep methods
have at most order 2, and the practically used A-stable multistep methods are the
second-order BDF method and the Crank–Nicolson method.

4.2. Higher-order BDF methods. We obtain maximal regularity for the BDF
methods up to order 6 under a R-boundedness condition in a larger sector.

Theorem 4.2. Suppose that the set {λ(λ−A)−1 : | arg λ| < ϑ} is R-bounded for
an angle ϑ > π−α, where α is the angle of A(α)-stability of the k-step BDF method,
for 3 ≤ k ≤ 6. Then the numerical solution (un)Nn=k of (4.1) with (4.2), obtained by
the k-step BDF method with stepsize τ , is bounded by∥∥(u̇n)Nn=k

∥∥
`p(X)

+
∥∥(Aun)Nn=k

∥∥
`p(X)

≤ Cp,X
∥∥(fn)Nn=k

∥∥
`p(X)

for 1 < p <∞, where the constant is independent of N and τ .

Proof. For the A(α)-stable k-step BDF method, | arg δ(ζ)| ≤ π − α < ϑ for
|ζ| ≤ 1, ζ 6= 1, and so the set{

δ(ζ)

τ

(
δ(ζ)

τ
−A

)−1

: |ζ| ≤ 1, ζ 6= 1

}
⊂
{
λ(λ−A)−1 : | arg λ| < ϑ

}
is R-bounded, with an R-bound independent of τ . The rest of the proof is the same
as for the two-step BDF method.

Remark 4.2. Let Ω ⊂ Rd be a bounded Lipschitz domain and consider the
parabolic problem

(4.4)



∂u(x, t)

∂t
−

d∑
i,j=1

∂

∂xi

(
aij(x)

∂u(x, t)

∂xj

)
= 0 for (x, t) ∈ Ω × R+,

u(x, t) = 0 for (t, x) ∈ ∂Ω × R+,

u(x, 0) = u0(x) for x ∈ Ω,

where the real symmetric coefficients aij(x), i, j = 1, . . . , d, satisfy the ellipticity
condition

K−1
0

d∑
,j=1

|ξj |2 ≤
d∑

i,j=1

aij(x)ξiξj ≤ K0

d∑
,j=1

|ξj |2 for some positive constant K0.

(4.5)

Let E2(t) : L2(Ω) → L2(Ω) be the map from u0 to u(·, t) given by (4.4). Then
{E2(t)}t>0 is a semigroup of operators on L2(Ω), which has analytic extension to the
sector Σπ/2 = {z ∈ C : z 6= 0, | arg z| < π/2} (see [17, 39]), and the kernel G(z, x, y)
of the analytic semigroup {E2(z)}z∈Σπ/2 satisfies (see [17, p. 103])

(4.6) |G(z, x, y)| ≤ Cϑ|z|−
d
2 e
− |x−y|

2

Cϑ|z| ∀ z ∈ Σϑ, ∀x, y ∈ Ω, ∀ϑ ∈ (0, π/2).

The operator A = −eiϑA2 then satisfies the condition of [27, Theorem 8.6] with

m = 2 and g(s) = Cϑe
−s2/Cϑ . As a consequence of [27, Theorem 8.6], E2(z) extends
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3610 BALÁZS KOVÁCS, BUYANG LI, AND CHRISTIAN LUBICH

compatibly to an analytic semigroup Eq(z) on Lq(Ω), 1 < q <∞, which is R-bounded
in the sector Σϑ for all ϑ ∈ (0, π/2). If we denote by Aq the generator of the semigroup
{Eq(t)}t>0, then Weis’ characterization of maximal Lp-regularity [43, Theorem 4.2]
implies that the set of operators {λ(λ−Aq)−1 : λ ∈ Σϑ} is R-bounded in the sector
Σϑ for all ϑ ∈ (0, π), and the R-bound depends only on K0, ϑ, and q.

In view of the above results on the angle of R-boundedness, for X = Lq(Ω) and
A = Aq, the condition of Theorem 4.2 is satisfied for the BDF methods of orders
1 ≤ k ≤ 6.

Remark 4.3. If u0, . . . , uk−1 may be different from zero, then we define f̃n = fn
for n ≥ k and

f̃n :=
1

τ

n∑
j=0

δjun−j −Aun for n = 0, . . . , k − 1,

so that

1

τ

k∑
j=0

δjun−j −Aun = f̃n for n ≥ 0.

Then we obtain that∥∥(u̇n)Nn=1

∥∥
`p(X)

+
∥∥(Aun)Nn=1

∥∥
`p(X)

≤ C
∥∥(f̃n)Nn=1

∥∥
`p(X)

≤ C
∥∥(fn)Nn=k

∥∥
`p(X)

+ C

(
k−1∑
i=0

∥∥ui/τ∥∥pX
) 1
p

+ C

(
k−1∑
i=0

∥∥Aui∥∥pX
) 1
p

,

where the constant C does not depend on N and τ . In the next section, we shall
see that if u0 = 0 and the starting values u1, . . . , uk−1 are computed by an A-stable
Runge–Kutta method with invertible coefficient matrix Oι, with s stages and nodes
c1, . . . , cs, then we have(

k−1∑
i=0

∥∥ui/τ∥∥pX
) 1
p

+

(
k−1∑
i=0

∥∥Aui∥∥pX
) 1
p

≤ Cp,X

k−1∑
i=0

s∑
j=1

∥∥f(ti + cjτ)
∥∥p
X

 1
p

.

5. A-stable Runge–Kutta methods. We consider an implicit Runge–Kutta
method with s stages for the time discretization of the evolution equation (1.1). We
refer to Hairer and Wanner [24] for the basic notions related to such methods.

The coefficients of the method are given by the Butcher tableau

c Oι
bT

=
(ci) (aij)

(bj)
(i, j = 1, . . . , s).

Applied to the evolution equation (1.1), a step of the method with stepsize τ > 0
reads

Uni = un + τ

s∑
j=1

aijU̇nj for i = 1, 2, . . . , s,

un+1 = un + τ

s∑
i=1

biU̇ni, n ≥ 1,

U̇ni = AUni + f(tn + ciτ) for i = 1, 2, . . . , s.

(5.1)
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A-STABLE PRESERVES MAXIMAL PARABOLIC REGULARITY 3611

Here un ∈ X is the solution approximation at the nth time step, Uni ∈ X are the
internal stages, and U̇ni ∈ X is again not a continuous derivative but a suggestive
notation for the increments.

The stability function of the Runge–Kutta method is the rational function

R(z) = 1 + zbT (I − zOι)−1
1,

where 1 = (1, . . . , 1)T ∈ Rs. The stability function is a rational approximation to the
exponential function, R(z) = ez +O(zr+1) for z → 0, where r is greater than or equal
to the order of the Runge–Kutta method, which we always assume to be at least 1.
Note that if Oι is invertible, then R(∞) = 1− bTOι−1

1.
The Runge–Kutta method is A-stable if I − zOι is nonsingular for Re z ≤ 0 and

the stability function satisfies

|R(z)| ≤ 1 for Re z ≤ 0.

Example 5.1. Radau IIA methods are an important class of Runge–Kutta meth-
ods that are A-stable, have an invertible matrixOι, and haveR(∞) = 0 for an arbitrary
number of stages s ≥ 1; see [24, section IV.5]. For these methods, bj = asj , so that
un+1 = Uns. The s-stage method has classical order 2s − 1, that is, the error on a
finite time interval is bounded by O(τ2s−1) when the method is applied to smooth
ordinary differential equations. For parabolic problems as considered in this paper,
the order of approximation is studied in [35] and is typically a noninteger number
between s+ 1 and 2s− 1. Radau IIA methods can be viewed as collocation methods
on the Radau quadrature nodes. For linear evolution equations they can alternatively
be viewed as fully discretized discontinuous Galerkin methods with Radau quadrature
on the integral terms; see [4]. The s-stage method has classical order 2s. The 1-stage
Radau IIA method is the implicit Euler method.

Example 5.2. Gauss methods are a class of Runge–Kutta methods that are A-
stable for all stage numbers s ≥ 1, have an invertible matrix Oι, and have R(∞) =
(−1)s; see [24, section IV.5]. The s-stage method has classical order 2s. The 1-stage
Gauss method is the implicit midpoint rule (Crank–Nicolson method).

We have the following result on discrete maximal regularity.

Theorem 5.1. Consider an A-stable Runge–Kutta method with an invertible co-
efficient matrix Oι. If the operator A has maximal Lp-regularity, for 1 < p <∞, then
the numerical solution (5.1), obtained by the Runge–Kutta method with stepsize τ , is
bounded by

s∑
i=1

∥∥(U̇ni)
N
n=0

∥∥
`p(X)

+

s∑
i=1

∥∥(AUni)
N
n=0

∥∥
`p(X)

≤ Cp,X
s∑
i=1

∥∥(f(tn + ciτ))Nn=0

∥∥
`p(X)

,

where the constant is independent of N and τ .

Proof. We use the generating functions

u(ζ) =

∞∑
n=0

unζ
n, U(ζ) =

∞∑
n=0

Unζ
n, and F (ζ) =

∞∑
n=0

fnζ
n,

where Un = (Uni)
s
i=1 ∈ Xs and Fn = (f(tn + ciτ))si=1 ∈ Xs. We write AUn =

(AUni)
s
i=1 and in this way consider A in an obvious way as an operator on Xs, that

is, we write A instead of the Kronecker product Is ⊗A for brevity.
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3612 BALÁZS KOVÁCS, BUYANG LI, AND CHRISTIAN LUBICH

Following [35], we define the s× s matrix-valued function

∆(ζ) =

(
Oι+

ζ

1− ζ
1bT

)−1

,

which will be a key object in our discrete maximal regularity analysis for Runge–
Kutta methods. It will play a similar role as δ(ζ) in sections 3 and 4 but is now
matrix-valued instead of scalar-valued. The formula of [35, Lemma 2.4],

(5.2) (∆(ζ)− z)−1 = Oι(I − zOι)−1 + (I − zOι)−1
1bT (I − zOι)−1 ζ

1−R(z)ζ
,

shows that for a Runge–Kutta method with invertible matrix Oι, the spectrum of ∆(ζ)
satisfies

σ(∆(ζ)) ⊆ σ(Oι−1) ∪
{
z ∈ C : R(z)ζ = 1

}
.

Hence, for an A-stable method the spectrum of ∆(ζ) is contained in the closed right
half-plane without 0 for |ζ| ≤ 1 with ζ 6= 1, since |R(z)| ≥ 1 requires Re z ≥ 0 by
A-stability and R(0) = 1.

It was shown in [35, Proposition 2.1, equation (2.9)] that

(5.3) U(ζ) =

(
∆(ζ)

τ
−A

)−1

F (ζ).

Hence,

U̇(ζ) = AU(ζ) + F (ζ) = M(ζ)F (ζ) with M(ζ) =
∆(ζ)

τ

(
∆(ζ)

τ
−A

)−1

.

In view of Theorem 2.3 on the space Xs instead of X, it suffices to prove that
(5.4){
M(ζ) : |ζ| ≤ 1, ζ 6= 1

}
∪
{

(1 + ζ)(1− ζ)M ′(ζ) : |ζ| ≤ 1, ζ 6= ±1
}

is R-bounded.

We use the Cauchy-type integral formula

M(ζ) =
1

2πi

∫
Γ

(z −∆(ζ))−1 ⊗ z

τ

( z
τ
−A

)−1

dz ,

where Γ is a union of circles centered at the eigenvalues of ∆(ζ) and lying in the
sector Σϑ of R-boundedness of {λ(λ − A)−1 : λ ∈ Σϑ} with ϑ > π

2 . We also use
the integral formula differentiated with respect to ζ. We insert formula (5.2) and its
derivative with respect to ζ in the integrands. The estimates required for proving
(5.4) are different in the three cases |R(∞)| < 1, R(∞) = −1, and R(∞) = +1, which
in the following are studied in items (a), (b), and (c), respectively.

(a) We consider first the case where |R(∞)| < 1. We distinguish two situations:
(i) If ζ with |ζ| ≤ 1 is bounded away from 1, |ζ − 1| ≥ c > 0, then all eigenvalues

of ∆(ζ) have nonnegative real part and are bounded away from 0. Therefore the radii
of all circles can be chosen to have a fixed lower bound (depending on c > 0 and
ϑ > π

2 ), and we then have for |ζ| ≤ 1 with |ζ − 1| ≥ c > 0 that |1 − R(z)ζ| ≥ c′ > 0
uniformly for z on each circle. This yields

(5.5)

∫
Γ

‖(z −∆(ζ))−1‖ |dz| ≤ C,∫
Γ

‖(1 + ζ)(1− ζ)
∂

∂ζ
(z −∆(ζ))−1‖ |dz| ≤ C,

where ‖ · ‖ denotes an arbitrary matrix norm.
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(ii) If ζ with |ζ| ≤ 1 is close to 1, then the implicit function theorem yields
that there is a unique z0(ζ) near 0 with R(z0(ζ))ζ = 1, and we obtain z0(ζ) =
1− ζ+O((1− ζ)2), so that for sufficiently small |1− ζ| we have |z0(ζ)| ≥ 1

2 |1− ζ|. By
A-stability, we further have Re z0(ζ) ≥ 0 for |ζ| ≤ 1. The radius r of the circle in Σϑ
around z0(ζ) can be chosen proportional to |z0(ζ)|, and hence to |1 − ζ|, depending
on ϑ > π

2 . For z on this circle we have

1−R(z)ζ = R(z0(ζ))ζ −R(z)ζ =
(
(z0(ζ)− z) +O((z0(ζ)− z)2)

)
ζ,

so that |1−R(z)ζ| ≥ r/2 on this circle. This yields again the bounds (5.5), uniformly
for ζ in a small neighbourhood of 1 with |ζ| ≤ 1.

We thus have proved the bounds (5.5) uniformly for |ζ| ≤ 1, ζ 6= 1. By Theo-
rem 2.1 and Lemma 2.5, the bounds (5.5) yield (5.4), in the considered case where
|R(∞)| < 1.

(b) We now consider the case R(∞) = −1.
(i) If ζ is bounded away from both 1 and −1, the proof is the same as part (i)

of (a).
(ii) If ζ is close to 1, the proof is the same as part (ii) of (a).
(iii) If ζ is close to −1, we proceed as follows. A-stability and R(∞) = −1 imply

that
R(z) = −1− cz−1 +O(z−2) for z →∞, with c > 0.

For ζ close to −1, there exists therefore a unique z∞(ζ) of large absolute value and
with nonnegative real part such that R(z∞(ζ))ζ = 1. The Cauchy-type integrals then
contain a contribution from a circle around z∞(ζ), contained in Σϑ, with a radius
that can be chosen proportional to |z∞(ζ)|. The distance of this circle from the origin
can also be chosen proportional to |z∞(ζ)|. For z on this circle we then have

1−R(z)ζ = R(z∞(ζ))ζ −R(z)ζ = −c(z∞(ζ)−1 − z−1)ζ +O(z∞(ζ)−2)

and therefore |1−R(z)ζ| is bounded from below by a positive constant times |z∞(ζ)−1|,
which in turn is bounded from below by a positive constant times |1 + ζ|. With (5.2)
it follows that on this circle,

‖(∆(ζ)− z)−1‖+ ‖(1 + ζ)
∂

∂ζ
(∆(ζ)− z)−1‖ ≤ C|z|−2|1 + ζ|−1 ≤ C|1 + ζ|.

This yields (5.5) (note that the factor 1 + ζ in the second integral of (5.5) is now
needed). When ζ is away from −1, the proof is the same as part (i) of (a). We
therefore obtain (5.4) also in the case R(∞) = −1.

(c) The remaining case R(∞) = 1 can be dealt with in the same way. We now
have

R(z) = 1 + cz−1 +O(z−2) for z →∞, with c > 0,

and the bounds (5.5) can be obtained by the same arguments as in the case R(∞) =
−1, replacing 1 + ζ by 1− ζ on every occurrence.

We have thus obtained (5.4) for every A-stable Runge–Kutta method with invert-
ible coefficient matrix Oι. Theorem 2.3 now yields the stated result.

By [35, Lemma 3.1], we have for a Runge–Kutta method with invertible coefficient
matrix Oι that

(5.6) un+1 = bTOι−1
n∑
k=0

R(∞)n−kUk,

and so we obtain the following corollary.
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3614 BALÁZS KOVÁCS, BUYANG LI, AND CHRISTIAN LUBICH

Corollary 5.2. Under the assumptions of Theorem 5.1, and if |R(∞)| < 1, we
have∥∥∥(un − un−1

τ

)N
n=1

∥∥∥
`p(X)

+
∥∥(Aun)Nn=1

∥∥
`p(X)

≤ Cp,X
s∑
i=1

∥∥(f(tn + ciτ))Nn=0

∥∥
`p(X)

,

where the constant is independent of N and τ .

6. Space-time full discretizations. Let X be a UMD space and let Xh, h > 0,
be a family of closed subspaces of X such that there exist linear projection operators
Ph : X → Xh satisfying

‖Phu‖X ≤ C0‖u‖X ∀ u ∈ X,(6.1)

where the constant C0 is independent of h. Consider the problem

(6.2)

{
u′h(t) = Ahuh(t) + fh(t), t > 0,

uh(0) = 0,

where Ah is the generator of a bounded analytic semigroup on Xh and fh(t), uh(t) ∈
Xh for all t > 0. We have the following result.

Theorem 6.1. Assume (6.1) and that the set of operators {λ(λ−Ah)−1 : λ ∈ Σϑ}
is R-bounded in B(Xh) with an R-bound CR that is independent of h. Let ϑ > π−α,
where α is the angle of A(α)-stability of the time discretization method considered.
Then, all theorems of sections 3 to 5, with A replaced by Ah and X by Xh, hold for
the numerical methods applied to (6.2), with constants Cp,Xh that are independent of
both τ and h.

Proof. Since λ(λ−Ah)−1 is R-bounded in B(Xh) for λ ∈ Σϑ, it follows that the
collection of operators

(6.3) {λ(λ−Ah)−1Ph : λ ∈ Σϑ} is R-bounded in B(X)

and the R-bound is at most C0CR. The numerical solution given by the backward
Euler scheme satisfies

uh,n − uh,n−1

τ
= Ahuh,n + Phfh,n,

and so it follows that the generating functions are related by

1− ζ
τ

uh(ζ) = Mh(ζ)fh(ζ) with Mh(ζ) =
δ(ζ)

τ

(
δ(ζ)

τ
−Ah

)−1

Ph.

In the same way as in the proof of Theorem 3.1, it is concluded from (6.3) that Mh(ζ)
satisfies the R-boundedness condition (3.3) with an R-bound that is independent of τ
and h, and then Theorem 2.3 yields the desired discrete maximal `p-regularity bound,
uniformly in τ and h.

The results for the other methods (Crank–Nicolson, BDF, and A-stable Runge–
Kutta) are proved in the same way.

Remark 6.1. If Ω is a bounded smooth domain in Rd (d ≥ 1), X = Lq(Ω), Xh is
the standard finite element subspace of X, A is a second-order elliptic partial differ-
ential operator, and Ah is its finite element approximation, then the R-boundedness
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of {λ(λ − Ah)−1 : λ ∈ Σϑ} in B(Xh) has been proved in [30] for some ϑ > π/2 that
is independent of h (see the text between (4.10) and (4.11) in [30]). The operator Ph
can be chosen as the L2-projection operator. All the maximal regularity results for
the A-stable methods studied in this paper therefore also hold for fully discrete finite
element solutions. However, extension of the maximal regularity results for the BDF
methods to fully discrete solutions requires further investigation on the angle ϑ.

7. Logarithmically quasi-maximal `∞-regularity. In this section we give
some bounds that show maximal `∞-regularity up to a factor that is logarithmic in
the number of time steps. We note that the results of this section are valid for an
arbitrary complex Banach space X (not necessarily a UMD space as in the previous
sections), and R-boundedness plays no role in this section. We just assume that A is
the generator of analytic semigroup on X, and λ(λ− A)−1 is uniformly bounded for
λ ∈ Σϑ with an angle ϑ > π − α for the angle α of A(α)-stability of the numerical
method. We consider again k-step BDF methods with k ≤ 6 and A-stable Runge–
Kutta methods with an invertible coefficient matrix and |R(∞)| < 1.

We start with the k-step BDF method, with initial condition u0 = u1 = · · · =
uk−1 = 0 as in section 4. By (4.3), the numerical solution can be expressed as a
discrete convolution

(7.1) un = τ

n∑
j=k

en−j(τA)fj , n ≥ k,

with the generating function

τ

∞∑
n=0

en(τA)ζn =

(
δ(ζ)

τ
−A

)−1

.

This can be viewed as a convolution quadrature approximation of the exact solution
at tn = nτ ,

u(tn) =

∫ tn

0

e(tn−t)Af(t) dt.

Theorem 2.1 in [37, Theorem 2.1] (used with K(λ) = (λ − A)−1 and then with
K(λ) = A(λ−A)−1) shows that

‖en(τA)− enτA‖B(X) ≤ Ct−kn+1τ
k, n ≥ 0,

and

‖Aen(τA)−AenτA‖B(X) ≤ Ct−1−k
n τk, n ≥ 1, and ‖Ae0(τA)‖ ≤ Cτ−1.

Since ‖AetA‖B(X) ≤ Ct−1 for t > 0, a direct consequence of the latter estimate is the
following.

Lemma 7.1. Suppose that A(λ − A)−1 is uniformly bounded for λ ∈ Σϑ with
an angle ϑ > π − α for the angle of A(α)-stability of the k-step BDF method, for
1 ≤ k ≤ 6. Then we have

‖Aen(τA)‖B(X) ≤ C/tn+1, n ≥ 0.

Using (7.1) and Lemma 7.1, we obtain immediately the following `∞-bound, or more
generally the `p-bound uniformly for 1 ≤ p ≤ ∞.
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3616 BALÁZS KOVÁCS, BUYANG LI, AND CHRISTIAN LUBICH

Theorem 7.2. Suppose that A(λ − A)−1 is uniformly bounded for λ ∈ Σϑ with
an angle ϑ > π − α for the angle of A(α)-stability of the k-step BDF method, for
1 ≤ k ≤ 6. Then the numerical solution (un)Nn=k of (4.1) with (4.2), obtained by the
k-step BDF method with stepsize τ , is bounded by

‖(Aun)Nn=1‖`p(X) ≤ C logN ‖(fn)Nn=1‖`p(X),

where the constant C is independent of N and τ and 1 ≤ p ≤ ∞.

We now turn to A-stable Runge–Kutta methods. By (5.3), the vector of internal
stages Un = (Uni)

s
i=1 ∈ Xs can be expressed in terms of the vector of inhomogeneity

values used in the nth step, Fn = (f(tn + ciτ))si=1, as a discrete block convolution

(7.2) Un = τ

n∑
j=0

En−j(τA)Fj ,

with the generating function

τ

∞∑
n=0

En(τA)ζn =

(
∆(ζ)

τ
−A

)−1

.

We have the following lemma.

Lemma 7.3. Suppose that A(λ − A)−1 is uniformly bounded for λ ∈ Σϑ with an
angle ϑ > π/2. For an A-stable Runge–Kutta method with invertible coefficient matrix
Oι and |R(∞)| < 1, we have

‖AEn(τA)‖B(Xs) ≤ C/tn+1, n ≥ 0.

Proof. We use the Cauchy-type integral formula(
∆(ζ)

τ
−A

)−1

=
1

2πi

∫
Γ

(z −∆(ζ))−1 ⊗
( z
τ
−A

)−1

dz

with a keyhole contour Γ = Γ1 ∪ Γ2 composed of

Γ1 = {re±iϑ : r ≥ ε} and Γ2 = {εeiφ : |φ| ≤ ϑ}

with a small ε > 0. On inserting (5.2), using the geometric series for (1−R(z)ζ)−1 =∑∞
n=0R(z)nζn, and collecting equal powers of ζ on the left- and right-hand sides, we

find

τE0(τA) =
1

2πi

∫
Γ

Oι(I − zOι)−1 ⊗
( z
τ
−A

)−1

dz = τOι(I −Oι⊗ τA)−1

and

(7.3) τEn(τA) =
1

2πi

∫
Γ

R(z)n−1(I−zOι)−1
1bT (I−zOι)−1⊗

( z
τ
−A

)−1

dz, n ≥ 1.

Since the eigenvalues of Oι have positive real part, we obtain

‖τAE0(τA)‖B(Xs) ≤ C.
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Next, we estimate τAEn(τA). Since the stability function R(z) satisfies R(z) =
ez +O(z2), for sufficiently small c we have

|R(z)| ≤ e−Re z/2 for | arg z| = ϑ and 0 ≤ |z| ≤ c,

and for z ∈ Γ with |z| ≥ c we have |R(z)| ≤ ρ < 1. Then (7.3) yields, on applying the
operator A, letting ε→ 0 in the definition of the contour Γ, and then taking norms,

‖τAEn(τA)‖B(Xs) ≤ C
∫ ∞

0

e−(n−1)r| cos(ϑ)|/2 + ρn

1 + r2
dr ≤ C/n, n ≥ 1.

This completes the proof of Lemma 7.3.

The identity (7.2), Lemma 7.3, and formula (5.6) imply the following result.

Theorem 7.4. Suppose that A(λ − A)−1 is uniformly bounded for λ ∈ Σϑ with
an angle ϑ > π/2. For an A-stable Runge–Kutta method with invertible Runge–Kutta
matrix Oι and |R(∞)| < 1, the numerical solution (5.1) is bounded by

‖(Aun+1)N−1
n=0 ‖`p(X) + ‖(AUn)N−1

n=0 ‖`p(Xs) ≤ C logN ‖(Fn)N−1
n=0 ‖`p(Xs),

where the constant C is independent of N and τ and 1 ≤ p ≤ ∞.

A similar logarithmically quasi-maximal regularity result was proved in [29] for
the discontinuous Galerkin solutions of the heat equation with an extra logarithmic
factor:

‖∂tuτ‖Lp(0,T ;Lq) +

(∑
τ

∥∥∥∥ [uτ ]

τ

∥∥∥∥p
Lq

) 1
p

+ ‖∆uτ‖Lp(0,T ;Lq) ≤ C ln

(
T

τ

)
‖f‖Lp(0,T ;Lq),

for 1 ≤ p, q ≤ ∞, where uτ denotes the discontinuous Galerkin solution of the heat
equation, ∂tuτ denotes the piecewise time derivative of uτ , and the summation extends
over all jumps in the time interval [0, T ]. The discontinuous Galerkin method is closely
related to the Radau IIA implicit Runge–Kutta method, but the proof given in [29]
is very different from the proof of Theorem 7.4.

8. An illustration of the use of discrete maximal Lp-regularity for a
nonlinear parabolic equation. In this section, we illustrate how to apply the
discrete maximal Lp-regularity to derive error estimates and regularity uniform in
the stepsize τ of the time-discrete solution for a nonlinear parabolic equation. In this
process, we shall see the superiority of the maximal Lp-regularity approach over the
widely used L2-norm approach in the case of a strong nonlinearity.

We consider a semilinear parabolic problem for illustrating the maximal Lp-
regularity approach in a comparatively simple setting. The technique can be carried
further to other semilinear problems such as the Ginzburg–Landau equations [31],
to quasi-linear parabolic problems [3], and even to large classes of fully nonlinear
parabolic problems [26].

We illustrate our idea by considering the semilinear parabolic equation

∂u

∂t
−∆u = f(u,∇u) in Ω,(8.1)

∂u

∂ν
= 0 on ∂Ω,(8.2)

u = u0 at t = 0,(8.3)
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3618 BALÁZS KOVÁCS, BUYANG LI, AND CHRISTIAN LUBICH

on a smooth bounded domain Ω ⊂ Rd of arbitrary dimension d ≥ 1, where ∂u/∂ν
denotes the normal derivative on the boundary ∂Ω. We assume that f : R×Rd → R
is a smooth pointwise nonlinearity, appearing as f(u(x, t),∇u(x, t)) in (8.1). For
example, this includes the harmonic map heat flow, where f = u|∇u|2. We will
assume that this problem has a sufficiently regular solution, but we will not impose
growth conditions on the nonlinearity f .

We consider time discretization by the backward Euler scheme

un − un−1

τ
−∆un = f(un,∇un) in Ω, n ≥ 1,(8.4)

∂un
∂ν

= 0 on ∂Ω, n ≥ 1,(8.5)

with starting value u0.(8.6)

Extensions to full space-time discretizations are also discussed below. The scope
of the use of discrete maximal `p-regularity goes far beyond the implicit Euler method
and the semilinear equation considered here: in [3], the time discretization of quasi-
linear parabolic problems by BDF methods up to order 5 is studied with the help of
the results in section 4, and in [26], the time discretization of fully nonlinear parabolic
equations by implicit Runge–Kutta methods such as the Radau IIA methods of arbi-
trary order is studied based on the results in section 5.

In the following, for any sequence v = (vn)Nn=1 of functions in Lq(Ω) and a given
stepsize τ > 0 we consider the scaled `p-norm

‖v‖`pτ (Lq) =

(
N∑
n=1

τ‖vn‖pLq

) 1
p

,

for 1 ≤ p <∞, which is the Lp(0, Nτ ;Lq(Ω))-norm of the piecewise constant function
that takes the value vn on (tn−1, tn). We write similarly ‖v‖`∞(Lq) =max1≤n≤N ‖vn‖Lq .

Theorem 8.1. If the nonlinearity f : R × Rd → R is continuously differentiable
(here we do not assume any growth condition), and if the exact solution of (8.1)–(8.3)
satisfies ∂ttu ∈ Lp(0, T ;Lp) and u ∈ Lp(0, T ;W 2,p) for some T > 0 and for some p
with 2 + d < p < ∞, then there exist τ0 > 0 and C0 > 0 (which depend on T ) such
that for 0 < τ ≤ τ0 and Nτ ≤ T , the errors

en = un − u(·, tn) and ėn =
en − en−1

τ

of the time-discrete solution given by (8.4)–(8.6) are bounded by

‖(ėn)Nn=1‖`pτ (Lp) + ‖(∆en)Nn=1‖`pτ (Lp) ≤ C0τ,(8.7)

‖(en)Nn=1‖`∞(W 1,∞) ≤ C0τ.(8.8)

Proof. We rewrite (8.1)–(8.3) for the exact solution u(t) = u(·, t) as

u(tn)− u(tn−1)

τ
−∆u(tn) = f(u(tn),∇u(tn)) + dn in Ω, n ≥ 1,(8.9)

∂u(tn)

∂ν
= 0 on ∂Ω, n ≥ 1,(8.10)

u(t0) = u0,(8.11)
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where the defect dn = (u(tn) − u(tn−1))/τ − ∂tu(tn) is the consistency error of the
time discretization. By Taylor expansion and our regularity assumption, d = (dn)Nn=1

satisfies

‖d‖`pτ (Lp) ≤ Cτ ‖∂ttu‖Lp(0,T ;Lp).(8.12)

Comparing (8.4)–(8.6) with (8.9)–(8.11), we see that the error en = un − u(tn)
satisfies

ėn −∆en = f(un,∇un)− f(u(tn),∇u(tn))− dn in Ω, n ≥ 1,(8.13)

∂en
∂ν

= 0 on ∂Ω, n ≥ 1,(8.14)

e0 = 0.(8.15)

Let M = ‖u‖L∞(0,T ;W 1,∞) and define the function, for s > 0,

ρ(s) = sup
|y|≤s
|z|≤s
x∈Ω

(∣∣∣∣∂f∂y (y, z, x)

∣∣∣∣+

∣∣∣∣∂f∂z (y, z, x)

∣∣∣∣).
The right-hand side in (8.13) is now considered as an inhomogeneity to be used in
the discrete maximal `p-regularity. Since the Neumann Laplacian ∆ has maximal
Lp-regularity, we can apply Theorem 3.1 with en here in the role of un there and
with bn := f(un,∇un) − f(u(tn),∇u(tn)) − dn in the role of fn. This yields that
e = (en)Nn=1 is bounded in terms of b = (bn)Nn=1 by

‖ė‖`pτ (Lp) + ‖∆e‖`pτ (Lp) ≤ C ‖b‖`pτ (Lp)

≤ C‖
(
f(un,∇un)− f(u(tn),∇u(tn))

)N
n=1
‖`pτ (Lp) + C‖d‖`pτ (Lp)

≤ Cρ(M + ‖e‖`∞(W 1,∞))‖e‖`pτ (W 1,p) + C‖d‖`pτ (Lp),

where we further estimate

‖e‖`pτ (W 1,p) ≤ ε‖e‖`pτ (W 2,p) + Cε‖e‖`pτ (Lp).

Suppose that

‖e‖`∞(W 1,∞) ≤ 1.(8.16)

Then by choosing ε small enough the last three inequalities imply

‖ė‖`pτ (Lp) + ‖∆e‖`pτ (Lp) ≤ C‖e‖`pτ (Lp) + C‖d‖`pτ (Lp).

Since

‖e‖`∞(Lp) = max
1≤k≤N

‖ek‖Lp ≤
N∑
k=1

τ‖ėk‖Lp = ‖ė‖L1(Lp) ≤ T 1−1/p‖ė‖`pτ (Lp)

it follows that

‖e‖`∞(Lp) + ‖∆e‖`pτ (Lp) ≤ C‖e‖`pτ (Lp) + C‖d‖`pτ (Lp)

≤ ε‖e‖`∞(Lp) + Cε‖e‖L1(Lp) + C‖d‖`pτ (Lp).
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Since this holds for every N with Nτ ≤ T , we derive by Gronwall’s inequality that
‖e‖`∞(Lp) ≤ CT τ, which then yields (8.7). This also implies

‖ẽ‖W 1,p(0,T ;Lp) + ‖ẽ‖Lp(0,T ;W 2,p) ≤ C‖d‖`pτ (Lp),(8.17)

where ẽ is the piecewise linear interpolation of en, n = 1, . . . , N , at the times tn. We
have

(8.18)

W 1,p(0, T ;Lp) ∩ Lp(0, T ;W 2,p)

↪→ L∞(0, T ; (Lp,W 2,p)1−1/p,p) [38, Proposition 1.2.10]

= L∞(0, T ;W 2−2/p,p) [41, equation (34.4)]

↪→ L∞(0, T ;W 1,∞) if (1− 2/p)p > d ⇔ p > d+ 2 [1]

so that

(8.19) ‖ẽ‖L∞(0,T ;W 1,∞) ≤ C
(
‖ẽ‖W 1,p(0,T ;Lp) + ‖ẽ‖Lp(0,T ;W 2,p)

)
.

Together with (8.17), this yields (8.8). Overall, from (8.16) one can derive (8.8).
Therefore, by a fixed point argument one readily obtains that there exists a positive
constant τ0 such that when τ < τ0 we have (8.7)–(8.8) without assuming (8.16). We
thus obtain

(8.20) ‖e‖`pτ (Lp) ≤ C ‖d‖`pτ (Lp).

In view of (8.12), this completes the proof of the theorem.

Remark 8.1. The key argument of the above proof is that τ -uniform discrete
maximal `p-regularity allows us to control the `∞(W 1,∞)-norm of the error, and
hence of the numerical solution. In contrast, for this proof the logarithmically quasi-
maximal `∞-regularity bounds of section 7 are not sufficient to control the `∞(W 1,∞)-
norm of the numerical solution uniformly in τ on bounded time intervals, because the
logarithmic factor harms the use of the Gronwall inequality. The `∞-regularity bounds
of section 7 can, however, be used to refine the error bounds. Since we know already
that (8.8) holds, we obtain from Theorem 7.2 on X = C(Ω) applied to the error
equation (8.13) that

‖ė‖`∞(L∞) + ‖∆e‖`∞(L∞) ≤ C ′ logN
(
ρ(M + 1)‖e‖`∞(W 1,∞) + ‖d‖`∞(L∞)

)
,

which directly yields, under the additional condition that u ∈ C2([0, T ], C(Ω)),

(8.21) ‖(ėn)Nn=1‖`∞(L∞) + ‖(∆en)Nn=1‖`∞(L∞) ≤ Cτ logN.

Remark 8.2. In the above proof we implicitly assumed the existence of a numerical
solution un close to un−1 in the W 1,∞ norm. This can in fact be proved by a Banach
fixed point argument and using the discrete maximal `p-regularity in a similar way as
in the above proof over just one time step. Once we have the existence of the numerical
solution, the right-hand side in (8.13) can be considered as an inhomogeneity to be
used in the discrete maximal `p-regularity.

Remark 8.3. The same result as in Theorem 8.1 with the same proof also holds
with a semi-implicit approach in which the term f(un,∇un) in (8.4) is replaced by
f(un−1,∇un) or f(un−1,∇un−1). In the latter case, the only two things that change
in the proof are the expression for the defect, which now becomes dn = (u(tn) −
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u(tn−1))/τ − ∂tu(tn) + f(u(tn),∇u(tn)) − f(u(tn−1),∇u(tn−1)) and is still bounded
by Cτ for a sufficiently regular solution, and the first two terms in (8.13), which now
become f(un−1,∇un−1) − f(u(tn−1),∇u(tn−1)) and are estimated in the same way
as the analogous term in (8.13).

Given sufficient regularity of the solution, we further note that the extension of
Theorem 8.1 to higher-order BDF methods and A-stable Runge–Kutta methods is
just a straightforward exercise based on the results of sections 4 and 5 and on the
arguments of the above proof. No new ideas are required for such an extension to
higher order.

Remark 8.4. The proof of Theorem 8.1 bounds the errors (en) in terms of the
defects (or consistency errors) (dn). For weaker regularity conditions, one obtains
weaker estimates of the consistency errors than (8.12), which by (8.20) translate into
a corresponding weaker error bound. A detailed investigation of error bounds in
terms of the regularity of the initial data is beyond the scope of this paper. See,
e.g., [14, 36] for error bounds of time discretizations of semilinear parabolic equations
for nonsmooth initial data.

Remark 8.5. Uniform regularity estimates such as (8.7) have important applica-
tions in error estimates of full discretizations, with finite element methods for the
spatial discretization. In the following, let us denote for brevity uτh = (uh,n)Nn=1 the
fully discrete numerical solution, uτ = (un)Nn=1 the result of the implicit Euler time
discretization given by (8.4)–(8.6), and u = (u(tn))Nn=1 the sequence of exact solution
values of the nonlinear parabolic problem (8.1)–(8.3). Typically, in order to avoid
any grid-ratio condition in deriving the error estimates, the error of the fully discrete
method can be decomposed into two parts (see, e.g., [32]):

‖uτh − u‖`pτ (W 1,p) ≤ ‖uτh − uτ‖`pτ (W 1,p) + ‖uτ − u‖`pτ (W 1,p),

where the first part is expected to be O(h), uniformly in τ . For such nonlinear prob-
lems as (8.1)–(8.3), the main difficulty in the error estimates is to prove the bound-
edness ‖uτh‖`∞(W 1,∞) ≤ C for the numerical solution. Let Ih denote the Lagrange
interpolation operator. Under the regularity of (8.7), the first part of the error can
be proved in the following way: by assuming that

‖Ihuτ − uτh‖`∞(W 1,∞) ≤ 1,(8.22)

via τ - and h-uniform discrete maximal `p-regularity estimates on the finite element
space one can prove the τ -independent error estimate (with Dτ denoting the backward
difference quotient operator and W−1,p denoting the dual space of W 1,p′)

‖Dτ (Ihu
τ − uτh)‖`pτ (W−1,p) + ‖Ihuτ − uτh‖`pτ (W 1,p) ≤ Ch,(8.23)

and by using the inverse inequality

‖Ihuτ − uτh‖`pτ (W 1,∞) ≤ Ch−d/p‖Ihuτ − uτh‖`pτ (W 1,p) ≤ Ch1−d/p,

‖Dτ (Ihu
τ − uτh)‖`pτ (W 1,∞) ≤ Ch−2−d/p‖Dτ (Ihu

τ − uτh)‖`pτ (W−1,p) ≤ Ch−1−d/p,

one recovers a better `∞(W 1,∞)-estimate via the interpolation inequality

‖Ihuτ − uτh‖`∞(W 1,∞) ≤ ‖Ihuτ − uτh‖
1−1/p

`pτ (W 1,∞)
‖Dτ (Ihu

τ − uτh)‖1/p
`pτ (W 1,∞)

≤ Ch1−(2+d)/p.(8.24)

When p > 2 + d, one can conclude that there exists a positive constant h0 > 0 such
that when h < h0 the inequalities (8.23)–(8.24) hold, without preassuming (8.22).
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Remark 8.6. We mention that the often used l∞(L2)-norm approach does not
work when the nonlinearity is strong enough. Specifically, if one uses the standard
l∞(L2)-norm error estimate, then by assuming (8.22) one can only prove

‖Ihuτ − uτh‖`∞(L2) + h‖Ihuτ − uτh‖L∞(H1) ≤ Ch2

for the linear finite element method. The `∞(W 1,∞) error of the numerical solution
cannot be recovered for d ≥ 2:

‖Ihuτ − uτh‖`∞(W 1,∞) ≤ Ch−d/2‖Ihuτ − uτh‖L∞(H1) ≤ Ch1−d/2.

This shows an advantage of the maximal Lp-regularity approach for the analysis of
strongly nonlinear problems.

Of course, if the nonlinearity is not strong, then one only needs to assume (8.22)
with some `∞(W 1,q) norm,

‖Ihuτ − uτh‖`∞(W 1,q) ≤ Chd/q−d/2‖Ihuτ − uτh‖L∞(H1) ≤ Ch1+d/q−d/2,

and this weaker norm can thus be recovered if q < 2d/(d− 2).

Remark 8.7. Since the approach via discrete maximum `p-regularity allows us
to control the `∞(W 1,∞) error of the numerical solution, it works equally well for
nonlinearities f(u,∇u) that are defined only in a subregion of R×Rd, provided that
the exact solution of the parabolic problem stays in that subregion. For example, this
includes nonlinearities with singularities (e.g., rational functions) or functions that
are defined only for positive u or for ∇u in a cone.

Acknowledgments. We are grateful to Peer Kunstmann for helpful comments
concerning Remark 4.2. We thank an anonymous referee for pointing out references [7]
and [8].
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