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Abstract 

In order to explore a unified theory of three-way decisions proposed by Yao, Hu introduced 

three-way decision spaces through an axiomatic method, established the corresponding three-way 

decisions, and proposed two open problems on the changes of decision parameters in definition of 

three-way decisions. For answering these two questions, this paper firstly discusses the parameter 

changes in the assumptions from 0 1β α≤ < ≤  to 0 1β α≤ ≤ ≤  and inequality ( )( )E A x β≤  in 

the rejection region is replaced by ( )( )E A x β< .  Under the circumstance, this paper introduces 

new type of three-way decisions in three-way decision spaces and discusses properties of the 

three-way decisions, lower and upper approximations induced by three-way decisions, aggregation 

three-way decisions over multiple three-way decision spaces and dynamic three-way decisions on 

three-way decision spaces. Then this paper discusses another question on refusal decision region 

when the uncertain region is defined by using inequality ( )( )E A xβ α< <  and gives one 

example to illustrate the similarity and difference among these three-way decisions based on 

three-way decision spaces.  

Keywords: Partially ordered sets; Fuzzy sets; Interval-valued fuzzy sets; Rough sets; Three-way 

decision spaces; Three-way decisions. 

1. Introduction

The theory of three-way decisions (3WD) proposed by Yao is an extension of classic two-way

decisions (2WD) [41-45], whose basic idea comes from Pawlak’s rough sets [28] and probability 

rough sets proposed by Yao [38-46]. In recent years, researches on three-way decisions have been 

paid close attention by a growing number of scholars and are mainly reflected in the following 

three aspects [9, 10, 15, 47].  
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The first one involves the background researches on three-way decisions, such as 

decision-theoretic rough sets (DTRS) [3, 38-40], game-theoretic rough sets (GTRS) [8], 

interval-valued fuzzy rough sets (IVFRS) [11, 13-14], interval-valued decision-theoretic rough 

sets [21], intuitionistic fuzzy decision-theoretic rough sets [22], triangular fuzzy decision-theoretic 

rough sets [23], dominance-based fuzzy rough sets [4-7], variable precision fuzzy rough sets [30, 

34, 53], multi-granulation decision-theoretic rough sets [31], fuzzy covering-based rough sets [35, 

36] and so on.  

The second one refers to theoretical framework researches on three-way decisions, which 

mainly contain value domain of evaluation functions [44], construction and interpretation of 

evaluation functions [9, 10, 15, 16], the mode of three-way decisions [44, 45], three-way decisions 

based fuzzy probability [52, 54] and so on.  

The third one is on application researches of three-way decisions, such as incomplete 

information system [18, 25], risk decision making [20], group decision making [24], prediction 

[17], cluster [12, 48], investment [26], multi-agent [37], recognition [19, 32], social networks [29] 

and cognitive networks [27], recommender systems [51], multi-granular mining [1] and so on. 

Hu theorized three-way decisions and established three-way decision spaces (3WDS) [9, 10], 

such that existing three-way decisions are the special examples of three-way decision spaces, such 

as three-way decisions based on fuzzy sets, random sets and rough sets etc. At the same time, 

three-way decisions over multiple three-way decision spaces, dynamic two-way decisions and 

dynamic three-way decisions based on three-way decision spaces and three-way decisions with a 

pair of evaluation functions were also established in [9, 10, 15, 16]. In three-way decision spaces, 

three basic elements are unified, which are decision measurement, decision conditions and 

decision evaluation functions.  

In a large number of existing literatures, the two decision parameters are generally considered to 

be not equal and we use the more general inequality ( )( )E A x α≥  in the acceptance region and 

( )( )E A x β≤  in the rejection region. In addition, there are other discussions on two decision 

parameters. 

(1) Wei and Zhang suggested 0 1β α< ≤ <  in [33], in which inequality ( )( )E A x α>  is used 

in the acceptance region and ( )( )E A x β<  in the rejection region. 

  (2) Yao and Wong assumed two decision parameters are equal and nonzero in [46], in which 

inequality ( )( )E A x α>  is used in the acceptance region and ( )( )E A x α<  in the rejection 

region. 

In [9] two questions on the definition of three-way decisions were proposed which are not the 

same as existing methods. The two questions are listed as follows. 

� The first question is what changes are there in three-way decisions when the condition 

0 1β α≤ < ≤  is changed to 0 1β α≤ ≤ ≤  and inequality ( )( )E A x β≤  in the rejection 

region is replaced by ( )( )E A x β< .  

� The second question is what changes are there in three-way decisions when the uncertain 

region is defined by using inequality ( )( )E A xβ α< < .  

This paper discusses the above two questions and gives the three-way decisions and dynamic 

three-way decisions under new assumption of two decision parameters. 

The rest of this paper is organized as follows. In Section 2, the preliminary section, three-way 

decision spaces and three-way decisions are recalled for the further discussion in the following 

sections. Section 3 establishes one new type of three-way decisions in three-way decision spaces 

through considering parameter changes in assumptions, and discusses properties of the three-way 
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decisions, lower and upper approximations induced by three-way decisions, aggregation three-way 

decisions over multiple three-way decision spaces and dynamic three-way decisions on three-way 

decision spaces. Section 4 establishes the second new type of three-way decisions on three-way 

decision spaces through the consideration of a refusal decision region and gives one example to 

illustrate the similarity and difference among these three-way decisions based on three-way 

decision spaces. Section 5 concludes. 

 

2. Preliminary  

  This section recalls decision evaluation function, three-way decision space, three-way decisions, 

and the optimistic and pessimistic three-way decision. 

 

2.1 Three-way decision space 

 

In this paper ( , )
P

P ≤  is a partially ordered set with an involutive negator 
P

N , the minimum 

0
P

 and maximum 1
P

 which is written as ( , , ,0 ,1 )
P P P P

P N≤  [10]. If this P constitutes a lattice, 

then it is written as ( , , , ,0 ,1 )
P P P P P

P N∧ ∨ . The following notations are used.  

  {(2)
[ , ]I a a

− += | 0 a−≤ }1a
+≤ ≤  and [ , ]a a a=  for [0,1]a ∈ . 

Namely 
(2)I  is a family of closed interval numbers over [0, 1] and [ , ]a a a=  is a singleton set of real 

number a over [0, 1]. 

Let X and Y be two universes. ( , )Map X Y  is a set of all mappings from X to Y, i.e. 

( , ) { | : }Map X Y f f X Y= → . If ( , )A Map U P∈ , then A is called a P-fuzzy set of U. Especially, if 

( ,{0,1})A Map U∈ , then A is a subset of U, i.e. ( ,{0,1})Map U  is the power set of U. If 

( ,[0,1])A Map U∈ , then A is a fuzzy set of U [49], namely ( ,[0,1])Map U  is the fuzzy power set of 

U. If (2)
( , )A Map U I∈ , then A is an interval-valued fuzzy set of U [2, 50]. An interval-valued fuzzy 

set A is also denoted as [ , ]A A
− + .  

Let U be a universe and ( , )A Map U P∈ . Then the complement of A in U is defined by the 

following formula 

( )( ) ( ( ))
P P

N A x N A x= . 

If , ( , )A B Map U P∈ , then PA B⊆  is defined by ( ) ( )PA x B x≤ , x U∀ ∈ . And  

(0 ) ( ) 0 ,
P U P

x x U= ∀ ∈  and (1 ) ( ) 1 ,
P U P

x x U= ∀ ∈ . On lattice ( , , , ,0 ,1 )
P P P P P

P N∧ ∨ , we define for 

, ( , )A B Map U P∈ , 

( ) ( ) ( ) ( )
P P

A B x A x B x= ∨∪  and 

( ) ( ) ( ) ( )
P P

A B x A x B x= ∧∩ . 

Obviously ( ( , ), )
P

Map U P ⊆  is a partially ordered set with an involutive negator 
P

N , the 

minimum (0 )
P U

 and maximum (1 )
P U

. Especially in [0,1], 
P

⊆ , 
P

N , (0 )
P U

 and (1 )
P U

 are 

simply written as ⊆ , N , 0
U

 and 1
U

 respectively. 

 

Let ( , ,0 ,1 )
C C C CC P P P PP N≤  and ( , , ,0 ,1 )

D D D DD P P P PP N≤  be two partially ordered sets in the 

following. Let U be a nonempty universe for which a decision to make on it, called decision 

universe and V be a nonempty universe where a condition function is defined, named condition 

universe. 
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Definition 2.1. [10] Let U be a decision universe and V be a condition universe. Then a mapping 

: ( , ) ( , )
C D

E Map V P Map U P→  is called a decision evaluation function of U, if it satisfies the 

following axioms. 

(E1) Minimum element axiom 

((0 ) ) (0 )
C DP V P UE = , i.e., ((0 ) )( ) 0 ,

C DP V PE x x U= ∀ ∈  

(E2) Monotonicity axiom 

( ) ( ), , ( , )
C DP P CA B E A E B A B Map V P⊆ ⇒ ⊆ ∀ ∈ , i.e., ( )( ) ( )( ),

DPE A x E B x x U≤ ∀ ∈  and 

(E3) Complement axiom 

( ( )) ( ( )), ( , )
D CP P CN E A E N A A Map V P= ∀ ∈ , i.e., ( ( ))( ) ( ( ))( ),

D CP PN E A x E N A x x U= ∀ ∈ . 

( )( )E A x  is called a decision evaluation function of U for ( , )
C

A Map V P∈ . 

As referred to [9, 10], background of these axioms comes from the common properties of the 

large amount of evaluation functions in probabilistic rough sets, such as 
| [ ] |

| [ ] |

R

R

A x

x

∩
 for a crisp 

subset A and an equivalence relation R over a finite universe. In 
| [ ] |

| [ ] |

R

R

A x

x

∩
, for Minimum 

element axiom, 
| [ ] |

0
| [ ] |

R

R

x

x

∅
=

∩
; for Monotonicity axiom, A B⊆  implies 

| [ ] | | [ ] |

| [ ] | | [ ] |

R R

R R

A x B x

x x
≤

∩ ∩
; for Complement axiom, 

| [ ] | | [ ] |
1

| [ ] | | [ ] |

c

R R

R R

A x A x

x x
= −

∩ ∩
. In order to 

understand further information on the three axioms, please see [6, 7, 12]. 

In [10], the following three-way decision space was introduced. 

Given decision universe U, condition domain ( , )
C

Map V P , decision value domain 
D

P  and 

evaluation function E, then ( , ( , ), , )
C D

U Map V P P E  is called a three-way decision space.  

 

2.2. Three-way decisions 

 

For the convenience of expression, decision domain ( , , ,0 ,1 )
D P P P P

P N≤  is denoted by 

( , , ,0,1)
D

P N≤ . In [10], three-way decisions and the corresponding lower and upper 

approximations were introduced in three-way decision spaces. 

 

Definition 2.2. [10] Let ( , ( , ), , )
C D

U Map V P P E  be a three-way decision space, ( , )
C

A Map V P∈ , 

,
D

Pα β ∈  and 0 1β α≤ < ≤ . Then three-way decisions are defined as follows. 

(1) Acceptance region：
( , )

( , ) { | ( )( ) }ACP E A x U E A xα β α= ∈ ≥ . 

(2) Rejection region：
( , )

( , ) { | ( )( ) }REJ E A x U E A xα β β= ∈ ≤ . 

(3) Uncertain region： ( )( , ) ( , ) ( , )( , ) ( , ) ( , )
c

UNC E A ACP E A REJ E Aα β α β α β= ∪ . 

If DP  is a linear order, then ( , ) ( , ) { | ( )( ) }UNC E A x U E A xα β β α= ∈ < < . 

 

Let ( , ( , ), , )
C D

U Map V P P E  be a three-way decision space, ( , )
C

A Map V P∈ , ,
D

Pα β ∈  and 

0 1β α≤ < ≤ . Then  

( , )( , )
( , ) ( , )apr E A ACP E Aα βα β

=   

and 

( )( , )( , )
( , ) ( , )

c

apr E A REJ E Aα βα β =  
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are called the lower approximation and upper approximation of A respectively. 

 

In [10], the optimistic and pessimistic three-way decisions and the corresponding lower and 

upper approximations were introduced over multiple three-way decision spaces. 

 

Definition 2.3. [10]. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, 

( , )
C

A Map V P∈ , ,
D

Pα β ∈  and 0 1β α≤ < ≤ . Then the optimistic three-way decisions over n 

three-way decision spaces are defined as follows. 

(1) Acceptance region： { }( , ) 1~ ( , )

1 1

( , ) ( , ) | ( )( )
n n

op

n i i

i i

ACP E A ACP E A x U E A xα β α β α
= =

= = ∈ ≥∪ ∪ , 

(2) Rejection region： { }( , ) 1~ ( , )

1 1

( , ) ( , ) | ( )( )
n n

op

n i i

i i

REJ E A REJ E A x U E A xα β α β β
= =

= = ∈ ≤∩ ∩ , 

(3) Uncertain region： ( )( , ) 1~ ( , ) 1~ ( , ) 1~( , ) ( , ) ( , )
c

op op op

n n nUNC E A ACP E A REJ E Aα β α β α β= ∪ . 

Then the pessimistic three-way decisions over n three-way decision spaces are defined as follows. 

(1) Acceptance region： { }( , ) 1~ ( , )

1 1

( , ) ( , ) | ( )( )
n n

pe

n i i

i i

ACP E A ACP E A x U E A xα β α β α
= =

= = ∈ ≥∩ ∩ , 

(2) Rejection region： { }( , ) 1~ ( , )

1 1

( , ) ( , ) | ( )( )
n n

pe

n i i

i i

REJ E A REJ E A x U E A xα β α β β
= =

= = ∈ ≤∪ ∪ , 

(3) Uncertain region： ( )( , ) 1~ ( , ) 1~ ( , ) 1~( , ) ( , ) ( , )
c

pe pe pe

n n nUNC E A ACP E A REJ E Aα β α β α β= ∪ . 

 

Defintion 2.4. [10]. If ( , )
C

A Map V P∈ , then 

1~ ( , ) 1~( , )
( , ) ( , )

op op

n n
apr E A ACP E Aα βα β

=   

and 

( )1~ ( , ) 1~( , )
( , ) ( , )

cop
op

n napr E A REJ E Aα βα β =                                                                 

are referred to as the lower approximation and upper approximation of A with regard to optimistic 

three-way decisions over n three-way decision spaces respectively. Similarly 

1~ ( , ) 1~( , )
( , ) ( , )

pe pe

n n
apr E A ACP E Aα βα β

=   

and 

( )1~ ( , ) 1~( , )
( , ) ( , )

cpe
pe

n napr E A REJ E Aα βα β =  

are referred to as the lower approximation and upper approximation of A with regard to 

pessimistic three-way decisions over n three-way decision spaces respectively. 

 

3. Three-way decisions with a new parameter assumption in three-way decision space 

 

3.1 Three-way decisions 

 

In [9], the first question is what changes are there in three-way decisions when the condition 

0 1β α≤ < ≤  is changed to 0 1β α≤ ≤ ≤  and inequality ( )( )E A x β≤  in the rejection region is 

replaced by ( )( )E A x β<  in Definition 2.2. In this section, the question is discussed. 

 

Definition 3.1. Let ( , ( , ), , )
C D

U Map V P P E  be a three-way decision space, ( , )
C

A Map V P∈ , 

,
D

Pα β ∈  and 0 1β α≤ ≤ ≤ . Then the first new type of three-way decisions is defined as 

follows. 
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(1) Acceptance region：
( , )

1 ( , ) { | ( )( ) }ACP E A x U E A xα β α= ∈ ≥ . 

(2) Rejection region：
( , )

1 ( , ) { | ( )( ) }REJ E A x U E A xα β β= ∈ < . 

(3) Uncertain region： ( )( , ) ( , ) ( , )1 ( , ) 1 ( , ) 1 ( , )
c

UNC E A ACP E A REJ E Aα β α β α β= ∪ . 

 

Note 3.1. (1) If 
D

P  is a linear order, then 
( , )

1 ( , ) { | ( )( ) }UNC E A x U E A xα β β α= ∈ ≤ < . 

(2) If 
D

P  is a linear order, ,
D

Pα β ∈  and α β= , then 
( , )

1 ( , )UNC E Aα β = ∅ . 

(3) If 0 1β α≤ < ≤ , then 
( , ) ( , )

( , ) 1 ( , ) { | ( )( ) }REJ E A REJ E A x U E A xα β α β β= ∈ =∪ . 

 

It is worth noting that the condition 0 1β α≤ < ≤  in Definition 2.2 is replaced by 

0 1β α≤ ≤ ≤  in Definition 3.1 and inequality ( )( )E A x β≤  in the rejection region of Definition 

2.2 is replaced by ( )( )E A x β< . In order to distinguish Definitions 2.2, the notations of 

Acceptance region, Rejection region and Uncertain region are written as “ACP1”, “REJ1” and 

“UNC1”, respectively. There exist the following benefits for this definition: 

(1) Two-way decisions can regard as special cases of three-way decisions when α β=  and 

D
P  is a linear order. Under the situation, acceptance region is { | ( )( ) }x U E A x α∈ ≥ , rejection 

region is { | ( )( ) }x U E A x α∈ <  and there is no uncertain region. 

(2) Acceptance with “≥” and rejection with “<” are more in line with practical applications 

and semantic. Generally speaking, “≥”means “you are eligible”, otherwise “<”means “you 

are not eligible”.  

(3) Depending on the number of evaluation functions, Yao gave two modes of three-way 

decisions, which are the single evaluation function and dual evaluation functions [44]. The above 

three-way decisions are based on a single evaluation function. Three-way decisions based on dual 

evaluation functions are given below. Considering ( , ( , ), , )
C D a

U Map V P P E  and 

( , ( , ), , )
C D b

U Map V P P E  are two three-way decisions spaces, , ( , )
C

A B Map V P∈  and ,
D

Pα β ∈ , 

then three-way decisions based on double evaluation functions are regarded as some operations of 

three-way decisions based on single evaluation function. 

Acceptance region： 

{ } { }( , ) (( , ), ( , )) | ( )( ) | ( )( )a b a bACP E E A B x U E A x x U E B xα β α β= ∈ ≥ ∈ <∩  

( , ) ( , )a bACP E A REJ E Bα β= ∩ . 

Rejection region： 

{ } { }( , ) (( , ), ( , )) | ( )( ) | ( )( )a b a bREJ E E A B x U F A x x U E B xα β α β= ∈ < ∈ ≥∩  

( , ) ( , )a bREJ E A ACP E Bα β= ∩ . 

Uncertain region： 

( )( , ) ( , ) ( , )(( , ), ( , )) ( , , , ) ( , , , )
c

a b a b a bUNC E E A B ACP E E A B REJ E E A Bα β α β α β= ∪ . 

That is to say, acceptance region ( , ) (( , ), ( , ))a bACP E E A Bα β  based on double evaluation 

functions 
a

E  and 
b

E  is an intersection of acceptance region ( , )
a

ACP E Aα  for 
a

E  and 

rejection region ( , )
b

REJ E Bβ  for 
b

E  in Definition 3.1. Rejection region 
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( , ) (( , ), ( , ))a bREJ E E A Bα β  based on double evaluation functions 
a

E  and 
b

E  is an intersection 

of rejection region ( , )
a

REJ E Aα  for 
a

E  and acceptance region ( , )
b

ACP E Bβ  for 
b

E  in 

Definition 3.1. So it unifies double evaluation function with a single evaluation function where 

three-way decisions based on double evaluation functions are classified as some operations of 

three-way decisions based on single evaluation function. 

(4) When this definition is applied to probability rough set model there are some differences 

with popular three-way decisions, upper and lower approximations and so on. In the rejection 

region of Definition 3.1, it is clear that 

( , )
0 0

lim 1 ( , ) lim { | ( )( ) } { | ( )( ) 0}REJ E A x U E A x x U E A xα β
β β

β
→ + → +

= ∈ < = ∈ = . 

At this point Pawlak’s rough sets can be considered to be probability rough sets while 0β +→  

and 1α = . 

In this section, let us always assume ( , ( , ), , )
C D

U Map V P P E  is a three-way decision space, 

,
D

Pα β ∈  and 0 1β α≤ ≤ ≤ . 

 

Theorem 3.1. Let , ( , )
C

A B Map V P∈ . Then the following hold. 

(1) ( , ) ( ( ), ( ))1 ( , ) 1 ( , ( )) \{ | ( )( ) }
CN N PREJ E A ACP E N A x U E A xα β β α β= ∈ = ,  

( , ) ( ( ), ( ))
1 ( , ) 1 ( , ( )) { | ( )( ) }

CN N P
ACP E A REJ E N A x U E A xα β β α α= ∈ =∪ . 

(2) ( , ) ( , ) ( , ) ( , )1 ( , ) 1 ( , ) 1 ( , ) ( 1 ( , ))cACP E A UNC E A ACP E A REJ E Aα β α β α β α β=∪ ∪ . 

Proof. We only prove the first formula of (1). The others can be proved in a similar way. 

( , )
1 ( , ) { | ( )( ) }REJ E A x U E A xα β β= ∈ <  

{ | ( )( ) } \ { | ( )( ) }x U E A x x U E A xβ β= ∈ ≤ ∈ =  

{ | ( ( ), ) ( )} \{ | ( )( ) }
cPx U E N A x N x U E A xβ β= ∈ ≥ ∈ =  

( ( ), ( ))1 ( , ( )) \ { | ( )( ) }
CN N PACP E N A x U E A xβ α β= ∈ = .     □ 

 

If we consider a lattice 
C

P  and , ( , )
C

A B Map V P∈ , then the following hold.  

(1) ( , ) ( , ) ( , )1 ( , ) 1 ( , ) 1 ( , )
CPACP E A B ACP E A ACP E Bα β α β α β⊇∪ ∪ . 

(2) ( , ) ( , ) ( , )1 ( , ) 1 ( , ) 1 ( , )
CPACP E A B ACP E A ACP E Bα β α β α β⊆∩ ∩ . 

(3) ( , ) ( , ) ( , )1 ( , ) 1 ( , ) 1 ( , )
CPREJ E A B REJ E A REJ E Bα β α β α β⊆∪ ∩ . 

(4) ( , ) ( , ) ( , )1 ( , ) 1 ( , ) 1 ( , )
CPREJ E A B REJ E A REJ E Bα β α β α β⊇∩ ∪ . 

 

Similarly we can define the concepts of lower and upper approximations from three-way 

decisions in Definition 3.1. 

Definition 3.2. If ( , )
C

A Map V P∈ , then  

( , )( , )
1 ( , ) 1 ( , )apr E A ACP E Aα βα β

=   

and  

( )( , )( , )1 ( , ) 1 ( , )
c

apr E A REJ E Aα βα β =  

are called the lower and upper approximations of A respectively. 

 

Note 3.2. (1) If 
D

P  is a linear order, then  
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( , ) ( , )( , )
1 ( , ) 1 ( , ) 1 ( , )apr E A ACP E A UNC E Aα β α βα β = ∪ . 

(2) If 
D

P  is a linear order, then 

( , )
1 ( , ) { | ( )( ) }apr E A x U E A x

α β
α= ∈ ≥ , 

( , )1 ( , ) { | ( )( ) }apr E A x U E A xα β β= ∈ ≥ . 

This is not the same as the definition suggested by Wei and Zhang [33] for 0 1β α< ≤ <  in 

probabilistic rough set approximation: 

( , )
{ | ( | [ ]) }apr x U P A x

α β
α= ∈ > , 

( , ) { | ( | [ ]) }apr x U P A xα β β= ∈ ≥ . 

(3) If 
D

P  is a linear order and α β= , then 

( , )( , )
1 ( , ) 1 ( , ) { | ( )( ) }apr E A apr E A x U E A xα βα β

α= = ∈ ≥ . 

This is also not the same as the definition of Yao and Wong [46] for 0α β= ≠ in 

probabilistic rough set approximation: 

{ | ( | [ ]) }apr x U P A x
α

α= ∈ > , 

{ | ( | [ ]) }apr x U P A xα α= ∈ ≥ . 

The above definition of Yao and Wong [46] is an extension of the 0.5 probabilistic 

approximations. 

 

In the following, we discuss the properties of Definition 3.2. 

Theorem 3.2. Let , ( , )
C

A B Map V P∈ . Then the following hold. 

(1) ( , )( , )
1 ( , ) 1 ( , )apr E A apr E Aα βα β

⊆ . 

  Specially ( , ) ( , )
1 ( , ) 1 ( , ) { | ( )( )apr E A apr E A x U E A xα α α α

= ∈∪  and α  have no order 

relation about ≤ } 

(2) 
( , )

1 ( , )apr E V U
α β

= , 
( , )

0
1 ( , )

0
apr E

Uα β

α

α

∅ >
∅ = 

=
 ,  

( , )
1 ( , )apr E V Uα β = , 

( , )

0
1 ( , )

, 0
apr E

U
α β

β

β

∅ >
∅ = 

=
. 

(3) 
( , ) ( , )( , ) ( , )

1 ( , ) 1 ( , ), 1 ( , ) 1 ( , )
CPA B apr E A apr E B apr E A apr E Bα β α βα β α β

⊆ ⇒ ⊆ ⊆ . 

(4) ( )( ( ), ( ))( , )
1 ( , ( )) 1 ( , ) { | ( )( ) ( )}

C

c

P N Napr E N A apr E A x U E A x Nβ αα β
α= ∈ =∪ , 

( )( , ) ( ( ), ( ))
1 ( , ( )) 1 ( , ) { | ( )( ) ( )}

C

c

P N N
apr E N A apr E A x U E A x Nα β β α

β= ∈ =∪ . 

Proof. (1) 
( , )

1 ( , ) { | ( )( ) } { | ( )( ) }apr E A x U E A x x U E A x
α β

α β= ∈ ≥ ⊆ ∈ ≥  

                     ( ) ( , ){ | ( )( ) } 1 ( , )
c

x U E A x apr E Aα ββ⊆ ∈ < = . 

      ( )( , )1 ( , ) { | ( )( ) }
c

apr E A x U E A xα α α= ∈ <   

          { | ( )( ) } { | ( )( )x U E A x x U E A xα= ∈ ≥ ∈∪  and α  have no order relation about ≤ } 

( , )
1 ( , ) { | ( )( )apr E A x U E A x

α α
= ∈∪  and α  have no order relation about ≤ }. 

(2) 
( , )

0
1 ( , ) { | ( )( ) }

0
apr E x U E x

Uα β

α
α

α

∅ >
∅ = ∈ ∅ ≥ = 

=
 

The others can be proved by a similar method. 
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(3) It is immediate from Definition 3.1. 

(4) ( , )( , )
1 ( , ( )) 1 ( , ( ))

C CP P
apr E N A ACP E N Aα βα β

=  

           { | ( ( ))( ) }
CPx U E N A x β= ∈ ≥  

           { | ( )( ) ( )}x U E A x N β= ∈ ≤  

           { | ( )( ) ( )} { | ( )( ) ( )}x U E A x N x U E A x Nβ β= ∈ < ∈ =∪  

           ( )( ( ), ( ))
1 ( , ) { | ( )( ) ( )}

c

N N
apr E A x U E A x Nβ α β= ∈ =∪ .     □ 

If we consider a lattice 
C

P  and , ( , )
C

A B Map V P∈ , then the following hold. 

(1) 
( , ) ( , ) ( , )

1 ( , ) 1 ( , ) 1 ( , )
CP

apr E A B apr E A apr E B
α β α β α β

⊆∩ ∩ . 

(2) ( , ) ( , ) ( , )
1 ( , ) 1 ( , ) 1 ( , )

CP
apr E A B apr E A apr E Bα β α β α β⊆∩ ∩ . 

(3) 
( , ) ( , ) ( , )

1 ( , ) 1 ( , ) 1 ( , )
CP

apr E A B apr E A apr E B
α β α β α β

⊇∪ ∪ . 

(4) ( , ) ( , ) ( , )
1 ( , ) 1 ( , ) 1 ( , )

CP
apr E A B apr E A apr E Bα β α β α β⊇∪ ∪ . 

 

The following theorem can be proven. 

Theorem 3.3. Let ( , )
C

A Map V P∈ . The following hold. 

(1) If 0 1β β α α′ ′≤ ≤ ≤ ≤ ≤ , then 

( , ) ( , )( , ) ( , )
1 ( , ) 1 ( , ), 1 ( , ) 1 ( , )apr E A apr E A apr E A apr E Aα β α βα β α β ′ ′′ ′

⊆ ⊇ . 

(2) If 
D

P  is a lattice and ,
D

Pα β ∈ , then ,0
D

t P t α β∀ ∈ ≤ ≤ ∧ , 

       
( , ) ( , ) ( , )

1 ( , ) 1 ( , ) 1 ( , )
t t t

apr E A apr E A apr E A
α β α β∨

= ∩ . 

(3) If 
D

P  is a lattice and ,
D

Pα β ∈ , then , 1
D

t P tα β∀ ∈ ∨ ≤ ≤ ,  

        ( , ) ( , ) ( , )
1 ( , ) 1 ( , ) 1 ( , )

t t t
apr E A apr E A apr E Aα β α β∧ ⊇ ∪  

and the equality holds while 
D

P  is linear. 

Proof. (1) It is straightforward from Definition 3.2. 

(2) If ,
D

Pα β ∈ , then ,0
D

t P t α β∀ ∈ ≤ ≤ ∧ ,  

( , )
1 ( , ) { | ( )( ) }

t
apr E A x U E A x

α β
α β

∨
= ∈ ≥ ∨  

{ | ( )( ) } { | ( )( ) }x U E A x x U E A xα β= ∈ ≥ ∈ ≥∩  

( , ) ( , )
1 ( , ) 1 ( , )

t t
apr E A apr E A

α β
= ∩ . 

(3) If ,
D

Pα β ∈ , then , 1
D

t P tα β∀ ∈ ∨ ≤ ≤ ,  

( )( , )( , ) ( , ) ( , )
c

ttapr E A REJ E Aα βα β ∧∧ =  

( )| ( )( )
c

x U E A x α β= ∈ < ∧  

( ){ | ( )( ) } { | ( )( ) }
c

x U E A x x U E A xα β⊇ ∈ < ∈ <∩  

( , ) ( , )
( , ) ( , )

t t
apr E A apr E Aα β= ∪ .                

If DP  is linear, then the equality holds.      □ 

 

3.2 The optimistic three-way decisions over multiple three-way decision spaces 

 

The above conclusions in Section 3.1 can be extended to multiple three-way decision spaces. 

Definition 3.3. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, 

( , )
C

A Map V P∈ , ,
D

Pα β ∈  and 0 1β α≤ ≤ ≤ . Then optimistic three-way decisions over n 
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three-way decision spaces are defined as follows. 

(1) Acceptance region： ( , ) 1~ ( , ) 1~1 ( , ) ( , )op op

n nACP E A ACP E Aα β α β= . 

(2) Rejection region： { }( , ) 1~ ( , )

1 1

1 ( , ) 1 ( , ) | ( )( )
n n

op

n i i

i i

REJ E A REJ E A x U E A xα β α β β
= =

= = ∈ <∩ ∩ . 

(3) Uncertain region： 

( )( , ) 1~ ( , ) 1~ ( , ) 1~1 ( , ) 1 ( , ) 1 ( , )
c

op op op

n n nUNC E A ACP E A REJ E Aα β α β α β= ∪ . 

 

Note 3.3. (1) If 
D

P  is a linear order, then  

{ }( , ) 1~
1

1 ( , ) | ( )( )
n

op

n i
i

ACP E A x U E A xα β α
=

= ∈ ∨ ≥ , 

{ }( , ) 1~
1

1 ( , ) | ( )( )
n

op

n i
i

REJ E A x U E A xα β β
=

= ∈ ∨ <  and 

{ }( , ) 1~
1

1 ( , ) | ( )( )
n

op

n i
i

UNC E A x U E A xα β β α
=

= ∈ ≤ ∨ < . 

(2) If 0 1β α≤ < ≤ , { }( , ) 1~ ( , )

1 1

( , ) 1 ( , ) | ( )( )
n n

op

n i i

i i

REJ E A REJ E A x U E A xα β α β β
= =

   
= ∈ =   
   

∪∩ ∩ . 

 

Similarly, we can discuss the lower and upper approximations of optimistic three-way decisions 

over multiple three-way decision spaces. 

Defintion 3.4. If ( , )
C

A Map V P∈ , then 

1~ ( , ) 1~( , )
1 ( , ) 1 ( , )

op op

n napr E A ACP E Aα βα β
=  

and 

( )1~ ( , ) 1~( , )1 ( , ) 1 ( , )
cop

op

n napr E A REJ E Aα βα β =  

are referred to as the lower approximation and upper approximation of A with regard to optimistic 

three-way decisions over n three-way decision spaces respectively.  

Obviously, if DP  is a linear order, then  

{ }1~( , ) 1
1 ( , ) | ( )( )

n
op

n i
i

apr E A x U E A x
α β

α
=

= ∈ ∨ ≥   

and  

{ }1~( , )
1

1 ( , ) | ( )( )
nop

n i
i

apr E A x U E A xα β β
=

= ∈ ∨ ≥ . 

 

Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, ( , )
C

A Map V P∈ , 

,
D

Pα β ∈  and 0 1β α≤ ≤ ≤ . We can obtain similar results of Theorem 3.4 and 3.5 in [10]. 

 

We can prove the following theorem. 

Theorem 3.4. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, 

( , )
C

A Map V P∈ . Then the following hold. 

(1) If 0 1β β α α′ ′≤ ≤ ≤ ≤ ≤ , then 1~ 1~( , ) ( , )
1 ( , ) 1 ( , )

op op

n napr E A apr E A
α β α β′ ′

⊆  and 

1~ 1~( , ) ( , )1 ( , ) 1 ( , )
op op

n napr E A apr E Aα β α β′ ′⊇ . 

(2) If DP  is a lattice and , DPα β ∈ , then ,0Dt P t α β∀ ∈ ≤ ≤ ∧ , 

1~ 1~ 1~( , ) ( , ) ( , )
1 ( , ) 1 ( , ) 1 ( , )

op op op

n n nt t t
apr E A apr E A apr E A

α β α β∨
⊆ ∩ . 
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If DP  is a lattice and , DPα β ∈ , then , 1Dt P tα β∀ ∈ ∨ ≤ ≤ , 

1~ 1~ 1~( , ) ( , ) ( , )1 ( , ) 1 ( , ) 1 ( , )
op op op

n n nt t tapr E A apr E A apr E Aα β α β∧ ⊇ ∪ . 

Proof. (1) It is straightforward from Definition 3.4. 

(2) If 
D

P  is a lattice and ,
D

Pα β ∈ , then ,0
D

t P t α β∀ ∈ ≤ ≤ ∧ ,  

1~( , ) ( , )
1

1 ( , ) 1 ( , )
n

op

n it t
i

apr E A apr E A
α β α β∨ ∨

=

=∪  

( )( , ) ( , )
1

1 ( , ) 1 ( , )
n

i it t
i

apr E A apr E A
α β

=

= ∩∪  

( , ) ( , )
1 1

1 ( , ) 1 ( , )
n n

i it t
i i

apr E A apr E A
α β

= =

   
⊆    
   

∩∪ ∪  

1~ 1~( , ) ( , )
1 ( , ) 1 ( , )

op op

n nt t
apr E A apr E A

α β
= ∩ . 

If DP  is a lattice and , DPα β ∈ , then , 1Dt P tα β∀ ∈ ∨ ≤ ≤ ,  

1~( , ) ( , )

1

1 ( , ) 1 ( , )
n

op

n it t

i

apr E A apr E Aα β α β∧ ∧

=

=∪  

( )( , ) ( , )

1

1 ( , ) 1 ( , )
n

i it t

i

apr E A apr E Aα β
=

⊇ ∪∪  

( , ) ( , )

1 1

1 ( , ) 1 ( , )
n n

i it t

i i

apr E A apr E Aα β
= =

   
=    
   

∪∪ ∪  

1~ 1~( , ) ( , )1 ( , ) 1 ( , )
op op

n nt tapr E A apr E Aα β= ∪ .     □ 

 

3.3 The pessimistic three-way decisions over multiple three-way decision spaces 

 

We can consider another type of three-way decisions over multiple three-way decision spaces. 

Definition 3.5. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, 

( , )
C

A Map V P∈ , ,
D

Pα β ∈  and 0 1β α≤ ≤ ≤ . Then pessimistic three-way decisions over n 

three-way decision spaces are defined as 

(1) Acceptance region： 

( , ) 1~ ( , ) 1~1 ( , ) ( , )pe pe

n nACP E A ACP E Aα β α β= . 

(2) Rejection region： 

{ }( , ) 1~ ( , )

1 1

1 ( , ) 1 ( , ) | ( )( )
n n

pe

n i i

i i

REJ E A REJ E A x U E A xα β α β β
= =

= = ∈ <∪ ∪ . 

(3) Uncertain region： 

( )( , ) 1~ ( , ) 1~ ( , ) 1~1 ( , ) 1 ( , ) 1 ( , )
c

pe pe pe

n n nUNC E A ACP E A REJ E Aα β α β α β= ∪ . 

 

Note 3.4. (1) { }( , ) 1~
1

1 ( , ) | ( )( )
n

pe

n i
i

ACP E A x U E A xα β α
=

= ∈ ∧ ≥  

(2) If 
D

P  is a linear order, then  

{ }( , ) 1~
1

1 ( , ) | ( )( )
n

pe

n i
i

REJ E A x U E A xα β β
=

= ∈ ∧ <  and  

{ }( , ) 1~
1

1 ( , ) | ( )( )
n

pe

n i
i

UNC E A x U E A xα β β α
=

= ∈ ≤ ∧ < . 

  (3) If 0 1β α≤ < ≤ , then 
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{ }( , ) 1~ ( , )

1 1

( , ) 1 ( , ) | ( )( )
n n

pe

n i i

i i

REJ E A REJ E A x U E A xα β α β β
= =

   
= ∈ =   
   

∪∪ ∪ . 

 

Similarly, we can discuss the lower and upper approximations of pessimistic three-way decisions 

over multiple three-way decision spaces. 

Definition 3.6. If ( , )
C

A Map V P∈ , then 

1~ ( , ) 1~( , )
1 ( , ) 1 ( , )

pe pe

n napr E A ACP E Aα βα β
=  

and 

( )1~ ( , ) 1~( , )1 ( , ) 1 ( , )
cpe

pe

n napr E A REJ E Aα βα β =  

are referred to as the lower approximation and upper approximation of A with regard to 

pessimistic three-way decisions over n three-way decision spaces respectively. 

Obviously, if DP  is a linear order, then 

{ }1~( , )
1

1 ( , ) | ( )( )
npe

n i
i

apr E A x U E A xα β β
=

= ∈ ∧ ≥ . 

 

Let ( , ( , ), , )C D iU Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, ( , )CA Map V P∈ , 

, DPα β ∈  and 0 1β α≤ ≤ ≤ . We can obtain similar results of Theorems 3.7 and 3.8 in [10].  

 

We can prove the following theorem in a similar approach as Theorem 3.4. 

Theorem 3.5. Let ( , ( , ), , })
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces and 

( , )
C

A Map V P∈ . Then we have the following statements. 

(1) If 0 1β β α α′ ′≤ ≤ ≤ ≤ ≤ , then 1~ 1~( , ) ( , )
1 ( , ) 1 ( , )

pe pe

n napr E A apr E A
α β α β′ ′

⊆  and 

1~ 1~( , ) ( , )1 ( , ) 1 ( , )
pe pe

n napr E A apr E Bα β α β′ ′⊇ . 

(2) If DP  is a lattice and , DPα β ∈ , then ,0Dt P t α β∀ ∈ ≤ ≤ ∧ , 

1~ 1~ 1~( , ) ( , ) ( , )
1 ( , ) 1 ( , ) 1 ( , )

pe pe pe

n n nt t t
apr E A apr E A apr E A

α β α β∨
= ∩ . 

If DP  is a lattice and , DPα β ∈ , then , 1Dt P tα β∀ ∈ ∨ ≤ ≤ , 

1~ 1~ 1~( , ) ( , ) ( , )1 ( , ) 1 ( , ) 1 ( , )
pe pe pe

n n nt t tapr E A apr E A apr E Aα β α β∧ ⊇ ∪ . 

 

The following theorem shows the relationship between optimistic three-way decisions and 

pessimistic three-way decisions over n three-way decision spaces. 

Theorem 3.6. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, 

( , )
C

A Map V P∈ , ,
D

Pα β ∈  and 0 1β α≤ ≤ ≤ . Then the following hold. 

(1) 1~( , )
1 ( , ( ))

C

op

n Papr E N A
α β

 

( ) { }1~( ( ), ( ))

1

1 ( , ) | ( )( ) ( )
nc

pe

n iN N

i

apr E A x U E A x Nβ α α
=

 
= ∈ = 

 
∪ ∪ . 

(2) 1~( , )
1 ( , ( ))

C

op

n P
apr E N Aα β  

( )1~( ( ), ( ))
1

1 ( , ) { | ( )( ) ( )}
nc

pe

n iN N
i

apr E A x U E A x N
β α

β
=

 
= ∈ = 

 
∪ ∪ . 

Proof. Only prove (1).  
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1~( , ) ( , )
1

1 ( , ( )) 1 ( , ( ))
C C

n
op

n P i P

i

apr E N A apr E N A
α β α β

=

=∪  

           ( ) { }( ( ), ( ))

1

1 ( , ) | ( )( ) ( )
n c

i iN N

i

apr E A x U E A x Nβ α α
=

= ∈ =∪∪  

           { }( ( ), ( ))

1 1

1 ( , ) | ( )( ) ( )

c
n n

i iN N

i i

apr E A x U E A x Nβ α α
= =

   
= ∈ =   
   

∪∩ ∪  

           ( ) { }1~( ( ), ( ))

1

1 ( , ) | ( )( ) ( )
nc

pe

n iN N

i

apr E A x U E A x Nβ α α
=

 
= ∈ = 

 
∪ ∪ .     □ 

 

3.4 The aggregation three-way decisions over multiple three-way decision spaces 

 

Definition 3.7. ([15]) Let ( , , ,0 ,1 )P P P PP N≤  be a bounded partially ordered set. A mapping 

: nf P P→  is called an n-ary complement-preserving aggregation function, if it satisfies the 

following conditions: 

(AF1) Regularity:  

( , , , )f x x x x=⋯ , 
i

x P∀ ∈ ; 

(AF2) Nondecreasing property:  

f is a nondecreasing function for each variable over P , i.e. (1) (2)

i P i
x x≤  ( 1,2, , )i n= ⋯  implies 

(1) (1) (2) (2) (2)

1 2 1 2( , , , ) ( , , , )
n P n

f x x x f x x x≤⋯ ⋯
（1
）

, (1) (2),
i i

x x P∀ ∈ ; 

(AF3) Complement-preserving property:  

( ) ( )1 2 1 2( ), ( ), , ( ) ( , , , )
P P P n P n

f N x N x N x N f x x x=⋯ ⋯ , 
i

x P∀ ∈ . 

The family of all n-ary complement-preserving aggregation functions over P is denoted by 

( )nAF P . Sometimes we have to use the following condition: 

(AF4) 
1 2 1 2

( , , ) ( , , , )
n P n

f x x x f y y y≤⋯ ⋯  implies that there is an i such that 
i P i

x y≤ , 

,
i i

x y P∀ ∈ . 

 

Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, ( )n Df AF P∈  and 

( )1 2
( )( ) ( )( ), ( )( ), , ( )( )f

n
E A x f E A x E A x E A x= ⋯  for ( , )

C
A Map V P∈  and x U∈ . Then 

( , ( , ), , )f

C D
U Map V P P E  is a three-way decision space and the aggregation three-way decisions 

over n three-way decision spaces for ,
D

Pα β ∈  and 0 1β α≤ ≤ ≤  are defined as follows. 

(1) Acceptance region： 

( , ) 1~ ( , )1 ( , ) ( , )f f

nACP E A ACP E Aα β α β= , 

(2) Rejection region： 

{ }( , ) 1~ ( , )1 ( , ) 1 ( , ) | ( )( )
f f f

nREJ E A REJ E A x U E A xα β α β β= = ∈ < , 

(3) Uncertain region： 

( )( , ) 1~ ( , ) 1~ ( , ) 1~1 ( , ) 1 ( , ) 1 ( , )
c

f f f

n n nUNC E A ACP E A REJ E Aα β α β α β= ∪ . 

If DP  is a linear order, then { }( , ) 1~1 ( , ) | ( )( )
f f

nUNC E A x U E A xα β β α= ∈ ≤ < . 

The lower and upper approximations of the aggregation three-way decisions over n three-way 

decision spaces are 
1~( , ) ( , )

( , ) ( , )
f f

n
apr E A apr E A

α β α β
=  and 1~( , ) ( , )

( , ) ( , )
f

f

napr E A apr E Aα β α β=  

respectively. 

In the following, we discuss the properties of the aggregation three-way decisions and the lower 

and upper approximations, and relationships among the aggregation three-way decisions, the 

optimistic three-way decisions and the pessimistic three-way decisions. 



14 

 

Theorem 3.7. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, 

( )n Df AF P∈  and satisfy (AF4), ( , )
C

A Map V P∈  and 0 1β α≤ < ≤ . Then the following 

statements hold. 

(1) ( , ) 1~ ( , ) 1~ ( , ) 1~1 ( , ) 1 ( , ) 1 ( , )pe f op

n n nACP E A ACP E A ACP E Aα β α β α β⊆ ⊆ , 

(2) ( , ) 1~ ( , ) 1~ ( , ) 1~1 ( , ) 1 ( , ) 1 ( , )op f pe

n n nREJ E A REJ E A REJ E Aα β α β α β⊆ ⊆ . 

Proof. Let ( , ) 1~ ( , )

1

1 ( , ) 1 ( , )
n

pe

n i

i

x ACP E A ACP E Aα β α β
=

∈ =∩ . Then i∀ , ( , )1 ( , )ix ACP E Aα β∈ , i.e. 

( )( )
i

E A x α≥ . So  

1 2( )( ) ( ( )( ), ( )( ), , ( )( ))f

nE A x f E A x E A x E A x= ⋯  

( , , , )f α α α α≥ =⋯ ,  

i.e. ( , ) 1~1 ( , )f

nx ACP E Aα β∈ . If ( , ) 1~1 ( , )f

nx ACP E Aα β∈ , then 

1 2
( )( ) ( ( )( ), ( )( ), , ( )( ))f

n
E A x f E A x E A x E A x α= ≥⋯ .  

Hence there is an i such that ( )( )
i

E A x α≥  due to the condition (AF4) of f, i.e. 

( , ) 1~( , )
1

1 ( , ) 1 ( , )
n

op

i n

i

x apr E A ACP E Aα βα β
=

∈ =∪ .     

The second relation of inclusion can be proved in a similar way.      □ 

 

Theorem 3.8. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, 

( )n Df AF P∈ , , ( , )
C

A B Map V P∈  and 0 1β α≤ < ≤ . Then 

1~ 1~ 1~( , ) ( , ) ( , ) ( , ) ( , )
1 1

1 ( , ) 1 ( , ) 1 ( , ) 1 ( , ) 1 ( , )
n n

pe f op

n i n i n

i i

apr E A apr E A apr E A apr E A apr E A
α β α β α β α β α β

= =

= ⊆ ⊆ =∩ ∪  

and  

1~ 1~ 1~( , ) ( , ) ( , ) ( , ) ( , )

1 1

1 ( , ) 1 ( , ) 1 ( , ) 1 ( , ) 1 ( , )
n n

pe f op

n i n i n

i i

apr E A apr E A apr E A apr E A apr E Aα β α β α β α β α β
= =

= ⊆ ⊆ =∩ ∪ . 

Proof. It is straightforward from the definition of the lower and upper approximations of the 

aggregation three-way decisions and Theorem 3.7.    □ 

 

Theorem 3.9. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, 

( )n Df AF P∈ , ( , )
C

A Map V P∈ . If 0 1β β α α′ ′≤ ≤ < ≤ ≤ , then 

1~ 1~( , ) ( , )
1 ( , ) 1 ( , )

f f

n n
apr E A apr E A

α β α β′ ′
⊆  and 

1~ 1~( , ) ( , )
1 ( , ) 1 ( , )

f f

n napr E A apr E Aα β α β′ ′⊇ . 

Proof. It is straightforward from the definition of the lower and upper approximations of the 

aggregation three-way decisions.    □ 

 

3.5 Dynamic three-way decisions 

 

The following decisions are considered to be made up of more than one three-way decisions. 

Definition 3.7. Let ( , ( , ), , )
C D i

U Map V P P E  be thi  three-way decision space, ( , )
i C

A Map V P∈ , 

,
i i D

Pα β ∈  and 0 1
i i

β α≤ ≤ ≤  ( 1,2, ,i n= ⋯ ). Then the definition of dynamic three-way 

decisions is given below. 

(Decision 1) Acceptance region 1：
1 1

(1)

( , ) 1 1 1 1 11 ( , ) { | ( )( ) }ACP E A x U E A xα β α= ∈ ≥ . 

Rejection region 1：
1 1

(1)

( , ) 1 1 1 1 11 ( , ) { | ( )( ) }REJ E A x U E A xα β β= ∈ < . 
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Uncertain region 1： ( )
1 1 1 1 1 1

(1) (1) (1)

( , ) 1 1 ( , ) 1 1 ( , ) 1 1
1 ( , ) 1 ( , ) 1 ( , )

c

UNC E A ACP E A REJ E Aα β α β α β= ∪ . 

(Decision 2) If 
1 1

(1)

( , ) 1 11 ( , )UNC E Aα β ≠ ∅ , then 

Acceptance region 2： 

2 2 1 1 1 1

(2) (1) (1)

( , ) 2 2 ( , ) 1 1 ( , ) 1 1 2 2 21 ( , ) 1 ( , ) { 1 ( , ) | ( )( ) }ACP E A ACP E A x UNC E A E A xα β α β α β α= ∈ ≥∪ . 

Rejection region 2： 

2 2 1 1 1 1

(2) (1) (1)

( , ) 2 2 ( , ) 1 1 ( , ) 1 1 2 2 21 ( , ) 1 ( , ) { 1 ( , ) | ( )( ) }REJ E A REJ E A x UNC E A E A xα β α β α β β= ∈ <∪ . 

Uncertain region 2： ( )
2 2 2 2 2 2

(2) (2) (2)

( , ) 2 2 ( , ) 2 2 ( , ) 2 2
1 ( , ) 1 ( , ) 1 ( , )

c

UNC E A ACP E A REJ E Aα β α β α β= ∪ . 

     …… 

(Decision n) If 
1 1

( 1)

( , ) 1 11 ( , )
n n

n

n nUNC E Aα β− −

−

− − ≠ ∅ , then 

Acceptance region n： ( )

( , ) ( , )
n n

n

n nACP E Aα β =  

1 1 1 1

( 1) ( 1)

( , ) 1 1 ( , ) 1 11 ( , ) { 1 ( , ) | ( )( ) }
n n n n

n n

n n n n n n nACP E A x UNC E A E A xα β α β α
− − − −

− −

− − − −∈ ≥∪ . 

Rejection region n： ( )

( , ) ( , )
n n

n

n nREJ E Aα β =  

1 1 1 1

( 1) ( 1)

( , ) 1 1 ( , ) 1 11 ( , ) { 1 ( , ) | ( )( ) }
n n n n

n n

n n n n n n nREJ E A x UNC E A E A xα β α β β
− − − −

− −

− − − −∈ <∪ . 

Uncertain region n： ( )( ) ( ) ( )

( , ) ( , ) ( , )1 ( , ) 1 ( , ) 1 ( , )
n n n n n n

c
n n n

n n n n n n
UNC E A ACP E A REJ E Aα β α β α β= ∪ . 

 

4. On the refusal decision region in three-way decision space 

 

4.1 Three-way decisions 

 

In [9], the second question is what changes are there in three-way decisions when the uncertain 

region is defined by using inequality ( )( )E A xβ α< <  in Definition 2.3. In this section, the 

question is discussed. 

 

Definition 4.1. Let ( , ( , ), , )
C D

U Map V P P E  be a three-way decision space, ( , )
C

A Map V P∈ , 

,
D

Pα β ∈  and 0 1β α≤ < ≤ . Then the second new type of three-way decisions over the 

three-way decision space is defined as follows. 

(1) Acceptance region：
( , )

2 ( , ) { | ( )( ) }ACP E A x U E A xα β α= ∈ ≥ . 

(2) Rejection region：
( , )

2 ( , ) { | ( )( ) }REJ E A x U E A xα β β= ∈ ≤ . 

(3) Uncertain region： { }( , )
2 ( , ) | ( )( )UNC E A x U E A xα β β α= ∈ < < . 

In order to distinguish Definitions 2.2 and Definition 3.1, the notations of Acceptance region, 

Rejection region and Uncertain region are written as “ACP2”, “REJ2” and “UNC2”, respectively. 

If 
D

P  is not a linear order, then 
( , ) ( , )

2 ( , ) 2 ( , )ACP E A REJ E Aα β α β∪
( , )

2 ( , )UNC E Aα β∪  is not 

necessarily U. At this point ( )( , ) ( , ) ( , )2 ( , ) 2 ( , ) 2 ( , )U ACP E A REJ E A UNC E Aα β α β α β− ∪ ∪  is 

referred to as a refusal decision region, written as 
( , )

( , )REF E Aα β . There are large numbers of the 

nonlinear order sets, e.g., 2 [0,1] [0,1]I = × , 2

sI  (truth value set of intuitionistic fuzzy sets, 

Example 2.1(4) in [9]), 2I（ ） (truth value set of interval-valued fuzzy sets, Example 2.1(5) in [9]), 

(2 )UI  (interval sets, Example 2.1(6) in [6]), [0,1]2 − ∅  (truth value set of hesitant fuzzy sets, 

Theorem 4.2 in [10]),  
( 2)

2I − ∅  (truth value set of interval-valued hesitant fuzzy sets, Theorem 

5.4 in [10]). 

The uncertain region may be seen to objects of the delayed decision. The existence of a refusal 

decision region is due to noise data or the method is not applicable to the data. As in fuzzy pattern 
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recognition, if the identified object does not reach a predefined threshold, then it is refused to 

make decision or it cannot be identified through the method. 

The acceptance region and the rejection region in Definition 4.1 are the same as the ones in 

Definition 2.2. Therefore we can obtain similar results with [10] on 
( , )

2 ( , )ACP E Aα β  and 

( , )
2 ( , )REJ E Aα β . We can also define ( , )( , )

2 ( , ) 2 ( , )apr E A ACP E Aα βα β
=  and 

( )( , )( , )2 ( , ) 2 ( , )
c

apr E A REJ E Aα βα β =  and can obtain similar results with [7]. 

 

The following example illustrates the similarity and difference among different types of 

three-way decisions. In the following discussion, for fuzzy set ( , )A Map U I∈  and fuzzy relation 

( , )R Map U U I∈ × , we define ( )[ ] ( ) ( ) ( , )RA x y A y R x y⋅ = . 

 

Example 4.1. Let (2)

C DP P I= = , 
1 2 3 4 5

{ , , , , }U x x x x x= ,  

1 2 3 4 5

[0.4,0.7] [0.3,0.4] [0.1,0.4] [0.8,0.9] [0.6,0.8]
A

x x x x x
= + + + + (2)

[ , ] ( , )A A Map U I
− += ∈ , and 

1 0.8 0.6 0.4 0.6

0.8 1 0.6 0.4 0.6

0.6 0.6 1 0.4 0.9

0.4 0.4 0.4 1 0.4

0.6 0.6 0.9 0.4 1

R

 
 
 
 =
 
 
  

 

be a fuzzy equivalence relation on U. Then 

| [ ] | | [ ] |
( )( ) ,

| [ ] | | [ ] |

R R

R R

A x A x
E A x

x x

− + ⋅ ⋅
=  
 

 

is a decision evaluation function of U. 

By computing we obtain [ ]1( )( ) 0.406,0.618E A x = , [ ]2( )( ) 0.4,0.6E A x = , 

[ ]3( )( ) 0.394,0.611E A x = , 4( )( ) [0.523,0.7]E A x =  and [ ]5( )( ) 0.409,0.623E A x = . 

Consider [0.5,0.7]α =  and [0.4,0.6]β = , three types of three-way decisions based on 

three-way decision spaces are shown in Table 4.1. 

 

Table 4.1. Three types of three-way decisions based on three-way decision spaces 

Acceptance region Rejection region Uncertain region 

ACP 1ACP  2ACP  REJ REJ1 REJ2 UNC UNC1 UNC2 

4
{ }x  

4
{ }x  

4
{ }x  

2{ }x  ∅  2{ }x  
1 3 5{ , , }x x x  

1 2 3 5
{ , , , }x x x x  

1 5{ , }x x  

 

It follows from Table 4.1 that 

( , ) ( , ) ( , )
( , ) ( , ) ( , )ACP E A REJ E A UNC E A Uα β α β α β =∪ ∪  and 

( , ) ( , ) ( , )
1 ( , ) 1 ( , ) 1 ( , )ACP E A REJ E A UNC E A Uα β α β α β =∪ ∪ , but 

( , ) ( , ) ( , ) 1 2 4 5
2 ( , ) 2 ( , ) 2 ( , ) { , , , }ACP E A REJ E A UNC E A x x x xα β α β α β =∪ ∪  and  

( , ) 3
( , ) { }REF E A xα β = .   

In the first new type (Definition 3.1), the rejection region is empty, i.e., REJ1= ∅ . In 

Definition 2.2, however, it is not reasonable that [ ]2( )( ) 0.4,0.6E A x =  is rejected in accordance 
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with the standard [0.4,0.6]β = , i.e., REJ=
2

{ }x . And 
2

x  is added to uncertain region, since it 

does not meet the standard [0.5,0.7]α = . 

In the second new type, 
4

x  is accepted, 
2

x  is rejected, 1x  and 5x  are uncertain, and 3x  

is refused to make decision. In accordance with Definition 4.1, it is reasonable that 3x  is added 

to refusal decision region for the standards [0.5,0.7]α =  and [0.4,0.6]β = , since the width of 

[ ]3( )( ) 0.394,0.611E A x =  is too large. □ 

 

When { ( )( ), , }E A x α β  is a linear order subset of 
D

P , there is one inequality to be true in 

( )( )E A x α≥ , ( )( )E A x β≤  and ( )( )E A xβ α< < . Thus it follows the following properties on 

refusal decision region. 

Theorem 4.1. Let ( , ( , ), , )
C D

U Map V P P E  be a three-way decision space, ( , )
C

A Map V P∈ , 

,
D

Pα β ∈  and 0 1β α≤ < ≤ . Then 
( , )

( , )REF E Aα β = ∅  if and only if { ( )( ), , }E A x α β  is a 

linear order subset of 
D

P  for any x U∈ . 

 

Corollary 4.1. Let ( , ( , ), , )
C D

U Map V P P E  be a three-way decision space, ( , )
C

A Map V P∈ , 

,
D

Pα β ∈  and 0 1β α≤ < ≤ . Then the following hold. 

  (1) 
( , ) ( , )

( , ) ( , )REF E REF E Vα β α β∅ = = ∅ . 

(2) If 
D

P  is linear, then 
( , )

( , )REF E Aα β = ∅ . 

 

4.2 The optimistic three-way decisions over multiple three-way decision spaces 

 

The above conclusions in Section 4.1 can be extended to multiple three-way decision spaces. 

Definition 4.2. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, 

( , )
C

A Map V P∈ , ,
D

Pα β ∈  and 0 1β α≤ < ≤ . Then optimistic three-way decisions over n 

three-way decision spaces are defined as follows. 

(1) Acceptance region： ( , ) 1~ ( , ) 1~2 ( , ) ( , )op op

n nACP E A ACP E Aα β α β= . 

(2) Rejection region： { }( , ) 1~ ( , )

1 1

2 ( , ) 2 ( , ) | ( )( )
n n

op

n i i

i i

REJ E A REJ E A x U E A xα β α β β
= =

= = ∈ ≤∩ ∩ . 

(3) Uncertain region： 

{ } { }( , ) 1~

1 1

2 ( , ) | ( )( ) | ( )( )
n n

op

n i i

i i

UNC E A x U E A x x U E A xα β β α
= =

   
= ∈ > ∈ <   
   

∩∪ ∩ . 

 

Note 4.1. If 
D

P  is a linear order, then  

{ }( , ) 1~
1

2 ( , ) | ( )( )
n

op

n i
i

ACP E A x U E A xα β α
=

= ∈ ∨ ≥ , 

{ }( , ) 1~
1

2 ( , ) | ( )( )
n

op

n i
i

REJ E A x U E A xα β β
=

= ∈ ∨ ≤  and 

{ }( , ) 1~
1

2 ( , ) | ( )( )
n

op

n i
i

UNC E A x U E A xα β β α
=

= ∈ < ∨ < . 

( )( , ) 1~ ( , ) 1~ ( , ) 1~2 ( , ) 2 ( , ) 2 ( , )op op op

n n nU ACP E A REJ E A UNC E Aα β α β α β− ∪ ∪  is referred to as a refusal 

decision region, written as ( , ) 1~( , )op

nREF E Aα β . 

 

4.3 The pessimistic three-way decisions over multiple three-way decision spaces 

 

We can consider another type of three-way decisions over multiple three-way decision spaces. 
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Definition 4.3. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯  ) be n three-way decision spaces, 

( , )
C

A Map V P∈ , ,
D

Pα β ∈  and 0 1β α≤ < ≤ . Then pessimistic three-way decisions over n 

three-way decision spaces are defined as 

(1) Acceptance region： 

( , ) 1~ ( , ) 1~2 ( , ) ( , )pe pe

n nACP E A ACP E Aα β α β= . 

(2) Rejection region： 

{ }( , ) 1~ ( , )

1 1

2 ( , ) 2 ( , ) | ( )( )
n n

pe

n i i

i i

REJ E A REJ E A x U E A xα β α β β
= =

= = ∈ ≤∪ ∪ . 

(3) Uncertain region： 

{ } { }( , ) 1~

1 1

2 ( , ) | ( )( ) | ( )( )
n n

pe

n i i

i i

UNC E A x U E A x x U E A xα β β α
= =

   
= ∈ > ∈ <   
   

∩∩ ∪ . 

 

Note 4.2. (1) { }( , ) 1~
1

2 ( , ) | ( )( )
n

pe

n i
i

ACP E A x U E A xα β α
=

= ∈ ∧ ≥  

(2) If 
D

P  is a linear order, then  

{ }( , ) 1~
1

2 ( , ) | ( )( )
n

pe

n i
i

REJ E A x U E A xα β β
=

= ∈ ∧ ≤ . 

 

( )( , ) 1~ ( , ) 1~ ( , ) 1~2 ( , ) 2 ( , ) 2 ( , )pe pe pe

n n nU ACP E A REJ E A UNC E Aα β α β α β− ∪ ∪  is referred to as a refusal 

decision region, written as 
( , ) 1~

( , )pe

n
REF E Aα β . 

 

Here, we use an example to illustrate some notions of the optimistic and pessimistic three-way 

decisions over multiple three-way decision spaces. 

Example 4.2. Let (2)

C DP P I= = , 
1 2 3 4 5

{ , , , , }U x x x x x= ,  

1 2 3 4 5

[0.4,0.7] [0.2,0.3] [0.1,0.38] [0.8,0.9] [0.6,0.8]
A

x x x x x
= + + + + (2)

[ , ] ( , )A A Map U I
− += ∈ , and 

1 0.8 0.6 0.4 0.6

0.8 1 0.6 0.4 0.6

0.6 0.6 1 0.4 0.9

0.4 0.4 0.4 1 0.4

0.6 0.6 0.9 0.4 1

R

 
 
 
 =
 
 
  

 

be a fuzzy equivalence relation on U.  

   1( )E A A=  and  

2

| [ ] | | [ ] |
( )( ) ,

| [ ] | | [ ] |

R R

R R

A x A x
E A x

x x

− + 
=  
 

∩ ∩
 

both are evaluation functions of U. 

By computing we obtain  

[ ] [ ] [ ] [ ] [ ]
2

1 2 3 4 5

0.5,0.7 0.5,0.7 0.486,0.709 0.731,0.915 0.486,0.709
( )E A

x x x x x
= + + + + . 

In two three-way decision spaces 1( , ( ,{0,1}),[0,1], )U Map U E  and 

2( , ( ,{0,1}),[0,1], )U Map U E , if we consider three groups of different parameters ,α β , then 

acceptance regions, rejection regions, uncertain regions and refusal decision regions of optimistic 

and pessimistic three-way decisions of A over two three-way decision spaces are listed in Table 
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4.2. 

 

Table 4.2 

Acceptance regions, rejection regions, uncertain regions and refusal decision regions of the optimistic and 

pessimistic three-way decisions of A over two three-way decision spaces for different ,α β . 

 
[0.5,0.7]

[0.6,0.8]

β

α

=

=
 

[0.5,0.6]

[0.6,0.7]

β

α

=

=
 

[0.6,0.8]

[0.8,0.9]

β

α

=

=
 

( , ) 1~2( , )opACP E Aα β  
4 5

{ , }x x  
4 5

{ , }x x  
4

{ }x  

( , ) 1~2( , )opREJ E Aα β  
1 2

{ , }x x  ∅  1 2 3 5
{ , , , }x x x x  

( , ) 1~ 2( , )opUNC E Aα β  
3

{ }x  
1 2 3

{ , , }x x x  ∅  

( , ) 1~2( , )peACP E Aα β  
4

{ }x  
4

{ }x  ∅  

( , ) 1~2( , )peREJ E Aα β  
1 2 3

{ , , }x x x  
1 2 3

{ , , }x x x  
1 2 3 5

{ , , , }x x x x  

( , ) 1~ 2( , )peUNC E Aα β  
5

{ }x  
5

{ }x  
4

{ }x  

( , ) 1~21 ( , )opACP E Aα β  
4 5

{ , }x x  
4 5

{ , }x x  
4

{ }x  

( , ) 1~ 21 ( , )opREJ E Aα β  ∅  ∅  1 2 3
{ , , }x x x  

( , ) 1~ 21 ( , )opUNC E Aα β  
1 2 3

{ , , }x x x  
1 2 3

{ , , }x x x  
5

{ }x  

( , ) 1~21 ( , )peACP E Aα β  
4

{ }x  
4

{ }x  ∅  

( , ) 1~ 21 ( , )peREJ E Aα β  
1 2 3

{ , , }x x x  
1 2 3

{ , , }x x x  
1 2 3 5

{ , , , }x x x x  

( , ) 1~ 21 ( , )peUNC E Aα β  
5

{ }x  
5

{ }x  
4

{ }x  

( , ) 1~ 22 ( , )opACP E Aα β  
4 5

{ , }x x  
4 5

{ , }x x  
4

{ }x  

( , ) 1~22 ( , )opREJ E Aα β  
1 2

{ , }x x  ∅  1 2 3 5
{ , , , }x x x x  

( , ) 1~22 ( , )opUNC E Aα β  ∅  1 2
{ , }x x  ∅  

( , ) 1~2( , )opREF E Aα β  
3

{ }x  
3

{ }x  ∅  

( , ) 1~ 22 ( , )peACP E Aα β  
4

{ }x  
4

{ }x  ∅  

( , ) 1~22 ( , )peREJ E Aα β  
1 2 3

{ , , }x x x  
1 2 3

{ , , }x x x  
1 2 3 5

{ , , , }x x x x  

( , ) 1~22 ( , )peUNC E Aα β  ∅  ∅  ∅  

( , ) 1~2( , )peREF E Aα β  
5

{ }x  
5

{ }x  
4

{ }x  

 

It follows from Table 4.2 that 

( , ) 1 2 ( , ) 1 2 ( , ) 1 2( , ) ( , ) ( , )op op opACP E A REJ E A UNC E A Uα β α β α β∼ ∼ ∼ =∪ ∪  and 

( , ) 1 2 ( , ) 1 2 ( , ) 1 21 ( , ) 1 ( , ) 1 ( , )pe pe peACP E A REJ E A UNC E A Uα β α β α β∼ ∼ ∼ =∪ ∪ ,  

for three groups of different parameters ,α β . 

But 

( , ) 1 2 ( , ) 1 2 ( , ) 1 2 1 2 4 52 ( , ) 2 ( , ) 2 ( , ) { , , , }op op opACP E A REJ E A UNC E A x x x x Uα β α β α β∼ ∼ ∼ = ≠∪ ∪  and  

( , ) 1 2 3( , ) { }opREF E A xα β ∼ = , 

for ( , ) ([0.6,0.8],[0.5,0.7])α β =  or ( , ) ([0.6,0.7],[0.5,0.6])α β = . 

 ( , ) 1 2 ( , ) 1 2 ( , ) 1 2 1 2 3 42 ( , ) 2 ( , ) 2 ( , ) { , , , }pe pe peACP E A REJ E A UNC E A x x x x Uα β α β α β∼ ∼ ∼ = ≠∪ ∪  and  

( , ) 1 2 5( , ) { }peREF E A xα β ∼ = , 

for three groups of different parameters ,α β . 

In the first new type (Definition 3.3), the rejection region of optimistic three-way decisions 

over multiple three-way decision spaces is empty, i.e., ([0.6,0.8],[0.5,0.7]) 1~21 ( , )opREJ E A = ∅ . By 

Definition 4.2, however, ([0.6,0.8],[0.5,0.7]) 1~2 1 22 ( , ) { , }opREJ E A x x= . This is mainly because 

[ ]1 2 2 2( )( ) ( )( ) 0.5,0.7E A x E A x= =  and different conditions for REJ1 and REJ2 in accordance with 



20 

 

the standard [0.5,0.7]β = .  

On the other hand, by Definition 3.5 and Definition 4.3, 

([0.6,0.8],[0.5,0.7]) 1~2 ([0.6,0.8],[0.5,0.7]) 1~2 1 1 31 ( , ) 2 ( , ) { , , }pe peREJ E A REJ E A x x x= =  

Since 
1 3
( )( ) [0.1,0.38]E A x =  and 

2 3
( )( ) [0.486,0.709]E A x = , 

3
x  is rejected from a 

pessimistic point of view, but 
3

x  is not rejected from an optimistic point of view, here 
3

x  is in 

uncertain and in refusal decision region according to Definition 3.5 (UNC1) and Definition 4.3 

(REF), respectively.    □ 

 

4.4 The aggregation three-way decisions over multiple three-way decision spaces 

 

Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, 

( )n Df AF P∈ , ( , )
C

A Map V P∈ , ,
D

Pα β ∈  and 0 1β α≤ < ≤ . Then the aggregation three-way 

decisions over n three-way decision spaces are defined as follows. 

(1) Acceptance region： 

( , ) 1~ ( , )2 ( , ) ( , )f f

nACP E A ACP E Aα β α β= , 

(2) Rejection region： 

{ }( , ) 1~ ( , )2 ( , ) 2 ( , ) | ( )( )
f f f

nREJ E A REJ E A x U E A xα β α β β= = ∈ ≤ , 

(3) Uncertain region： 

( , ) 1~ ( , ) 1~ ( , ) 1~2 ( , ) 2 ( , ) 2 ( , )f f f

n n nUNC E A U ACP E A REJ E Aα β α β α β= − ∪ . 

If DP  is a linear order, then { }( , ) 1~2 ( , ) | ( )( )
f f

nUNC E A x U E A xα β β α= ∈ < < . 

The lower and upper approximations of the aggregation three-way decisions over n three-way 

decision spaces are 
1~( , ) ( , )

2 ( , ) 2 ( , )
f f

n
apr E A apr E A

α β α β
=  and 

1~( , ) ( , )
2 ( , ) 2 ( , )

f
f

napr E A apr E Aα β α β=  respectively. 

In the following, we discuss properties of the aggregation three-way decisions and the lower 

and upper approximations, and relationships among the aggregation three-way decisions, the 

optimistic three-way decisions and the pessimistic three-way decisions. 

 

Theorem 4.2. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, 

( )n Df AF P∈  and satisfy (AF4), ( , )
C

A Map V P∈  and 0 1β α≤ < ≤ . Then the following 

statements hold. 

(1) ( , ) 1~ ( , ) 1~ ( , ) 1~2 ( , ) 2 ( , ) 2 ( , )pe f op

n n nACP E A ACP E A ACP E Aα β α β α β⊆ ⊆ , 

(2) ( , ) 1~ ( , ) 1~ ( , ) 1~2 ( , ) 2 ( , ) 2 ( , )op f pe

n n nREJ E A REJ E A REJ E Aα β α β α β⊆ ⊆ . 

Proof. (1) It takes notice of ( , ) 1~ ( , ) 1~2 ( , ) ( ,pe pe

n nACP E A ACP E Aα β α β= , 

( , ) 1~ ( , ) 1~2 ( , ) ( , )f f

n nACP E A ACP E Aα β α β=  and ( , ) 1~ ( , ) 1~2 ( , ) ( , )op op

n nACP E A ACP E Aα β α β= . So it holds 

from Theorem 3.7 in [12]. 

(2) Let ( , ) 1~ ( , )

1

2 ( , ) 2 ( , )
n

op

n i

i

x REJ E A REJ E Aα β α β
=

∈ =∩ . Then i∀ , ( , )2 ( , )ix REJ E Aα β∈ , i.e. 

( )( )
i

E A x β≤ . So  

1 2( )( ) ( ( )( ), ( )( ), , ( )( ))f

nE A x f E A x E A x E A x= ⋯  

( , , , )f β β β β≤ =⋯ ,  

i.e. ( , ) 1~2 ( , )f

nx REJ E Aα β∈ . If ( , ) 1~2 ( , )f

nx REJ E Aα β∈ , then 

1 2( )( ) ( ( )( ), ( )( ), , ( )( ))f

nE A x f E A x E A x E A x β= ≤⋯ .  
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Hence there is an i such that ( )( )iE A x β≤  due to the condition (AF4) of f, i.e. 

( , ) 1~( , )
1

2 ( , ) 2 ( , )
n

op

i n

i

x apr E A REJ E Aα βα β
=

∈ =∪ .          □ 

 

Theorem 4.3. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, 

( )n Df AF P∈  and satisfy (AF4), , ( , )
C

A B Map V P∈  and 0 1β α≤ < ≤ . Then 

1~ 1~ 1~( , ) ( , ) ( , )
2 ( , ) 2 ( , ) 2 ( , )

pe f op

n n n
apr E A apr E A apr E A

α β α β α β
⊆ ⊆  

and  

1~ 1~ 1~( , ) ( , ) ( , )
2 ( , ) 2 ( , ) 2 ( , )

pe f op

n n napr E A apr E A apr E Aα β α β α β⊆ ⊆ . 

Proof. It is straightforward from the definition of the lower and upper approximations of the 

aggregation three-way decisions and Theorem 4.2.    □ 

 

Theorem 4.4. Let ( , ( , ), , )
C D i

U Map V P P E  ( 1,2, ,i n= ⋯ ) be n three-way decision spaces, 

( )n Df AF P∈ , ( , )
C

A Map V P∈ . If 0 1β β α α′ ′≤ ≤ < ≤ ≤ , then 

1~ 1~( , ) ( , )
2 ( , ) 2 ( , )

f f

n n
apr E A apr E A

α β α β′ ′
⊆  and 

1~ 1~( , ) ( , )
2 ( , ) 2 ( , )

f f

n napr E A apr E Aα β α β′ ′⊇ . 

Proof. It is straightforward from the definition of the lower and upper approximations of the 

aggregation three-way decisions.    □ 

 

In the following, we use an example to illustrate some notions of the aggregation three-way 

decisions over multiple three-way decision spaces. 

Example 4.3. Consider two three-way decision spaces 
1

( , ( ,{0,1}),[0,1], )U Map U E  and 

2
( , ( ,{0,1}),[0,1], )U Map U E in Example 4.2 again, where  

1

1 2 3 4 5

[0.4,0.7] [0.2,0.3] [0.1,0.38] [0.8,0.9] [0.6,0.8]
( )E A

x x x x x
= + + + + , 

[ ] [ ] [ ] [ ] [ ]
2

1 2 3 4 5

0.5,0.7 0.5,0.7 0.486,0.709 0.731,0.915 0.486,0.709
( )E A

x x x x x
= + + + + . 

If we consider 2-ary complement-preserving aggregation function 

1 2 2 2 1 2 2 2([ , ],[ , ]) [min{ , },max{ , }]f x x x x x x x x− − − + − − − += , 

then  

[ ] [ ] [ ] [ ] [ ]

1 2 3 4 5

0.4,0.7 0.2,0.7 0.1,0.709 0.731,0.915 0.486,0.8
( )fE A

x x x x x
= + + + +  

Consider [0.6,0.8]α =  and [0.4,0.7]β = , then acceptance regions, rejection regions, 

uncertain regions and refusal decision regions of aggregation three-way decisions of A over two 

three-way decision spaces are listed in Table 4.3. 
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Table 4.3. Three types of aggregation three-way decisions based on three-way decision spaces 

Acceptance region Rejection region Uncertain region 

ACP 1ACP  2ACP  REJ REJ1 REJ2 UNC UNC1 UNC2 

4
{ }x  

4
{ }x  

4
{ }x  1 2{ , }x x  

2{ }x  1 2{ , }x x  
3 5{ , }x x  

1 3 5{ , , }x x x  
5{ }x  

 

It follows from Table 4.3 that 

( , ) 1 2 ( , ) 1 2 ( , ) 1 2( , ) ( , ) ( , )f f fACP E A REJ E A UNC E A Uα β α β α β∼ ∼ ∼ =∪ ∪  and 

( , ) 1 2 ( , ) 1 2 ( , ) 1 21 ( , ) 1 ( , ) 1 ( , )f f fACP E A REJ E A UNC E A Uα β α β α β∼ ∼ ∼ =∪ ∪ , but 

( , ) 1 2 ( , ) 1 2 ( , ) 1 2 1 2 4 52 ( , ) 2 ( , ) 2 ( , ) { , , , }f f fACP E A REJ E A UNC E A x x x xα β α β α β∼ ∼ ∼ =∪ ∪  and  

( , ) 1 2 3( , ) { }fREF E A xα β ∼ = .   

In the first new type, the rejection region is ([0.6,0.8],[0.4,0.7]) 21 ( , ) { }fREJ E A x= . In Definition 

2.2, however, it is not reasonable that [ ]1( )( ) 0.4,0.7fE A x =  is rejected in accordance with the 

standard [0.4,0.7]β = , i.e., REJ=
2

{ }x . And 
1

x  is added to uncertain region, since it does not 

meet the standard [0.6,0.8]α = . 

In the second new type, 
4

x  is accepted, 1x  and 
2

x  are rejected, 5x  is uncertain, and 3x  

is refused to make decision. In accordance with definition of aggregation three-way decisions, it is 

reasonable that 3x  is added to refusal decision region for the standards [0.6,0.8]α =  and 

[0.4,0.7]β = , since the width of [ ]3( )( ) 0.1,0.709fE A x =  is too large. □ 

 

4.5 Dynamic three-way decisions 

 

The following decisions are considered to be made up of more than one three-way decisions. 

Definition 4.4. Let ( , ( , ), , )
C D i

U Map V P P E  be thi  three-way decision space, ( , )
i C

A Map V P∈ , 

,
i i D

Pα β ∈  and 0 1
i i

β α≤ < ≤  ( 1,2, ,i n= ⋯ ). Then strict definition of dynamic three-way 

decisions is given below. 

(Decision 1)  

Acceptance region 1：
1 1

(1)

( , ) 1 1 1 1 12 ( , ) { | ( )( ) }ACP E A x U E A xα β α= ∈ ≥ . 

Rejection region 1：
1 1

(1)

( , ) 1 1 1 1 12 ( , ) { | ( )( ) }REJ E A x U E A xα β β= ∈ ≤ . 

Uncertain region 1：
1 1

(1)

( , ) 1 1 1 1 1 12 ( , ) { | ( )( ) }UNC E A x U E A xα β β α= ∈ < < . 

Refusal decision region 1： 

( )
1 1 1 1 1 1 1 1

(1) (1) (1) (1)

( , ) 1 1 ( , ) 1 1 ( , ) 1 1 ( , ) 1 1
( , ) 2 ( , ) 2 ( , ) 2 ( , )REF E A U ACP E A REJ E A UNC E Aα β α β α β α β= − ∪ ∪  

        If 
1 1

(1)

( , ) 1 12 ( , )UNC E Aα β = ∅ , then it is end of three-way decisions; or continue to the next 

step. 

(Decision 2) 

Acceptance region 2： 

{ }
2 2 1 1 1 1

(2) (1) (1)

( , ) 2 2 ( , ) 1 1 ( , ) 1 1 2 2 2
2 ( , ) 2 ( , ) 2 ( , ) | ( )( )ACP E A ACP E A x UNC E A E A xα β α β α β α= ∈ ≥∪ . 

Rejection region 2： 

{ }
2 2 1 1 1 1

(2) (1) (1)

( , ) 2 2 ( , ) 1 1 ( , ) 1 1 2 2 2
2 ( , ) 2 ( , ) 2 ( , ) | ( )( )REJ E A REJ E A x UNC E A E A xα β α β α β β= ∈ ≤∪ . 

Uncertain region 2： 

{ }
2 2 1 1

(2) (1)

( , ) 2 2 ( , ) 1 1 2 2 2 2
2 ( , ) 2 ( , ) | ( )( )UNC E A x UNC E A E A xα β α β β α= ∈ < < . 

Refusal decision region 2： 
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( )
2 2 2 2 2 2 2 2

(2) (2) (2) (2)

( , ) 2 2 ( , ) 2 2 ( , ) 2 2 ( , ) 2 2
( , ) 2 ( , ) 2 ( , ) 2 ( , )REF E A U ACP E A REJ E A UNC E Aα β α β α β α β= − ∪ ∪ . 

       …… 

       If 
1 1

( 1)

( , ) 1 12 ( , )
n n

n

n nUNC E Aα β− −

−

− − = ∅ , then it is end of three-way decisions; or continue to the 

next step. 

(Decision n)  

Acceptance region n： 

1 1

( ) ( 1)

( , ) ( , ) 1 12 ( , ) 2 ( , )
n n n n

n n

n n n nACP E A ACP E Aα β α β− −

−

− −= ∪  

{ }
1 1

( 1)

( , ) 1 1
2 ( , ) | ( )( )

n n

n

n n n n n
x UNC E A E A xα β α

− −

−

− −∈ ≥ . 

Rejection region n： 

1 1

( ) ( 1)

( , ) ( , ) 1 12 ( , ) 2 ( , )
n n n n

n n

n n n nREJ E A REJ E Aα β α β− −

−

− −= ∪  

{ }
1 1

( 1)

( , ) 1 1
2 ( , ) | ( )( )

n n

n

n n n n n
x UNC E A E A xα β β

− −

−

− −∈ ≤ . 

Uncertain region n： 
( )

( , )2 ( , )
n n

n

n nUNC E Aα β = { }
1 1

( 1)

( , ) 1 12 ( , ) | ( )( )
n n

n

n n n n n nx UNC E A E A xα β β α
− −

−

− −∈ < < . 

Refusal decision region n： 

( )( ) ( ) ( ) ( )

( , ) ( , ) ( , ) ( , )
( , ) 2 ( , ) 2 ( , ) 2 ( , )

n n n n n n n n

n n n n

n n n n n n n n
REF E A U ACP E A REJ E A UNC E Aα β α β α β α β= − ∪ ∪ . 

 

Dynamic three-way decisions are shown as Fig. 4.1. 

 
Fig. 4.1 Dynamic three-way decisions 

 

In the following, we use an example to illustrate some notions of the dynamic three-way 

decisions over multiple three-way decision spaces. 

Example 4.4. Consider two three-way decision spaces 
1

( , ( ,{0,1}),[0,1], )U Map U E  and 

2
( , ( ,{0,1}),[0,1], )U Map U E in Example 4.2 again, where  

1

1 2 3 4 5

[0.4,0.7] [0.2,0.3] [0.1,0.38] [0.8,0.9] [0.6,0.8]
( )E A

x x x x x
= + + + + , 

[ ] [ ] [ ] [ ] [ ]
2

1 2 3 4 5

0.5,0.7 0.5,0.7 0.486,0.709 0.731,0.915 0.486,0.709
( )E A

x x x x x
= + + + + . 

Consider 
1

[0.7,0.8]α =  and 
1

[0.5,0.6]β = , 
2

[0.5,0.7]α =  and 
2

[0.4,0.5]β = , then 

acceptance regions, rejection regions, uncertain regions and refusal decision regions of dynamic 

three-way decisions of A over two three-way decision spaces are listed in Table 4.4. 

 

Table 4.4. Three types of dynamic three-way decisions based on three-way decision spaces 

U 

Rejection region 2 Uncertain region 2 / REF 2 

Rejection region n 

Acceptance region 2 

Acceptance region n 

Acceptance region 1 Rejection region 1 

Uncertain region n / REF n 

⋮ ⋮⋮

… … 

Uncertain region 1/ REF 1 

T
h

e 1
st d

ecisio
n
 

T
h

e 2
n

d
 d

ecisio
n
 

T
h

e n
th

 d
ecisio

n
 

T
h

e 1
st d

ecisio
n
 

T
h

e 2
st d

ecisio
n
 

T
h

e n
th

 d
ecisio

n
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 Decision 1 Decision 2 

Acceptance region 
1 1

(1)

( , ) 1 42 ( , ) { }ACP E A xα β =  
2 2

(2)

( , ) 2 1 42 ( , ) { , }ACP E A x xα β =  

Rejection region 
1 1

(1)

( , ) 1 2 32 ( , ) { , }REJ E A x xα β =  
2 2

(2)

( , ) 2 2 32 ( , ) { , }REJ E A x xα β =  

Uncertain region 
1 1

(1)

( , ) 1 52 ( , ) { }UNC E A xα β =  
2 2

(2)

( , ) 22 ( , )UNC E Aα β = ∅  

Refusal decision region 
1 1

(1)

( , ) 1 1( , ) { }REF E A xα β =  
2 2

(2)

( , ) 2 5( , ) { }REF E A xα β =  

It follows from Table 4.4 that 

( , ) ( , ) ( , )( , ) ( , ) ( , )f f fACP E A REJ E A UNC E A Uα β α β α β =∪ ∪  and 

( , ) ( , ) ( , )1 ( , ) 1 ( , ) 1 ( , )f f fACP E A REJ E A UNC E A Uα β α β α β =∪ ∪ , but 

( , ) ( , ) ( , ) 1 2 4 52 ( , ) 2 ( , ) 2 ( , ) { , , , }f f fACP E A REJ E A UNC E A x x x xα β α β α β =∪ ∪  and  

( , ) 3( , ) { }fREF E A xα β = .   

In the first new type (Definition 3.1), the rejection region is REJ1= 2{ }x . In Definition 2.2, 

however, it is not reasonable that [ ]1( )( ) 0.4,0.7fE A x =  is rejected in accordance with the 

standard [0.4,0.7]β = , i.e., REJ=
2

{ }x . And 
1

x  is added to uncertain region, since it does not 

meet the standard [0.6,0.8]α = . 

In the second new type, 
4

x  is accepted, 1x  and 
2

x  are rejected, 5x  is uncertain, and 3x  

is refused to make decision. In accordance with Definition 4.1, it is reasonable that 3x  is added 

to refusal decision region for the standards [0.6,0.8]α =  and [0.4,0.7]β = , since the width of 

[ ]3( )( ) 0.1,0.709fE A x =  is too large. □ 

 

5. Conclusions 

This paper discusses two new types of three-way decisions in three-way decision spaces through 

answering two questions in [9]. The first type relates to parameter changes in assumptions and 

another type involves refusal decision region. For the sake of clarity, we summarize the main 

conclusions on parameter assumption, acceptance region, rejection region and uncertain region 

under three types in Table 5.1. 

 

Table 5.1. 

Parameter assumption, acceptance region, rejection region and uncertain region under three types. 

 First type Second type Existing type  

Parameter assumption 0 1β α≤ ≤ ≤  0 1β α≤ < ≤  0 1β α≤ < ≤  

Acceptance region { | ( ) }x U E A α∈ ≥  { | ( ) }x U E A α∈ ≥  { | ( ) }x U E A α∈ ≥  

Rejection region | ( ) }x U E A β∈ <  { | ( ) }x U E A β∈ ≤  { | ( ) }x U E A β∈ ≤  

Uncertain region 
({ | ( ) }x U E A α∈ ≥  

){ | ( ) }
c

x U E A β∈ <∪  
{ | ( ) }x U E Aβ α∈ < <  

({ | ( ) }x U E A α∈ ≥  

){ | ( ) }
c

x U E A β∈ <∪  

 

From Table 5.1, we can see the following conclusions.. 

(1) Acceptance regions of either new types or existing type are same. 

(2) If we consider linear order, second type and existing type are same. Only while we consider 

nonlinear order, uncertain regions of second type and existing type are different. 
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There exist the following benefits in the first new type: 

(1) Two-way decisions can regard as special cases of three-way decisions when two decision 

parameters are equal and the order of decision measurement is a linear order.  

(2) Acceptance with “large than or equal to” and rejection with “less than” are more in line 

with practical applications and semantic. 

(3) It unifies double evaluation function with a single evaluation function where three-way 

decisions based on double evaluation functions are classified as some operations of three-way 

decisions based on single evaluation function. 

There exist the following benefits in the second new type: 

There are refusal decision region in pattern recognition and decision making. This paper 

introduces refusal decision region in three-way decision. The type may be applied to pattern 

recognition, decision making, cluster analysis, etc. 

We will discuss inference rules and potential applications of these new types of three-way 

decisions in three-way decision spaces in future work. 
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