
Fast algorithms for large scale generalized distance weighted

discrimination

Xin Yee Lam∗, J.S. Marron†, Defeng Sun‡, and Kim-Chuan Toh§

January 26, 2017

Abstract

High dimension low sample size statistical analysis is important in a wide range of ap-
plications. In such situations, the highly appealing discrimination method, support vector
machine, can be improved to alleviate data piling at the margin. This leads naturally to the
development of distance weighted discrimination (DWD), which can be modeled as a second-
order cone programming problem and solved by interior-point methods when the scale (in
sample size and feature dimension) of the data is moderate. Here, we design a scalable and
robust algorithm for solving large scale generalized DWD problems. Numerical experiments
on real data sets from the UCI repository demonstrate that our algorithm is highly efficient
in solving large scale problems, and sometimes even more efficient than the highly optimized
LIBSVM for solving the corresponding SVM problems.

Mathematics Subject Classification: 90C25, 90C06, 90C90
Keywords: distance weighted discrimination, data piling, convergent multi-block ADMM, sup-
port vector machine.

1 Introduction

We consider the problem of finding a (kernelized) linear classifier for a training data set {(xi, yi)}ni=1

with xi ∈ Rd and the class label yi ∈ {−1, 1} for all i = 1, . . . , n. Here n is the sample size (the
number of data vectors available) and d is the feature dimension. By far, the most popular
and successful method for getting a good linear classifier from the training data is the support
vector machine (SVM), originally proposed by Vapnik [26]. Indeed, it has been demonstrated
in [10] that the kernel SVM is one of the best performers in the pool of 179 commonly used
classifiers. Despite its success, it has been observed in Marron et al. [20] that SVM may suffer
from a “data-piling” problem in the high-dimension-low-sample size (HDLSS) setting (where
the sample size n is smaller than the feature dimension d). The authors proposed a new linear
classifier, called “Distance Weighted Discrimination” (DWD), as a superior alternative to the
SVM. DWD has become a workhorse method for a number of statistical tasks, including data

∗Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076.
†Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC 27599-3260

(marron@email.unc.edu).
‡Department of Mathematics and Risk Management Institute, National University of Singapore, 10 Lower

Kent Ridge Road, Singapore 119076 (matsundf@nus.edu.sg).
§Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076

(mattohkc@nus.edu.sg).

1

This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Computational and Graphical Statistics on 17 May 2018
(published online), available at: http://www.tandfonline.com/10.1080/10618600.2017.1366915.

This is the Pre-Published Version.

visualization [19], hypothesis testing linked with visualization in very high dimensions [28], and
adjustment for data biases and heterogeneity [1] and [18].

It is well known that there is a strong need for efficient HDLSS methods for the settings where
d is large, say in the order of 104–105, especially in the area of genetic molecular measurements
(usually having a small sample size, where many gene level features have been measured),
chemometrics (typically a small sample of high dimensional spectra) and medical image analysis
(a small sample of 3-d shapes represented by high-dimensional vectors). On the other hand,
given the advent of a huge volume of data collectible through various sources, especially from
the internet, it is also important for us to consider the case where the sample size n is large, while
the feature dimension may be moderate. Thus in this paper, we are interested in the problem
of finding a linear classifier through DWD for data instances where n and/or d are large.

In [20], DWD is reformulated as a second-order cone programming (SOCP) problem, and
the resulting model is solved by using a primal-dual interior-point method for SOCP problems
implemented in the software SDPT3 [24]. However, the IPM based solver employed for DWD in
[20] is computationally very expensive for solving problems where n or d is large, thus making
it impractical for large scale problems. A recent approach to overcome such a computational
bottleneck has appeared in [27], where the authors proposed a novel reformulation of the primal
DWD model which consists of minimizing a highly nonlinear convex objective function subject
to a ball constraint. The resulting problem is solved via its dual and an MM (minimization-
majorization) algorithm is designed to compute the Lagrangian dual function for each given dual
multiplier. The algorithm appears to be quite promising in theory for solving large scale DWD
problems. However, the current numerical experiments and implementation of the proposed
algorithm in [27] are preliminary and limited to small scale data instances, and it appears that
substantial work must be done to make it efficient for large scale instances. Hence it is premature
to compare our proposed algorithm with the one in [27].

The main contribution of this paper is to design a new method for solving large scale DWD
problems, where we target to solve a problem with the sample size n ≈ 104–106 and/or the
dimension d ≈ 104–105. Our method is a convergent 3-block semi-proximal alternating direction
method of multipliers (ADMM), which is designed based on the recent advances in research on
convergent multi-block ADMM-type methods [23, 16, 5] for solving convex composite quadratic
conic programming problems.

ADMM is an algorithm that aims to solve structured convex optimization problems by break-
ing them into smaller pieces and then optimizing each of them sequentially. Due to its simplicity
and efficiency, it has been popular in many applications such as image restoration, constrained
sparse regression, and etc. The classical ADMM was originally proposed by Glowinski and
Marrocco [12] and Gabay and Mercier [11] for solving convex problems with two blocks of vari-
ables. To overcome the difficulty when the subproblems are not easy to solve exactly, Eckstein
and Bertsekas [7] introduced the first inexact version of the ADMM to solve the subproblems
approximately. Subsequently, Eckstein himself proposed a proximal ADMM in [6] to make the
subproblems further easier to solve. In [9], the authors allowed the proximal term added to be
positive semidefinite, thus introducing the semi-proximal ADMM. We note that the extension
to the semi-proximal setting is non-trivial since the convergence of the algorithm is much harder
to establish compared to the earlier algorithms.

The classical ADMM is initially formulated for solving a 2-block convex optimization prob-
lem with a collection of coupling linear constraints. Over the years, there are many variations
of ADMM proposed and applied to a great variety of optimization problems. A natural mod-
ification is to extend the original ADMM from two-block to multi-block settings. However, in
[4], it was shown that the directly extended ADMM may not be convergent, even when the
subproblems are solved exactly. Thus it is necessary to make some modifications to the direct-

2

ly extended ADMM in order to get a convergent algorithm. In [23], the authors proposed a
semi-proximal ADMM for solving a convex conic programming problem with 3 blocks of vari-
ables and 4 types of constraints. The algorithm is a convergent modification of the ADMM
with an additional inexpensive step in each iteration. It is usually faster than the directly ex-
tended ADMM with unit step-length. In [16], the authors proposed a Schur complement based
(SCB) convergent semi-proximal ADMM for solving a multi-block linearly constrained convex
programming problem whose objective function is the sum of two proper closed convex functions
plus an arbitrary number of convex quadratic or linear functions. One of the key contribution-
s in [16] is the discovery of the Schur complement based decomposition method which allows
the multi-block subproblems to be solved efficiently while ensuring the convergence of the al-
gorithm. More recently, [17] generalized the SCB decomposition method in [16] to the inexact
symmetric Gauss-Seidel decomposition method, which provides an elegant framework and sim-
pler derivation for the SCB decomposition method in [16]. Based on this previous research, in
[5], the authors proposed an inexact symmetric Gauss-Seidel based multi-block semi-proximal
ADMM for solving a class of high-dimensional convex composite conic optimization problems
to moderate accuracy. It is a versatile and yet efficient algorithm, which has been demonstrated
to have much better performance than the possibly non-convergent directly extended ADMM,
even using the aggressive step-length of 1.618, in solving high dimensional convex quadratic
semidefinite programming problems.

Inspired by the above works, we propose a convergent 3-block semi-proximal ADMM, which
is a modification of the inexact sGS-ADMM algorithm designed in [5] to solve the DWD model.
The first contribution we made in the paper is in reformulating the primal formulation of the
generalized DWD model (using the terminology from [27]) and adapting the powerful inexact
sGS-ADMM framework for solving the reformulated problem. This is in contrast to numerous
SVM algorithms which are primarily designed for solving the dual formulation of the SVM
model. The second contribution we made is in designing highly efficient techniques to solve
the subproblems in each of the inexact sGS-ADMM iterations. If n or d is moderate, then
the complexity at each iteration is O(nd) + O(n2) or O(nd) + O(d2) respectively. If both n
and d are large, then we employ the conjugate gradient iterative method for solving the large
linear systems of equations involved. We also devise various strategies to speed up the practical
performance of the sGS-ADMM algorithm in solving large scale instances (with the largest
instance having n = 256, 000 and d ≈ 3 × 106) of DWD problems with real data sets from
the UCI machine learning repository [25]. We should emphasize that the key in achieving
high efficiency in our algorithm depends very much on the intricate numerical techniques and
sophisticated implementation we have developed.

Finally, we conduct extensive numerical experiments to evaluate the performance of our
proposed algorithm against a few other alternatives. Relative to the primal-dual interior-point
method used in [20], our algorithm is vastly superior in terms of computational time and mem-
ory usage in solving large scale problems, where our algorithm can be a few thousands times
faster. By exploiting all the highly efficient numerical techniques we have developed in the im-
plementation of the sGS-ADMM algorithm for solving the generalized DWD problem, we can
also get an efficient implementation of the possibly non-convergent directly extended ADMM
for solving the same problem. On the tested problems, our algorithm generally requires fewer
iterations compared to the directly extended ADMM even when the latter is convergent. On
quite a few instances, the directly extended ADMM actually requires many more iterations than
our proposed algorithm to solve the problems. We also compare the efficiency of our algorithm
in solving the generalized DWD problem against the highly optimized LIBSVM [3] in solving
the corresponding dual SVM problem. Surprisingly, our algorithm can even be more efficient
than LIBSVM in solving large scale problems even though the DWD model is more complex,

3

and on some instances, our algorithm is 50–100 times faster.
The remaining parts of this paper are organized as follows. In section 2, we present the

DWD formulation in full detail. In section 3, we propose our inexact sGS-based ADMM method
for solving large scale DWD problems. We also discuss some essential computational techniques
used in our implementation. We report our numerical results in section 4. We will also compare
the performance of our algorithm to other solvers on the same data sets in this particular section.
Finally, we conclude the paper in section 5.

Notation. We denote the 2-norm of a vector x by ‖x‖, and the Frobenius norm of a matrix
M by ‖M‖F . The inner product of two vectors x, y is denoted by 〈x, y〉.

2 Generalized distance weighted discrimination

This section gives details on the optimization problems underlying the distance weighted dis-
crimination.

Let (xi, yi), i = 1, . . . , n, be the training data where xi ∈ Rd is the feature vector and
yi ∈ {+1,−1} is its corresponding class label. We let X ∈ Rd×n be the matrix whose columns
are the xi’s, and y = [y1, . . . , yn]T .

In linear discrimination, we attempt to separate the vectors in the two classes by a hyperplane
H = {x ∈ Rd | wTx + β = 0}, where w ∈ Rd is the unit normal and |β| is its distance to the
origin. Given a point z ∈ Rd, the signed distance between z and the hyperplane H is given by
wT z + β. For binary classification where the label yi ∈ {−1, 1}, we want

yi(β + xTi w) ≥ 1− ξi ∀ i = 1, ..., n,

where we have added a slack variable ξ ≥ 0 to allow the possibility that the positive and negative
data points may not be separated cleanly by the hyperplane. In matrix-vector notation, we need

r := ZTw + βy + ξ ≥ 1, (1)

where Z = Xdiag(y) and 1 ∈ Rn is the vector of ones.
In SVM, w and β are chosen by maximizing the minimum residual, i.e.,

max
{
δ − C〈1, ξ〉 | ZTw + βy + ξ ≥ δ1, ξ ≥ 0, wTw ≤ 1

}
, (2)

where C > 0 is a tuning parameter to control the level of penalization on ξ. For the DWD
approach introduced in [20], w and β are chosen instead by minimizing the sum of reciprocals
of the ri’s, i.e.,

min
{ n∑
i=1

1

ri
+ C〈1, ξ〉 | r = ZTw + βy + ξ, r > 0, ξ ≥ 0, wTw ≤ 1, w ∈ Rd

}
. (3)

Detailed discussions on the connections between the DWD model (3) and the SVM model (2)
can be found in [20]. The DWD optimization problem (3) is shown to be equivalent to a second-
order cone programming problem in [20] and hence it can be solved by interior-point methods
such as those implemented in the solver SDPT3 [24].

Here we design an algorithm which is capable of solving large scale generalized DWD prob-
lems of the following form:

min Φ(r, ξ) :=
∑n

i=1 θq(ri) + C〈e, ξ〉

s.t ZTw + βy + ξ − r = 0

‖w‖ ≤ 1, ξ ≥ 0,

(4)

4

where e ∈ Rn is a given positive vector such that ‖e‖∞ = 1 (the last condition is for the purpose
of normalization). The exponent q can be any given positive number, though the values of most
interest are likely to be q = 0.5, 1, 2, 4, and θq(ri) is the function defined by

θq(t) =

{
1
tq if t > 0,

∞ if t ≤ 0.

Observe that in addition to allowing for a general exponent q in (4), we also allow for a nonuni-
form weight ei > 0 in the penalty term for each ξi. By a simple change of variables and
modification of the data vector y, (4) can also include the case where the terms in

∑n
i=1

1
rqi

are

weighted non-uniformly. For brevity, we omit the details.

Proposition 1. The dual of problem (4) is given as follows:

−min
α

{
Ψ(α) := ‖Zα‖ − κ

n∑
i=1

α
q

q+1

i | 0 ≤ α ≤ Ce, 〈y, α〉 = 0
}
, (5)

where κ = q+1
q q

1
q+1 .

Proof. Consider the Lagrangian function associated with (4):

L(r, w, β, ξ;α, η, λ) =

n∑
i=1

θq(ri) + C〈e, ξ〉 − 〈α,ZTw + βy + ξ − r〉+
λ

2
(‖w‖2 − 1)− 〈η, ξ〉

=
n∑
i=1

θq(ri) + 〈r, α〉+ 〈ξ, Ce− α− η〉 − β〈y, α〉 − 〈w,Zα〉+
λ

2
(〈w,w〉 − 1),

where r ∈ Rn, w ∈ Rd, β ∈ R, ξ ∈ Rn, α ∈ Rn, λ, η ≥ 0. Now

inf
ri

{
θq(ri) + αiri

}
=


κα

q
q+1

i if αi > 0

0 if αi = 0

−∞ if αi < 0

=

{
κα

q
q+1

i if αi ≥ 0

−∞ if αi < 0
,

inf
w

{
− 〈Zα,w〉+

λ

2
‖w‖2

}
=


− 1

2λ‖Zα‖
2 if λ > 0

0 if λ = 0, Zα = 0

−∞ if λ = 0, Zα 6= 0

,

inf
ξ

{
〈ξ, Ce− α− η〉

}
=

{
0 if Ce− α− η = 0

−∞ otherwise
,

inf
β

{
− β〈y, α〉

}
=

{
0 if 〈y, α〉 = 0

−∞ otherwise
.

Let FD = {α ∈ Rn | 0 ≤ α ≤ Ce, 〈y, α〉 = 0}. Hence

min
r,w,β,ξ

L(r, w, β, ξ;α, η, λ) =


κ
∑n

i=1 α
q

q+1

i − 1
2λ‖Zα‖

2 − λ
2 if λ > 0, α ∈ FD,

κ
∑n

i=1 α
q

q+1

i if λ = 0, Zα = 0, α ∈ FD,
−∞ if λ = 0, Zα 6= 0, α ∈ FD, or α 6∈ FD.

5

Now for α ∈ FD, we have

maxλ≥0,η≥0
{

minr,w,β,ξ L(r, w, β, ξ;α, η, λ)
}

= κ
∑n

i=1 α
q

q+1

i − ‖Zα‖.

From here, we get the required dual problem.

It is straightforward to show that the feasible regions of (4) and (5) both have nonempty
interiors. Thus optimal solutions for both problems exist and they satisfy the following KKT
(Karush-Kuhn-Tucker) optimality conditions:

ZTw + βy + ξ − r = 0, 〈y, α〉 = 0,

r > 0, α > 0, α ≤ Ce, ξ ≥ 0, 〈Ce− α, ξ〉 = 0,

αi = q

rq+1
i

, i = 1, . . . , n, either w = Zα
‖Zα‖ , or Zα = 0, ‖w‖2 ≤ 1.

(6)

Let (r∗, ξ∗, w∗, β∗) and α∗ be an optimal solution of (4) and (5), respectively. Next we analyse
some properties of the optimal solution. In particular, we show that the optimal solution α∗ is
bounded away from 0.

Proposition 2. There exists a positive δ such that

α∗i ≥ δ ∀ i = 1, . . . , n.

Proof. For convenience, let FP = {(r, ξ, w, β) | ZTw + βy + ξ − r = 0, ‖w‖ ≤ 1, ξ ≥ 0} be the
feasible region of (4). Since (1,1, 0, 0) ∈ FP , we have that

Ceminξ
∗
i ≤ C〈e, ξ∗〉 ≤ Φ(r∗, ξ∗, w∗, β∗) ≤ Φ(1,1, 0, 0) = n+ C

n∑
i=1

ei ∀ i = 1, . . . , n,

where emin = min1≤i≤n{ei}. Hence we have 0 ≤ ξ∗ ≤ %1, where % :=
n+C

∑n
i=1 ei

Cemin
.

Next, we establish a bound for |β∗|. Suppose β∗ > 0. Consider an index i such that yi = −1.
Then

0 < β∗ = ZTi w
∗ + ξ∗i − r∗i ≤ ‖Zi‖‖w∗‖+ ξ∗i ≤ K + %,

where Zi denotes the ith column of Z, K = max1≤j≤n{‖Zj‖}. On the other hand, if β∗ < 0,
then we consider an index k such that yk = 1, and

0 < −β∗ = ZTk w
∗ + ξ∗k − r∗k ≤ K + %.

To summarize, we have that |β∗| ≤ K + %.
Now we can establish an upper bound for r∗. For any i = 1, . . . , n, we have that

r∗i = ZTi w
∗ + β∗yi + ξ∗i ≤ ‖Zi‖‖w∗‖+ |β∗|+ ξ∗i ≤ 2(K + %).

From here, we get

α∗i =
q

(r∗i)
q+1
≥ δ :=

q

(2K + 2%)q+1
∀ i = 1, . . . , n.

This completes the proof of the proposition.

6

3 An inexact SGS-based ADMM for large scale DWD problems

We can rewrite the model (4) as:

min

n∑
i=1

θq(ri) + C〈e, ξ〉+ δB(w) + δRn
+

(ξ)

s.t. ZTw + βy + ξ − r = 0, w ∈ Rd, r, ξ ∈ Rn,

where B = {w ∈ Rd | ‖w‖ ≤ 1}. This is a convex minimization problem with 3 nonlinear blocks.
By introducing an auxiliary variable u = w, we can reformulate the above problem as:

min
∑n

i=1 θq(ri) + C〈e, ξ〉+ δB(u) + δRn
+

(ξ)

s.t. ZTw + βy + ξ − r = 0

D(w − u) = 0, w, u ∈ Rd, β ∈ R, r, ξ ∈ Rn,

(7)

where D ∈ Rd×d is a given positive scalar multiple of the identity matrix which is introduced
for the purpose of scaling the variables.

For a given parameter σ > 0, the augmented Lagrangian function associated with (7) is
given by

Lσ(r, w, β, ξ, u;α, ρ) =
∑n

i=1 θq(ri) + C〈e, ξ〉+ δB(u) + δRn
+

(ξ) + σ
2 ‖Z

Tw + βy + ξ − r − σ−1α‖2

+σ
2 ‖D(w − u)− σ−1ρ‖2 − 1

2σ‖α‖
2 − 1

2σ‖ρ‖
2.

The algorithm which we will design later is based on the recent progress in algorithms for solving
multi-block convex conic programming. In particular, our algorithm is designed based on the
inexact ADMM algorithm in [5] and we made the essential use of the inexact symmetric Gauss-
Seidel decomposition theorem in [16] to solve the subproblems arising in each iteration of the
algorithm.

We can view (7) as a linearly constrained nonsmooth convex programming problem with
three blocks of variables grouped as (w, β), r, (u, ξ). The template for our inexact sGS based
ADMM is described next. Note that the subproblems need not to be solved exactly as long as
they satisfy some prescribed accuracy.

Algorithm 1. An inexact sGS-ADMM for solving (7).

Let {εk} be a summable sequence of nonnegative nonincreasing numbers. Given an initial
iterate (r0, w0, β0, ξ0, u0) in the feasible region of (7), and (α0, ρ0) in the dual feasible
region of (7). Choose a d× d symmetric positive semidefinite matrix T , and perform the
following steps in each iteration.

Step 1a. Compute

(w̄k+1, β̄k+1) ≈ argminw,β

{
Lσ(rk, w, β, ξk, uk;αk, ρk) +

σ

2
‖w − wk‖2T

}
.

In particular, (w̄k+1, β̄k+1) is an approximate solution to the following (d + 1) × (d + 1)
linear system of equations:[
ZZT +D2 + T Zy

(Zy)T yT y

]
︸ ︷︷ ︸

A

[
w

β

]
= h̄k :=

[
−Z(ξk − rk − σ−1αk) +D2uk +D(σ−1ρk) + T wk

−yT (ξk − rk − σ−1αk)

]
. (8)

We require the residual of the approximate solution (w̄k+1, β̄k+1) to satisfy

‖h̄k −A[w̄k+1; β̄k+1]‖ ≤ εk. (9)

7

Step 1b. Compute rk+1 ≈ argminr∈Rn Lσ(r, w̄k+1, β̄k+1, ξk, uk;αk, ρk). Specifically, by observ-
ing that the objective function in this subproblem is actually separable in ri for i = 1, . . . , n,
we can compute rk+1

i as follows:

rk+1
i ≈ arg minri

{
θq(ri) + σ

2 ‖ri − c
k
i ‖2
}

= arg minri>0

{
1
rqi

+ σ
2 ‖ri − c

k
i ‖2
}
∀ i = 1, . . . , n,

(10)

where ck = ZT w̄k+1 + yβ̄k+1 + ξk−σ−1αk. The details on how the above one-dimensional
problems are solved will be given later. The solution rk+1

i is deemed to be sufficiently
accurate if ∣∣∣− q

(rk+1
i)q+1

+ σ(rk+1
i − cki)

∣∣∣ ≤ εk/√n ∀ i = 1, . . . , n.

Step 1c. Compute

(wk+1, βk+1) ≈ argminw,β

{
Lσ(rk+1, w, β, ξk, uk;αk, ρk) +

σ

2
‖w − wk‖2T

}
,

which amounts to solving the linear system of equations (8) but with rk in the right-hand
side vector h̄k replaced by rk+1. Let hk be the new right-hand side vector. We require the
approximate solution to satisfy the accuracy condition that

‖hk −A[wk+1;βk+1]‖ ≤ 5εk.

Observe that the accuracy requirement here is more relaxed than that stated in (9) of Step
1a. The reason for doing so is that one may hope to use the solution (w̄k+1, β̄k+1) computed
in Step 1a as an approximate solution for the current subproblem. If (w̄k+1, β̄k+1) indeed
satisfies the above accuracy condition, then one can simply set (wk+1, βk+1) = (w̄k+1, β̄k+1)
and the cost of solving this new subproblem can be saved.

Step 2. Compute (uk+1, ξk+1) = argminu,ξ Lσ(rk+1, wk+1, βk+1, ξ, u;αk, ρk). By observing that

the objective function is actually separable in u and ξ, we can compute uk+1 and ξk+1

separately as follows:

uk+1 = arg min
{
δB(u) +

σ

2
‖D(u− gk)‖2

}
=

{
gk if ‖gk‖ ≤ 1

gk/‖gk‖ otherwise
,

ξk+1 = ΠRn
+

(
rk+1 − ZTwk+1 − yβk+1 + σ−1αk − σ−1Ce

)
,

where gk = wk+1 − σ−1D−1ρk, and ΠRn
+

(·) denotes the projection onto Rn+.

Step 3. Compute

αk+1 = αk − τσ(ZTwk+1 + yβk+1 + ξk+1 − rk+1),

ρk+1 = ρk − τσD(wk+1 − uk+1),

where τ ∈ (0, (1 +
√

5)/2) is the steplength which is typically chosen to be 1.618.

In our implementation of Algorithm 1, we choose the summable sequence {εk}k≥0 to be
εk = c/(k + 1)1.5 where c is a constant that is inversely proportional to ‖Z‖F . Next we discuss
the computational cost of Algorithm 1. As we shall see later, the most computationally intensive
steps in each iteration of the above algorithm are in solving the linear systems of equations of
the form (8) in Step 1a and 1c. The detailed analysis of their computational costs will be
presented in subsection 3.3. All the other steps can be done in at most O(n) or O(d) arithmetic
operations, together with the computation of ZTwk+1, which costs 2dn operations if we do not
take advantage of any possible sparsity in Z.

8

3.1 Convergence results

We have the following convergence theorem for the inexact sGS-ADMM, established by Chen,
Sun and Toh in [5, Theorem 1]. This theorem guarantees the convergence of our algorithm to
optimality, as a merit over the possibly non-convergent directly extended semi-proximal ADMM.

Theorem 1. Suppose that the system (6) has at least one solution. Let {(rk, wk, βk, ξk, uk;αk, ρk)}
be the sequence generated by the inexact sGS-ADMM in Algorithm 1. Then the sequence
{(rk, wk, βk, ξk, uk)} converges to an optimal solution of problem (7) and the sequence {(αk, ρk)}
converges to an optimal solution to the dual of problem (7).

Proof. In order to apply the convergence result in [5], we need to express (7) in the following
form:

min p(r) + f(r, w, β) + q(ξ, u) + g(ξ, u)

s.t. A∗1r +A∗2[w;β] +B∗[ξ;u] = 0,
(11)

where

p(r) =
∑n

i=1 θq(ri), f(r, w, β) ≡ 0, q(ξ, u) = δB(u) + C〈e, ξ〉+ δRn
+

(ξ), g(ξ, u) ≡ 0,

A∗1 =

(
−I
0

)
, A∗2 =

(
ZT y

D 0

)
, B∗ =

(
I 0

0 −D

)
.

Next we need to consider the following matrices:

(
A1

A2

)(
A∗1, A

∗
2

)
+

 0 0 0

0 T 0

0 0 0

 =

(
I [−ZT ,−y]

[−ZT ,−y]T M

)
, BB∗ =

(
I 0

0 D2

)
,

where

M =

(
ZZT +D2 + T Zy

(Zy)T yT y

)
� 0.

Note that one can show that M is positive definite by using the Schur complement lemma. With
the conditions that M � 0 and BB∗ � 0, the conditions in Proposition 4.2 of [5] are satisfied,
and hence we can establish the convergence of Algorithm 1 using Theorem 1 in [5].

3.2 Numerical computation of the subproblem (10) in Step 1b

In the presentation of Algorithm 1, we have described how the subproblem in each step can be
solved except for the subproblem (10) in Step 1b. Now we discuss how it can be solved. Observe
that for each i, we need to solve a one-dimensional problem of the form:

min
{
ϕ(s) :=

1

sq
+
σ

2
(s− a)2 | s > 0

}
, (12)

where a is given. It is easy to see that ϕ(·) is a convex function and it has a unique minimizer
in the domain (0,∞). The optimality condition for (12) is given by

s− a =
qσ−1

sq+1
,

9

where the unique minimizer s∗ is determined by the intersection of the line s 7→ s − a and the

curve s 7→ qσ−1

sq+1 for s > 0. We propose to use Newton’s method to find the minimizer, and the
template is given as follows. Given an initial iterate s0, perform the following iterations:

sk+1 = sk − ϕ′(sk)/ϕ′′(sk) = sk

(
q(q + 2)σ−1 + asq+1

k

q(q + 1)σ−1 + sq+2
k

)
, k = 0, 1, . . .

Since ϕ′′(s∗) > 0, Newton’s method would have a local quadratic convergence rate, and we
would expect it to converge in a small number of iterations, say less than 20, if a good initial
point s0 is given. In solving the subproblem (10) in Step 1b, we always use the previous solution
rki as the initial point to warm-start Newton’s method. If a good initial point is not available,
one can use the bisection technique to find one. In our tests, this technique is however never
used.

Observe that the computational cost for solving the subproblem (10) in Step 1c is O(n) if
Newton’s method converges within a fixed number of iterations (say 20) for all i = 1, . . . , n.
Indeed, in our experiments, the average number of Newton iterations required to solve (12) for
each of the instances is less than 10.

3.3 Efficient techniques to solve the linear system of equations (8)

Observe that in each iteration of Algorithm 1, we need to solve a (d+ 1)× (d+ 1) linear system
of equations (8) with the same coefficient matrix A. For large scale problems where n and/or
d are large, this step would constitute the most expensive part of the algorithm. In order to
solve such a linear system efficiently, we design different techniques to solve it, depending on the
dimensions n and d. We consider the following cases.

3.3.1 The case where d� n and d is moderate

This is the most straightforward case where we set T = 0, and we solve (8) by computing the
Cholesky factorization of the coefficient matrix A. The cost of computing A is 2nd2 arithmetic
operations. Assuming that A is stored, then we can compute its Cholesky factorization at
the cost of O(d3) operations, which needs only to be performed once at the very beginning of
Algorithm 1. After that, whenever we need to solve the linear system (8), we compute the
right-hand-side vector at the cost of 2nd operations and solve two (d + 1) × (d + 1) triangular
systems of linear equations at the cost of 2d2 operations.

3.3.2 The case where n� d and n is moderate

In this case, we also set T = 0. But solving the large (d+ 1)× (d+ 1) system of linear equations
(8) requires more thought. In order to avoid inverting the high dimensional matrix A directly, we
make use of the Sherman-Morrison-Woodbury formula to get A−1 by inverting a much smaller
(n+ 1)× (n+ 1) matrix as shown in the following proposition.

Proposition 3. The coefficient matrix A can be rewritten as follows:

A = D̂ + UEUT , U =

[
Z 0
yT ‖y‖

]
, E = diag(In,−1), (13)

where D̂ = diag(D, ‖y‖2). It holds that

A−1 = D̂−1 − D̂−1UH−1UT D̂−1, (14)

10

where

H = E−1 + UT D̂−1U =

[
In + ZTD−1Z + yyT /‖y‖2 y/‖y‖

yT /‖y‖ 0

]
. (15)

Proof. It is easy to verify that (13) holds and we omit the details. To get (14), we only need to
apply the Sherman-Morrison-Woodbury formula in [13, p.50] to (13) and perform some simpli-
fications.

Note that in making use of (14) to compute A−1h̄k, we need to find H−1. A rather cost
effective way to do so is to express H as follows and use the Sherman-Morrison-Woodbury
formula to find its inverse:

H = J + ȳȳT , J = diag(In + ZTD−1Z,−1), ȳ = [y/‖y‖; 1].

With the above expression for H, we have that

H−1 = J−1 − 1

1 + ȳTJ−1ȳ
(J−1ȳ)(J−1ȳ)T .

Thus to solve (8), we first compute the n × n matrix In + ZTD−1Z in (15) at the cost of
2dn2 operations. Then we compute its Cholesky factorization at the cost of O(n3) operations.
(Observe that even though we are solving a (d+1)× (d+1) linear system of equations for which
d � n, we only need to compute the Cholesky factorization of a much smaller n × n matrix.)
Also, we need to compute J−1ȳ at the cost of O(n2) operations by using the previously computed
Cholesky factorization. These computations only need to be performed once at the beginning
of Algorithm 1. After that, whenever we need to solve a linear system of the form (8), we can
compute h̄k at the cost of 2nd operations, and then make use of (14) to get A−1h̄k by solving
two n × n triangular systems of linear equations at the cost 2n2 operations, and performing
two matrix-vector multiplications involving Z and ZT at a total cost of 4nd operations. To
summarize, given the Cholesky factorization of the first diagonal block of H, the cost of solving
(8) via (14) is 6nd+ 2n2 operations.

3.3.3 The case where d and n are both large

The purpose of introducing the proximal term 1
2‖w − w

k‖2T in Step 1a and 1c is to make the
computation of the solutions of the subproblems easier. However, one should note that adding
the proximal term typically will make the algorithm converge more slowly, and the deterioration
will become worse for larger ‖T ‖. Thus in practice, one would need to strike a balance between
choosing a symmetric positive semidefinite matrix T to make the computation easier while not
slowing down the algorithm by too much.

In our implementation, we first attempt to solve the subproblem in Step 1a (similarly for
1c) without adding a proximal term by setting T = 0. In particular, we solve the linear
system (8) by using a preconditioned symmetric quasi-minimal residual (PSQMR) iterative
solver [22] when both n and d are large. In each step of the PSQMR solver, the main cost is
in performing the matrix-vector multiplication with the coefficient matrix A, which costs 4nd
arithmetic operations. As the number of steps taken by an iterative solver to solve (8) to the
required accuracy (9) is dependent on the conditioning of A, in the event that the solver requires
more than 50 steps to solve (8), we would switch to adding a suitable non-zero proximal term
T to make the subproblem in Step 1a easier to solve.

The most common and natural choice of T to make the subproblem in Step 1a easy to solve
is to set T = λmaxI −ZZT , where λmax denotes the largest eigenvalue of ZZT . In this case the

11

corresponding linear system (8) is very easy to solve. More precisely, for the linear system in
(8), we can first compute β̄k+1 via the Schur complement equation in a single variable followed
by computing w̄k as follows:(

yT y − (Zy)T (λmaxI +D)−1(Zy)
)
β = h̄kd+1 − (Zy)T (λmaxI +D)−1h̄k1:d,

w̄k+1 = (λmaxI +D)−1(h̄k1:d − (Zy)β̄k+1),
(16)

where h̄k1:d denotes the vector extracted from the first d components of h̄k. In our implementation,
we pick a T which is less conservative than the above natural choice as follows. Suppose we
have computed the first ` largest eigenvalues of ZZT such that λ1 ≥ . . . ≥ λ`−1 > λ`, and their
corresponding orthonormal set of eigenvectors, v1, . . . , v`. We pick T to be

T = λ`I +
∑`−1

i=1(λi − λ`)vivTi − ZZT , (17)

which can be proved to be positive semidefinite by using the spectral decomposition of ZZT .
In practice, one would typically pick ` to be a small integer, say 10, and compute the first `
largest eigenvalues and their corresponding eigenvectors via variants of the Lanczos method. In
Matlab, such a computation can be done by using the routine eigs. To solve (8), we need the
inverse of ZZT +D + T . Fortunately, when D = µId, it can easily be inverted with

(ZZT +D + T)−1 = (µ+ λ`)
−1Id +

∑`−1
i=1

(
(µ+ λi)

−1 − (µ+ λ`)
−1)vivTi .

One can then compute β̄k and w̄k as in (16) with (λmaxI +D)−1 replaced by the above inverse.

4 Experiments

In this section, we test the performance of our inexact sGS-ADMM method on several publicly
available data sets. The numerical results presented in the subsequent subsections are obtained
from a computer with processor specifications: Intel(R) Xeon(R) CPU E5-2670 @ 2.5GHz (2
processors) and 64GB of RAM, running on a 64-bit Windows Operating System.

4.1 Tuning the penalty parameter

In the DWD model (7), we see that it is important to make a suitable choice of the penalty
parameter C. In [20], it has been noticed that a reasonable choice for the penalty parameter when
the exponent q = 1 is a large constant divided by the square of a typical distance between the
xi’s, where the typical distance, dist, is defined as the median of the pairwise Euclidean distances
between classes. We found out that in a more general case, C should be inversely proportional
to distq+1. On the other hand, we observed that a good choice of C also depends on the sample
size n and the dimension of features d. In our numerical experiments, we empirically set the

value of C to be 10q+1 max
{

1, 10
q−1 log(n)max{1000,d}

1
3

distq+1

}
, where log(·) is the natural logarithm.

4.2 Scaling of data

A technique which is very important in implementing ADMM based methods in practice to
achieve fast convergence is the data scaling technique. Empirically, we have observed that it
is good to scale the matrix Z in (7) so that the magnitude of all the blocks in the equality

12

constraint would be roughly the same. Here we choose the scaling factor to be Zscale =
√
‖X‖F ,

where ‖ · ‖F is the Frobenius norm. Hence the optimization model in (7) becomes:

min
∑n

i=1
1
rqi

+ C〈e, ξ〉+ δ
B̃

(ũ) + δRn
+

(ξ)

s.t. Z̃T w̃ + βy + ξ − r = 0, r > 0,

D(w̃ − ũ) = 0, w̃, ũ ∈ Rd, r, ξ ∈ Rn,

(18)

where Z̃ = Z
Zscale

, w̃ = Zscalew, ũ = Zscaleu, and B̃ = {w̃ ∈ Rd | ‖w̃‖ ≤ Zscale}. Therefore, if we

have computed an optimal solution (r∗, w̃∗, β∗, ξ∗, ũ∗) of (18), then (r∗, Z−1scalew̃
∗, β∗, ξ∗, Z−1scaleũ

∗)
would be an optimal solution of (7).

4.3 Stopping condition for inexact sGS-ADMM

We measure the accuracy of an approximate optimal solution (r, w, β, ξ, u, α, ρ) for (18) based
on the KKT optimality conditions (6) by defining the following relative residuals:

ηC1 = |yTα|
1+C , ηC2 = |ξT (Ce−α)|

1+C , ηC3 = ‖α−s‖2
1+C with si = q

rq+1
i

,

ηP1 = ‖Z̃T w̃+βy+ξ−r‖
1+C , ηP2 = ‖D(w̃−ũ)‖

1+C , ηP3 = max{‖w̃‖−Zscale,0}
1+C ,

ηD1 = ‖min{0,α}‖
1+C , ηD2 = ‖max{0,α−Ce}‖

1+C ,

where Zscale is a scaling factor which has been discussed in the last subsection. Additionally, we
calculate the relative duality gap by:

ηgap :=
|objprimal − objdual|

1 + |objprimal|+ |objdual|
,

where objprimal =
∑n

i=1
1
rqi

+ C〈e, ξ〉, objdual = κ
∑n

i=1 α
q

q+1

i − Zscale‖Z̃α‖, with κ = q+1
q q

1
q+1 .

We should emphasize that although for machine learning problems, a high accuracy solution
is usually not required, it is important however to use the KKT optimality conditions as the
stopping criterion to find a moderately accurate solution in order to design a robust solver.

We terminate the solver when max{ηP , ηD} < 10−5, min{ηC , ηgap} <
√

10−5, and max{ηC , ηgap} <
0.05. Here, ηC = max{ηC1 , ηC2 , ηC3}, ηP = max{ηP1 , ηP2 , ηP3}, and ηD = max{ηD1 , ηD2}. Fur-
thermore, the maximum number of iterations is set to be 2000.

4.4 Adjustment of Lagrangian parameter σ

Based upon some preliminary experiments, we set our initial Lagrangian parameter σ to be
σ0 = min{10C, n}q, where q is the exponent in (7), and adapt the following strategy to update
σ to improve the convergence speed of the algorithm in practice:

Step 1. Set χ = ηP
ηD

, where ηP and ηD are defined in subsection 4.3;

Step 2. If χ > θ, set σk+1 = ζσk; elseif 1
χ > θ, set σk+1 = 1

ζσk.

Here we empirically set θ to be 5 and ζ to be 1.1. Nevertheless, if we have either ηP � ηD
or ηD � ηP , then we would increase ζ accordingly, say 2.2 if max{χ, 1χ} > 500 or 1.65 if

13

max{χ, 1χ} > 50. To ensure a smooth convergence of our algorithm, we will only update σ every
kth iterations according to the following criteria:

k =



5 if current iteration count ∈ (0, 25],

10 if current iteration count ∈ (25, 50],

20 if current iteration count ∈ (50, 100],

30 if current iteration count ∈ (100, 500],

40 if current iteration count ∈ (500, 1000],

100 if current iteration count > 1000.

Since only a finite number of updates are taken, the convergence of our algorithm is still valid.

4.5 Data Sets

In this subsection, we test our algorithm on two problem sets: the MNIST handwriting recog-
nition and Face recognition. The details for each data set are described below:

MNIST. The MNIST database contains images of 60,000 handwritten digits and we aim to
either classify the digit 4 versus digit 9 or classify the digit 4 versus other digits. For each
case, we test our algorithm on 5 different training sizes while keeping the testing size to
be 10,000. The dimension of features that we have used is 400. We obtain the data sets
from the LASVM website [14].

Face. The faces dataset is a collection of 19 × 19 images, some of which represent faces and
some do not. There are a training set of 6,977 images and a testing set of 24,045 images.
The number of features is 361 and we obtain the data from the MIT CBCL web site [2].

exponent q = 1 Training Testing

Data n d C Iter Time (s) double Error (%) n Error (%)

MNIST-49 3959 400 1.02e+02 81 0.22 56 2.25 1991 3.87

MNIST-49 5929 400 1.10e+02 81 0.36 55 2.56 1991 3.37

MNIST-49 7925 400 1.13e+02 81 0.52 57 2.57 1991 3.42

MNIST-49 9847 400 1.15e+02 83 0.63 55 2.77 1991 3.37

MNIST-49 11791 400 1.23e+02 92 0.95 60 2.77 1991 3.16

MNIST-4others 20000 400 1.01e+02 187 3.09 158 1.58 10000 2.20

MNIST-4others 30000 400 1.05e+02 292 6.89 239 1.65 10000 2.09

MNIST-4others 40000 400 1.05e+02 284 9.44 238 1.71 10000 1.95

MNIST-4others 50000 400 1.08e+02 265 11.15 265 1.80 10000 1.98

MNIST-4others 60000 400 1.12e+02 269 13.37 269 1.77 10000 1.91

Face 6977 361 1.00e+03 121 0.50 89 2.45 24045 3.23

Table 1: The performance of our inexact sGS-ADMM method on 11
data sets. In the table, “double” is the iteration count needed for the
extra step 1c in algorithm 1.

Table 1 shows the number of iterations and the runtime required for our DWD method in
solving 11 data sets. Here, we report the result for the exponent q = 1 and weight e = 1, the
vector of ones. The training error as well as the prediction error are also presented in the table.

14

Denote the index set S = {i = 1, · · · , n | yi[sgn(β + xTi w)] ≤ 0} for which the data instances
are categorized wrongly, where sgn(x) is the sign function given by

sgn(x) =


1 if x > 0,
0 if x = 0,
−1 if x < 0.

The training error and testing error are both defined by |S|n × 100%, where |S| is the cardinality
of the set S.

We observe that the testing error is reasonable and the training time is generally short, even
when the training size is large. Under the column “double” in Table 1, we also record the number
of iterations for which the extra Step 1c is executed to ensure the convergence of Algorithm 1.

4.6 UCI Data

In this subsection, we test our algorithm on the UCI data set. It is a compilation of data which
consists of a wide variety of domains collected in [25]. The datasets we have chosen here are all
classification problems with two classes. However, the size for each class may not be balanced.
To tackle the case of uneven class proportions, we use the weighted DWD model discussed in
[21]. Specifically, we consider the model (4) using e = 1 and the term

∑n
i=1 1/rqi is replaced by∑n

i=1 τ
q
i /r

q
i , with the weights τi given as follows:

τi =

{ τ−
max{τ+,τ−} if yi = +1

τ+
max{τ+,τ−} if yi = −1

where τ± =
(
|n±|K−1

) 1
1+q . Here n± is the number of data points with class label ±1 respectively

and K := n/log(n) is a normalizing factor.

Data n d C Iter Time (s) psqmr|double Train-error (%)

a8a 22696 123 6.27e+002 201 1.59 0|201 15.10

a9a 32561 123 6.49e+002 201 2.09 0|201 14.93

covtype 581012 54 3.13e+003 643 93.75 0|191 23.74

gisette 6000 4972 1.15e+004 101 23.81 0| 49 0.17

ijcnn1 35000 22 4.23e+003 401 3.80 0|401 7.77

mushrooms 8124 112 3.75e+002 81 0.34 0| 81 0.00

real-sim 72309 20958 1.55e+004 210 34.36 875|210 1.45

w7a 24692 300 5.95e+002 701 6.18 0|701 1.17

w8a 49749 300 6.36e+002 906 12.93 0|906 1.20

rcv1 20242 44505 9.18e+003 81 5.55 234| 49 0.63

leu 38 7129 1.00e+002 271 1.05 0|271 0.00

colon 62 2000 1.68e+002 51 0.78 0| 51 0.00

prostate 102 6033 1.69e+002 52 0.11 0| 49 0.00

srbct 63 2308 1.37e+002 113 1.81 0|113 0.00

farm-ads 4143 54877 1.06e+004 51 3.08 368| 51 0.17

dorothea 800 88120 1.00e+002 51 1.50 0| 51 0.00

url-svm 256000 3231961 3.96e+005 141 356.48 391|109 0.01

Table 2: The performance of our inexact sGS-ADMM method on the
UCI data sets.

15

Table 2 presents the number of iterations and runtime required, as well as training error
produced when we perform our inexact sGS-ADMM algorithm to solve 17 data sets. The results
are generated using the exponent q = 1. In the table, “psqmr” is the iteration count for the
preconditioned symmetric quasi-minimal residual method for solving the linear system (8). A
‘0’ for “psqmr” means that we are using a direct solver as mentioned in subsection 3.3.1 and
3.3.2.

Again, our algorithm is capable of solving all the data sets, even when the size of the data
matrix is huge. In addition, for data with unbalanced class size, such as w7a and w8a, our
algorithm is able to produce a classifier with small training error.

4.7 Comparison with other solvers

In this subsection, we compare our inexact sGS-ADMM method for solving (4) via (7) with the
primal-dual interior-point method implemented in [24] and used in [20]. We also compare our
method with the directly extended (semi-proximal) ADMM (using the aggressive step-length
1.618) even though the latter’s convergence is not guaranteed. Note that the directly extended
ADMM we have implemented here follows exactly the same design used for sGS-ADMM, ex-
cept that we switch off the additional Step 1c in the Algorithm 1. We should emphasize that
our directly extended ADMM is not a simple adaption of the classical ADMM, but instead
incorporates all the sophisticated techniques we have developed for sGS-ADMM.

We will report our computational results for two different values of the exponent, q = 1 and
q = 2, in Tables 3 and 4, respectively.

exponent q = 1 sGS-ADMM directADMM IPM

Data n d C Time (s) Iter Error (%) Time (s) Iter Error (%) Time (s) Iter Error (%)

a8a 22696 123 6.27e+002 1.59 201 15.10 0.99 170 15.10 1367.56 47 15.09

a9a 32561 123 6.49e+002 2.09 201 14.93 1.24 173 14.94 3075.26 43 14.93

covtype 581012 54 3.13e+003 93.75 643 23.74 72.92 700 23.74 - - -

gisette 6000 4972 1.15e+004 23.81 101 0.17 24.11 70 0.25 2764.09 62 20.50*

ijcnn1 35000 22 4.23e+003 3.80 401 7.77 3.64 501 7.77 1704.26 34 7.77

mushrooms 8124 112 3.75e+002 0.34 81 0.00 0.81 303 0.00 139.43 50 0.00

real-sim 72309 20958 1.55e+004 34.36 210 1.45 83.16 702 1.42 - - -

w7a 24692 300 5.95e+002 6.18 701 1.17 12.65 2000 1.16 4544.73 53 1.17

w8a 49749 300 6.36e+002 12.93 906 1.20 21.04 2000 1.16 - - -

rcv1 20242 44505 9.18e+003 5.55 81 0.63 16.97 245 0.63 9310.52 43 0.72

leu 38 7129 1.00e+002 1.05 271 0.00 3.85 2000 0.00 1.40 12 0.00

colon 62 2000 1.68e+002 0.78 51 0.00 2.46 301 0.00 1.12 16 0.00

prostate 102 6033 1.69e+002 0.11 52 0.00 0.14 121 0.00 3.99 12 0.00

srbct 63 2308 1.37e+002 1.81 113 0.00 15.39 1581 0.00 1.13 12 0.00

farm-ads 4143 54877 1.06e+004 3.08 51 0.17 3.97 72 0.14 514.04 36 0.34

dorothea 800 88120 1.00e+002 1.50 51 0.00 41.05 2000 0.00 11.85 18 0.00

url-svm 256000 3231961 3.96e+005 356.48 141 0.01 1042.81 541 0.00 - - -

Table 3: Comparison between the performance of our inexact sGS-
ADMM, directly Extended ADMM “directADMM”, and the interior
point method “IPM” on the UCI data sets. A ‘*’ next to the error in
the table means that the problem set cannot be solved properly by the
respective solver. ‘-’ means the algorithm cannot solve the dataset due
to the constraint of computer memory.

16

Table 3 reports the runtime, number of iterations required as well as the training error of 3
different solvers for solving the UCI data sets. We can observe that the interior point method
is almost the slowest to achieve optimality compared to the other two solvers, despite requiring
the least number of iterations, especially when the sample size n is large. The inefficiency of
the interior-point method is caused by its need to solve an n × n linear system of equations in
each iteration, which could be very expensive if n is large. In addition, it cannot solve the DWD
problem where n is huge due to the excessive computer memory needed to store the large n×n
matrix.

On the other hand, our inexact sGS-ADMM method outperforms the directly extended
(semi-proximal) ADMM for 13 out of 17 cases in terms of runtime. For the other cases, we are
only slower by a relatively small margin. Furthermore, when our algorithm outperforms the
directly extended ADMM, it often shortens the runtime by a large margin. In terms of number
of iterations, for 14 out of 17 cases, the directly extended ADMM requires at least the same
number of iterations as our inexact sGS-ADMM method. We can say that our algorithm is
remarkably efficient and it further possesses a convergence guarantee. In contrast, the directly
extended ADMM is not guaranteed to converge although it is also very efficient when it does
converge. We can observe that the directly extended ADMM sometimes would take many more
iterations to solve a problem compared to our inexact sGS-ADMM, especially for the instances
in Table 4, possibly because the lack of a convergence guarantee makes it difficult for the method
to find a sufficiently accurate approximate optimal solution.

To summarize, our inexact sGS-ADMM method is an efficient yet convergent algorithm for
solving the primal form of the DWD model. It is also able to solve large scale problems which
cannot be handled by the interior point method.

exponent q = 2 sGS-ADMM directADMM IPM

Data n d C Time (s) Iter Error (%) Time (s) Iter Error (%) Time (s) Iter Error (%)

a8a 22696 123 1.57e+004 2.12 248 15.10 3.48 531 15.11 7034.94 45 15.17

a9a 32561 123 1.62e+004 2.91 279 14.94 9.33 1183 14.94 16798.27 48 14.95

covtype 581012 54 1.52e+005 67.50 368 23.74 225.21 2000 23.74 - - -

gisette 6000 4972 1.01e+006 25.53 90 0.05 23.35 61 0.08 2508.89 55 0.00

ijcnn1 35000 22 2.69e+005 2.84 233 7.94 8.84 1004 7.88 2002.77 38 7.98

mushrooms 8124 112 7.66e+003 1.23 301 0.00 5.75 2000 0.17 650.16 52 0.00

real-sim 72309 20958 1.10e+006 31.00 174 1.51 23.06 181 1.51 - - -

w7a 24692 300 1.44e+004 4.35 473 1.15 14.87 2000 2.69 5372.32 48 1.18

w8a 49749 300 1.54e+004 8.57 543 1.13 23.55 2000 2.68 - - -

rcv1 20242 44505 4.69e+005 7.06 81 1.16 7.25 101 1.16 7547.28 43 0.79

leu 38 7129 1.00e+003 1.25 301 0.00 4.03 2000 0.00 1.48 15 0.00

colon 62 2000 3.02e+003 0.91 51 0.00 7.61 986 0.00 1.82 26 0.00

prostate 102 6033 2.40e+003 0.10 51 0.00 0.38 301 0.00 8.78 28 0.00*

srbct 63 2308 2.17e+003 2.02 108 0.00 19.08 2000 0.00 1.69 21 0.00

farm-ads 4143 54877 2.75e+005 4.21 62 0.22 9.11 139 0.22 383.43 41 0.41*

dorothea 800 88120 1.00e+003 1.99 51 0.00 42.31 2000 0.00 25.89 35 0.00

url-svm 256000 3231961 1.84e+007 1262.48 361 0.50 1501.35 770 0.50 - - -

Table 4: Comparison between the performance of our inexact sGS-
ADMM, directly Extended ADMM “directADMM”, and the interior
point method “IPM” on the UCI data sets for q = 2. A ‘*’ next to the
error in the table means that the problem set cannot be solved properly
by the respective solver.

17

Table 4 reports the runtime, number of iterations required as well as the training error of 3
different solvers for solving the UCI data sets for the case when q = 2. Again, we can see that
the interior point method is almost always the slowest to converge to optimality.

Our sGS-ADMM algorithm outperforms the directly extended ADMM algorithm in 15 out
of 17 data sets in terms of runtime. For the other 2 cases, our algorithm is only slightly slower.
In terms of the number of iterations, it has the best performance among almost all the data sets.
On the other hand, for 7 data sets, the number of iterations required by the directly extended
ADMM hits the maximum iterations allowed, probably implying nonconvergence of the method.
For the interior point method, it takes an even longer time to solve the problems compared to
the case when q = 1. This is due to an increase in the number of constraints generated in the
second-order cone programming formulation of the DWD model with q = 2.

The numerical result we obtained in this case is consistent with the one we obtained for the
case q = 1. This further shows the merit of our algorithm in a more general setting. We could
also expect the similar result when the exponent is 4 or 8.

4.8 Comparison with LIBSVM and LIBLINEAR

In this subsection, we will compare the performance of our DWD model to the state-of-the-art
model support vector machine (SVM). We apply our sGS-ADMM model to the DWD model and
use LIBSVM in [3] as well as LIBLINEAR in [8] to the SVM model. LIBSVM is a general solver
for solving SVM models with different kernels; while LIBLINEAR is a solver highly specialized
in solving SVM with linear kernels. LIBLINEAR is a fast linear classifier; in particular, we
would apply it to the dual of L2-regularized L1-loss support vector classification problem. We
would like to emphasize that the solution given by LIBSVM using linear kernel and that given
by LIBLINEAR is not exactly the same. This may be due to the reason that LIBLINEAR has
internally preprocessed the data and assumes that there is no bias term in the model.

Table 5 records the penalty parameters used in LIBSVM and LIBLINEAR. For both algo-
rithms, the parameters are chosen to be the same as in [15] except for the last dataset (url-svm).
Since it is not available, we make use of the cross-validation routine in LIBLINEAR to choose
the best parameter.

Data a8a a9a covtype gisette ijcnn1 mushrooms real-sim

C 0.041 0.025 0.032 0.006 0.126 0.179 0.608

Data w7a w8a rcv1 leu prostate farm-ads dorothea url-svm

C 0.356 0.160 0.148 0.140 0.364 9.496 0.031 1024

Table 5: Penalty parameter C used in LIBLINEAR and LIBSVM.

Table 6 shows the runtime and number of iterations needed for solving the binary classi-
fication problem via DWD model and SVM model respectively on the UCI datasets. It also
gives the training and testing classification error produced by the three algorithms. Note that
the training time excludes the time for computing the best penalty parameter C. The stopping
tolerance for all algorithms is set to be 10−5. For LIBLINEAR, we observed that the default
maximum number of iteration is breached for many datasets. Thus we increase the maximum
number of iteration from the default 1000 to 20000.

In terms of runtime, LIBLINEAR is almost always the fastest to solve the problem, except
for the largest dataset (url-svm) for which our algorithm is about 10 times faster. Note that the

18

maximum iteration is reached for the dataset (url-svm). On the other hand, LIBSVM is almost
always the slowest solver. It may only be faster than sGS-ADMM for small datasests (3 cases).
Our algorithm can be 50-100 times faster than LIBSVM when solving large data instances.
Furthermore, LIBSVM may have the risk of not being able to handle extremely large-scaled
datasets. For example, it cannot solve the biggest dataset (url-svm) within 24 hours.

In terms of training and testing error, we may observe from the table that the DWD and SVM
models produced comparable training classification errors, although there are some discrepancies
due to the differences in the models and penalty parameters used. On the other hand, the testing
errors vary across different solvers. For most datasets, the DWD model (solved by sGS-ADMM)
produced the smaller testing errors than the other algorithms (7 cases); whereas the SVM model
(solved by LIBLINEAR) may produce the worst testing errors among all algorithms (8 cases).
The discrepancy between the testing errors given by LIBSVM and LIBLINEAR may be due to
the different treatment of the bias term in-built in the algorithms.

It is reasonable to claim that our algorithm is more efficient than the extremely fast solver
LIBLINEAR in solving large data instances even though our algorithm is designed for the more
complex DWD model compared to the simpler SVM model. Moreover, our algorithm for solving
the DWD model is able to produce testing errors which are generally better than those produced
by LIBLINEAR for solving the SVM model.

DWD via sGS-ADMM SVM via LIBLINEAR SVM via LIBSVM

Data n d ntest Time IterErrtr Errtest Time Iter Errtr Errtest Time Iter Errtr Errtest
a8a 22696 123 9865 2.28 201 15.10 14.67 0.40 3150 15.43 14.85 52.58 34811 15.44 14.80

a9a 32561 123 16281 2.81 201 14.93 15.19 0.43 1716 15.25 15.12 97.86 25721 15.24 15.03

covtype 581012 54 / 100.62 643 23.74 / 20.42 17027 23.68 / 18828.22 224517 23.70 /

gisette 6000 4972 1000 28.95 101 0.17 3.00 4.34 7 15.35 18.70 91.82 8723 0.23 5.40

ijcnn1 35000 22 91701 4.65 401 7.77 7.82 0.58 7629 9.24 8.97 26.98 10137 9.21 8.76

mushrooms 8124 112 / 0.87 81 0.00 / 0.22 401 0.00 / 0.60 1003 0.00 /

real-sim 72309 20958 / 39.84 210 1.45 / 6.84 376 1.32 / 3853.66 52591 1.37 /

w7a 24692 300 25057 6.81 701 1.17 1.30 0.33 761 1.34 10.08 14.73 62830 1.37 1.38

w8a 49749 300 14951 13.77 906 1.20 1.31 0.82 1436 1.39 9.87 63.37 124373 1.36 1.43

rcv1 20242 44505 677399 7.20 81 0.63 5.12 4.64 1091 1.78 47.53 1243.51 40830 0.38 5.23

leu 38 7129 34 1.32 271 0.00 11.76 0.32 24 0.00 20.59 0.34 146 0.00 5.88

prostate 102 6033 / 2.45 52 0.00 / 2.73 202 0.00 / 2.44 708 0.00 /

farm-ads 4143 54877 / 4.30 51 0.17 / 4.75 2162 0.17 / 15.16 9574 0.17 /

dorothea 800 88120 350 2.71 51 0.00 5.14 0.88 11 0.00 8.86 10.05 4514 0.00 7.71

url-svm 256000 3231961 / 406.43 141 0.01 / 4965.37 20000 0.01 / - - - /

Table 6: Comparison between the performance of our inexact sGS-
ADMM on DWDmodel with LIBLINEAR and LIBSVM on SVMmodel.
ntest is the size of testing sample, Errtr is the percentage of training er-
ror; while Errtest is that of the testing error. ‘-’ means the result cannot
be obtained within 24 hours, and ‘/’ means test sets are not available.
Here, the timing includes time for reading training data and problem
solving time. The timing for getting the best penalty parameter C is
excluded.

19

5 Conclusion

In this paper, by making use of the recent advances in ADMM from the work in [5], [16] and
[23], we proposed a convergent 3-block inexact symmetric Gauss-Seidel-based semi-proximal
ADMM algorithm for solving large scale DWD problems. We applied the algorithm successfully
to the primal formulation of the DWD model and designed highly efficient routines to solve the
subproblems arising in each of the inexact sGS-ADMM iterations. Numerical experiments for
the cases when the exponent equals to 1 and 2 demonstrated that our algorithm is capable of
solving large scale problems, even when the sample size and/or the feature dimension is huge.
In addition, it is also highly efficient while guaranteeing the convergence to optimality. As a
conclusion, we have designed an efficient method for solving the binary classification model
through DWD.

References

[1] M. Benito, J. Parker, Q. Du, J. Wu, D. Xiang, C. M. Perou, and J.S. Marron, Adjustment
of systematic microarray data biases, Bioinformatics, 20 (2004), pp. 105–114.

[2] CBCL center for biological & computational learning. http://cbcl.mit.edu/projects/cbcl/

[3] C.-C Chang and C.-J. Lin, LIBSVM : a library for support vector machines, ACM Trans-
actions on Intelligent Systems and Technology, 2 (2011), article 27. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm

[4] C. Chen, B. He, Y. Ye, and X. Yuan, The direct extension of ADMM for multi-block
convex minimization problems is not necessarily convergent, Mathematical Programming,
155 (2016), pp. 57–79.

[5] L. Chen, D.F. Sun, and K.C. Toh, An efficient inexact symmetric Gauss-Seidel based ma-
jorized ADMM for high-dimensional convex composite conic programming, Mathematical
Programming, 161 (2017), pp. 237-270.

[6] J. Ecksteinm Some saddle-function splitting methods for convex programming, Optimization
Methods and Software, 4 (1994), pp. 75–83.

[7] J. Eckstein and D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal
point algorithm for maximal monotone operators, Mathematical Programming, 55 (1992),
pp. 293–318.

[8] P.-E. Fan, K.-W. Chang, C.-J Hsieh, X.-R Wang, and C.-J Lin, LIBLINEAR: A library for
large linear classification, Journal of Machine Learning Research 9 (2008), pp. 1871-1874.
Software available at http://www.csie.ntu.edu.tw/ cjlin/liblinear

[9] M. Fazel, T.K. Pong, D.F. Sun, and P. Tseng, Hankel matrix rank minimization with
applications to system identification and realization, SIAM Journal on Matrix Analysis and
Applications, 34 (2013), pp. 946–977.

[10] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, Do we need hundreds of
classifiers to solve real world classification problems? Journal of Machine Learning Research,
15 (2014), pp. 3133–3181.

[11] D. Gabay, and B. Mercier, A dual algorithm for the solution of nonlinear variational prob-
lems via finite element approximation, Computers & Mathematics with Applications, 2
(1976), pp. 17–40.

20

[12] R. Glowinski, and A. Marroco, ”Sur l’approximation, par lments finis d’ordre un, et la rso-
lution, par pnalisation-dualit d’une classe de problmes de Dirichlet non linaires.” ESAIM:
Mathematical Modelling and Numerical Analysis - Modlisation Mathmatique et Analyse
Numrique 9.R2 (1975), pp. 41–76.

[13] G.H. Golub and C.F. Van Loan, Matix Computation,Third edition, 1996, John Hopkins
University Press.

[14] L. Bottou, LaSVM, available at http://leon.bottou.org/projects/lasvm/

[15] N. Ito, A. Takeda and K.C. Toh, A fast united classification algorithm based on accelerated
proximal gradient method, Journal of Machine Learning Research.

[16] X.D. Li, D.F. Sun and K.C. Toh, A Schur complement based semi-proximal ADMM for con-
vex quadratic conic programming and extensions, Mathematical Programming, 155 (2016),
pp. 333–373.

[17] X.D. Li, D.F. Sun and K.C. Toh, QSDPNAL: A two-phase Newton-CG proximal aug-
mented Lagrangian method for convex quadratic semidefinite programming problems, arX-
iv:1512.08872, 2015.

[18] X. Liu, J. Parker, C. Fan, C.M. Perou, and J.S. Marron, Visualization of cross-platform
microarray normalization, Batch Effects and Noise in Microarray Experiments: Sources
and Solutions (ed A. Scherer), pp. 167-181, 2009, John Wiley & Sons, UK.

[19] J.S. Marron and A.M. Alonso, Overview of object oriented data analysis, Biometrical Jour-
nal, 56 (2014), pp. 732–753.

[20] J.S. Marron, M.J. Todd, and J. Ahn, Distance weighted discrimination, J. American Sta-
tistical Association, 102 (2007), pp. 1267–1271.

[21] X. Qiao, H.H. Zhang, Y. Liu, M. J. Todd, and J.S. Marron, Weighted distance weighted dis-
crimination and its asymptotic properties, Journal of the American Statistical Association,
105 (2010), pp. 401-414.

[22] Y. Saad, Iterative Methods for Sparse Linear Systems, Second edition, 2003, Society for
Industrial and Applied Mathematics.

[23] D.F. Sun, K.C. Toh and L.Q. Yang, A convergent 3-block semi-proximal alternating direction
method of multipliers for conic programming with 4-type constraints, SIAM J. Optimization,
25 (2015), pp. 882–915.

[24] K.C. Toh, M.J. Todd, and R.H. Tutuncu, SDPT3 – a Matlab software package for semidef-
inite programming, Optimization Methods and Software, 11 (1999), pp. 545–581.

[25] UC Irvine Machine Learning Repository. http://archive.ics.uci.edu/ml/datasets.html

[26] V. Vapnik, The Nature of Statistical Learning Theory, 1995, Springer-Verlag, New York.

[27] B. Wang and H. Zou, Another Look at DWD: Thrifty Algorithm and Bayes Risk Consistency
in RKHS, arXiv:1508.05913, 2015.

[28] S. Wei, C. Lee, L. Wichers, and J.S. Marron, Direction-projection-permutation for high
dimensional hypothesis tests, Journal of Computational and Graphical Statistics, in print,
2015.

21

