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EFFICIENT SPARSE SEMISMOOTH NEWTON METHODS FOR
THE CLUSTERED LASSO PROBLEM\ast 
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Abstract. We focus on solving the clustered Lasso problem, which is a least squares problem
with the \ell 1-type penalties imposed on both the coefficients and their pairwise differences to learn
the group structure of the regression parameters. Here we first reformulate the clustered Lasso regu-
larizer as a weighted ordered-Lasso regularizer, which is essential in reducing the computational cost
from O(n2) to O(n log(n)). We then propose an inexact semismooth Newton augmented Lagrangian
(Ssnal) algorithm to solve the clustered Lasso problem or its dual via this equivalent formulation,
depending on whether the sample size is larger than the dimension of the features. An essential
component of the Ssnal algorithm is the computation of the generalized Jacobian of the proximal
mapping of the clustered Lasso regularizer. Based on the new formulation, we derive an efficient
procedure for its computation. Comprehensive results on the global convergence and local linear
convergence of the Ssnal algorithm are established. For the purpose of exposition and comparison,
we also summarize/design several first-order methods that can be used to solve the problem under
consideration, but with the key improvement from the new formulation of the clustered Lasso reg-
ularizer. As a demonstration of the applicability of our algorithms, numerical experiments on the
clustered Lasso problem are performed. The experiments show that the Ssnal algorithm substan-
tially outperforms the best alternative algorithm for the clustered Lasso problem.
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convex minimization
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1. Introduction. We consider a minimization problem of the following form:

(1.1) min
x\in \Re n

\biggl\{ 
1

2
\| Ax - b\| 2 + \beta \| x\| 1 + \rho 

\sum 
1\leq i<j\leq n

| xi  - xj | 
\biggr\} 
,

where A \in \Re m\times n, b \in \Re m are given data, and \beta , \rho > 0 are given positive parameters.
For x \in \Re n, \| x\| 1 =

\sum n
i=1 | xi| . Obviously, the optimal solution set of problem (1.1),

denoted by \Omega p, is nonempty and bounded. Problems of the form (1.1) are called
the clustered Lasso problems, which are motivated by the desire to learn the group
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SEMISMOOTH NEWTON METHOD FOR CLUSTERED LASSO 2027

structure of the regression parameters \{ xi\} in the statistical context [30, 24]. Two
types of sparsity are desirable: zero-sparsity and equi-sparsity. The clustered Lasso
model is proposed with \ell 1-type penalties imposed on both the coefficients and their
pairwise differences.

It is worthwhile mentioning several other popular models for group sparsity of the
regression parameters. The fused Lasso model [35, 38, 20], which was developed for
ordered predictors, penalizes the differences between adjacent predictors. The group
Lasso model [40, 10, 15] assumes that the grouping of the predictors is known, say
from the underlying background, and then penalizes the \ell 2-norm of the coefficients
within the same predictor group. The OSCAR model [3, 44] penalizes the combination
of the \ell 1-norm and a pairwise \ell \infty -norm for the coefficients. OSCAR is similar to the
clustered Lasso since it seeks zero-sparsity and equi-sparsity in \{ | xi| \} . All these models
are extended from the original Lasso model [34, 36, 37] to obtain minimal prediction
error and also to recover the true underlying specific structure of the model.

The clustered Lasso model has been applied in microarray data analysis. In ad-
dition, the clustered Lasso can be used as a pre-processing step for the fused Lasso
or the group Lasso for uncovering the group structure of the predictors. Researchers
have designed some algorithms for solving (1.1) through reformulating (1.1) as a con-
strained Lasso problem by introducing new variables in [30, 24, 33]. Unfortunately,
these methods can hardly be applied to large-scale problems due to huge computa-
tional cost.

In real applications, one may need to run the clustered Lasso problem (1.1) many
times with different (\beta , \rho ) when tuning parameters to get reasonable sparsity struc-
ture of the predictors. Therefore, it is important for us to design an efficient and
robust algorithm, especially for the high-dimensional and/or high-sample cases. In
order to achieve fast convergence, we aim to solve the clustered Lasso problem by
designing a method which exploits the second-order information. Specifically, we will
design a semismooth Newton augmented Lagrangian method, which has already been
demonstrated to be extremely efficient for Lasso [17], fused Lasso [18], group Lasso
[42], and OSCAR [21].

The main contributions of our paper can be summarized as follows.
1. We reformulate the clustered Lasso regularizer as a weighted ordered-Lasso

regularizer, which is crucial to reducing the cost of computing the regularizer
from O(n2) to O(n log(n)) operations. Based on this reformulation, we are
able to compute the proximal mapping of the clustered Lasso regularizer by
using the pool-adjacent-violators algorithm in O(n log(n)) operations. As
far as we are aware of, this is the first time that the proximal mapping of
the clustered Lasso regularizer is shown to be computable in O(n log(n))
operations.

2. The new formulation is also critical for us to obtain a well-structured gen-
eralized Jacobian of the corresponding proximal mapping so that it can be
computed explicitly and efficiently with the structure to be mentioned in
section 2.3.

3. We propose a semismooth Newton augmented Lagrangian (Ssnal) method
for solving problem (1.1) or its dual depending on whether the sample size
is larger than the dimension of the features. Since the objective function in
(1.1) is piecewise linear-quadratic, the augmented Lagrangian method (Alm)
is proved to have the asymptotic superlinear convergence property from [28,
29, 17]. For the Alm subproblem, we employ a semismooth Newton method
that exploits the second-order sparsity of the generalized Jacobian of the
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2028 M. LIN, Y.-J. LIU, D. SUN, AND K.-C. TOH

proximal mapping of the clustered Lasso regularizer to get fast superlinear or
even quadratic convergence.

4. As first-order methods have been very popular in solving various Lasso-type
problems in recent years, we summarize two first-order algorithms which can
be used to solve problem (1.1). The computation of the key projection step is
highly improved due to our new formulation of the clustered Lasso regularizer.

5. We conduct comprehensive numerical experiments to demonstrate the effi-
ciency and robustness of the Ssnal method against different parameter set-
tings. We also demonstrate the superior performance of our algorithm over
other first-order methods for large-scale instances with n\gg m.

The remaining parts of this paper are organized as follows. The next section is
devoted to computing and analyzing the proximal mapping of the clustered Lasso
regularizer and its generalized Jacobian. In sections 3 and 4, we develop semismooth
Newton-based augmented Lagrangian algorithms to solve the clustered Lasso prob-
lem and its dual problem, respectively. We employ various numerical techniques to
efficiently exploit the second-order sparsity and special structure of the generalized
Jacobian when implementing the Ssnal algorithms. For the purpose of evaluating
the efficiency of our Ssnal algorithms, in section 5.1 we summarize two first-order
algorithms which are conducive to solving the general problem (1.1). By using the
proposed proximal mapping of the clustered Lasso regularizer to be given in section
2.1, one can compute the key projection step in these two first-order methods ef-
ficiently in O(n log(n)) operations. This is already a significant improvement over
the current methods in [30, 24, 33], which require O(n2) just to evaluate the clus-
tered Lasso regularizer. The numerical performance of our Ssnal algorithms for the
clustered Lasso problems on large-scale real data and synthetic data against other
state-of-the-art algorithms is presented in section 5. We conclude our paper in the
final section.

Notation. Throughout the paper, we use ``diag(X)"" to denote the vector con-
sisting of the diagonal entries of the matrix X and ``Diag(x)"" to denote the diagonal
matrix whose diagonal is given by the vector x. We denote by In, On, and En the n\times n
identity matrix, the n\times n zero matrix, and the n\times n matrix of all ones, respectively.
For given matrix C, we also use C\dagger to represent its Moore--Penrose pseudoinverse. As
usual, f\ast is the Fenchel conjugate of an arbitrary function f .

2. Computing the proximal mapping of the clustered Lasso regularizer
and its generalized Jacobian. For convenience, we denote the clustered Lasso
regularizer in (1.1) by

p(x) = \beta \| x\| 1 + \rho 
\sum 

1\leq i<j\leq n

| xi  - xj | \forall x \in \Re n.

Let f : \Re n \rightarrow ( - \infty ,\infty ] be any given proper closed convex function. Then, the
proximal mapping Proxf (\cdot ) of f is defined as

Proxf (y) = argmin
x\in \Re n

\Bigl\{ 1

2
\| x - y\| 2 + f(x)

\Bigr\} 
\forall y \in \Re n.

We have the following important Moreau identity:

Proxtf (x) + tProxf\ast /t(x/t) = x,

where t > 0 is a given parameter.
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SEMISMOOTH NEWTON METHOD FOR CLUSTERED LASSO 2029

In this section, we shall develop some useful results on calculating the proximal
mapping of the clustered Lasso regularizer p(\cdot ) and the corresponding generalized
Jacobian.

2.1. The computation of the proximal mapping Prox\bfitp (\cdot ). Define

S\rho (y) := argmin
x\in \Re n

\biggl\{ 
1

2
\| x - y\| 2 + \rho 

\sum 
1\leq i<j\leq n

| xi  - xj | 
\biggr\} 
\forall y \in \Re n

and \scrD = \{ x \in \Re n | Bx \geq 0\} , where B is a matrix such that

Bx = [x1  - x2; . . . ;xn - 1  - xn] \in \Re n - 1.

We shall reformulate the clustered Lasso regularizer as a weighted ordered-Lasso
regularizer, which enables us to reduce the cost of computing the regularizer from
O(n2) to O(n log(n)) operations. For any x \in \Re n, we define x\downarrow to be the vector whose

components are those of x sorted in a nonincreasing order, i.e., x\downarrow 1 \geq x
\downarrow 
2 \geq \cdot \cdot \cdot \geq x\downarrow n.

Proposition 2.1. Let x \in \Re n be an arbitrarily given vector. Then it holds that

g(x) :=
\sum 

1\leq i<j\leq n

| xi  - xj | = \langle w, x\downarrow \rangle ,

where the vector w \in \Re n is defined by

(2.1) wk = n - 2k + 1, k = 1, . . . , n.

Proof. By noting that g(x) = g(Px) for any permutation matrix P , one has that

g(x) =
\sum 

1\leq i<j\leq n

| x\downarrow i  - x
\downarrow 
j | =

\sum 
1\leq i<j\leq n

(x\downarrow i  - x
\downarrow 
j )

=

n - 1\sum 
i=1

(n - i)x\downarrow i  - 
n\sum 

j=2

(j  - 1)x\downarrow j =

n\sum 
k=1

(n - 2k + 1)x\downarrow k,

which completes the proof.

Remark 2.2. As a side note, the result in Proposition 2.1 is not valid for a nonuni-
formly weighted sum.

The next proposition shows that if a vector y \in \Re n is sorted in a nonincreasing
order, S\rho (y) can be computed by a single metric projection onto \scrD .

Proposition 2.3. Suppose that y \in \Re n is given such that y1 \geq y2 \geq \cdot \cdot \cdot \geq yn.
Then it holds that

S\rho (y) = \Pi \scrD (y  - \rho w),

where w \in \Re n is given in (2.1). The metric projection onto \scrD can be computed via
the pool-adjacent-violators algorithm [2].

Proof. Let g(\cdot ) be defined in Proposition 2.1. We first note that g(x) = g(Px)
for any permutation matrix P and x \in \Re n. For convenience, let x\ast = S\rho (y). Next we
show that the components of x\ast must be arranged in a nonincreasing order. Suppose
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2030 M. LIN, Y.-J. LIU, D. SUN, AND K.-C. TOH

on the contrary that there exists i < j such that x\ast i < x\ast j . We define \=x \in \Re n by
\=xi = x\ast j , \=xj = x\ast i , \=xk = x\ast k for all k \not = i, j. Then, we derive that

1

2
\| x\ast  - y\| 2 + \rho g(x\ast ) - 

\Bigl( 1
2
\| \=x - y\| 2 + \rho g(\=x)

\Bigr) 
=

1

2

\Bigl( 
(x\ast i  - yi)2 + (x\ast j  - yj)2  - (x\ast j  - yi)2  - (x\ast i  - yj)2

\Bigr) 
= (x\ast j  - x\ast i )(yi  - yj) \geq 0,

which implies that \=x is also a minimizer. By the uniqueness of the minimizer, we have
that \=x = x\ast and hence x\ast j = \=xi = x\ast i , which is a contradiction. Hence, we obtain that

x\ast = argmin
x\in \Re n

\Bigl\{ 1

2
\| x - y\| 2 + \rho g(x)

\bigm| \bigm| \bigm| x1 \geq x2 \geq \cdot \cdot \cdot \geq xn\Bigr\} 
= argmin

x\in \Re n

\Bigl\{ 1

2
\| x - y\| 2 + \rho \langle w, x\rangle 

\bigm| \bigm| \bigm| x1 \geq x2 \geq \cdot \cdot \cdot \geq xn\Bigr\} 
= argmin

x\in \Re n

\Bigl\{ 1

2
\| x - (y  - \rho w)\| 2

\bigm| \bigm| \bigm| x1 \geq x2 \geq \cdot \cdot \cdot \geq xn\Bigr\} 
= \Pi \scrD (y  - \rho w).

The proof is complete.

Combining Proposition 2.1 with Proposition 2.3, we can get an explicit formula
for S\rho (\cdot ). Let y \in \Re n be given. Then there exists a permutation matrix Py \in \Re n\times n

such that \~y = Pyy and \~y1 \geq \~y2 \geq \cdot \cdot \cdot \geq \~yn. Thus,

S\rho (y) = PT
y S\rho (\~y) = PT

y \Pi \scrD (\~y  - \rho w) = PT
y \Pi \scrD (Pyy  - \rho w).

Next we recall an important result on computing Proxp(\cdot ), which comes from [39,
Corollary 4].

Proposition 2.4. Let y \in \Re n be given. Then, we have that

Proxp(y) = Prox\beta \| \cdot \| 1
(S\rho (y)) = sign(S\rho (y)) \circ max(| S\rho (y)|  - \beta , 0),

where ``\circ "" denotes the Hadamard product.

The above proposition states that the proximal mapping of the clustered Lasso
regularizer can be decomposed into the composition of the proximal mapping of \beta \| \cdot \| 1
and the proximal mapping of \rho g(\cdot ).

2.2. The computation of the generalized Jacobian of Prox\bfitp (\cdot ). We first
present some results on the generalized HS-Jacobian of \Pi \scrD , which can be obtained
directly from the previous work in [14], wherein Han and Sun constructed a theo-
retically computable generalized Jacobian of the metric projector over a polyhedral
set. Recently, Li, Sun, and Toh [18] further derived an efficient formula for comput-
ing a special HS-Jacobian of the solution mapping of a parametric strongly convex
quadratic programming. In this section, we will adapt the ideas in [18] to efficiently
compute the generalized Jacobian of \Pi \scrD (\cdot ).

Since \Pi \scrD is the metric projection onto the nonempty polyhedral set \scrD , for any
given y \in \Re n, there exists a multiplier \lambda \in \Re n - 1 such that the following KKT system
holds:

(2.2)

\left\{     
\Pi \scrD (y) - y +BT\lambda = 0,

B\Pi \scrD (y) \geq 0, \lambda \leq 0,

\lambda TB\Pi \scrD (y) = 0.
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SEMISMOOTH NEWTON METHOD FOR CLUSTERED LASSO 2031

Let \scrM \scrD (y) := \{ \lambda \in \Re n - 1 | (y, \lambda ) satisfies (2.2)\} . Since \scrM \scrD (y) is a nonempty
polyhedral convex set which contains no lines, it has at least one extreme point [27,
Corollary 18.5.3]. Denote the active index set by

(2.3) \scrI \scrD (y) := \{ i | Bi\Pi \scrD (y) = 0, i = 1, 2, . . . , n - 1\} ,

where Bi is the ith row of B. Define a collection of index subsets of \{ 1, . . . , n - 1\} as
follows:

\scrK \scrD (y) :=
\Bigl\{ 
K

\bigm| \bigm| \bigm| \exists \lambda \in \scrM \scrD (y) s.t. supp(\lambda ) \subseteq K \subseteq \scrI \scrD (y), BK is of full row rank
\Bigr\} 
,

where supp(\lambda ) denotes the support of \lambda and BK is the matrix consisting of the rows
of B indexed by K. It should be noted that \scrK \scrD (y) is nonempty due to the existence
of an extreme point of\scrM \scrD (y), as stated in [14]. Han and Sun in [14] introduced the
multifunction \scrQ \scrD : \Re n \rightrightarrows \Re n\times n defined by

\scrQ \scrD (y) :=
\Bigl\{ \widehat Q \in \Re n\times n

\bigm| \bigm| \bigm| \widehat Q = In  - BT
K(BKB

T
K) - 1BK , K \in \scrK \scrD (y)

\Bigr\} 
,

which is called the generalized HS-Jacobian of \Pi \scrD at y. From [19, Proposition 1 and
Theorem 1], we can readily get the following proposition, whose proof is omitted for
brevity.

Proposition 2.5. For any y \in \Re n, there exists a neighborhood \scrY of y such that

\scrK \scrD (u) \subseteq \scrK \scrD (y), \scrQ \scrD (u) \subseteq \scrQ \scrD (y) \forall u \in \scrY 

and

\Pi \scrD (u) = \Pi \scrD (y) + \widehat Q(u - y) \forall \widehat Q \in \scrQ \scrD (u).

Thus, \partial B\Pi \scrD (y) \subseteq \scrQ \scrD (y), where \partial B\Pi \scrD (y) is the B-subdifferential of \Pi \scrD at y. In

particular, \widehat Q\scrD ,0(y) \in \scrQ \scrD (y), where

\widehat Q\scrD ,0(y) := In  - BT
\scrI \scrD (y)

\Bigl( 
B\scrI \scrD (y)B

T
\scrI \scrD (y)

\Bigr) \dagger 
B\scrI \scrD (y).

Next, we propose a simple and useful result for our further discussions. Given
y \in \Re n and K \subseteq \{ 1, . . . , n  - 1\} , we provide an alternative way to compute In  - 
BT

K(BKB
T
K)\dagger BK . Let \Sigma K = Diag(\sigma K) \in \Re (n - 1)\times (n - 1) be defined by

(\sigma K)i =

\Biggl\{ 
1 if i \in K,
0 otherwise

for i = 1, 2, . . . , n - 1.

By using the fact that there exists a permutation matrix PK such that\Biggl[ 
BK

0

\Biggr] 
(n - 1)\times n

= PK\Sigma KB =

\Biggl[ 
I| K| 0

0 0

\Biggr] 
(n - 1)\times (n - 1)

PKB,

one can easily prove the following proposition, which will be used later.

Proposition 2.6. It holds that

In  - BT
K(BKB

T
K)\dagger BK = In  - BT (\Sigma KBB

T\Sigma K)\dagger B.
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For convenience, below we state Lemma 2.7 and Proposition 2.8, which are dis-
cussed in [18, Lemma 2 and Proposition 6]. For 2 \leq j \leq n, we define the linear
mapping Bj : \Re j \rightarrow \Re j - 1 such that Bjx = [x1  - x2; . . . ;xj - 1  - xj ] \forall x \in \Re j . With
this notation, we can write B = Bn.

Lemma 2.7. For 2 \leq j \leq n, it holds that

Tj := Ij  - BT
j (BjB

T
j )

 - 1Bj =
1

j
Ej .

Proposition 2.8. Let \Sigma \in \Re (n - 1)\times (n - 1) be an N -block diagonal matrix with \Sigma =
Diag(\Lambda 1, . . . ,\Lambda N ), where, for i = 1, . . . , N , \Lambda i is either Oni

or Ini
, and any two

consecutive blocks are not of the same type. Define J := \{ j | \Lambda j = Inj
, j = 1, . . . , N\} .

Then, it holds that

\Gamma := In  - BT (\Sigma BBT\Sigma )\dagger B = Diag(\Gamma 1, . . . ,\Gamma N ),

where, for i = 1, . . . , N ,

\Gamma i =

\left\{     
1

ni+1Eni+1 if i \in J,
Ini if i /\in J and i \in \{ 1, N\} ,
Ini - 1 otherwise,

with the convention I0 = \emptyset . Moreover, \Gamma = H +UUT = H +UJU
T
J , where H \in \Re n\times n

is an N -block diagonal matrix given by H = Diag(\Upsilon 1, . . . ,\Upsilon N ) with

\Upsilon i =

\left\{       
Oni+1 if i \in J,

Ini
if i /\in J and i \in \{ 1, N\} ,

Ini - 1 otherwise.

Here the (k, j)th entry of the matrix U \in \Re n\times N is given by

Uk,j =

\Biggl\{ 
1\surd 
nj+1

if
\sum j - 1

t=1 nt + 1 \leq k \leq 
\sum j

t=1 nt + 1 and j \in J,
0 otherwise,

and UJ consists of the nonzero columns of U , i.e., the columns whose indices are in J .

Based on the above preliminaries, we define the multifunction \scrQ S\rho 
: \Re n \rightrightarrows \Re n\times n

by

\scrQ S\rho (y) :=
\Bigl\{ 
Q \in \Re n\times n

\bigm| \bigm| \bigm| Q = PT
y
\widehat QPy, \widehat Q \in \scrQ \scrD (Pyy  - \rho w)

\Bigr\} 
.

The following proposition shows that \scrQ S\rho (y) can be viewed as the generalized Jaco-
bian of S\rho (\cdot ) at y.

Proposition 2.9. For any y \in \Re n, there exists a neighborhood \scrY of y such that,
for all u \in \scrY ,

\scrK \scrD (Pyu - \rho w) \subseteq \scrK \scrD (Pyy - \rho w), \scrQ \scrD (Pyu - \rho w) \subseteq \scrQ \scrD (Pyy - \rho w), \scrQ S\rho 
(u) \subseteq \scrQ S\rho 

(y),

and \Biggl\{ 
\Pi \scrD (Pyu - \rho w) = \Pi \scrD (Pyy  - \rho w) + \widehat QPy(u - y) \forall \widehat Q \in \scrQ \scrD (Pyu - \rho w),
S\rho (u) = S\rho (y) +Q(u - y) \forall Q \in \scrQ S\rho 

(u).
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Proof. The desired results can be easily derived from Proposition 2.5 together
with simple manipulations.

Define the multifunction\scrM : \Re n \rightrightarrows \Re n\times n by

(2.4) \scrM (y) :=
\Bigl\{ 
M \in \scrS n

\bigm| \bigm| \bigm| M = \Theta Q, \Theta \in \partial BProx\beta \| \cdot \| 1
(S\rho (y)), Q \in \scrQ S\rho (y)

\Bigr\} 
,

where the B-subdifferential of Prox\beta \| \cdot \| 1
(\cdot ) at \eta \in \Re n is given by

\partial BProx\beta \| \cdot \| 1
(\eta ) =

\left\{   Diag(q)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
qi = 0 if | \eta i| < \beta ,
qi \in \{ 0, 1\} if | \eta i| = \beta ,
qi = 1 otherwise

\right\}   .

We can view\scrM (y) as the generalized Jacobian of Proxp(\cdot ) at y. The reason for
this is shown in the following theorem, which is similar to what was done in [18,
Theorem 1] for the fused Lasso proximal mapping.

Theorem 2.10. Let \beta , \rho > 0 and y \in \Re n be given. Then, the multifunction\scrM is
nonempty, compact, and upper-semicontinuous. For any M \in \scrM (y), M and I  - M
are both symmetric and positive semidefinite. Moreover, there exists a neighborhood
\scrY of y such that for all u \in \scrY ,

(2.5) Proxp(u) - Proxp(y) - M(u - y) = 0 \forall M \in \scrM (u).

Proof. From the definition of \scrM , we easily see that it is nonempty and com-
pact. We know that \partial BProx\beta \| \cdot \| 1

(\cdot ) is upper semicontinuous, which, together with
the property on S\rho (\cdot ) in Proposition 2.9, implies that\scrM is upper-semicontinuous. In
addition, by noting that Prox\beta \| \cdot \| 1

(\cdot ) is piecewise affine, we have that (2.5) follows
from [8, Theorem 7.5.17].

Next we only need to prove that any M \in \scrM (y) is symmetric and positive
semidefinite. The symmetry follows directly from the definition. From (2.4) and
Lemma 2.6, one knows that for any M \in \scrM (y), there exists a 0-1 diagonal matrix
\Theta \in \partial BProx\beta \| \cdot \| 1

(S\rho (y)) and K \in \scrK \scrD (Pyy  - \rho w) such that

M = \Theta [PT
y (In  - BT

K(BKB
T
K) - 1BK)Py]

= \Theta PT
y (In  - BT (\Sigma KBB

T\Sigma K)\dagger B)Py.

Since \Sigma K \in \Re (n - 1)\times (n - 1) is an N -block diagonal matrix with

\Sigma K = Diag\{ \Lambda 1, . . . ,\Lambda N\} ,

where for i = 1, . . . , N , \Lambda i is either Oni
or Ini

, and any two consecutive blocks are
not of the same type. Define J := \{ j | \Lambda j = Inj

, j = 1, . . . , N\} . It then follows from
Proposition 2.8 that

M = \Theta PT
y \Gamma Py,

where \Gamma = Diag(\Gamma 1, . . . ,\Gamma N ) is defined as in Proposition 2.8. Define \widetilde \Theta \in \Re n\times n as

\widetilde \Theta = Py\Theta P
T
y = Diag(Pydiag(\Theta )),

which is also a 0-1 diagonal matrix. Thus,

M = PT
y
\widetilde \Theta PyP

T
y \Gamma Py = PT

y
\widetilde \Theta \Gamma Py = PT

y (\widetilde \Theta \Gamma )Py.
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In order to prove thatM is positive semidefinite, it suffices to show that \widetilde \Theta \Gamma is positive
semidefinite. Note that \widetilde \Theta can be decomposed as \widetilde \Theta = Diag(\widetilde \Theta 1, . . . , \widetilde \Theta N ) and hence\widetilde \Theta \Gamma = Diag(\widetilde \Theta 1\Gamma 1, . . . , \widetilde \Theta N\Gamma N ), so we only need to prove that for all j = 1, . . . , N , \widetilde \Theta j\Gamma j

is positive semidefinite. When \Gamma j is an identity matrix, it is obvious that \widetilde \Theta j\Gamma j = \widetilde \Theta j

and hence \widetilde \Theta j\Gamma j is positive semidefinite. When \Gamma j is not an identity matrix but of the
form \Gamma j =

1
nj+1Enj+1 from Proposition 2.8, then we have\Biggl\{ 

j - 1\sum 
t=1

nt + 1,

j - 1\sum 
t=1

nt + 2, . . . ,

j\sum 
t=1

nt

\Biggr\} 
\subseteq K \subseteq \scrI \scrD (Pyy  - \rho w),

which means that

\bigl( 
\Pi \scrD (Pyy  - \rho w)

\bigr) 
i
=

\bigl( 
\Pi \scrD (Pyy  - \rho w)

\bigr) 
i+1
\forall i \in 

\Biggl\{ 
j - 1\sum 
t=1

nt + 1, . . . ,

j\sum 
t=1

nt

\Biggr\} 
.

As one can see, no matter what value | (\Pi \scrD (Pyy  - \rho w))\sum j - 1
t=1 nt+1| takes, diag(\widetilde \Theta j)

should be all ones or all zeros, otherwise it will contradict the fact that \widetilde \Theta j\Gamma j is
symmetric. That is to say,

\widetilde \Theta j = Onj+1 or Inj+1.

Thus, \widetilde \Theta j\Gamma j = Onj+1 or 1
nj+1Enj+1, which is obviously positive semidefinite.

For the case of I  - M , we have that

I  - M = I  - PT
y (\widetilde \Theta \Gamma )Py = PT

y (I  - \widetilde \Theta \Gamma )Py.

From the previous derivation, we can see that 0 \preceq \widetilde \Theta \Gamma \preceq I, which yields that I  - M
is positive semidefinite. This completes the proof.

For later purposes, we recall the concept of semismoothness introduced in [23, 25,
16, 31].

Definition 2.11. Let f : \scrO \subseteq \Re n \rightarrow \Re m be a locally Lipschitz continuous func-
tion on the open set \scrO and \scrK : \scrO \rightrightarrows \Re m\times n be a nonempty, compact-valued and
upper-semicontinuous multifunction. We say that f is semismooth at x \in \scrO with
respect to the multifunction \scrK if (i) f is directionally differentiable at x; and (ii) for
any \Delta x \in \Re n and V \in \scrK (x+\Delta x) with \Delta x\rightarrow 0,

(2.6) f(x+\Delta x) - f(x) - V (\Delta x) = o(\| \Delta x\| ).

Furthermore, if (2.6) is replaced by

(2.7) f(x+\Delta x) - f(x) - V (\Delta x) = O(\| \Delta x\| 1+\gamma ),

where \gamma > 0 is a constant, then f is said to be \gamma -order (strongly if \gamma = 1) semismooth
at x with respect to \scrK . We say that f is a semismooth function on \scrO with respect to
\scrK if it is semismooth everywhere in \scrO with respect to \scrK .

Remark 2.12. Since Proxp(\cdot ) is a Lipschitz continuous piecewise affine function,
it follows from [8, Lemma 4.6.1] that it is directionally differentiable at any point.
Combining with Theorem 2.10, we conclude that for any arbitrary constant \gamma > 0,
Proxp(\cdot ) is \gamma -order semismooth on \Re n with respect to\scrM .
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2.3. Finding a computable element in \bfscrM (\bfity ). In order for the multifunction
that we defined in (2.4) to be useful in designing algorithms for problem (1.1), we need
to construct at least one computable element explicitly in\scrM (y) for any given y \in \Re n.
Let \Sigma = Diag(\sigma ) \in \Re (n - 1)\times (n - 1) be defined as

(2.8) \sigma i =

\Biggl\{ 
1 if i \in \scrI \scrD (Pyy  - \rho w),
0 otherwise

for i = 1, 2, . . . , n - 1,

where \scrI \scrD (\cdot ) is defined in (2.3), and \Theta = Diag(\theta ) \in \Re n\times n be defined as

(2.9) \theta i =

\Biggl\{ 
0 if | S\rho (y)| i \leq \beta ,

1 otherwise
for i = 1, 2, . . . , n.

From Proposition 2.5 and Proposition 2.6, we have that M \in \scrM (y), which is given
by

M = \Theta PT
y (In  - BT

\scrI \scrD (Pyy - \rho w)(B\scrI \scrD (Pyy - \rho w)B
T
\scrI \scrD (Pyy - \rho w))

\dagger B\scrI \scrD (Pyy - \rho w))Py

= \Theta PT
y (In  - BT (\Sigma BBT\Sigma )\dagger B)Py.

Then we can apply Proposition 2.8 to compute M explicitly.

3. A semismooth Newton augmented Lagrangian method for the dual
problem. The primal form of our problem (1.1) can be written as

(P) min
x\in \Re n

\Bigl\{ 
f(x) :=

1

2
\| Ax - b\| 2 + p(x)

\Bigr\} 
,

and the dual of (P) admits the following equivalent minimization form:

(D) min
\xi \in \Re m,u\in \Re n

\Bigl\{ 1

2
\| \xi \| 2 + \langle b, \xi \rangle + p\ast (u)

\bigm| \bigm| \bigm| AT \xi + u = 0
\Bigr\} 
.

The Lagrangian function associated with (D) is defined by

l(\xi , u;x) :=
1

2
\| \xi \| 2 + \langle b, \xi \rangle + p\ast (u) - \langle x,AT \xi + u\rangle .

Let \sigma > 0 be given. Then, the corresponding augmented Lagrangian function is given
by

\scrL \sigma (\xi , u;x) := l(\xi , u;x) +
\sigma 

2
\| AT \xi + u\| 2.

3.1. A semismooth Newton augmented Lagrangian method for (D).
We denote the whole algorithm by Ssnal since a semismooth Newton method (Ssn)
is used in solving the subproblem of the inexact augmented Lagrangian method (Alm)
[28]. We briefly describe the Ssnal algorithm in Algorithm 3.1.

For the Ssnal algorithm, we use the following implementable stopping criteria as
in [28, 29]:

\| \nabla \psi k(\xi 
k+1)\| \leq \epsilon k/

\surd 
\sigma k,

\infty \sum 
k=0

\epsilon k <\infty ,(A)

\| \nabla \psi k(\xi 
k+1)\| \leq \delta k

\surd 
\sigma k\| AT \xi k+1 + uk+1\| ,

\infty \sum 
k=0

\delta k <\infty ,(B1)

\| \nabla \psi k(\xi 
k+1)\| \leq \delta \prime k\| AT \xi k+1 + uk+1\| , 0 \leq \delta \prime k \rightarrow 0,(B2)

where \{ \epsilon k\} , \{ \delta k\} , \{ \delta \prime k\} are given nonnegative error tolerance sequences.
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Algorithm 3.1 Ssnal: A semismooth Newton augmented Lagrangian method for
(D).

Input: \sigma 0 > 0, (\xi 0, u0, x0) \in \Re m \times \Re n \times \Re n and k = 0.

1: Approximately compute

(3.1) \xi k+1 \approx argmin
\xi \in \Re m

\Bigl\{ 
\psi k(\xi ) := inf

u
\scrL \sigma k

(\xi , u;xk)
\Bigr\} 

to satisfy the conditions (A), (B1), and (B2).
2: uk+1 = (xk/\sigma k  - AT \xi k+1) - Proxp(x

k/\sigma k  - AT \xi k+1).
3: xk+1 = xk  - \sigma k(AT \xi k+1 + uk+1) = \sigma kProxp(x

k/\sigma k  - AT \xi k+1).
4: Update \sigma k+1 \uparrow \sigma \infty \leq \infty , k \leftarrow k + 1, and go to step 1.

Define the following maximal monotone operators [28]:

\scrT f (x) := \partial f(x), \scrT l(\xi , u;x) := \{ (\xi \prime , u\prime , x\prime ) | (\xi \prime , u\prime , - x\prime ) \in \partial l(\xi , u;x)\} .

The piecewise linear-quadratic property of f leads to the fact that \scrT f and \scrT l satisfy
the error bound condition [22] at point 0 with positive moduli af and al, respectively
[26, 32]. That is to say, there exists \varepsilon > 0 such that if dist(0, \scrT f (x)) \leq \varepsilon , then

(3.2) dist(x,\Omega p) \leq afdist(0, \scrT f (x)).

In addition, there exists \varepsilon \prime > 0 such that if dist(0, \scrT l(\xi , u;x)) \leq \varepsilon \prime , then

(3.3) dist((\xi , u, x), (\xi \ast , u\ast )\times \Omega p) \leq aldist(0, \scrT l(\xi , u;x)),

where (\xi \ast , u\ast ) is the unique optimal solution of (D).
The global and local convergence of the Ssnal algorithm have been studied in

[28, 29, 22]. Here we simply state some relevant results.

Theorem 3.1. (1) Let \{ (\xi k, uk, xk)\} be the infinite sequence generated by the
Ssnal algorithm with stopping criterion (A). Then, the sequence \{ xk\} converges to
an optimal solution of (P). In addition, \{ (\xi k, uk)\} converges to the unique optimal
solution (\xi \ast , u\ast ) of (D).

(2) For the sequence \{ (\xi k, uk, xk)\} generated by the Ssnal algorithm with stopping
criteria (A) and (B1), one has that for all k sufficiently large,

(3.4) dist(xk+1,\Omega p) \leq \theta kdist(xk,\Omega p),

where \theta k = (af (a
2
f + \sigma 2

k)
 - 1/2 + 2\delta k)(1  - \delta k)

 - 1 \rightarrow \theta \infty = af (a
2
f + \sigma 2

\infty ) - 1/2 < 1 as
k \rightarrow +\infty , and af is from (3.2). If the stopping criterion (B2) is also satisfied, it
holds that for k sufficiently large,

(3.5) \| (\xi k+1, uk+1) - (\xi \ast , u\ast )\| \leq \theta \prime k\| xk+1  - xk\| ,

where \theta \prime k = al(1 + \delta \prime k)/\sigma k \rightarrow al/\sigma \infty as k \rightarrow +\infty , and al is from (3.3).

Proof. The first part of this theorem can be obtained from [28, Theorem 4]. Since
\scrT f and \scrT l satisfy the error bound condition, it follows from [22, Theorem 2.1] that
(3.4) holds. If (A), (B1), and (B2) are all satisfied, combining [6] with [17, Remark 1],
we get the desired result that (3.5) holds. This completes the proof.
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3.2. A semismooth Newton method for the subproblem. In this subsec-
tion, we present an efficient semismooth Newton method for solving the Alm sub-
problem (3.1). Given \~x \in \Re n and \sigma > 0, we consider the minimization problem

(3.6) min
\xi \in \Re m

\Bigl\{ 
\psi (\xi ) := inf

u
\scrL \sigma (\xi , u; \~x)

\Bigr\} 
,

where using the Moreau identity, we get that

\psi (\xi ) = inf
u
\scrL \sigma (\xi , u; \~x) =

1

2
\| \xi \| 2 + \langle b, \xi \rangle + p\ast (Proxp\ast /\sigma ( - AT \xi + \~x/\sigma ))

+
1

2\sigma 
\| Prox\sigma p( - \sigma AT \xi + \~x)\| 2  - 1

2\sigma 
\| \~x\| 2.

Since \psi (\cdot ) is strongly convex and continuously differentiable, the minimization prob-

lem (3.6) has a unique solution \^\xi which can be obtained via solving the following
nonsmooth equation:

(3.7) 0 = \nabla \psi (\xi ) = \xi + b - AProx\sigma p(\~x - \sigma AT \xi ) = \xi + b - \sigma AProxp(\~x/\sigma  - AT \xi ).

Here we use the fact that Prox\sigma p(z) = \sigma Proxp(z/\sigma ) for any z \in \Re n.
Define the multifunction \scrV : \Re m \rightrightarrows \Re m\times m by

\scrV (\xi ) :=
\Bigl\{ 
V \in \Re m\times m

\bigm| \bigm| \bigm| V = Im + \sigma AMAT , M \in \scrM (\~x/\sigma  - AT \xi )
\Bigr\} 
,

where\scrM (\cdot ) is the multifunction defined in (2.4). By virtue of Theorem 2.10, we know
that \scrV is nonempty, compact, and upper-semicontinuous. It is obvious that for any
\xi \in \Re m, all elements of \scrV (\xi ) are symmetric and positive definite. In addition, \nabla \psi is
\gamma -order semismooth on \Re m with respect to \scrV for any \gamma > 0.

We shall apply a semismooth Newton (Ssn) method to solve (3.7) as follows, and
could expect to get a fast superlinear or even quadratic convergence.

Algorithm 3.2 Ssn: A semismooth Newton method for solving (3.7).

Input: \mu \in (0, 1/2), \=\eta \in (0, 1), \tau \in (0, 1], \delta \in (0, 1), \xi 0, \~x, \sigma , and j = 0.

1: Choose Vj \in \scrV (\xi j). Solve the linear system

(3.8) Vjh =  - \nabla \psi (\xi j)

exactly or by the conjugate gradient (CG) algorithm to find hj such that

\| Vjhj +\nabla \psi (\xi j)\| \leq min(\=\eta , \| \nabla \psi (\xi j)\| 1+\tau ).

2: Set \alpha j = \delta mj , where mj is the first nonnegative integer m for which

\psi (\xi j + \delta mhj) \leq \psi (\xi j) + \mu \delta m\langle \nabla \psi (\xi j), hj\rangle .

3: Set \xi j+1 = \xi j + \alpha j h
j , j \leftarrow j + 1, and go to step 1.

The convergence analysis for the Ssn algorithm can be established as in [18,
Theorem 3].

Theorem 3.2. Let \{ \xi j\} be the infinite sequence generated by the Ssn algorithm.

Then, \{ \xi j\} converges to the unique optimal solution \^\xi of problem (3.6) and

\| \xi j+1  - \^\xi \| = O(\| \xi j  - \^\xi \| 1+\tau ).
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Proof. According to [43, Proposition 3.3 and Theorem 3.4] and the fact that \psi (\cdot )
is strongly convex, \{ \xi j\} converges to the unique optimal solution \^\xi of problem (3.6).
Since \scrV (\cdot ) is a nonempty, compact-valued, and upper-semicontinuous set mapping,

and all elements of \scrV (\^\xi ) are nonsingular, it follows from [8, Lemma 7.5.2] that \{ \| V  - 1
j \| \} 

is uniformly bounded for sufficiently large j. In addition, \nabla \psi is strongly semismooth
on \Re m with respect to \scrV . By mimicking the proofs in [43, Theorem 3.5], we know

that there exists \^\delta > 0 such that for all sufficiently large j, one has

(3.9) \| \xi j + hj  - \^\xi \| = O(\| \xi j  - \^\xi \| 1+\tau )

and
 - \langle \nabla \psi (\xi j), hj\rangle \geq \^\delta \| hj\| 2.

By using (3.9), [18, Proposition 7], and [8, Proposition 8.3.18], we can derive that for
\mu \in (0, 1/2), there exists an integer j0 such that for all j \geq j0,

\psi (\xi j + hj) \leq \psi (\xi j) + \mu \langle \nabla \psi (\xi j), hj\rangle ,

which implies that \xi j+1 = \xi j + hj for all j \geq j0. Combining with (3.9), we complete
the proof.

3.3. On the implementation of the SSNAL algorithm for the dual prob-
lem. The most time-consuming step in our algorithm is in solving the Newton equa-
tion (3.8). In this subsection, we shall design an efficient procedure to solve it.

Given y := \~x/\sigma  - AT \xi , we already know that

M = \Theta Q \in \scrM (y),

where Q = PT
y (In  - BT (\Sigma BBT\Sigma )\dagger B)Py, and \Sigma and \Theta are defined in (2.8) and (2.9),

respectively. For the Newton equation (3.8), we need to deal with the matrix AMAT .
Thus it is important to analyze its structure in order to solve (3.8) efficiently.

Noting that \Sigma = Diag\{ \Lambda 1, . . . ,\Lambda N\} is an N -block diagonal matrix with each \Lambda i

being either a zero matrix or an identity matrix, and any two consecutive blocks are
not of the same type, we can apply Proposition 2.8 to simplify our computation. Let
J := \{ j | \Lambda j = Inj

, j = 1, . . . , N\} . Then we have

Q = PT
y (H + UJU

T
J )Py = PT

y HPy + PT
y UJU

T
J Py,

where the N -block diagonal matrix H = Diag(\Upsilon 1, . . . ,\Upsilon N ) \in \Re n\times n is defined by

\Upsilon i =

\left\{     
Oni+1 if i \in J,
Ini

if i /\in J and i \in \{ 1, N\} ,
Ini - 1 otherwise,

and UJ is defined in Proposition 2.8.
Since M = \Theta Q is symmetric, it holds that \Theta Q = M = MT = Q\Theta . Due to the

fact that \Theta is a 0-1 diagonal matrix, we have that \Theta = \Theta 2 and hence

M = \Theta Q = \Theta (\Theta Q) = \Theta (Q\Theta ).

Thus, after plugging in the derived formula for Q, we get that

M = \Theta \widetilde H\Theta +\Theta PT
y UJ(P

T
y UJ)

T\Theta ,

D
ow

nl
oa

de
d 

04
/0

3/
23

 to
 1

58
.1

32
.1

61
.1

85
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SEMISMOOTH NEWTON METHOD FOR CLUSTERED LASSO 2039

where the matrix

\widetilde H = PT
y HPy = Diag(PT

y diag(H))

is also a 0-1 diagonal matrix. It follows that

AMAT = A\Theta \widetilde H\Theta AT +A\Theta PT
y UJ(P

T
y UJ)

T\Theta AT .

Define the index sets

\alpha :=
\Bigl\{ 
i
\bigm| \bigm| \bigm| \theta i = 1, i \in \{ 1, . . . , n\} 

\Bigr\} 
, \gamma :=

\Bigl\{ 
i
\bigm| \bigm| \bigm| \widetilde hi = 1, i \in \alpha 

\Bigr\} 
,

where \theta i and \widetilde hi are the ith diagonal entries of \Theta and \widetilde H, respectively. Then, we
immediately get the formula

A\Theta \widetilde H\Theta AT = A\alpha 
\widetilde HAT

\alpha = A\gamma A
T
\gamma ,

where A\alpha \in \Re m\times | \alpha | and A\gamma \in \Re m\times | \gamma | are two submatrices obtained from A by
extracting those columns with indices in \alpha and \gamma , respectively. Furthermore, we have
that

A\Theta PT
y UJ(P

T
y UJ)

T\Theta AT = A\alpha P
T
y UJ(P

T
y UJ)

TAT
\alpha = A\alpha 

\widetilde U \widetilde UTAT
\alpha ,

where \widetilde U \in \Re | \alpha | \times t is a submatrix obtained from \Theta (PT
y UJ) by extracting those rows

with indices in \alpha and removing the zero columns from \Theta (PT
y UJ). Finally, we obtain

that

AMAT = A\gamma A
T
\gamma +A\alpha 

\widetilde U \widetilde UTAT
\alpha .

Li, Sun, and Toh [18] referred to the above structure of AMAT and that of Im +
\sigma AMAT inherited from M as the second-order structured sparsity. They also gave a
thorough analysis of computational cost, which is quite similar in our case. Without
considering the cost of computing PT

y diag(H) and PT
y UJ , the arithmetic operations

of computing AMAT and AMAT d for a given vector d are O(m| \alpha | (m + t)) and
O(| \alpha | (m+ t)), respectively. With the use of the Sherman--Morrison--Woodbury for-
mula [13], the computational cost can be further reduced. We omit the details here.

4. A semismooth Newton proximal augmented Lagrangian method for
the primal problem. The augmented Lagrangian method (Alm) for the dual prob-
lem (D) is expected to be efficient for the case when m \ll n, since the semismooth
Newton system (3.8) is of dimension m-by-m. But for the case when m \gg n, as we
shall see later in the numerical experiments, it is naturally more efficient to apply the
Alm on the primal problem to avoid having to deal with a largem-by-m linear system
in each semismooth Newton iteration. In this section, we will derive a semismooth
Newton proximal Alm for the primal problem.

First we rewrite the primal problem as

(P\prime ) min
x\in \Re n,z\in \Re n

\Bigl\{ 1

2
\| Ax - b\| 2 + p(z)

\bigm| \bigm| \bigm| x - z = 0
\Bigr\} 
.

The dual of (P\prime ) is given as

(D\prime ) max
y\in \Re n,v\in \Re n

\Bigl\{ 
 - 1

2
\| Av  - b\| 2  - \langle b, Av  - b\rangle  - p\ast ( - y)

\bigm| \bigm| \bigm| AT (Av  - b) - y = 0
\Bigr\} 
.
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Given \sigma > 0, the augmented Lagrangian function of problem (P\prime ) is given by

\widetilde \scrL \sigma (x, z; y) :=
1

2
\| Ax - b\| 2 + p(z) - \langle y, x - z\rangle + \sigma 

2
\| x - z\| 2.

4.1. A semismooth Newton proximal augmented Lagrangian method
for (P\prime ). The semismooth Newton proximal Alm for (P\prime ) has a similar framework to
the Ssnal algorithm for (D). For simplicity, we just state Algorithm 4.1 here without
giving the detailed derivation.

Algorithm 4.1 p-Ssnal: A semismooth Newton augmented Lagrangian method for
(P\prime ).

Input: \sigma 0 > 0, (x0, z0, y0) \in \Re n \times \Re n \times \Re n, and k = 0.

1: Adapt the semismooth Newton method to approximately compute

(4.1) xk+1 \approx argmin
x\in \Re n

\Bigl\{ 
\phi k(x) := \widetilde \scrL \sigma k

(x,Proxp/\sigma k
(x - yk/\sigma k); yk)+

1

2\sigma k
\| x - xk\| 2

\Bigr\} 
to satisfy condition (A2) below.

2: zk+1 = Proxp/\sigma k
(xk+1  - yk/\sigma k).

3: yk+1 = yk  - \sigma k(xk+1  - zk+1).
4: Update \sigma k+1 \uparrow \sigma \infty \leq \infty , k \leftarrow k + 1, and go to step 1.

In the p-Ssnal algorithm, we apply a semismooth Newton method (Ssn) to solve
(4.1) with the following stopping criterion:

(A2) \| \nabla \phi k(xk+1)\| \leq \epsilon k
\sigma k

min(1, \| (xk+1, zk+1, yk+1) - (xk, zk, yk)\| ),
\infty \sum 
k=0

\epsilon k <\infty .

The proximal Alm has been studied in [28, section 5], which is also called the
proximal method of multipliers. We can get the global convergence and local linear
convergence of the proximal Alm without any difficulty from [28, 29, 22].

4.2. A semismooth Newton method for solving (4.1). Similar to the case
of the Ssnal algorithm, the most expensive step in each iteration of the p-Ssnpal
algorithm is in solving the subproblem (4.1). Given \sigma > 0 and (\~x, \~y) \in \Re n \times \Re n, we
adapt a semismooth Newton method to solve a typical subproblem of the following
form:

min
x\in \Re n

\phi (x) := \widetilde \scrL \sigma (x,Proxp/\sigma (x - \~y/\sigma ); \~y) +
1

2\sigma 
\| x - \~x\| 2.

Since \phi (\cdot ) is continuously differentiable and strongly convex, the above optimization
problem has a unique solution \^x. Thus, it is equivalent to solving the following
nonsmooth equation:

0 = \nabla \phi (x) = AT (Ax - b) + \sigma x - \~y  - \sigma Proxp/\sigma (x - \~y/\sigma ) + (x - \~x)/\sigma 

= AT (Ax - b) + (\sigma + 1/\sigma )x - (\~y + \~x/\sigma ) - Proxp(\sigma x - \~y).
(4.2)

Define the multifunction \scrU : \Re n \rightrightarrows \Re n\times n by

\scrU (x) :=
\Bigl\{ 
U \in \Re n\times n

\bigm| \bigm| \bigm| U = ATA+ \sigma (In  - M) +
1

\sigma 
In, M \in \scrM (\sigma x - \~y)

\Bigr\} 
,
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where \scrM (\cdot ) is defined as in (2.4). From Theorem 2.10, we obtain that \scrU is a
nonempty, compact-valued, and upper-semicontinuous multifunction with its elements
being symmetric and positive definite. In addition, \nabla \phi is \gamma -order semismooth on \Re n

with respect to \scrU for all \gamma > 0. Thus we can apply an Ssn method to solve (4.2).
Similar to the results in section 3.2, the Ssn method has a fast superlinear or even
quadratic convergence.

The efficiency of the Ssn method depends on the generalized Jacobian of \nabla \phi (\^x).
Next, we characterize the positive definiteness of the elements in \scrU (\^x) in the following
proposition.

Proposition 4.1. For any U = ATA+ \sigma (In  - M) + 1
\sigma In \in \scrU (\^x), we have that

\lambda min(U) \geq \lambda min(A
TA+ \sigma (In  - M)) +

1

\sigma 
\geq \lambda min(A

TA) + \sigma \lambda min(In  - M) +
1

\sigma 
\geq 1

\sigma 
.

Proof. From Theorem 2.10, we know that for any M \in \scrM (\sigma \^x  - \~y), In  - M is
symmetric and positive semidefinite, which yields that the desired conclusion holds
trivially.

Remark 4.2. When the columns of A are linearly independent, for any U \in \scrU (\^x),
we have that

\lambda min(U) \geq \lambda min(A
TA) + \sigma \lambda min(In  - M) +

1

\sigma 
\geq \lambda min(A

TA) +
1

\sigma 
.

In that case, U is positive definite if we do not add the proximal term 1
2\sigma k
\| x - xk\| 2

in (4.1). Since here we mainly focus on the case when m \gg n, the columns of A are
very likely to be linearly independent.

5. Numerical experiments. In this section, we will evaluate the performance
of our Ssnal algorithm for solving the clustered Lasso problems on the high-dimen-
sion--low-sample setting and the high-sample--low-dimension setting. For simplicity,
we use the following abbreviations. Ssnal represents the semismooth Newton aug-
mented Lagrangian method, Admm represents the alternating direction method of
multipliers, iAdmm represents the inexact Admm, LAdmm represents the linearized
Admm, and Apg represents the accelerated proximal gradient method. We imple-
mented Admm, iAdmm, and LAdmm in MATLAB with the step length set to be
1.618.

In our experiments, the regularization parameters \beta and \rho in the clustered Lasso
problem (1.1) are chosen to have the form

\beta = \alpha 1\| AT b\| \infty , \rho = \alpha 2\beta ,

where 0 < \alpha 1 < 1 and \alpha 2 > 0. To produce reasonable clustering results, we choose
\alpha 2 = O(1/n) to make sure that the two penalty terms have the same magnitude of
influence.

We stop the tested algorithms according to some specified stopping criteria, which
will be given in the following subsections. In addition, the algorithms will be stopped
when they reach the maximum computation time of 3 hours or the pre-set maximum
number of iterations (100 for Ssnal, and 20000 for Admm, iAdmm, LAdmm, Apg).
All our computational results are obtained by running MATLAB (version 9.0) on a
windows workstation (12-core, Intel Xeon E5-2680 @ 2.50GHz, 128GB RAM).
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5.1. First-order methods. For comparison purposes, we summarize two types
of first-order methods that are suitable for solving the clustered Lasso problem. An
important point to mention here is that the proximal mapping given in section 2.1
plays a crucial role in the projection steps of these methods. Indeed, the new char-
acteristic of the clustered Lasso regularizer vastly improves the performance of the
first-order methods as the computation of the proximal mapping is now much cheaper.

Alternating direction method of multipliers for (D). We start by adapting the
widely-used alternating direction method of multipliers (Admm) [7, 11, 12] for solving
(D), which can be described as Algorithm 5.1.

Algorithm 5.1 d-Admm: An alternating direction method of multipliers for (D).

Input: \kappa \in (0, (1 +
\surd 
5)/2), \sigma > 0, x0 \in \Re n, u0 \in \Re n, and k = 0.

1: Compute

(5.1) \xi k+1 \approx argmin
\xi \in \Re m

\scrL \sigma (\xi , u
k;xk).

2: uk+1 = argminu\in \Re n \scrL \sigma (\xi 
k+1, u;xk) = Proxp\ast /\sigma ( - AT \xi k+1 + xk/\sigma ).

3: xk+1 = xk  - \kappa \sigma (AT \xi k+1 + uk+1).
4: k \leftarrow k + 1, and go to step 1.

Note that in practice, \kappa should be chosen to be at least 1 for faster convergence.
For the subproblem (5.1), the optimality condition that \xi k+1 must satisfy is given by

(Im + \sigma AAT )\xi =  - b+A(xk  - \sigma uk).

The linear system of equations of the form (Im + \sigma AAT )\xi = h has to be solved
repeatedly with a different right-hand side vector h. One can solve this linear system
directly or use an iterative solver such as the preconditioned conjugate gradient (Pcg)
method.

The convergence results of the classical Admm with the subproblems solved ex-
actly have been discussed in [9], while the convergence analysis of the inexact Admm
can be found in [5]. The linearized Admm algorithm [41] can also be used to solve
this problem by linearizing the quadratic term in (5.1). It is worthwhile to mention
that inexact Admm and linearized Admm are often used in the case when m is large.

Alternating direction method of multipliers for (P\prime ). Next we present the Admm
algorithm for (P\prime ), which is described as Algorithm 5.2.

Algorithm 5.2 p-Admm: An alternating direction method of multipliers for (P\prime ).

Input: \kappa \in (0, (1 +
\surd 
5)/2), \sigma > 0, z0 \in \Re n, y0 \in \Re n, and k = 0.

1: Compute

(5.2) xk+1 \approx argmin
x\in \Re n

\widetilde \scrL \sigma (x, z
k; yk).

2: zk+1 = argminz\in \Re n
\widetilde \scrL \sigma (x

k+1, z; yk) = Proxp/\sigma (x
k+1  - yk/\sigma ).

3: yk+1 = yk  - \kappa \sigma (xk+1  - zk+1).
4: k \leftarrow k + 1, and go to step 1.
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Note that, for the subproblem (5.2), xk+1 is the solution of the following linear
system:

(\sigma In +ATA)x = AT b+ \sigma (zk + yk/\sigma ).

Both direct solvers and iterative solvers can be used here.
An accelerated proximal gradient method of (P). Since the function \| Ax - b\| 2/2

in (P) has Lipschitz continuous gradient (with Lipschitz constant L, which is the
largest eigenvalue of ATA), one can attempt to use the accelerated proximal gradient
(Apg) method in [1] to solve (P). The basic template of the Apg algorithm is given
in Algorithm 5.3.

Algorithm 5.3 Apg: An accelerated proximal gradient method for (P).

Input: \varepsilon > 0, w0 = x0 \in \Re n, t0 = 1, and k = 0.

1: Compute

xk+1 = Proxp/L(w
k  - L - 1AT (Awk  - b)).

2: Set tk+1 = (1 +
\sqrt{} 
1 + 4t2k )/2.

3: Update wk+1 = xk+1 + (tk  - 1)/tk+1(x
k+1  - xk).

4: k \leftarrow k + 1, and go to step 1.

It is clear that the practical performance of the Apg algorithm hinges crucially
on whether one can compute the proximal mapping Prox\nu p(y) for any y \in \Re n and
\nu > 0 efficiently. Fortunately, we have provided an analytical solution to this problem
in section 2.1.

5.2. Stopping criteria. Since the primal problem (P) is unconstrained, it is
reasonable to measure the accuracy of an approximate optimal solution (\xi , u, x) of
problem (D) and problem (P) by the relative duality gap and dual infeasibility. Specif-
ically, let

pobj :=
1

2
\| Ax - b\| 2 + p(x), dobj :=  - 1

2
\| \xi \| 2  - \langle b, \xi \rangle 

be the primal and dual objective function values. The relative duality gap and the
relative dual infeasibility are given as

\eta gap :=
| pobj - dobj| 

1 + | pobj| + | dobj| 
, \eta D :=

\| AT \xi + u\| 
1 + \| u\| 

.

In addition, the relative KKT residual of the primal problem (P),

(5.3) \eta kkt =
\| x - Proxp(x - AT (Ax - b))\| 

1 + \| x\| + \| AT (Ax - b)\| 
,

can be adopted to measure the accuracy of an approximate optimal solution x.

5.3. Numerical results for UCI data sets. In this subsection, we conduct
some experiments on the same large-scale UCI data sets (A, b) as in [18] that are
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originally obtained from the LIBSVM data sets [4]. All instances are in the high-
dimension--low-sample setting. According to what we have discussed in section 3, the
dual approaches are better choices since we have m\ll n in this setting.

For a given tolerance \epsilon , we will terminate the Ssnal algorithm when

(5.4) max\{ \eta gap, \eta D, \eta kkt\} \leq \epsilon .

Table 1 gives the numerical results for Ssnal when solving the clustered Lasso
problem (1.1) on UCI data sets. In the table, m and n denote the number of samples
and features, respectively. We use nnz(x) to denote the number of nonzeros in the
solution x using the estimation

nnz(x) := min

\biggl\{ 
k

\bigm| \bigm| \bigm| \bigm| k\sum 
i=1

| \^xi| \geq 0.99999\| x\| 1
\biggr\} 
,

where \^x is obtained by sorting x such that | \^x1| \geq | \^x2| \geq \cdot \cdot \cdot \geq | \^xn| . We also use
gnnz(x) to denote the number of groups in the solution, where the pairwise ratios
among the sorted elements in each group are between 5/6 and 6/5. In order to get
reasonable grouping results, we regard the elements with absolute value below 10 - 4

to be in the same group.
In order to get a reasonable number of nonzero elements in the optimal solution

x, we choose \alpha 1 \in \{ 10 - 6, 10 - 7\} for the problems E2006.train and E2006.test, \alpha 1 \in 
\{ 10 - 2, 10 - 3\} for problem triazines4, \alpha 1 \in \{ 10 - 5, 10 - 6\} for problem bodyfat and \alpha 1 \in 
\{ 10 - 3, 10 - 4\} for the other instances. As we mentioned before, when \alpha 2 = O(1/n),
we can get reasonable clustering results. In total, we tested 54 instances.

From Table 1, we see that the Ssnal algorithm is efficient and robust against
different parameter selections. It can be observed that all the 54 tested instances are
successfully solved by Ssnal in about 5 minutes. In fact, for most of the cases, they
are solved in less than one minute.

Table 1: The performance of the Ssnal algorithm on UCI data sets with differ-
ent parameter selections. We terminate Ssnal when max\{ \eta gap, \eta D, \eta kkt\} \leq 10 - 6.
nnz(x) and gnnz(x) are obtained by Ssnal. Time is shown in the format of
(hours:minutes:seconds).

Proname (m; n) \alpha 1; \alpha 2 nnz(x); gnnz(x) pobj \eta kkt max\{ \eta gap, \eta D\} Time

E2006.train (16087; 150360)

\lambda max(AAT ) =1.91e+05

1e - 6; 1e - 5 4; 4 1.19083+3 2.9-7 8.7-7 05

1e - 6; 1e - 6 22; 8 1.18031+3 8.2-9 7.2-8 07

1e - 6; 1e - 7 27; 6 1.17744+3 6.3-8 7.6-7 06

1e - 7; 1e - 4 8; 5 1.18600+3 1.2-8 5.3-8 06

1e - 7; 5e - 5 36; 6 1.17237+3 4.4-8 4.7-8 09

1e - 7; 1e - 5 380; 6 1.10710+3 1.4-8 4.8-7 01:20

E2006.test (3308; 150358)

\lambda max(AAT ) =4.79e+04

1e - 6; 1e - 5 10; 5 2.38906+2 2.9-8 4.5-7 04

1e - 6; 1e - 6 35; 5 2.29669+2 2.7-9 9.9-8 04

1e - 6; 1e - 7 53; 5 2.27308+2 2.3-9 1.2-7 04

1e - 7; 1e - 4 20; 7 2.34499+2 7.8-10 3.4-8 04

1e - 7; 5e - 5 76; 8 2.23445+2 9.0-9 2.3-7 10

1e - 7; 1e - 5 550; 5 1.74748+2 2.7-10 4.5-8 04:00

log1p.train (16087; 4272227)

\lambda max(AAT ) =5.86e+07

1e - 3; 1e - 6 3; 3 2.80871+3 7.8-8 7.8-8 49

1e - 3; 1e - 7 3; 3 1.58340+3 2.0-7 2.0-7 55

1e - 3; 1e - 8 5; 5 1.45745+3 8.7-8 8.7-8 01:09

1e - 4; 1e - 6 38; 11 1.27870+3 3.9-7 4.0-7 01:27

1e - 4; 5e - 7 92; 5 1.18724+3 1.1-7 1.1-7 02:30

1e - 4; 1e - 7 321; 5 1.08486+3 1.8-7 1.8-7 05:08

\bfC \bfo \bfn \bft \bfi \bfn \bfu \bfe \bfd \bfo \bfn \bfn \bfe \bfx \bft \bfp \bfa \bfg \bfe 
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\bfT \bfa \bfb \bfl \bfe \bfone --- \bfc \bfo \bfn \bft \bfi \bfn \bfu \bfe \bfd \bff \bfr \bfo \bfm \bfp \bfr \bfe \bfv \bfi \bfo \bfu \bfs \bfp \bfa \bfg \bfe 

Proname (m; n) \alpha 1; \alpha 2 nnz(x); gnnz(x) pobj \eta kkt max\{ \eta gap, \eta D\} Time

log1p.test (3308; 4272226)

\lambda max(AAT ) =1.46e+07

1e - 3; 1e - 6 3; 2 6.27631+2 4.3-7 4.3-7 40

1e - 3; 1e - 7 4; 4 3.41971+2 4.0-8 4.0-8 01:08

1e - 3; 1e - 8 8; 5 3.10745+2 5.5-8 5.5-8 01:06

1e - 4; 1e - 6 50; 6 2.61434+2 2.4-7 2.4-7 01:47

1e - 4; 5e - 7 172; 5 2.34526+2 2.0-7 2.0-7 03:28

1e - 4; 1e - 7 726; 5 1.90645+2 1.5-7 1.5-7 04:26

pyrim5 (74; 201376)

\lambda max(AAT ) =1.22e+06

1e - 3; 5e - 5 48; 5 6.08424-1 2.1-7 2.2-7 36

1e - 3; 1e - 5 65; 7 1.94647-1 4.1-7 4.4-7 28

1e - 3; 1e - 6 91; 10 8.80020-2 2.2-7 2.3-7 21

1e - 4; 5e - 5 102; 5 8.19911-2 6.2-7 6.6-7 52

1e - 4; 1e - 5 88; 5 2.67953-2 2.1-7 2.3-7 01:07

1e - 4; 1e - 6 83; 6 1.24353-2 4.7-7 6.2-7 28

triazines4 (186; 635376)

\lambda max(AAT ) =2.07e+07

1e - 2; 1e - 5 341; 3 7.81486+0 8.2-8 2.6-7 37

1e - 2; 1e - 6 373; 6 3.00214+0 2.0-7 2.1-7 56

1e - 2; 1e - 7 411; 8 2.31560+0 8.9-8 8.9-8 50

1e - 3; 1e - 5 611; 6 1.86205+0 1.7-7 1.7-7 02:06

1e - 3; 1e - 6 641; 6 7.53899-1 9.6-7 9.6-7 02:00

1e - 3; 5e - 7 877; 7 6.55800-1 5.6-7 5.6-7 04:52

abalone (4177; 6435)

\lambda max(AAT ) =5.21e+05

1e - 3; 1e - 4 25; 8 1.24134+4 4.7-7 4.8-7 01

1e - 3; 5e - 5 24; 8 1.19308+4 5.7-7 5.8-7 01

1e - 3; 1e - 5 26; 9 1.15154+4 4.8-7 4.8-7 01

1e - 4; 1e - 4 50; 8 9.54332+3 1.4-7 1.6-7 04

1e - 4; 5e - 5 51; 5 9.42227+3 1.9-7 2.2-7 04

1e - 4; 1e - 5 62; 7 9.31717+3 5.1-7 6.1-7 05

bodyfat (252; 116280)

\lambda max(AAT ) =5.29e+04

1e - 5; 5e - 5 10; 5 2.09723-2 2.0-8 2.8-8 04

1e - 5; 1e - 5 20; 8 7.14784-3 3.7-7 6.4-7 05

1e - 5; 1e - 6 27; 6 3.93005-3 1.3-7 2.3-7 06

1e - 6; 5e - 5 38; 6 2.55045-3 7.4-8 1.6-7 07

1e - 6; 1e - 5 78; 6 9.90203-4 6.5-8 1.3-7 13

1e - 6; 1e - 6 108; 7 5.93863-4 6.6-8 1.3-7 11

housing (506; 77520)

\lambda max(AAT ) =3.28e+05

1e - 3; 5e - 5 106; 9 6.69490+3 3.5-7 4.6-7 07

1e - 3; 1e - 5 139; 6 3.76003+3 3.7-8 3.9-8 09

1e - 3; 1e - 6 158; 5 2.88365+3 5.3-8 5.4-8 08

1e - 4; 5e - 5 207; 6 1.94260+3 1.8-7 1.9-7 42

1e - 4; 1e - 5 255; 11 1.21114+3 4.2-7 5.8-7 28

1e - 4; 1e - 6 292; 9 9.54315+2 8.1-8 1.0-7 22

For comparison, we also conduct numerical experiments on Admm, iAdmm,
LAdmm, and Apg. We select two pairs of parameters for each data set when com-
puting. Let pobjSsnal be the optimal primal objective value obtained by Ssnal with
stopping criterion (5.4). Since the minimization problem (P) is unconstrained, it is
reasonable to terminate a first-order algorithm when

(5.5) \eta rel :=
pobj - pobjSsnal
1 + | pobjSsnal| 

\leq \epsilon 2,

where pobj is the primal objective value obtained by the first-order algorithm and \epsilon 2
is a given tolerance. Here, we treat pobjSsnal as an accurate approximate optimal
objective value to (P) and stop the other algorithms by using the relative difference
between the obtained primal objective value and pobjSsnal.

Tables 2 and 3 show the numerical results. In the tables, tSsnal represents the
time needed by Ssnal when using the stopping criterion (5.4) with \epsilon = 10 - 6. We test
two different choices of \epsilon 2. The results for \epsilon 2 = 10 - 4 are shown in Table 2 and the
results for \epsilon 2 = 10 - 6 are shown in Table 3. The values highlighted in bold in these
tables mean that the corresponding algorithms cannot achieve the required accuracy
when the maximum iteration is attained.
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When \epsilon 2 = 10 - 4, we can see from Table 2 that Admm is able to solve 18 instances
and iAdmm can solve 17 instances successfully, while LAdmm and Apg can solve
16 and 12 instances successfully, respectively. When \epsilon 2 = 10 - 6, we can see from
Table 3 that Admm is able to solve 16 instances and iAdmm can solve 15 instances,
while LAdmm and Apg can only solve 11 and 3 instances, respectively. We note
that iAdmm and LAdmm are computationally more advantageous than Admm when
solving instances with large m, and thus it is not surprising that Admm is more
efficient than iAdmm and LAdmm in solving the tested instances for which m is not
too large.

By comparing the computation time between Ssnal and the first-order algo-
rithms, we can see that Ssnal takes much less time than the first-order algorithms
but gets much better results in almost all cases. If we require a high accuracy, then
the first-order methods will take much longer than Ssnal and may not even achieve
the required accuracy.

Table 2: The performance of various algorithms on UCI data sets. In the table, ``b""
= Admm, ``c"" = iAdmm, ``d"" = LAdmm, ``e"" = Apg. We terminate the first-order
algorithms when \eta rel \leq 10 - 4. tSsnal represents the time needed by Ssnal when

using stopping criterion max\{ \eta gap, \eta D, \eta kkt\} \leq 10 - 6. Time is shown in the format
of (hours:minutes:seconds).

\eta rel Time

Proname \alpha 1; \alpha 2 tSsnal b | c | d | e b | c | d | e

E2006.train
1e - 6; 1e - 7 06 1.0-4 | 1.0-4 | 9.9-5 | 9.6-5 34:05 | 06:47 | 32 | 53:30
1e - 7; 1e - 5 01:20 1.0-4 | 9.9-5 | 1.0-4 | \bffive .\bffive -\bfthree 41:51 | 09:54 | 01:19 | 59:38

E2006.test
1e - 6; 1e - 7 04 9.8-5 | 9.8-5 | 9.9-5 | \bfthree .\bfnine -\bfthree 03:41 | 03:09 | 32 | 23:57
1e - 7; 1e - 5 04:00 1.0-4 | 9.9-5 | 1.0-4 | \bfsix .\bfsix -\bftwo 04:41 | 04:28 | 01:27 | 24:21

log1p.train
1e - 3; 1e - 8 01:09 9.9-5 | 9.5-5 | 9.4-5 | 8.2-5 29:09 | 09:19 | 05:14 | 01:03:59
1e - 4; 1e - 7 05:08 1.0-4 | 9.9-5 | 9.9-5 | 5.4-5 35:50 | 14:44 | 11:13 | 01:47:40

log1p.test
1e - 3; 1e - 8 01:06 9.7-5 | 9.5-5 | 9.3-5 | 2.6-5 08:20 | 08:01 | 03:36 | 49:14
1e - 4; 1e - 7 04:26 1.0-4 | 1.0-4 | 9.9-5 | 9.6-5 13:07 | 12:37 | 09:31 | 01:30:30

pyrim5
1e - 3; 1e - 6 21 1.0-4 | 1.0-4 | 1.0-4 | 9.7-5 06:17 | 14:19 | 14:52 | 34:08
1e - 4; 1e - 6 28 1.0-4 | 1.0-4 | 1.0-4 | \bftwo .\bfone -\bffour 05:50 | 21:17 | 12:37 | 39:31

triazines4
1e - 2; 1e - 6 56 1.0-4 | 1.0-4 | 1.0-4 | 9.6-5 55:38 | 01:47:38 | 02:01:36 | 02:25:28
1e - 3; 1e - 6 02:00 1.0-4 | \bffour .\bfseven -\bffour | \bfnine .\bfone -\bffour | \bfthree .\bfone -\bfthree 01:12:35 | 03:00:01 | 01:34:51 | 03:00:00

abalone
1e - 3; 1e - 5 01 1.0-4 | 1.0-4 | 1.0-4 | 7.5-5 32 | 24 | 08 | 40
1e - 4; 1e - 5 05 9.9-5 | 1.0-4 | 1.0-4 | 9.9-5 01:15 | 01:40 | 37 | 02:00

bodyfat
1e - 5; 1e - 6 06 9.9-5 | 9.9-5 | 9.9-5 | 9.5-5 53 | 02:59 | 29 | 07:57
1e - 6; 1e - 6 11 1.0-4 | 1.0-4 | 1.0-4 | 9.8-5 01:18 | 05:41 | 01:11 | 11:12

housing
1e - 3; 1e - 6 08 1.0-4 | 1.0-4 | 1.0-4 | 9.5-5 01:08 | 04:27 | 03:53 | 06:26
1e - 4; 1e - 6 22 1.0-4 | 1.0-4 | \bfnine .\bfnine -\bfthree | \bfthree .\bfeight -\bffour 02:06 | 17:25 | 08:06 | 14:52

Table 3: As for Table 2 but we terminate the first-order algorithms when \eta rel \leq 
10 - 6.

\eta rel Time

Proname \alpha 1; \alpha 2 tSsnal b | c | d | e b | c | d | e

E2006.train
1e - 6; 1e - 7 06 9.9-7 | 9.9-7 | 9.9-7 | \bffour .\bffive -\bffive 37:47 | 08:01 | 48 | 01:00:44
1e - 7; 1e - 5 01:20 9.8-7 | 9.9-7 | 9.9-7 | \bffive .\bffive -\bfthree 44:51 | 11:17 | 01:46 | 59:38

E2006.test
1e - 6; 1e - 7 04 9.8-7 | 9.8-7 | 9.9-7 | \bfthree .\bfnine -\bfthree 03:59 | 03:26 | 42 | 23:57
1e - 7; 1e - 5 04:00 \bfone .\bfthree -\bffive | \bftwo .\bfsix -\bffive | \bftwo .\bfone -\bffive | \bfsix .\bfsix -\bftwo 05:19 | 04:43 | 02:06 | 24:21

log1p.train
1e - 3; 1e - 8 01:09 9.7-7 | 9.6-7 | 1.0-6 | 7.5-7 32:57 | 12:34 | 10:21 | 02:07:44
1e - 4; 1e - 7 05:08 9.9-7 | 1.0-6 | 1.0-6 | \bfeight .\bfzero -\bfsix 57:11 | 33:23 | 34:48 | 03:00:01

\bfC \bfo \bfn \bft \bfi \bfn \bfu \bfe \bfd \bfo \bfn \bfn \bfe \bfx \bft \bfp \bfa \bfg \bfe 
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\bfT \bfa \bfb \bfl \bfe \bfthree --- \bfc \bfo \bfn \bft \bfi \bfn \bfu \bfe \bfd \bff \bfr \bfo \bfm \bfp \bfr \bfe \bfv \bfi \bfo \bfu \bfs \bfp \bfa \bfg \bfe 

\eta rel Time

Proname \alpha 1; \alpha 2 tSsnal b | c | d | e b | c | d | e

log1p.test
1e - 3; 1e - 8 01:06 9.9-7 | 1.0-6 | 7.8-7 | 7.9-7 12:20 | 11:48 | 05:11 | 02:04:11
1e - 4; 1e - 7 04:26 9.9-7 | 9.9-7 | 9.8-7 | \bfseven .\bfthree -\bfsix 21:21 | 20:11 | 20:41 | 03:00:01

pyrim5
1e - 3; 1e - 6 21 1.0-6 | 1.0-6 | \bfthree .\bffive -\bffive | \bfeight .\bftwo -\bffive 30:08 | 55:12 | 27:44 | 35:11
1e - 4; 1e - 6 28 1.0-6 | 1.0-6 | \bfseven .\bftwo -\bffive | \bftwo .\bfone -\bffour 36:43 | 01:51:44 | 19:41 | 39:31

triazines4
1e - 2; 1e - 6 56 1.0-6 | \bfone .\bfone -\bffive | \bfeight .\bfzero -\bffive | \bfone .\bfeight -\bffive 02:14:05 | 03:00:01 | 02:12:43 | 03:00:01
1e - 3; 1e - 6 02:00 \bfsix .\bfsix -\bfsix | \bffour .\bfseven -\bffour | \bfnine .\bfone -\bffour | \bfthree .\bfone -\bfthree 03:00:00 | 03:00:01 | 01:34:51 | 03:00:00

abalone
1e - 3; 1e - 5 01 9.6-7 | 9.5-7 | 1.0-6 | 5.1-7 01:02 | 01:05 | 33 | 02:08
1e - 4; 1e - 5 05 9.8-7 | 9.7-7 | \bfone .\bfzero -\bffour | \bftwo .\bfseven -\bfsix 01:37 | 02:27 | 03:19 | 05:18

bodyfat
1e - 5; 1e - 6 06 1.0-6 | 1.0-6 | 1.0-6 | \bffour .\bfthree -\bfsix 01:10 | 04:00 | 01:39 | 15:25
1e - 6; 1e - 6 11 9.8-7 | 9.7-7 | 1.0-6 | \bffour .\bfthree -\bffive 01:43 | 09:07 | 04:11 | 15:18

housing
1e - 3; 1e - 6 08 9.9-7 | 9.9-7 | 1.0-6 | \bfone .\bfseven -\bfsix 02:33 | 10:37 | 11:20 | 14:50
1e - 4; 1e - 6 22 1.0-6 | 1.0-6 | \bfnine .\bfnine -\bfthree | \bfthree .\bfeight -\bffour 03:39 | 31:41 | 08:06 | 14:52

Fig. 1. Performance profiles for Ssnal, Admm, iAdmm, LAdmm, and Apg on UCI data sets.
Results of Ssnal are obtained by setting max\{ \eta gap, \eta D, \eta kkt\} \leq 10 - 6, and results of Admm, iadmm,
Ladmm, and Apg are obtained by setting \eta rel \leq 10 - 6.

We also present in Figure 1 the performance profiles of Ssnal, Admm, iAdmm,
LAdmm, and Apg for all the tested problems.1 In the figure, the results for Ssnal are
obtained by setting max\{ \eta gap, \eta D, \eta kkt\} \leq 10 - 6, and the results for Admm, iAdmm,
LAdmm, and Apg are obtained for \eta rel \leq 10 - 6. Thus the accuracy of Ssnal is
higher than the other algorithms in this sense. Recall that a point (x, y) is in the
performance profile curve of a method if and only if it can solve (100y\%) of all tested
instances successfully in at most x times of the best methods for each instance. It
can be seen that Ssnal outperforms all the other methods by a very large margin.

1See online version for color figures.
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In terms of efficiency and robustness, we can see that Ssnal performs much
better than all the other first-order methods on these difficult large-scale problem. For
example, Ssnal only needs about 2 minutes to produce a solution with the required
accuracy such that max\{ \eta gap, \eta D, \eta kkt\} \leq 10 - 6 for the problem triazines4, while all
first-order algorithms spend over 1 hour (3 hours for iAdmm) and only produce poor
accuracy solutions (with \eta rel \approx 10 - 4) that are much less accurate than Ssnal. One
can see from Tables 2 and 3 that Ssnal can easily be 5 to 20 times faster than the
best first-order method on different instances such as triazines4 and pyrim5.

5.4. Numerical results for synthetic data. Next we test our algorithms in
the high-sample--low-dimension setting. The data used in this subsection are gener-
ated randomly from the following true model:

b = Ax+ \varsigma \epsilon , \epsilon \sim N(0, I).

In the experiments, the rows of A \in \Re m\times n are generated randomly from the mul-
tivariate normal distribution N(0,\Sigma ). Here \Sigma \in \Re n\times n is a given symmetric matrix
such that \Sigma ij = \^\gamma | i - j| for i, j = 1, . . . , p and \^\gamma is a given parameter. The tuning
parameters \beta and \rho in (1.1) are chosen based on numerical experience.

The examples of x0 presented below were mainly constructed based on the sim-
ulation scenarios used in [45, 30, 24]. As we want to focus on large-scale problems,
we introduce a parameter k. In the first six scenarios, we use k to repeat every com-
ponent of x0 \in \Re n0 by k times consecutively to construct the actual x \in \Re n, where
n = n0k, while in the last case we use k in another strategy which will be explained
later. The corresponding number of observations is chosen to be max\{ 80000, 0.5nk\} .
We use 80\% of the observations to do the training. Instead of using a specified noise
level \varsigma for each case, we set \varsigma = 0.1\| Ax\| /\| \epsilon \| for all examples.

1. The first setting is specified by the parameter vector

x0 = (3, 1.5, 0, 0, 0, 2, 0, 0)T .

The correlation between the ith and jth predictor is

corr(i, j) = 0.9| i - j| \forall i, j \in \{ 1, . . . , 8\} .

2. In this setting, we have n0 = 20 predictors. The parameter vector is struc-
tured into blocks:

x0 = (0, . . . , 0\underbrace{}  \underbrace{}  
5

, 2, . . . , 2\underbrace{}  \underbrace{}  
5

, 0, . . . , 0\underbrace{}  \underbrace{}  
5

, 2, . . . , 2\underbrace{}  \underbrace{}  
5

)T .

The correlation between ith and jth predictor is given by corr(i, j) = 0.3.
3. This setting consists of n0 = 20 predictors. The parameter vector is given by

x0 = (5, 5, 5, 2, 2, 2, 10, 10, 10, 0, . . . , 0\underbrace{}  \underbrace{}  
11

)T .

Within each of the first three blocks of 3 variables, the correlation between
the two predictors is 0.9, but there is no correlation among different blocks.

4. The fourth setting consists of n0 = 13 predictors. The parameter vector is
structured into many small clusters:

x0 = (0, 0, - 1.5, - 1.5, - 2, - 2, 0, 0, 1, 1, 4, 4, 4)T .
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The correlation between the ith and jth predictor is

corr(i, j) = 0.5| i - j| \forall i, j \in \{ 1, . . . , 13\} .

5. The fifth setting is the same as the fourth one, but with a higher correlation
between the predictors where corr(i, j) = 0.9| i - j| \forall i, j \in \{ 1, . . . , 13\} .

6. In the sixth setting, we have n0 = 16 predictors. The parameter vectors is
structured such that big clusters coexist with small ones:

x0 = (0, . . . , 0\underbrace{}  \underbrace{}  
3

, 4, . . . , 4\underbrace{}  \underbrace{}  
5

, - 4, . . . , - 4\underbrace{}  \underbrace{}  
5

, 2, 2, - 1)T .

The predictors are possibly negatively correlated: corr(i, j) = ( - 1)| i - j| 0.8.
7. (Another strategy to use k.) In the last setting, we use another strategy to

construct the example. First we generate a 100-by-1 vector \nu \sim N(0, I100),
then we create a histogram of the elements of the vector \nu . To be specific, we
bin the elements of \nu into 20 equally spaced containers and return a 20-by-1
vector x0 as the number of elements in each container. Let

x = (x0, . . . , x0\underbrace{}  \underbrace{}  
2k

)T .

The correlation between the ith and jth predictors is given by corr(i, j) = 0.5.
For all seven examples, we tested large-scale problems by setting k = 100. Note

that all instances in this subsection are in the high-sample--low-dimension setting,
that is m \gg n, just as discussed in section 4, so the primal approach is a better
choice. In the following, we use ``p-"" to represent the primal approach and ``d-"" to
represent the dual approach. For comparison, we terminate all the algorithms when
the relative KKT residual satisfies \eta kkt \leq 10 - 6.

Figure 2 shows the recovery results for the seven examples, where the red dots
represent the actual x, and the blue dots represent the solution we obtained via p-
Ssnal. As we can see from the figure, the clustered Lasso model can recover the
group structure of the true regression parameter vector successfully.

As for the purpose of comparing the computational time, we can refer to Table 4
for the details. Since d-iAdmm and d-LAdmm can deal with the case when m is large,
we also apply d-iAdmm and d-LAdmm here. In the table, we can see that p-Ssnal,
p-Admm, and d-LAdmm can solve all the instances efficiently and accurately. In
addition, d-iAdmm also gives a good performance except for eg6. The slightly poorer
performance of d-iAdmm is reasonable since in these cases, m is large enough that
the linear systems needed to be solved in the algorithm are huge. As for p-Apg, the
numerical results of eg2 and eg6 are not particularly good since the corresponding
Lipschitz constants in the problem are large.

As we can see, some of the first-order methods are comparable to p-Ssnal in these
cases because our new formulation of the clustered Lasso regularizer vastly improves
the performance of the first-order methods in the projection steps.

6. Conclusion. In this paper, we reformulate the clustered Lasso regularizer as
a weighted ordered-Lasso regularizer. Based on the new formulation, we are able to
derive a highly efficient algorithm for computing the proximal mapping in O(n log(n))
operations that is crucial for designing efficient first-order and second-order algorithms
for solving the clustered Lasso problem. Based on efficiently computing the general-
ized Jacobian of the proximal mapping, we design extremely fast semismooth Newton
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(a) eg1. (b) eg2. (c) eg3.

(d) eg4. (e) eg5. (f) eg6.

(g) eg7.

Fig. 2. Recovery results obtained by the p-Ssnal algorithm when solving the clustered Lasso
model on seven synthetic data sets. The algorithm is terminated by setting \eta kkt \leq 10 - 6. In the
figures, the red dots represent the actual x, and the blue dots represent the solution we obtained via
p-Ssnal.

augmented Lagrangian algorithms, i.e., Ssnal, for solving the clustered Lasso prob-
lem or its dual. Our efficient implementation of the Ssnal algorithm heavily relies on
the special structure that we have uncovered for the clustered Lasso regularizer. The
numerical experiments on large-scale real data and synthetic data show the great ad-
vantages of our algorithms in comparison with other well-designed first-order methods
for the clustered Lasso problem.

Table 4: The performance of various algorithms on the synthetic data sets. In
the table, ``a"" = p-Ssnal, ``b"" = p-Admm, ``c"" = p-Apg, ``d"" = d-iAdmm, ``e""
= d-LAdmm. We terminate the algorithms when \eta kkt \leq 10 - 6. MSE denotes
the MSE obtained by p-Ssnal. nnz(x) and gnnz(x) are obtained by p-Ssnal.
Time is shown in the format of (hours:minutes:seconds).

\eta kkt Time

Proname (m; n) a | b | c | d | e a | b | c | d | e
eg1 (32000; 800)

\lambda max(ATA) = 6.21e+05

MSE = 1.4-1, nnz(x) = 714, gnnz(x) = 5

7.4-7 | 9.7-7 | 9.9-7 | 9.9-7 | 9.9-7 02 | 01 | 02 | 20 | 44
eg2 (64000; 2000)

\lambda max(ATA) = 3.84e+07

MSE = 3.4-1, nnz(x) = 1925, gnnz(x) = 7

5.2-7 | 9.9-7 | 1.0-6 | 9.0-7 | 4.3-7 22 | 01:37 | 16:53 | 42 | 12
Continued on next page
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Table 4 --- continued from previous page

\eta kkt Time

Proname (m; n) a | b | c | d | e a | b | c | d | e
eg3 (64000; 2000)

\lambda max(ATA) = 1.76e+07

MSE = 1.1-1, nnz(x) = 898, gnnz(x) = 5

8.0-7 | 9.8-7 | 9.8-7 | 9.2-7 | 9.9-7 01:40 | 02:50 | 03:18 | 25 | 01:59
eg4 (52000; 1300)

\lambda max(ATA) = 1.70e+05

MSE = 3.4-2, nnz(x) = 1285, gnnz(x) = 6

6.5-7 | 1.0-6 | 9.6-7 | 9.9-7 | 9.9-7 17 | 52 | 09 | 08 | 10
eg5 (52000; 1300)

\lambda max(ATA) = 1.00e+06

MSE = 1.5-1, nnz(x) = 1231, gnnz(x) = 5

8.4-7 | 9.8-7 | 1.0-6 | 9.9-7 | 1.0-6 01:26 | 01:37 | 02:07 | 41 | 01:37
eg6 (64000; 1600)

\lambda max(ATA) = 8.19e+07

MSE = 1.5-2, nnz(x) = 1575, gnnz(x) = 6

3.0-7 | 9.9-7 | 9.1-3 | 9.1-5 | 7.8-7 11 | 38 | 21:31 | 35:23 | 11
eg7 (64000; 4000)

\lambda max(ATA) = 2.21e+05

MSE = 5.5-2, nnz(x) = 3998, gnnz(x) = 3

8.1-7 | 9.0-7 | 9.4-7 | 1.0-6 | 9.3-7 58 | 01:16 | 50 | 03:22 | 01:00
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