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Abstract

This paper considers a matrix optimization problem where the objective function is con-

tinuously differentiable and the constraints involve a semidefinite-box constraint and a rank

constraint. We first replace the rank constraint by adding a non-Lipschitz penalty function in

the objective and prove that this penalty problem is exact with respect to the original problem.

Next, for the penalty problem, we present a nonmonotone proximal gradient (NPG) algorithm

whose subproblem can be solved by Newton’s method with globally quadratic convergence.

We also prove the convergence of the NPG algorithm to a first-order stationary point of the

penalty problem. Furthermore, based on the NPG algorithm, we propose an adaptive penal-

ty method (APM) for solving the original problem. Finally, the efficiency of APM is shown

via numerical experiments for the sensor network localization (SNL) problem and the nearest

low-rank correlation matrix problem.

Keywords: rank constrained optimization, non-Lipschitz penalty, nonmonotone proximal gradi-

ent, penalty method.

1 Introduction

In this paper we consider the following constrained problem

min f(X)

s.t. 0 � X � I, rank(X) ≤ r, (1.1)

where f : Sn+ → < is continuously differentiable with gradient ∇f being Lipschitz continuous,

and r < n is a given positive integer. Here, Sn+ denotes the cone of n × n positive semidefinite

symmetric matrices, I is the n×n identity matrix, and 0 � X � I means X ∈ Sn+ and I−X ∈ Sn+,
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which is referred to as a semidefinite-box constraint. Many application problems can be modeled

by (1.1), including the wireless sensor network localization problem [4, 14] and the nearest low-rank

correlation matrix problem [5, 12, 21].

Problem (1.1) is generally difficult to solve, due to the discontinuity and nonconvexity of the

rank function. Recently, approximations of the rank function have been extensively studied. One

well-known convex approximation is the nuclear norm ‖X‖∗, namely, the sum of singular values of

X (see for example [10]). For other research works involving this approximation, see for example

[7, 22, 23]. Besides, a nonconvex and nonsmooth approximation, the so-called Schatten p-norm

‖X‖pp =
∑
i≥1 σi(X)p (p ∈ (0, 1), σi(X) is the i-th largest singular value), has attracted a lot of

attention due to its good computational performance (see for example [14, 20, 17]). However,

simply adding these approximations into the objective genenerally cannot guarantee to produce a

solution satisfying the rank constraint rank(X) ≤ r since they are not the exact penalty function

for this constraint. Inspired by the relation

rank(X) ≤ r ⇔
n∑

i=r+1

λpi (X) = 0 for X � 0

and good computational performance of the p-norm with p ∈ (0, 1] for sparsity, we propose the

following penalty model for problem (1.1):

min
0�X�I

Fµ(X) := f(X) + µ

n∑
i=r+1

λpi (X), (1.2)

where µ > 0 and λi(X) (i = 1, ..., n) is the i-th largest eigenvalue of X. Such a penalty term with

p = 1 has been used in [11] for solving a nearest low-rank correlation matrix problem. Nevertheless,

we observe in numerical experiments that the penalty term with p ∈ (0, 1) is generally more efficient

than p = 1 in producing a low-rank solution of problem (1.1). The main contributions of this paper

are as follows.

• We propose a new penalty model (1.2) for the low-rank constrained problem (1.1) and prove

that (1.2) is an exact penalty reformulation for (1.1) in the sense: there exists some µ̄ > 0

such that for any µ > µ̄, X∗ is a global minimizer of problem (1.1) if and only if it is a global

minimizer of problem (1.2). Furthermore, for any µ ≥ µ̄, any local minimizer of problem

(1.1) is a local minimizer of problem (1.2).

• We propose a nonmonotone proximal gradient (NPG) method for solving the penalty model

(1.2). Although the associated proximal subproblem is sophisticated and challenging due

to the partial set of eigenvalues, we reduce it into a set of univariate root-finding problems

and show that they can be suitably solved by Newton’s method with globally quadratic

convergence.

• We propose an adaptive penalty method (APM) for (1.1) with a suitable updating scheme on

penalty parameter in which each penalty subproblem is solved by the aforementioned NPG.

We establish its global convergence and also provide an estimate on iteration complexity for

finding an approximated stationary point of (1.1).

The rest of this paper is organized as follows. In Section 2, notation and preliminaries are

given. In Section 3, we show that the penalty model (1.2) is an exact penalty reformulation of

problem (1.1). In Section 4, we present an NPG algorithm for solving the penalty problem (1.2).

In Section 5, we propose an APM for solving problem (1.1). In Section 6, we present numerical

experiments for solving a sensor network localization problem and a nearest low-rank correlation

matrix problem.
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2 Notation and preliminaries

The following notation will be used throughout this paper. Given any x ∈ <n, x[i] denotes the

ith largest entry of x and supp(x) denotes the support of x, namely, supp(x) = {i : xi 6= 0}.
The symbol 1n denotes the all-ones vector of dimension n. Given x, y ∈ <n and Ω ⊆ <n, x ≤ y

means xi ≤ yi for all i and δΩ(·) is the indicator function of Ω, i.e., δΩ(x) = 0 if x ∈ Ω, otherwise

δΩ(x) = ∞. For x ∈ <n and a closed convex set Ω ⊆ <n, PΩ(x) is the projection of x onto Ω.

The space of symmetric n × n matrices is denoted by Sn. If X ∈ Sn is positive semidefinite, we

write X � 0. Given any X and Y in Sn, X � Y means Y −X is postive semidefinite. In addition,

given matrices X and Y in <m×n, the standard inner product is defined by 〈X,Y 〉 := tr(XY T ),

where tr(·) denotes the trace of a matrix. The Frobenius norm of a real matrix X is defined as

‖X‖F :=
√

tr(XXT ). The identity matrix is denoted by I, and all-ones matrix is denoted by

E, whose dimensions shall be clear from the context. For any A,B ∈ <n×n, “◦” denotes the

Hadamard product, i.e., (A ◦ B)ij = AijBij , i, j = 1, ..., n. For any X ∈ Sn, we denote by λi(X)

(i = 1, ..., n) the ith largest eigenvalue of X and write λ(X) = (λ1(X), ..., λn(X))T . We use ‖ · ‖F
and ‖ ·‖2 to denote the Frobenius norm and the Euclidean norm, respectively. In addition, B(X; ε)

stands for a ball in Sn centered at X with radius ε, that is, B(X; ε) := {Y ∈ Sn : ‖Y −X‖F ≤ ε}.
Given x ∈ <n and X ∈ <n×n, Diag(x) and diag(X) denote an n × n diagonal matrix whose

diagonal is formed by the vector x and vector extracted from the diagonal of X, respectively. For

the sake of convenience, we use

C := {X ∈ Sn : 0 � X � I}, Ω := {X ∈ C : rank(X) ≤ r}, (2.1)

to denote the feasible regions of problems (1.2) and (1.1), respectively. Given any X ∈ Sn, let XΩ

be a projection of X onto Ω, that is, XΩ ∈ Ω and

‖X −XΩ‖F = min
Z∈Ω
‖X − Z‖F . (2.2)

Recall that f is assumed to be continuously differentiable in C. It follows that f is Lipschitz

continuous in C, that is, there exists some constant Lf > 0 such that

|f(X)− f(Y )| ≤ Lf‖X − Y ‖F , ∀X,Y ∈ C. (2.3)

Before ending this section, we present some preliminary technical results that will be used

subsequently.

Lemma 2.1. Let p ∈ (0, 1] and XΩ be a projection of X onto Ω. Then it holds

‖X −XΩ‖F ≤
n∑

i=r+1

λpi (X), ∀X ∈ C. (2.4)

Proof. By Proposition 2.6 of [19], it is not hard to show that

‖X −XΩ‖F =

√√√√ n∑
i=r+1

λ2
i (X), ∀X ∈ C. (2.5)

Notice from (2.1) that 0 ≤ λi(X) ≤ 1 for all i and X ∈ C. In view of this fact and p ∈ (0, 1], one

can observe that √√√√ n∑
i=r+1

λ2
i (X) ≤

n∑
i=r+1

λi(X) ≤
n∑

i=r+1

λpi (X), ∀X ∈ C. (2.6)

It then follows from this relation and (2.5) that (2.4) holds as desired. This completes the proof.
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3 Exact penalty reformulation

In this section we study the relationship between the penalty model (1.2) and problem (1.1). The

following theorem shows that (1.2) is an exact penalty reformulation of (1.1), in terms of global

minimizers.

Theorem 3.1. Let p ∈ (0, 1]. For any µ ≥ Lf , any global minimizer of problem (1.1) is a global

minimizer of problem (1.2). Conversely, for any µ > Lf , any global minimizer of (1.2) is also a

global minimizer of (1.1).

Proof. For the first part, let X∗ be a global minimizer of (1.1) and X be an arbitrary matrix in

C. We let XΩ denote a projection of X onto Ω. Thus, we know from the global optimality of X∗

that f(XΩ) ≥ f(X∗). Using this relation and (2.3), we have

f(X∗)− f(X) = f(X∗)− f(XΩ) + f(XΩ)− f(X)

≤ f(XΩ)− f(X) ≤ Lf‖X −XΩ‖F .
(3.1)

This together with (2.4), µ ≥ Lf and rank(X∗) ≤ r implies that

f(X) + µ

n∑
i=r+1

λpi (X) ≥ f(X) + Lf‖X −XΩ‖F ≥ f(X∗) = f(X∗) + µ

n∑
i=r+1

λpi (X
∗),

which together with the arbitrariness of X ∈ C and X∗ ∈ C implies that X∗ is a global minimizer

of (1.2).

For the second part, assume µ > Lf . Let X∗ be a global minimizer of problem (1.2) and X∗Ω
be a projection of X∗ onto Ω. It is easy to observe that if X∗ ∈ Ω, then it is a global minimizer

of problem (1.1). Thus it suffices to show that X∗ ∈ Ω. Suppose for contradiction that X∗ 6∈ Ω.

Then we have ‖X∗ −X∗Ω‖F > 0, and hence

f(X∗Ω) ≤ f(X∗) + Lf‖X∗ −X∗Ω‖F < f(X∗) + µ‖X∗ −X∗Ω‖F

≤ f(X∗) + µ

n∑
i=r+1

λpi (X
∗) < f(X∗Ω),

where the first inequality follows from (2.3), the second inequality is due to µ > Lf , the third

inequality is due to (2.4), and the last inequality follows from the global optimality of X∗. These

inequalities immediately lead to a contradiction f(X∗Ω) < f(X∗Ω). This completes the proof.

We show in the next theorem that any local minimizer of problem (1.1) is also that of problem

(1.2), provided µ ≥ Lf .

Theorem 3.2. Let p ∈ (0, 1]. For any µ ≥ Lf , any local minimizer of problem (1.1) is a local

minimizer of problem (1.2).

Proof. Suppose that X∗ is an arbitrary local minimizer of problem (1.1) with µ ≥ Lf . Then there

exists some ε > 0 such that

f(X) ≥ f(X∗), ∀X ∈ B(X∗; ε) ∩ Ω. (3.2)

It follows from (2.2) that for every X ∈ B(X∗; ε/2),

‖XΩ −X∗‖F ≤ ‖XΩ −X‖F + ‖X −X∗‖F ≤ 2‖X −X∗‖F ≤ ε,
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where XΩ is a projection of X onto Ω. This implies XΩ ∈ B(X∗; ε)∩Ω for every X ∈ B(X∗; ε/2).

It follows from this and (3.2) that f(XΩ) ≥ f(X∗) for any X ∈ B(X∗; ε/2). Using this relation

and (2.3), we see that (3.1) also holds for every X ∈ B(X∗; ε/2)∩C. In view of (2.4), (3.1) and an

argument similar to the proof of Theorem 3.1, one can obtain that for every X ∈ B(X∗; ε/2) ∩ C,

f(X) + µ

n∑
i=r+1

λpi (X) ≥ f(X) + Lf‖X −XΩ‖F ≥ f(X∗) = f(X∗) + µ

n∑
i=r+1

λpi (X
∗),

where the equality is due to rank(X∗) ≤ r. Hence, X∗ is a local minimizer of problem (1.2). This

completes the proof.

4 A nonmonotone proximal gradient method for solving

(1.2)

In this section, we present a nonmonotone proximal gradient (NPG) method for solving problem

(1.2), which is similar to the one proposed by Wright et al. [26]. We show that the subproblems

arising in NPG can be efficiently solved. Also, we establish convergence for this method.

4.1 NPG algorithm and convergence

We first present an NPG method for solving problem (1.2).

Algorithm 1 Nonmonotone proximal gradient (NPG) method for (1.2)

Initialization. Let 0 < Lmin < Lmax, γ > 1, c > 0, integer N ≥ 0 be given. Choose an arbitrary

0 � X0 � I and set k = 0.

Step 1. Choose L0
k ∈ [Lmin, Lmax] arbitrarily. Set Lk = L0

k.

(1a) Solve the subproblem

Xk+1 ∈ Arg min
0�X�I

{
〈∇f(Xk), X −Xk〉+

Lk
2
‖X −Xk‖2F + µ

n∑
i=r+1

λpi (X)

}
. (4.1)

(1b) Go to Step 2 if

Fµ(Xk+1) ≤ max
[k−N ]+≤i≤k

Fµ(Xi)− c

2
‖Xk+1 −Xk‖2F . (4.2)

(1c) Set Lk ← γLk and go to (1a).

Step 2. Set k ← k + 1 and go to Step 1.

Remark 4.1. (i) When N = 0, the sequence {Fµ(Xk)} is monotonically decreasing. Otherwise,

it may increase at some iterations and thus the above method is generally a nonmonotone

method.

(ii) A popular choice of L0
k is by the following formula proposed by Barzilai and Borwein [1] (see

also [2]):

L0
k = max

{
Lmin,min

{
Lmax,

〈Sk, Y k〉
‖Sk‖2F

}}
, (4.3)

where Sk = Xk −Xk−1 and Y k = ∇f(Xk)−∇f(Xk−1).
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We next study the convergence of the NPG method for solving problem (1.2). Before proceed-

ing, we introduce two definitions as follows, which can be found in [24].

Definition 4.1 (limiting subdifferential). For a lower semi-continuous function g in Sn, the

limiting subdifferential of g at X ∈ Sn is defined as

∂g(X) :=

{
V : ∃Zk g→ X,V k → V with lim inf

Z→Zk
g(Z)− g(Zk)− 〈V k, Z − Zk〉

‖Z − Zk‖F
≥ 0 ∀k

}
,

where Zk
g→ X means Zk → X and g(Zk)→ g(X).

Definition 4.2 (first-order stationary point). We say that X∗ is a first-order stationary point of

(1.2) if X∗ ∈ C and

0 ∈ ∇f(X∗) + ∂(µΘ(X∗) + δC(X
∗)), (4.4)

where Θ(X) :=
∑n
i=r+1 λ

p
i (X), C is defined in (2.1) and ∂(·) is given in Definition 4.1.

Notice from [24, Theorem 10.1] and [24, Exercise 10.10] that any local minimizer X̄ ∈ C of (1.2)

is a first-order stationary point of (1.2). The following theorem states that at each outer iteration

of Algorithm 1, the number of its inner iterations is uniformly bounded. Its proof is similar to that

of [19, Theorem 4.2].

Theorem 4.1. For each k ≥ 0, the inner termination criterion (4.2) is satisfied after at most

max

{⌊
log(L∇f + c)− log(Lmin)

log γ
+ 1

⌋
, 1

}
inner iterations, where L∇f is the Lipschitz constant associated with ∇f .

We next show that any accumulation point of {Xk} is a first-order stationary point of problem

(1.2).

Theorem 4.2. Let the sequence {Xk} be generated by Algorithm 1. The following statements

hold:

(i) ‖Xk+1 −Xk‖F → 0 as k →∞;

(ii) Any accumulation point of {Xk} is a first-order stationary point of (1.2).

Proof. (i) The proof is similar to that of [26, Lemma 4].

(ii) Let L̄k be the final value of Lk at the kth outer iteration. It follows from (4.1) that {L̄k}
is bounded. By the first-order optimality condition of (4.1), we have Xk+1 ∈ C and

0 ∈ ∇f(Xk) + L̄k(Xk+1 −Xk) + ∂(µΘ(Xk+1) + δC(X
k+1)), (4.5)

where Θ(X) :=
∑n
i=r+1 λ

p
i (X). Notice that {Xk} ⊂ C and C is bounded. Hence, {Xk} is bounded

and it has at least an accumulation point, say X∗. Let K be a subsequence index such that

{Xk}K → X∗, which together with {Xk} ⊂ C and ‖Xk+1 − Xk‖F → 0 implies that X∗ ∈ C
and {Xk+1}K → X∗. Using this, the boundedness of {L̄k}, the continuity of ∇f , and the outer

semi-continuity of ∂(µΘ + δC) [24, Proposition 8.7], and taking limits on both sides of (4.5) as

k ∈ K →∞, we have

0 ∈ ∇f(X∗) + ∂(µΘ(X∗) + δC(X
∗)).

Hence, X∗ is a first-order stationary point of (1.2). This completes the proof.
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4.2 An efficient algorithm for solving subproblem (4.1)

In this subsection we propose an efficient algorithm for solving subproblem (4.1). To proceed, we

first consider the parametric univariate optimization problem

min
0≤z≤1

{
Φ(z, t) :=

1

2
(z − t)2 + νzp

}
(4.6)

for ν > 0 and p ∈ (0, 1]. Clearly, problem (4.6) has at least one optimal solution z∗ and Φ(z∗, t)

is well defined for any t ∈ (−∞,∞). In addition, it is not hard to see that for p = 1, problem

(4.6) has a unique optimal solution z∗ = min(1,max(t − ν, 0)). In what follows, we study some

properties of the optimal solution set of (4.6) for p ∈ (0, 1).

Lemma 4.1. Let Z∗(t) denote the set of optimal solutions of problem (4.6) for t ∈ (−∞,∞) and

p ∈ (0, 1). Let

α := min
{

[2(1− p)ν]
1

2−p , 1
}
, β := [νp(1− p)]

1
2−p , (4.7)

t1 :=
α

2
+ ναp−1, t2 := max

{
1

2
+ ν, 1 + νp

}
. (4.8)

Then the following statements hold:

(i) 0 ∈ Z∗(t) if and only if t ≤ t1;

(ii) 1 ∈ Z∗(t) if and only if t ≥ t2;

(iii) Z∗(t) = {z∗} ⊆ [β,min{t, 1}) if and only if t ∈ (t1, t2), where z∗ is the unique root of the

equation

g(z) := z − t+ νpzp−1 = 0 (4.9)

in the interval [β,∞).

The proof of this Lemma is given in Appendix. As an immediate consequence of Lemma 4.1,

we obtain the following formula for computing an optimal solution of problem (4.6) for p ∈ (0, 1).

Corollary 4.1. Let Z∗(t) denote the set of optimal solutions of problem (4.6) for t ∈ (−∞,∞) and

p ∈ (0, 1). Let β, t1 and t2 be defined in (4.7) and (4.8), respectively. Then we have z∗(t) ∈ Z∗(t),

where z∗ : < → [0, 1] is defined as follows:

z∗(t) =


0 if t ≤ t1,
z̃∗ if t1 < t < t2,

1 otherwise,

(4.10)

where z̃∗ is the unique root of equation (4.9) in [β,∞).

As seen from (4.10), the value of z∗(t) is precisely known for t ≤ t1 or t ≥ t2. Nevertheless, for

t ∈ (t1, t2), the exact value of z∗(t) is typically unknown since equation (4.9) generally does not

have a closed-form root. We next present an efficient numerical scheme for estimating the root z̃∗

of equation (4.9) by Newton’s method.

Newton’s method for solving (4.9):

Let β, t1, t2 and g(·) be defined in (4.7), (4.8) and (4.9), respectively. Let t ∈ (t1, t2) be given. If

g(β) = 0, set z̃∗ = β. Otherwise choose z0 ∈ (β,∞) and perform

zk+1 = zk − g(zk)/g′(zk) for k ≥ 0. (4.11)
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Remark 4.2. Recall from Lemma 4.1 (iii) that the unique root z̃∗ of equation (4.9) in [β,∞) lies

in [β,min{t, 1}). Therefore, for practical efficiency, it is natural to choose z0 = (β + min{t, 1})/2.

The following theorem shows that the above Newton’s method is able to find an approximate

root in [β,∞) to equation (4.9), and moreover, it is globally and quadratically convergent.

Theorem 4.3. Let β, t1 and t2 be defined in (4.7) and (4.8), respectively. Then for any t ∈ (t1, t2)

and p ∈ (0, 1), Newton’s method given above either finds the root z̃∗ of equation (4.9) or generates

a sequence {zk} which is globally and quadratically convergent to z̃∗, and in particular,

0 ≤ zk+1 − z̃∗ ≤
νp(1− p)(2− p)(z̃∗)p−3

1− νp(1− p)(z̃∗)p−2
(zk − z̃∗)2, ∀k ≥ 1.

Proof. In view of Corollary 4.1, we know that for any t ∈ (t1, t2) and p ∈ (0, 1), equation (4.9) has

a unique root z̃∗ in [β,∞). Therefore, if g(β) = 0, then z̃∗ = β. Otherwise, z̃∗ is the unique root

of (4.9) in (β,∞) and Newton’s iterartion (4.11) generates a sequence {zk}. We have from (4.9)

that

g′(z) = 1− νp(1− p)zp−2, g′′(z) = νp(1− p)(2− p)zp−3. (4.12)

Notice that g′(β) = 0 and β > 0. It is easy to see that g′(z) > 0, g′′(z) > 0 and g′′(z) is

continuous for every z ∈ (β,∞). Hence, the assumptions of Lemma A.1 hold for q = g, a = β

and z∗ = z̃∗. In addition, one can observe from (4.12) that g′(z̃∗) = 1 − νp(1 − p)(z̃∗)p−2 and

max
z∈[z̃∗,z1]

g′′(z) = νp(1 − p)(2 − p)(z̃∗)p−3. Therefore, the conclusion follows directly from Lemma

A.1. This completes the proof.

The proof of the following lemma is by a similar approach as proposed in [18].

Lemma 4.2. Let p ∈ (0, 1] and ν > 0 be given, and let

V (t) := min
0≤z≤1

{
1

2
(z − t)2 + νzp

}
︸ ︷︷ ︸

V1(t)

− min
0≤z≤1

{
1

2
(z − t)2

}
︸ ︷︷ ︸

V2(t)

, ∀t ∈ <. (4.13)

Then V (t) is increasing in (−∞,∞).

Proof. It is not hard to observe from (4.13) that V1, V2 and V are well defined. Also, we see from

(4.6) that

V1(t) = min
0≤z≤1

Φ(z, t), (4.14)

where Φ is defined in (4.6). Notice that Φ and ∇tΦ are continuous in [0,∞) × <. Moreover,

|∇tΦ(z, t)| = |t − z| ≤ |t| + 1,∀z ∈ [0, 1]. Hence, Φ is locally Lipschitz in t, uniformly for all

z ∈ [0, 1]. Using these facts, one can observe that the assumptions of [9, Theorem 2.1] hold for

g = Φ and U = [0, 1]. Thus it follows from [9, Theorem 2.1] that V1 is locally Lipschitz continuous

in < and moreover

∂V1(t) = conv({∇tΦ(z, t) : z ∈ Z∗(t)}) = conv(t−Z∗(t)), (4.15)

where ∂V1 denotes the Clarke subdifferential of V1, conv(·) is the convex hull of the associated

set, and Z∗(t) denotes the set of optimal solutions of (4.14). Notice that V2 is differentiable and

moreover ∇V2(t) = t− P[0,1](t),∀t ∈ <. It then follows from the above two equalities that

∂V (t) = ∂V1(t)−∇V2(t) = conv
(
P[0,1](t)−Z∗(t)

)
. (4.16)
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Since V1 is locally Lipschitz continuous in <, V1 is differentiable almost everywhere and so is V .

Let t ∈ < be such that V1 is differentiable at t. It is not hard to observe from (4.15) that Z∗(t)
contains a singleton. Moreover, V is also differentiable at t. We next show that ∇V (t) ≥ 0 by

considering three separate cases as follows.

Case 1): t ≤ 0. It follows from Lemma 4.1 (i) that 0 ∈ Z∗(t). Also, P[0,1](t) = 0 for t ≤ 0.

Case 2): t ∈ (0, 1). This together with the definition of Z∗(t) implies that for any z∗ ∈ Z∗(t),
one has ν(z∗)p ≤ 1

2 (z∗ − t)2 + ν(z∗)p ≤ 1
2 (t − t)2 + νtp = νtp, which yields z∗ ≤ t. Hence,

Z∗(t) ⊂ [t, 1]. Also, P[0,1](t) = t for t ∈ (0, 1).

Case 3): t > 1. Clearly Z∗(t) ⊆ [0, 1] and P[0,1](t) = 1 for such a t.

In view of these observations, (4.16) and the differentiability of V at t, one can see that ∇V (t) ≥
0. Hence, V has nonnegative derivative almost everywhere. Since V1 is locally Lipschitz continuous

and V2 is differentiable in <, V is locally Lipschitz continuous in <. Thus V is absolutely continuous

in any compact set. It follows from this and the fact that V has nonnegative derivative almost

everywhere that V is increasing in < (see, for example, [6, p. 120]). This completes the proof.

Lemma 4.3. Let p ∈ (0, 1], d ∈ <n and ν > 0 be given. Consider the problem

ϑ∗ = min
0≤x≤1n

1

2
‖x− d‖22 + ν

n∑
i=r+1

xp[i]. (4.17)

Let Γ be an index set in {1, . . . , n} of size n − r corresponding to the n − r smallest entries of d.

In addition, let z∗(·) be defined in Corollary 4.1, and x∗ ∈ <n be defined as follows:

x∗i =

{
z∗(di) if i ∈ Γ,

P[0,1](di) otherwise.
(4.18)

Then x∗ is an optimal solution of problem (4.17).

Proof. Let S = {s ∈ {0, 1}n :
∑n
i=1 si = n− r}. Observe that

∑n
i=r+1 x

p
[i] = min

s∈S

∑n
i=1 six

p
i . It

follows from this and (4.17) that

ϑ∗ = min
0≤x≤1n

min
s∈S

{
1

2
‖x− d‖22 + ν

n∑
i=1

six
p
i

}
= min

s∈S
min

0≤x≤1n

{
1

2
‖x− d‖22 + ν

n∑
i=1

six
p
i

}
︸ ︷︷ ︸

ψ(s)

. (4.19)

Observe from (4.13) and (4.19) that

ψ(s) =
∑

i∈supp(s)

V1(di) +
∑

i/∈supp(s)

V2(di), ∀s ∈ S. (4.20)

Let s∗ ∈ {0, 1}n be defined as follows:

s∗i =

{
1 if i ∈ Γ,

0 otherwise.

Clearly, s∗ ∈ S. We first show that s∗ is an optimal solution of problem (4.19). Let s̃∗ ∈ S be

an arbitrary optimal solution of (4.19). We divide the rest of the proof into two separate cases as

follows.

Case 1): dj ≤ d[r+1] for every j ∈ supp(s̃∗), that is, supp(s̃∗) is an index set corresponding to

the n− r smallest entries of d. It is not hard to observe from (4.20) that ψ(s̃∗) = ψ(s∗). Hence, s∗

is an optimal solution of (4.19).
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Case 2): dj > d[r+1] for some j ∈ supp(s̃∗). Let ` ∈ Arg min{di : i /∈ supp(s̃∗)}. It is not hard

to observe that d` < dj . Let ŝ∗ ∈ {0, 1}n be defined as follows:

ŝ∗i =

{
1 if i ∈ supp(s̃∗) ∪ {`} \ {j},

0 otherwise.
(4.21)

It follows from (4.13), (4.20) and (4.21) that

ψ(ŝ∗) =
∑

i∈supp(s̃∗)

V1(di) +
∑

i/∈supp(s̃∗)

V2(di) + [V1(d`)− V1(dj) + V2(dj)− V2(d`)],

= ψ(s̃∗) + V (d`)− V (dj),

where V is defined in (4.13). This relation together with d` < dj and Lemma 4.2 implies ψ(ŝ∗) ≤
ψ(s̃∗). Using this and the fact that s̃∗ is an optimal solution of (4.19), we see that ŝ∗ is also an

optimal solution of (4.19). Repeating the above process by replacing s̃∗ by ŝ∗ for a finite number

of times, we reach an optimal solution s̄∗ of (4.19) for which dj ≤ d[r+1] for every j ∈ supp(s̄∗).

This means that Case 1) holds at s̄∗. Thus the conclusion also holds due to Case 1).

Finally, since s∗ is an optimal solution of (4.19), we have ψ(s∗) = ϑ∗. By Corollary 4.1 and the

definitions of x∗ and s∗, one can observe that

x∗ ∈ Arg min
0≤x≤1n

{
1

2
‖x− d‖22 + ν

n∑
i=1

s∗i x
p
i

}
,

which together with (4.19), ψ(s∗) = ϑ∗ and s∗ ∈ S implies that

ϑ∗ = ψ(s∗) =
1

2
‖x∗ − d‖22 + ν

n∑
i=1

s∗i (x
∗
i )
p ≥ 1

2
‖x∗ − d‖22 + ν

n∑
i=r+1

(x∗[i])
p.

It follows from this, 0 ≤ x∗ ≤ 1n and the definition of ϑ∗ that x∗ is an optimal solution of (4.17).

This completes the proof.

We are now ready to show how subproblem (4.1) arising in Algorithm 1 is solved. For conve-

nience, we define the set-valued proximal operator as follows:

ProxνΘ(Y ) := Arg min
0�X�I

1

2
‖X − Y ‖2F + ν

n∑
i=r+1

λpi (X), (4.22)

where Θ(X) =
∑n
i=r+1 λ

p
i (X). One can observe that (4.1) can be rewritten as

Xk+1 ∈ Arg min
0�X�I

1

2

∥∥∥∥X − (Xk − ∇f(Xk)

Lk

)∥∥∥∥2

F

+
µ

Lk

n∑
i=r+1

λpi (X), (4.23)

which is a special case of (4.22). It then follows that

Xk+1 ∈ Prox µ
Lk

Θ

(
Xk − ∇f(Xk)

Lk

)
.

In order to solve (4.1), it thus suffices to solve (4.22). We next show that (4.22) can be solved by

a vector optimization problem.

Theorem 4.4. Given Y ∈ Sn, let UDiag(d)UT be the eigenvalue decomposition of Y , and let x∗

be an optimal solution to problem (4.17). Then UDiag(x∗)UT is an optimal solution to problem

(4.22).
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Proof. Observe that ‖ · ‖F is a unitarily invariant norm,
∑n
i=r+1 λ

p
i (·) is a unitary similarity in-

variant function in Sn, and {X : 0 � X � I} is a unitary similarity invariant set. In addition, t2/2

is an increasing function in [0,∞). Therefore, the assumptions of [19, Proposition 2.6] hold with

‖ · ‖ = ‖ · ‖F , A = Y , and

F (·) =

n∑
i=r+1

λpi (·), X = {X : 0 � X � I}, φ(·) = (·)2/2.

It then follows from [19, Proposition 2.6] that UDiag(x̃∗)UT is an optimal solution of problem

(4.22), where x̃∗ is any optimal solution of the problem

min
x∈Rn

1
2‖Diag(x)−Diag(d)‖2F + ν

n∑
i=r+1

λpi (Diag(x))

s.t. 0 � Diag(x) � I.
(4.24)

It is not hard to observe that problem (4.24) is equivalent to (4.17), namely, they share exactly the

same optimal solutions. Since x∗ is an optimal solution of (4.17), x∗ is also that of (4.24). The

conclusion of this theorem thus holds due to the above observation with x̃∗ = x∗. This completes

the proof.

Based on the above discussion, we now present an algorithm for finding an element in ProxνΘ(Y )

for a given Y ∈ Sn.

Algorithm 2 Algorithm for finding an element in ProxνΘ(Y )

Input: ν, Y .

Output: X∗ ∈ ProxνΘ(Y ).

Step 1. Do eigenvalue decomposition: Y = UDiag(d)UT .

Step 2. Use (4.18) in Lemma 4.3 to find

x∗ ∈ Arg min
0≤x≤1n

1

2
‖x− d‖22 + ν

n∑
i=r+1

xp[i].

Step 3. Let X∗ = UDiag(x∗)UT .

Thus, we can find Xk+1 in (4.1) in Algorithm 1 by Algorithm 2 with ν = µ
Lk

and Y =

Xk − ∇f(Xk)
Lk

.

5 An adaptive penalty method for solving problem (1.1)

In this section we propose an adaptive penalty method for solving problem (1.1). Recall from

Theorem 3.1, a global minimizer of (1.1) can be obtained by finding a global minimizer of (1.2)

for a sufficiently large µ. Though an upper bound for such a µ is estimated in Theorem 3.1, it

may be computationally inefficient to solve (1.2) once by choosing µ as this upper bound. Instead,

it is natural to solve a sequence of problems in the form of (1.2) in which µ gradually increases.

This scheme is commonly used in the classical penalty method and also a penalty method recently

proposed in [8] for a non-Lipschitz optimization problem. We now present this scheme for solving

problem (1.1) as follows.
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Algorithm 3 An adaptive penalty method (APM) for problem (1.1)

Initialization. Let p ∈ (0, 1], ε > 0 be given and X feas be an arbitrary feasible point of problem

(1.1). Choose 0 � X0 � I, µ0 > 0 and τ > 1 arbitrarily. Set k = 0.

Step 1. If Fµk(Xk) > Fµk(X feas), set Xk,0 = X feas. Otherwise, set Xk,0 = Xk.

Step 2. Apply Algorithm 1 to (1.2) with µ = µk starting with Xk,0 to generate {Xk,j} until

finding some Xk,nk such that

‖∇f(Xk,nk−1)−∇f(Xk,nk) + Lk,nk−1(Xk,nk −Xk,nk−1)‖F ≤ ε. (5.1)

Set Xk+1 = Xk,nk .

Step 3. If
∑n
i=r+1 λ

p
i (X

k+1) ≤ ε, terminate the algorithm.

Step 4. Set µk+1 = τµk, k ← k + 1 and go to Step 1.

Remark 5.1. Notice from Theorem 4.2 that ‖Xk,j+1 −Xk,j‖F → 0 as j →∞. In addition, one

can observe from Theorem 4.1 that {Lk,j} is bounded. Also, by the Lipschitz continuity of ∇f , one

has

‖∇f(Xk,j+1)−∇f(Xk,j)‖F ≤ L∇f‖Xk,j+1 −Xk,j‖F .

It then follows that inequality (5.1) must hold for at some j = nk.

We next establish some convergence properties of Algorithm 3.

Theorem 5.1. Suppose that the sequence {Xk} is generated by Algorithm 3. Then the following

statements hold.

(i) After at most max

{⌊
log(f(Xfeas)−f)−log(µ0ε)

log τ + 1

⌋
, 1

}
iterations, Algorithm 3 generates some

Xk satisfying

n∑
i=r+1

λpi (X
k) ≤ ε, dist(0,∇f(Xk) + ∂(µk−1Θ(Xk) + δC(X

k))) ≤ ε (5.2)

for some µk−1 > 0, where Θ(X) =
∑n
i=r+1 λ

p
i (X) and C is defined in (2.1).

(ii) Let Xk
Ω be a projection of the above Xk onto Ω, where Ω is the feasible region of (1.1). Then

Xk
Ω satisfies

‖Xk −Xk
Ω‖F ≤ ε, f(Xk

Ω) ≤ f(Xk) + Lf ε. (5.3)

Proof. (i) One can observe from Algorithm 1 that Fµk(Xk,j) ≤ Fµk(Xk,0),∀k, j. By the specific

choice of Xk,0, we know that Fµk(Xk,0) ≤ Fµk(X feas). Since X feas is a feasible point of (1.1), one

can see that Fµk(X feas) = f(X feas). It then follows that

Fµk(Xk,j) ≤ f(X feas), ∀k, j,

which together with (1.2) yields f(Xk,j) + µk
∑n
i=r+1 λ

p
i (X

k,j) ≤ f(X feas),∀k, j. Using this and

the fact µk = µ0τ
k, we obtain that

n∑
i=r+1

λpi (X
k,j) ≤

f(X feas)− f
µk

=
f(X feas)− f

µ0τk
, ∀k, j,
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where f = min{f(X) : 0 � X � I}. It follows from this andXk+1 = Xk,nk that
∑n
i=r+1 λ

p
i (X

k+1) ≤
ε when

k ≥
log(f(X feas)− f)− log(µ0ε)

log τ
.

We next show that the second relation of (5.2) holds for any k ≥ 1. Since Xk,nk is an optimal

solution of problem (4.1) with µ, Xk and Lk replaced by µk, Xk,nk−1 and Lk,nk−1, by the first-order

optimality condition we have

0 ∈ ∇f(Xk,nk−1) + Lk,nk−1(Xk,nk −Xk,nk−1) + ∂(µkΘ(Xk,nk) + δC(X
k,nk)), ∀k ≥ 0,

where C is defined in (2.1). This together with (5.1) and Xk+1 = Xk,nk yields

dist(0,∇f(Xk+1) + ∂(µkΘ(Xk+1) + δC(X
k+1)) ≤ ε, ∀k ≥ 0.

This proves statement (i).

(ii) Notice that Xk ∈ C, where C is defined in (2.1). This together with the definition of Xk
Ω,

(2.4) and (5.2) yields ‖Xk −Xk
Ω‖F ≤

∑n
i=r+1 λ

p
i (X

k) ≤ ε. Hence, the first relation of (5.3) holds.

It follows from this relation and (2.3) that

f(Xk
Ω) ≤ f(Xk) + Lf‖Xk −Xk

Ω‖F ≤ f(Xk) + Lf ε.

The second relation of (5.3) thus holds.

Remark 5.2. Observe that problem (1.1) is equivalent to

min
X
{f(X) : Θ(X) ≤ 0, X ∈ C}. (5.4)

The point Xk satisfying (5.2) can be viewed as an approximate KKT point to (5.4). Since Xk
Ω is

a feasible point of (1.1), and moreover ‖Xk −Xk
Ω‖F ≤ ε and f(Xk

Ω) ≤ f(Xk) +Lf ε, then Xk
Ω can

be viewed as a feasible approximate “KKT” point to problem (5.4).

6 Numerical Simulations

In this section, we apply aforementioned methods to the spherical sensor localization problem

[13, 27] and the nearest low-rank correlation matrix problem [5, 12, 15, 16, 21]. All the numerical

experiments are performed in Matlab R2016a on a 64-bit PC with an Intel(R) Core(TM) i7-6700

CPU (3.41GHz) and 32GB of RAM.

6.1 Spherical sensor localization

Suppose that there are n sensor points xi ∈ S2 (i = 1, ..., n), where S2 = {x ∈ <3 : ‖x‖2 = 1}
is the unit sphere. The last m sensors points are called anchors, whose positions are known. We

denote these anchor points as xi = ai−n+m (i = n−m+ 1, ..., n). The spherical sensor localization

problem is to locate the first n−m unknown sensors xi ∈ S2 (i = 1, ..., n−m) according to anchors’

positions a1, ...,am and some approximated spherical distances dij ≈ ds(xi,xj), (i, j) ∈ Nx and

d̄ik = ds(xi,ak), (i, k) ∈ Na (see, for example, [13, 27]). Here, ds(·, ·) denotes the spherical distance

(namely, ds(x, y) = arccos〈x, y〉 for any x, y ∈ S2) and Nx,Na are known, denoting index sets of

some sensor-sensor pairs and sensor-anchor pairs, respectively.
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Model formulation. To solve the spherical sensor localization problem, we first provide a for-

mulation for it. To this end, let

X = [x1 x2 · · · xn−m]T , A = [a1 a2 · · · am]T , X̄ =

[
X

A

]
, Y = X̄X̄

T
.

It follows from the definition of Y and the fact that ds(x, y) = arccos〈x, y〉 for any x, y ∈ S2,

ds(xi,xj) ≈ dij , (i, j) ∈ Nx and ds(xi,ak) ≈ d̄ik, (i, k) ∈ Na that

• Yij = xTi xj = cos(ds(xi,xj)) ≈ cos(dij) if (i, j) ∈ Nx;

• Yij = xTi aj−n+m = cos(ds(xi,aj−n+m)) ≈ cos(d̄i(j−n+m)) if (i, j − n+m) ∈ Na;

• Yij = aTi−n+mxj = cos(ds(ai−n+m,xj)) ≈ cos(d̄(i−n+m)j) if (i− n+m, j) ∈ Na;

• Yij = aTi−n+maj−n+m if n−m+ 1 ≤ i 6= j ≤ n;

• Yii = 1 if 1 ≤ i ≤ n.

For convenience, we define the matrix M ∈ <n×n and the index sets Ω1 and Ω2 as follows:

Mij :=



cos(dij) if (i, j) ∈ Nx,

cos(d̄i(j−n+m)) if (i, j − n+m) ∈ Na,

cos(d̄j(i−n+m)) if (j, i− n+m) ∈ Na,

aTi−n+maj−n+m if n−m+ 1 ≤ i 6= j ≤ n,

1 if 1 ≤ i = j ≤ n,

0 otherwise,

Ω1 := {(i, j)| (i, j) ∈ Nx} ∪ {(i, j)| (i, j − n+m) ∈ Na} ∪ {(i, j)| (j, i− n+m) ∈ Na},
Ω2 := {(i, j)| n−m+ 1 ≤ i 6= j ≤ n} ∪ {(i, i)| 1 ≤ i ≤ n}.

From the above deinition one can observe that Yij ≈ Mij for (i, j) ∈ Ω1 and Yij = Mij for

(i, j) ∈ Ω2. It then follows that

H1 ◦ (Y−M) ≈ 0, H2 ◦ (Y−M) = 0, (6.1)

where

(H1)ij =

{
1 if (i, j) ∈ Ω1,

0 otherwise.
and (H2)ij =

{
1 if (i, j) ∈ Ω2,

0 otherwise.

In addition, notice from xi ∈ S2, i = 1, ..., n, X̄ = [x1 x2 · · · xn]T and Y = X̄X̄
T

that ‖Y‖F =

‖X̄X̄
T ‖F ≤ ‖X̄‖2F = n, which implies that 0 � Y � nI and rank(Y) ≤ 3. In view of these and

(6.1), one can see that Y is an approximate solution of the following problem:

min 1
2‖H1 ◦ (Z −M)‖2F

s.t. H2 ◦ (Z −M) = 0,

0 � Z � nI, rank(Z) ≤ 3.

(6.2)

One approach to locating the spherical sensors xi, i = 1, ..., n−m is by first finding an approximate

solution Z of (6.2) and then applying a suitable post-processing procedure to obtain an estimation

of xi, i = 1, ..., n−m.

A penalty method. We now propose a penalty method for solving problem (6.2). Upon changing

the variable Y = Z/n, problem (6.2) is reduced to the problem

min 1
2‖H1 ◦ (nY −M)‖2F

s.t. H2 ◦ (nY −M) = 0,

0 � Y � I, rank(Y ) ≤ 3.

(6.3)
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Inspired by Sections 3 and 5, we can solve (6.3) by a penalty scheme that solves a sequence of

subproblems in the form of

min
0�Y�I

1

2
‖H1 ◦ (nY −M)‖2F + µ1,k‖H2 ◦ (nY −M)‖2F + µ2,k

n∑
i=4

λpi (Y ) (6.4)

for k = 1, 2, · · · , where µ1,k, µ2,k > 0 are penalty parameters, and ‖H2 ◦ (Y − M/n)‖2F and∑n
i=4 λ

p
i (Y ) are the penalty functions for the constraints H2 ◦ (Y −M/n) = 0 and rank(Y ) ≤ 3,

respectively.

We apply Algorithm 1 to solve (6.4). For Algorithm 1, we set Lmin = 10−8, Lmax = 108, γ = 2,

c = 10−4, N = 4, p = 0.5, r = 3, and choose L0
k according to (4.3). Let {Y k,j} be the sequence

generated by Algorithm 1 applied to (6.4). We terminate Algorithm 1 once

‖Y k,j − Y k,j−1‖F
max(‖Y k,j‖F , 1)

≤ εk

holds for some j and set Y k = Y k,j , where {εk} is updated as follows:

ε0 = 10−6, εk = max(0.5εk−1, 10−4) for k > 0.

In addition, the penalty parameters µ1,k and µ2,k are updated by setting µ1,1 = µ2,1 = 1 and for

k ≥ 1,

µ1,k+1 = 2µ1,k when
‖H2 ◦ (Y k −M/n)‖F

max(‖Y k‖F , 1)
> 10−3,

µ2,k+1 = 2µ2,k when

n∑
i=r+1

λpi (Y
k) > 10−5.

We terminate the penalty method once

‖H2 ◦ (Y k −M/n)‖F
max(‖Y k‖F , 1)

≤ 10−3 and

n∑
i=r+1

λpi (Y
k) ≤ 10−5.

Let Y ∗ ∈ <n×n be an approximate solution of (6.3) found by the above penalty method. To

obtain an approximate location of the sensors xi, i = 1, . . . , n −m, we adopt the following post-

processing strategy, written as pseudo Matlab code, which makes use of the anchors’ positions to

find an orthogonal matrix (see [28, Appendix C]):

[U,D] = svd(nY ∗); G = U(:, 1 : 3) ∗ sqrt(D(1 : 3, 1 : 3)); G = PS2(G);

[Ũ ,∼, Ṽ ] = svd([a1, ...,am] ∗G(n−m+ 1 : n, :)); X∗ = G(1 : n−m, :) ∗ Ṽ ∗ Ũ ′.

Here, PS2(G) denotes the matrix obtained by projecting the row vectors of G onto the sphere S2.

A SDP relaxation approach. Let

W =

[
I3
X

] [
I3 XT

]
=

[
I3 XT

X XXT

]
.

By a similar technique as in [3], one can relax the spherical sensor localization problem into the

following optimization problem

min
∑

(i,j)∈Nx |Wi+3,j+3 − cos(dij)|+
∑

(i,k)∈Na

∣∣aTkW1:3,i+3 − cos(d̄ik)
∣∣

s.t. W1:3,1:3 = I3,

W`,` = 1, ` = 4, . . . , n−m+ 3,

W � 0.

(6.5)
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Notice that this problem can be rewritten as a semidefinite programming problem and solved by

SDPT3 [25]. Let W ∗ be an approximate solution of (6.5) obtained from SDPT3 with the default

settings. Finally, we set PS2(W ∗(4 : n−m+ 3, 1 : 3)) as an approximate location of the sensors.

Performance comparison. In what follows, we compare the performance of the above penalty

method (PM) with the above SDP relaxation approach on randomly generated instances. To

this end, we choose n = 100,m = 4, the noise factor δ = 0.001, 0.01, 0.05, 0.1, and the radio

range R = 1.0, 1.1, 1.2, 1.3, 1.4. For each pair (δ,R), we generate 20 instances in which the sensor

points x1, ...,xn are randomly generated on S2 with known anchors’ positions xi = ai−n+m, i =

n−m+ 1, ..., n and known noisy distances

dij = ds(xi,xj) · |1 + δ · ξij |, ∀(i, j) ∈ Nx, d̄ik = ds(xi,ak) · |1 + δ · ξ̄ik|, ∀(i, k) ∈ Na,

where ξij and ξ̄ik are randomly generated according to the standard normal distribution N (0, 1)

and Nx,Na are defined as

Nx = {(i, j) : ds(xi,xj) ≤ R, 1 ≤ i, j ≤ n−m},

Na = {(i, k) : ds(xi,ak) ≤ R, 1 ≤ i ≤ n−m, 1 ≤ k ≤ m}.

To evaluate the performance of the above two methods, similar to sensor localization in Eu-

clidean space, we define the root mean square deviation (RMSD) for the spherical localization

problem as follows:

RMSD =

√√√√ 1

n−m

n−m∑
i=1

ds(x
comp
i ,xi)2,

where xcomp
i and xi stand for the ith sensor’s estimated position and its true position, respectively.

In Table 6.1, we report the averaged RMSD (RMSD) and the averaged CPU time (CPU) over

20 instances for PM and SDP. We also present the averaged number of SVD used (]svd) over 20

instances for PM. One can see that SDP is faster than PM when the noise is large, while PM

generally outperforms SDP in terms of localization accuracy.

6.2 Nearest low-rank correlation matrix problem

The nearest low-rank correlation problem can be formulated as

min 1
2‖H ◦ (X − C)‖2F

s.t. diag(X) = e,

X � 0, rank(X) ≤ r,
(6.6)

where H ∈ Sn is a given weight matrix, C ∈ Sn is a given correlation matrix, r ∈ [1, n] is a given

integer, and e is the all-ones vector (see, for example, [5, 12, 21]). Notice that for any X ∈ Sn such

that diag(X) = e and X � 0, we have X � nI. Problem (6.6) is thus equivalent to

min 1
2‖H ◦ (X − C)‖2F

s.t. diag(X) = e,

0 � X � nI, rank(X) ≤ r.

Upon changing the variable Y = X/n, this problem can be reduced to

min 1
2‖H ◦ (Y − C/n)‖2F

s.t. diag(Y ) = e/n,

0 � Y � I, rank(Y ) ≤ r.
(6.7)
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Table 6.1: Numerical results of PM and SDP for n = 100,m = 4.

δ R
RMSD CPU

]svd
PM SDP PM SDP

1.0 1.431e-01 3.470e-03 2.1 1.9 2363

1.1 5.011e-04 2.850e-03 0.8 2.4 939

0.001 1.2 4.999e-04 2.395e-03 0.7 3.1 760

1.3 5.034e-04 2.224e-03 0.6 3.9 611

1.4 4.919e-04 1.521e-03 0.4 4.8 468

1.0 2.383e-01 3.190e-02 2.3 1.6 2599

1.1 5.284e-03 3.082e-02 0.9 2.1 1033

0.01 1.2 5.503e-03 2.395e-02 0.8 2.7 822

1.3 5.088e-03 2.133e-02 0.6 3.4 686

1.4 5.273e-03 1.634e-02 0.5 4.2 562

1.0 2.613e-01 2.119e-01 10.5 1.5 11625

1.1 2.528e-02 1.452e-01 3.5 1.9 3807

0.05 1.2 2.646e-02 1.335e-01 3.5 2.4 3806

1.3 2.429e-02 9.797e-02 2.9 3.1 3201

1.4 2.492e-02 8.746e-02 2.6 3.8 2708

1.0 4.611e-01 4.130e-01 18.0 1.4 19524

1.1 2.307e-01 3.837e-01 7.9 1.8 8504

0.1 1.2 5.019e-02 2.783e-01 5.5 2.3 5835

1.3 5.031e-02 2.207e-01 4.6 2.9 4919

1.4 4.923e-02 1.887e-01 2.8 3.7 2922

A penalty method. In a similar vein as for (6.3), we solve (6.7) by a penalty method that solves

a sequence of subproblem in the form of

min
0�Y�I

1

2
‖H ◦ (Y − C/n)‖2F + µ1,k ‖diag(Y )− e/n‖2 + µ2,k

n∑
i=r+1

λpi (Y ), (6.8)

for k = 1, 2, ..., where µ1,k, µ2,k > 0 are penalty parameters, and ‖diag(Y )− e/n‖2 and
∑n
i=r+1 λ

p
i (Y )

are the penalty functions for the constraints diag(Y ) = e/n and rank(Y ) ≤ r, respectively.

We apply Algorithm 1 to solve (6.8). The parameters for Algorithm 1 are the same as those

used for solving (6.3). Let {Y k,j} be the sequence generated by Algorithm 1 applied to (6.8). We

terminate Algorithm 1 when
‖Y k,j − Y k,j−1‖F
max(‖Y k,j‖F , 1)

≤ εk

holds for some j and set Y k = Y k,j , where {εk} is updated according to:

ε0 = 10−3, εk = max(0.2εk−1, 10−4) for k > 0.

In addition, the penalty parameters µ1,k and µ2,k are updated by setting µ1,1 = µ2,1 = 0.5 and for

k ≥ 1,

µ1,k+1 = 5µ1,k when
‖diag(Y k)− e/n‖

max(‖Y k‖F , 1)
> 10−4,

µ2,k+1 = 5µ2,k when

n∑
i=r+1

λpi (Y
k) > 10−4.
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We terminate the penalty method once

‖diag(Y k)− e/n‖
max(‖Y k‖F , 1)

≤ 10−4 and

n∑
i=r+1

λpi (Y
k) ≤ 10−4.

Let Y ∗ be an approximation solution of (6.7) obtained by the above penalty method. We use the

following post-processing strategy to further obtain an approximation solution X∗ of problem (6.6):

let D ∈ Sn be a diagonal matrix with Dii = 1/
√
nY ∗ii , i = 1, ..., n and X∗ = n(D ∗ Y ∗ ∗D). One

can observe that the resulting X∗ preserves the rank of Y ∗ while having all ones in its diagonal.

Performance comparison. We now compare the performance of the above penalty method (PM)

with a method called PenCorr [11] that is implemented in Matlab with the default parameters.

To this aim, we choose H = E, n = 500, 1000, 1500, 2000, r = 2, 5, 10, 15, 20, and C with Cij =

0.5 + 0.5e−0.05|i−j| for i, j = 1, ..., n, where E is the all-ones matrix. It shall be mentioned that

such a instance with n = 500 has been used in [11, Example 5.1]. To evaluate the performance of

these two methods, we adopt the same quantity residue = ‖H ◦ (X∗ −C)‖F as in [11], where X∗

is an approximation solution of (6.6).

In Table 6.2, we report CPU time and residue for our method and PenCorr. In particular,

the penalty method with p = 0.5 and p = 1 are named as PM0.5 and PM1, respectively. One can

see that PM0.5 outperforms PenCorr in terms of CPU time, while it returns similar residue as

PenCorr. Besides, the performance of PM1 is comparable to PM0.5 except it sometimes obtains

much larger residue.1

Table 6.2: Nearest low-rank correlation matrix.

n rank
PM0.5 PenCorr PM1

CPU residue CPU residue CPU residue

2 1.6 156.4053 6.3 156.4172 2.4 234.9469

5 1.1 78.8307 1.9 78.8342 1.1 78.8307

500 10 1.1 38.6845 1.2 38.6852 1.1 38.6845

15 0.8 23.2497 1.0 23.2463 0.8 23.2497

20 0.7 15.7106 1.2 15.7080 0.9 15.7106

2 7.2 332.7649 30.4 332.8054 10.8 332.7803

5 5.3 189.3868 9.8 189.3978 5.4 189.3868

1000 10 4.2 110.7867 8.7 110.7868 4.2 110.7867

15 5.1 74.7463 7.2 74.7494 5.0 74.7463

20 4.8 54.1675 5.5 54.1680 4.8 54.1675

2 25.6 509.4009 84.6 509.4665 40.9 617.2919

5 17.8 301.1784 34.8 301.1892 18.1 301.1784

1500 10 12.9 188.5594 34.1 188.5554 12.9 188.5594

15 11.9 135.3811 26.2 135.3820 11.9 135.3811

20 12.8 103.1023 19.9 103.1043 12.8 103.1023

2 56.1 686.1070 196.9 686.1815 82.9 686.1731

5 43.5 413.0689 74.6 413.0763 43.9 413.0689

2000 10 39.2 267.3751 96.7 267.3920 39.0 267.3751

15 32.8 198.6823 73.5 198.6795 32.9 198.6823

20 30.4 156.1624 46.5 156.1522 30.0 156.1624

1All solutions obtained from the three methods PM0.5, PenCorr and PM1 satisfy the constraints in (6.6). Thus,

we only need to compare the residue, or equivalently, the objective function value.
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Note that replacing
∑n
i=r+1 λ

p
i (Y ) in (6.8) by the convex nuclear norm regularization ‖Y ‖∗

gives a convex problem, but it is not a penalty term for rank(Y ) ≤ r. We could not find a low-rank

solution by using nuclear norm regularization.

A Appendix

Proof of Lemma 4.1.

Proof. We know from the assumption that p ∈ (0, 1).

(i) One can observe from (4.6) that

0 ∈ Z∗(t) ⇔ Φ(z, t) ≥ Φ(0, t), ∀z ∈ [0, 1]⇔ 1

2
(z − t)2 + νzp ≥ 1

2
t2, ∀z ∈ [0, 1]

⇔ z2 − 2tz + 2νzp ≥ 0, ∀z ∈ [0, 1]⇔ t ≤ inf
z∈(0,1]

z

2
+ νzp−1︸ ︷︷ ︸
u(z)

. (A.1)

It is not hard to observe that u(·) is convex in (0,∞) and moreover

lim
z→0+

u(z) =∞, u′
(

[2(1− p)ν]
1

2−p

)
= 0.

Using these facts, (4.8) and (4.7), one can easily see that

t1 = u(α) = min
z∈(0,1]

u(z). (A.2)

This together with (A.1) implies that statement (i) holds.

(ii) In view of (4.6), one can observe that for arbitrary fixed t ∈ [0, 1],

1 ∈ Z∗(t) ⇔ Φ(z, t) ≥ Φ(1, t), ∀z ∈ [0, 1]⇔ 1

2
(z − t)2 + νzp ≥ 1

2
(1− t)2 + ν, ∀z ∈ [0, 1]

⇔ z2 + 2νzp − 1− 2ν ≥ 2t(z − 1), ∀z ∈ [0, 1]

⇔ t ≥ sup
z∈[0,1)

z2 + 2νzp − 1− 2ν

2(z − 1)︸ ︷︷ ︸
w(z)

. (A.3)

By the expression of w(·), one can define

w(1) := lim
z→1−

w(z) = 1 + νp. (A.4)

We then observe that w is continuous in [0, 1] and moreover it is differentiable in (0, 1). Next we

show that

sup
z∈[0,1)

w(z) = max
z∈[0,1]

w(z) = max{w(0), w(1)} = t2, (A.5)

where t2 is defined in (4.8). Indeed, the first equality of (A.5) holds due to the continuity of w in

[0, 1] while the last equality follows from (4.8), (A.4) and w(0) = 1/2 + ν. It remains to show that

the second equality of (A.5) holds, that is, the maximum value of w over [0, 1] attains at z = 0 or

1. To this end, let

h(z) = z2 − 2z + 2ν(p− 1)zp − 2νpzp−1 + 1 + 2ν.
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It is easy to verify that

lim
z→0+

h(z) = −∞, h(1) = 0, (A.6)

h′(z) = 2
[
1 + νp(p− 1)zp−2

]
(z − 1), (A.7)

w′(z) =
h(z)

2(z − 1)2
. (A.8)

We divide the rest of the proof into two separate cases as follows.

Case 1): 1 + νp(p − 1) ≤ 0. It follows from (A.7) that h′(z) ≥ 0 for every z ∈ (0, 1], which

together with (A.6) implies h(z) ≤ 0 for all z ∈ (0, 1]. In view of this and (A.8), one can see that

w′(z) ≤ 0 for every z ∈ (0, 1). Hence, w is decreasing in [0, 1] and the maximum value of w over

[0, 1] attains at z = 0.

Case 2): 1 + νp(p− 1) > 0. This together with (4.7) implies β ∈ (0, 1). Let

h̃(z) := 1 + νp(p− 1)zp−2.

One can observe that h̃(β) = 0 and moreover h̃ is strictly increasing in (0,∞). Hence, h̃(z) < 0

for z ∈ (0, β) and h̃(z) > 0 for z ∈ (β,∞). This together with (A.7) implies that h′(z) > 0 for

z ∈ (0, β) and h′(z) < 0 for z ∈ (β, 1]. Using this and continuity of h in (0, 1], one can see that h

is strictly increasing in (0, β] and strictly decreasing in (β, 1]. It follows from this fact and (A.6)

that there exists some γ ∈ (0, β) such that h(z) ≤ 0 for z ∈ (0, γ] and h(z) > 0 for z ∈ (γ, 1]. This

together with (A.8) implies that w′(z) ≤ 0 for z ∈ (0, γ] and w′(z) > 0 for z ∈ (γ, 1]. Hence, w is

decreasing in (0, γ] and increasing in (γ, 1]. Clearly, the maximum value of w over [0, 1] attains at

z = 0 or 1.

Combining the above two cases, we see that (A.5) holds. The conclusion of statement (ii)

immediately follows from (A.3) and (A.5).

(iii) One can see from (A.2) that t1 ≤ u(1) = 1/2 + ν, which together with (4.8) implies that

t1 ≤ t2. Notice from (4.7) that β > 0. Suppose that Z∗(t) = {z∗} ⊆ [β,min{t, 1}) for some z∗.

It then follows that 0 /∈ Z∗(t) and 1 /∈ Z∗(t), which together with statements (i) and (ii) implies

t ∈ (t1, t2). Hence, the “only if” part of this statement holds. We next show that the “if” part

also holds. Let t ∈ (t1, t2) be arbitrarily chosen. Using this, Z∗(t) ∈ [0, 1] and statements (i) and

(ii), we know that Z∗(t) ∈ (0, 1). Let z∗ ∈ Z∗(t) ⊂ (0, 1) be arbitrarily chosen. By the optimality

conditions of (4.6), we have ∇zΦ(z∗, t) = 0 and ∇2
zzΦ(z∗, t) ≥ 0, that is,

z∗ − t+ νp(z∗)p−1 = 0, 1 + νp(p− 1)(z∗)p−2 ≥ 0. (A.9)

The first relation of (A.9) and z∗ ∈ (0, 1) yields z∗ < min{t, 1}. The second relation of (A.9),

p ∈ (0, 1) and the definition of β implies z∗ ≥ β. Hence, z∗ ∈ [β,min{t, 1}). This together with

(A.9) implies that z∗ is a root of equation (4.9) in [β,∞). It remains to show that z∗ is the unique

root of (4.9) in [β,∞). Let g be defined in (4.9). Notice from (4.7) and (4.9) that g′(β) = 0 and g′

is strictly increasing in (0,∞). Hence, g′(z) > 0 for every z ∈ (β,∞). It follows that g is strictly

increasing in [β,∞), which implies that z∗ is the unique root of (4.9) in [β,∞). This completes

the proof.

Lemma A.1. Consider a univariate equation q(z) = 0. Assume that (a) q has a unique root

z∗ ∈ (a,∞); (b) q′ and q′′ are positive and continuous in (a,∞). Let {zk} be a sequence generated

by Newton’s iteration zk+1 = zk − q(zk)/q′(zk), ∀k ≥ 0 with a starting point z0 ∈ (a,∞). Then

{zk} quadratically and globally converges to z∗, and

0 ≤ zk+1 − z∗ ≤
{

1

q′(z∗)
max

z∈[z∗,z1]
q′′(z)

}
(zk − z∗)2, ∀k ≥ 1.
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Proof. From assumption (b), for any z ∈ (a,∞), we have

0 = q(z∗) = q(z) + q′(z)(z∗ − z) + q′′(ξz)(z∗ − z)2/2 ≥ q(z) + q′(z)(z∗ − z),

where ξz is between z and z∗. Hence, z − q(z)/q′(z) ≥ z∗, ∀z ∈ (a,∞). This, together with

z0 ∈ (a,∞) and zk+1 = zk − q(zk)/q′(zk), ∀k ≥ 0, implies that zk ≥ z∗ holds for all k ≥ 1.

Moreover, from q′ > 0 in (a,∞), we have q(zk) = q(z∗) + q′(ηk)(zk − z∗) ≥ 0 for k ≥ 1, where

ηk ∈ (z∗, zk), which implies that {zk}k≥1 is nonincreasing. Therefore, the sequence {zk} converges.

Taking limits on both sides of Newton’s iteration as k → ∞, we have that {zk} converges to z∗.

Finally, using the mean value theorem, we have for all k ≥ 1,

zk+1 − z∗ = zk − z∗ −
q(zk)− q(z∗)

q′(zk)
= zk − z∗ −

q′(ξk)

q′(zk)
(zk − z∗) =

q′(zk)− q′(ξk)

q′(zk)
(zk − z∗)

=
q′′(ηk)

q′(zk)
(zk − ξk)(zk − z∗) ≤

{
1

q′(z∗)
max

z∈[z∗,z1]
q′′(z)

}
(zk − z∗)2

for some ξk ∈ (z∗, zk) and ηk ∈ (ξk, zk). This completes the proof.
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