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A SMOOTHING PROXIMAL GRADIENT ALGORITHM FOR
NONSMOOTH CONVEX REGRESSION WITH CARDINALITY

PENALTY\ast 

WEI BIAN\dagger AND XIAOJUN CHEN\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper, we focus on the constrained sparse regression problem, where the loss
function is convex but nonsmooth and the penalty term is defined by the cardinality function. First,
we give an exact continuous relaxation problem in the sense that both problems have the same optimal
solution set. Moreover, we show that a vector is a local minimizer with the lower bound property of
the original problem if and only if it is a lifted stationary point of the relaxation problem. Second,
we propose a smoothing proximal gradient (SPG) algorithm for finding a lifted stationary point of
the continuous relaxation model. Our algorithm is a novel combination of the classical proximal
gradient algorithm and the smoothing method. We prove that the proposed SPG algorithm globally
converges to a lifted stationary point of the relaxation problem, has the local convergence rate of
o(k - \tau ) with \tau \in (0, 1

2
) on the objective function value, and identifies the zero entries of the lifted

stationary point in finite iterations. Finally, we use three examples to illustrate the validity of the
continuous relaxation model and good numerical performance of the SPG algorithm.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . nonsmooth convex regression, cardinality penalty, proximal gradient method,
smoothing method, global sequence convergence
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\bfD \bfO \bfI . 10.1137/18M1186009

1. Introduction. For a vector x \in \BbbR n, denote its support set by \scrA (x) = \{ i \in 
\{ 1, . . . , n\} : xi \not = 0\} , its cardinality by | \scrA (x)| , and its \ell 0-norm by \| x\| 0 = | \scrA (x)| . We
say that x \in \BbbR n is sparse if | \scrA (x)| \ll n. Sparse optimization problems emerge in many
scientific and engineering problems, such as regression [52], imaging decomposition
[51], visual coding [44], source separation [10], compressed sensing [12, 22], variable
selection [39], etc. Sparse optimization is also the core problem of high-dimensional
statistical learning [11, 24]. These problems aim to find the sparse solutions of a system
of linear or nonlinear equations. The optimization model with the \ell 0-norm penalty
can improve estimation accuracy by effectively identifying the important predictors
and also enhance its interpretability. However, it is known that the \ell 0 penalized
optimization problems are NP-hard.

Under some conditions on the sensing matrix \bfitA \in \BbbR m\times n (such as the RIP and
incoherence conditions), Donoho [22] and Cand\`es, Romberg, and Tao [12] proved that
solving the \ell 1 minimization can find a sparsest solution satisfying the system of linear
equations \bfitA x = b with b \in \BbbR m. However, in 2001, Fan and Li [23] pointed out that
using the \ell 1 penalty often results in a biased estimator and introduced a smoothly
clipped absolute deviation (SCAD) penalty. Besides SCAD, there are many variant of
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NONSMOOTH CONVEX REGRESSION WITH \ell 0 PENALTY 859

continuous nonconvex penalties, such as the hard thresholding penalty [56], log-sum
penalty [13], bridge \ell p (0 < p < 1) penalty [17, 25], capped-\ell 1 penalty [45, 47, 55],
and minimax concave penalty (MCP) [54]. These continuous but nonconvex penalties
would bring better sparse solutions than the \ell 1 penalty in many cases [6, 15, 28,
31]. The estimators obtained by the SCAD, MCP, and capped-\ell 1 penalty functions
satisfy the three important properties: unbiasedness, continuity in data, and sparsity
[23]. Meanwhile, there are many algorithms for solving these continuous nonconvex
optimization problems, such as the iterative reweighted algorithm [13, 43, 36], interior
point method [7], trust region method [18], cubic method [14], difference of convex
(DC) function algorithm [1, 37], iterative thresholding algorithm [8], primal dual active
set method [27], etc.

Despite the existing literature on the nonconvex but continuous penalties for
replacing the \ell 0-norm, some important questions still remain. First of all, the re-
lationships between the cardinality penalty problem and its continuous relaxations
are not very clear for most cases regarding the minimizers. Apart from the theo-
retical results for the convex \ell 1 relaxation under restrictive hypotheses, only a few
special cases have been analyzed for the consistency. With a suitable condition on the
sensing matrix \bfitA , the equivalence between \ell 0 and \ell p(0 < p \leq 1) problems with con-
straint \bfitA x = b was proved in [25], and then this result was extended to the problem
with equality and inequality constraints in [26]. In [19], the authors gave a class of
smooth nonconvex penalties to approximate the \ell 0 penalty in terms of the consistency
of global minimizers. In the DC programming framework, an approximation of the
\ell 0 penalty with the consistency of global minimizers was studied in [37]. Recently,
Soubies, Blanc-F\'eraud, and Aubert proposed a continuous exact \ell 0 (CEL0) penalty
for the \ell 2-\ell 0 problem [51], where the global minimizers of both problems can be the
same, and in [50], they verified that the capped-\ell 1 and SCAD penalties could only
guarantee the consistency of global minimizers to the \ell 2-\ell 0 problem, while the MCP,
truncated-\ell p with 0 < p < 1 and CEL0 penalties, could not only own the consistence
of global minimizers but also ensure that its local minimizers are in the set of local
minimizers of the \ell 2-\ell 0 problem. Next, due to the nonconvexity of the penalties, find-
ing global minimizers of these nonconvex problems is often NP-hard. Most existing
work for these continuous nonconvex penalized problems focuses on the stationary
points in different sense [1, 7, 8, 14, 18, 31, 35, 36, 46]. Moreover, due to their non-
convexity, only the subsequence convergence to a stationary point can be proved for
the proposed algorithms. The Kurdyka--\Lojasiewicz (K-L) condition is a popular tool
to obtain the algorithmic sequence convergence. In [2], the sequence convergence to a
critical point of a class of nonconvex semialgebra problems is established, where the
K-L condition plays the key role. Most recently, the authors in [46] stated that it
would be interesting whether the sequence convergence can be established to the DC
problem by a given algorithm without the K-L condition on the objective function.

Denote x \star the true estimator, which is the true solution of the considered (linear
or nonlinear) regression problem. Then, the oracle estimator is defined by

(1.1) x\tto \ttr \tta \ttc \ttl \tte \in arg min
x\scrA (x \star )c=\bfzero 

f(x),

where \scrA (x \star )c means the complementary set of \scrA (x \star ) and f : \BbbR n \rightarrow [0,\infty ) is the
loss function to evaluate the regression. The oracle estimator can be used as a the-
oretic benchmark for comparison of computed solutions. We say that the penalized
model has the oracle property if it owns a local solution having the same asymptotic
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860 WEI BIAN AND XIAOJUN CHEN

distribution as the oracle estimator. The penalized problem with the SCAD, MCP,
or capped-\ell 1 penalty owns the oracle property simultaneously [23, 54, 55]. A folded
concave penalized problem often has multiple local solutions, and the oracle property
is established only for one of local solutions [24]. Hence, deriving some appealing
properties, such as the optimality, sparsity, or statistical properties, of the relevant
stationary points is interesting. Ahn, Pang, and Xin [1] established some optimality
and sparsity properties of the d-stationary points (its definition will be repeated in
section 2) of the continuous relaxation problems. Fan, Xue, and Zou [24] proved that
as long as there is a reasonable initial estimator, an oracle estimator can be obtained
via the one-step local linear approximation algorithm.

In the recent years, algorithmic research on the sparse regression problems with
cardinality penalty has received much attention [4, 3, 29, 31, 32]. However, to the
best of our knowledge, all the existing results are built up for the problem with a
continuously differentiable loss function. The primal dual active set methods are
proposed in [29, 31, 32] for the \ell 2-\ell 0 problems. Under some regularity conditions,
such as the strict complementarity condition [31] or RIP condition on the sensing
matrix [29, 32], some variants of the primal dual active set methods were proved
to be convergent in finite iterations. The loss functions considered in [4, 3, 40] are
continuously differentiable and with Lipschitz-continuous gradients.

Our focuses and contributions. In this paper, we consider the following
penalized sparse regression problem with cardinality penalty, that is,

(1.2) min
x\in \scrX 

\scrF \ell 0(x) := f(x) + \lambda \| x\| 0,

where \scrX = \{ x \in \BbbR n : l \leq x \leq u\} , f : \BbbR n \rightarrow [0,\infty ) is convex (not necessarily smooth),
\lambda is a positive parameter, and l, u \in \{ \BbbR ,\pm \infty \} n with l \leq 0 \leq u and l < u.

One application of problem (1.2) comes from the linear regression problem. It is
well known that the least squares estimate with the \ell 2-\ell 0 model is not robust for many
cases [23]. We need to consider the problem with the outlier-resistant loss function,
such as the \ell 1 loss function given by

(1.3) f(x) =
1

m
\| \bfitA x - b\| 1 ,

or Huber's functions [30], which are convex but not smooth. Another important
application of problem (1.2) comes from the censored regression problem with the
nonsmooth convex loss function

(1.4) f(x) =
1

pm

m\sum 
i=1

| max\{ Aix - ci, 0\}  - bi| p ,

where p \in [1, 2], AT
i \in \BbbR n, and ci, bi \in \BbbR , i = 1, . . . ,m. There are some other non-

smooth convex loss functions, for example, the negative log-quasi-likelihood function
[23] or the check loss function in penalized quantile regression [24, 33]. To the best of
our knowledge, only a little work has been dedicated to the penalized sparse regression
problem (1.2) with a general convex loss function.

For a given parameter \nu > 0, let \Phi (x) =
\sum n

i=1 \phi (xi) be a continuous relaxation
of the \ell 0 penalty with the capped-\ell 1 function \phi given by

(1.5) \phi (t) = min\{ 1, | t| /\nu \} .
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NONSMOOTH CONVEX REGRESSION WITH \ell 0 PENALTY 861

We consider the following Lipschitz-continuous optimization problem for solving (1.2):

(1.6) min
x\in \scrX 

\scrF (x) := f(x) + \lambda \Phi (x).

Differently from the previous work [1, 4, 3, 7, 8, 14, 18, 29, 31, 32, 35, 36, 46], this
paper considers the original cardinality penalty problem with a continuous convex loss
function and uses an exact continuous relaxation problem to solve it. In particular,
we focus on problem (1.2) with a continuous convex loss function, which is nonsmooth
or whose gradient is not Lipschitz continuous. The main contributions of this paper
include the following two aspects. First, we prove that the continuous relaxation
problem (1.6) with certain \nu > 0 has two advantages: global minimizers of (1.2) and
(1.6) are the same; any lifted stationary point of (1.6) (its definition will be reminded in
section 2) is a local minimizer of (1.2) with a desired lower bound property. Second,
we propose a smoothing proximal gradient (SPG) algorithm with global sequence
convergence to a lifted stationary point of (1.6) without using the K-L condition.
Moreover, the SPG algorithm owns a local convergence rate on the objective function
value of (1.6) and the finite iterative identification for the zero entries of the limit
point.

Notations. We denote \BbbN = \{ 0, 1, . . .\} and \BbbD n = \{ d \in \BbbR n : di \in \{ 1, 2, 3\} , i =
1, . . . , n\} . For x \in \BbbR n and \delta > 0, let \| x\| := \| x\| 2, and \BbbB \delta (x) means the open
ball centered at x with radius \delta . For a nonempty, closed, and convex set \scrX \subseteq \BbbR n,
N\scrX (x) means the normal cone to \scrX at x \in \scrX . Let 1n \in \BbbR n be the all-ones vector
and \bfite i \in \BbbR n be the ith column of the n-dimensional identity matrix. For a locally
Lipschitz-continuous function \psi : \BbbR n \rightarrow \BbbR , we denote \partial \psi (x) the Clarke subgradient
[20] of \psi at x \in \BbbR n.

2. An exact continuous relaxation for (1.2). In this section, we analyze the
relationships between (1.2) and (1.6), where the capped-\ell 1 penalty can let problem
(1.6) own the oracle property and then can be seen as one of the best continuous
relaxations to the \ell 0-norm penalty [45].

Assumption 1. f is Lipschitz continuous on \scrX with Lipschitz constant Lf .

Assumption 2. Positive parameter \nu in (1.5) satisfies \nu < \=\nu := \lambda /Lf .

If there is no special explanation, we suppose Assumptions 1 and 2 hold through-
out the paper and assume that Lf is large enough such that Lf \geq \lambda 

\Gamma , where

\Gamma := min\{ | li| , uj : li \not = 0, uj \not = 0, i = 1, . . . , n, j = 1, . . . , n\} .

When f is defined by the \ell 1 loss function or the loss function in (1.4) with p = 1, we
can let Lf = max\{ \| \bfitA \| \infty , \lambda \Gamma \} .

2.1. Lifted stationary points of (1.6). Though \phi is piecewise linear, prob-
lem (1.6) is still a nonconvex optimization problem. It has been proved in [6] that
finding a global minimizer of (1.6) is NP-hard in general. Note that \phi in (1.5) can be
reformulated as a DC function, i.e.,

\phi (t) =
1

\nu 
| t|  - max \{ \theta 1(t), \theta 2(t), \theta 3(t)\} 

with \theta 1(t) = 0, \theta 2(t) = t/\nu  - 1 and \theta 3(t) =  - t/\nu  - 1. For t \in \BbbR , denote

(2.1) \scrD (t) = \{ i \in \{ 1, 2, 3\} : \theta i(t) = max\{ \theta 1(t), \theta 2(t), \theta 3(t)\} \} .
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862 WEI BIAN AND XIAOJUN CHEN

Definition 2.1 ([46]). We say that x \in \scrX is a lifted stationary point of (1.6)
if there exist di \in \scrD (xi) for i = 1, . . . , n such that

(2.2) \lambda 

n\sum 
i=1

\theta \prime di
(xi)\bfite i \in \partial f(x) +

\lambda 

\nu 
\partial 

\Biggl( 
n\sum 

i=1

| xi| 

\Biggr) 
+N\scrX (x).

If (2.2) holds for all di \in \scrD (xi) \forall i = 1, . . . , n, then we call x a d-stationary point
[46]. Due to the piecewise linearity of max \{ \theta 1(t), \theta 2(t), \theta 3(t)\} , x is a d-stationary point
of (1.6) if and only if it is a local minimizer. Recall that \=x is a limiting stationary
point [48] of (1.6) if

(2.3) 0 \in \=\partial (f + \lambda \Phi )(\=x) +N\scrX (\=x),

where \=\partial indicates the limiting subgradient and \=x is a Clarke stationary point of (1.6),
if 0 \in \partial (f + \lambda \Phi )(\=x) + N\scrX (\=x). We call \=x \in \scrX a critical point of (1.6) if it satisfies
0 \in \partial f(\=x) + \lambda \partial \Phi (\=x) +N\scrX (\=x). It holds that

\scrS d \subseteq \scrS lim \subseteq \scrS lif \subseteq \scrS cl \subseteq \scrS cr,

but their inverse may not hold, where \scrS d, \scrS lim, \scrS lif, \scrS cl, and \scrS cr denote the d-
stationary point set, limiting stationary point set, lifted stationary point set, Clarke
stationary point set and critical point set of (1.6), respectively.

A natural question arises as to why we focus on the lifted stationary points rather
than the others. First, the lifted stationary points satisfy a sharper optimal necessary
condition than the Clarke and critical stationary points. Second, the d-stationary and
limiting stationary points of (1.6) are difficult to comput. Though Pang, Razaviyayn,
and Alvarado [46] developed a novel algorithm for computing a d-stationary point of
the DC optimization problems, the algorithm in [46] cannot be directly used to solve
problem (1.6).

2.2. Characterizations of lifted stationary points of (1.6). With the com-
putable condition on \nu defined in Assumption 2, we first verify that the element in
\Pi n

i=1\scrD (xi) for a lifted stationary point satisfying (2.2) is unique and well defined.

Proposition 2.2. If \=x is a lifted stationary point of (1.6), then the vector d\=x =
(d\=x1 , . . . , d

\=x
n)T \in 

\prod n
i=1 \scrD (\=xi) satisfying (2.2) is unique. In particular, for i = 1, . . . , n,

(2.4) d\=xi =

\left\{     
1 if | \=xi| < \nu ,

2 if \=xi \geq \nu ,

3 if \=xi \leq  - \nu .

Proof. If | \=xi| \not = \nu , then the statement in this proposition holds naturally. Hence,
we only need to consider the case | \=xi| = \nu . When \=xi = \nu , since \scrD (\=xi) = \{ 1, 2\} ,
arguing by contradiction, we assume (2.2) holds with d\=xi = 1. By \nu < \=\nu , we have
\=xi \in (li, ui), and by (2.2), there exists \xi (\=x) \in \partial f(\=x) such that 0 = \xi i(\=x) + \lambda /\nu , which
implies that \lambda /\nu = | \xi i(\=x)| \leq Lf . This leads to a contradiction to \nu < \lambda /Lf . Then,
(2.4) holds for \=xi = \nu . Similar analysis can be given for the case that \=xi =  - \nu , which
completes the proof.

For a given d = (d1, . . . , dn)T \in \BbbD n, we define

(2.5) \Phi d(x) :=

n\sum 
i=1

| xi| /\nu  - 
n\sum 

i=1

\theta di(xi),
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NONSMOOTH CONVEX REGRESSION WITH \ell 0 PENALTY 863

which is convex with respect to x. It can be verified that \Phi (x) = mind\in \BbbD n \Phi d(x) \forall x \in 
\scrX . In particular, for a fixed \=x \in \scrX , \Phi (\=x) = \Phi d\=x

(\=x) with d\=x defined in (2.4).

Remark 2.1. Proposition 2.2 implies that \=x is a local minimizer of (1.6) if and
only if \=x is a lifted stationary point of (1.6) and | \=xi| \not = \nu \forall i = 1, . . . , n. Moreover, due
to the convexity of f(x)+\lambda \Phi d(x) and the linearity of

\sum n
i=1 \theta di

(xi) for a fixed d \in \BbbD n,
the assertion in Proposition 2.2 implies the following equivalent results:

\=x is a lifted stationary point of (1.6) \leftrightarrow (2.2) holds at \=x \in \scrX with d = d\=x defined

in (2.4)

\leftrightarrow \=x \in arg minx\in \scrX f(x) + \lambda \Phi d\=x

(x)(2.6)

\leftrightarrow \=x \in arg minx\in \scrX ,dx=d\=xf(x) + \lambda \Phi (x),(2.7)

where the last equivalence uses \Phi d\=x

(\=x) = \Phi (\=x) and \Phi d\=x

(x) \geq \Phi (x) \forall x \in \BbbR n.

We then show a lower bound property of the lifted stationary points of (1.6).

Lemma 2.3. If \=x \in \scrX is a lifted stationary point of (1.6), then it holds that

(2.8) \=xi \in ( - \nu , \nu ) \Rightarrow \=xi = 0 \forall i = 1, . . . , n.

Proof. Suppose \=x is a lifted stationary point of (1.6). Assume that \=xi \in ( - \nu , \nu )\setminus \{ 0\} 
for some i \in \{ 1, . . . , n\} . Then, d\=xi = 1 and \=xi \in (li, ui). By Definition 2.1, there exists
\xi (\=x) \in \partial f(\=x) such that \xi i(\=x)+(\lambda /\nu )sign(\=xi) = 0. Then, \lambda /\nu = | \xi i(\=x)| \leq \| \xi (\=x)\| \leq Lf ,
which leads to a contradiction to \nu < \lambda /Lf . Thus, for any i \in \{ 1, . . . , n\} , \=xi \in ( - \nu , \nu )
implies that \=xi = 0.

Remark 2.2. On the one hand, if f is not continuously differentiable on \scrX \nu =
\{ x \in \scrX : | xi| = \nu for some i \in \{ 1, . . . , n\} \} , a lifted stationary point of (1.6) is not
necessary to be a Clarke stationary point [46]. On the other hand, if f is continuously
differentiable on \scrX \nu , then \=x is a lifted stationary point of (1.6) if and only if it
is a limiting stationary point but is not necessary to be a Clarke stationary point.
A counterexample can be provided by setting f(x) = (x1 + x2  - 1)2, l = (0, 0)T ,
u = (1, 1)T , \lambda = 1, and \nu = 0.2 in (1.6), where \nu < \=\nu = 0.25. It follows from Lemma
2.3 that \scrS cl = \scrS lif

\bigcup 
\{ (0, 0.2)T , (0.2, 0)T \} , where \scrS lif = \{ x \in \BbbR 2 : x1 + x2 = 1, x1 \geq 

0.2, x2 \geq 0.2\} 
\bigcup 
\{ (0, 0)T , (1, 0)T , (0, 1)T \} .

2.3. Links between (1.2) and (1.6). The goal of this subsection is to study
the links between the \ell 0 penalized minimization problem (1.2) and its continuous
relaxation (1.6). In light of the lower bound characterization of the lifted stationary
points of (1.6) given in Lemma 2.3, we show the links between (1.2) and (1.6) by
the two following results, where the first result focuses on global minimizers and the
second on local minimizers.

Theorem 2.4. \=x \in \scrX is a global minimizer of (1.2) if and only if it is a global
minimizer of (1.6). Moreover, problems (1.2) and (1.6) have the same optimal value.

Proof. First, let \=x \in \scrX be a global minimizer of (1.6); then \=x is a lifted stationary
point of (1.6). By (2.8), it gives \Phi (\=x) = \| \=x\| 0. Then,

f(\=x) + \lambda \| \=x\| 0 = f(\=x) + \lambda \Phi (\=x) \leq f(x) + \lambda \Phi (x) \leq f(x) + \lambda \| x\| 0 \forall x \in \scrX ,

where the last inequality uses \Phi (x) \leq \| x\| 0 \forall x \in \BbbR n. Thus, \=x is a global minimizer of
(1.2).
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Next, suppose \=x \in \scrX is a global minimizer of (1.2) but not a global minimizer of
(1.6). Then there exists a global minimizer of (1.6) denoted by \^x such that

f(\^x) + \lambda \Phi (\^x) < f(\=x) + \lambda \Phi (\=x).

From \Phi (\^x) = \| \^x\| 0 and \Phi (\=x) \leq \| \=x\| 0, we get f(\^x)+\lambda \| \^x\| 0 < f(\=x)+\lambda \| \=x\| 0, which leads
to a contradiction. Thus, any global minimizer of (1.2) must be a global minimizer
of (1.6). Hence, using Lemma 2.3, we ensure that problems (1.2) and (1.6) have the
same optimal value.

Theorem 2.4 provides that problems (1.2) and (1.6) have the same global solution
set. The following proposition and the subsequent example show that this is not
always true for their local minimizers.

Proposition 2.5. If \=x is a lifted stationary point of (1.6), then it is a local min-
imizer of (1.2), and the objective functions have the same value at \=x, i.e., \scrF \ell 0(\=x) =
\scrF (\=x).

Proof. Coming back to the definition of \Phi d\=x

defined in (2.5) and from the lower
bound property of \=x in (2.8), for any x \in \BbbR n, we have

\Phi d\=x

(x) =

n\sum 
i=1

| xi| /\nu  - 
n\sum 

i=1

\theta d\=x
i
(xi) =

\sum 
i:| \=xi| \geq \nu 

1 +
\sum 

i:| \=xi| <\nu 

| xi| /\nu = \| \=x\| 0 +
\sum 

i:\=xi=0

| xi| /\nu .

Then, there exists \varrho > 0 such that \Phi d\=x

(x) \leq \| x\| 0 \forall x \in \BbbB \varrho (\=x). Combining this with
\Phi (x) \leq \| x\| 0 and (2.6) gives

f(\=x) + \lambda \| \=x\| 0 \leq f(x) + \lambda \| x\| 0 \forall x \in \scrX \cap \BbbB \varrho (\=x).

Thus, \=x is a local minimizer of (1.2).

Proposition 2.5 states that any lifted stationary point of (1.6) is a local minimizer
of (1.2), which implies that any local minimizer of (1.6) is certainly a local minimizer
of (1.2). Due to the special structure of the cardinality norm, any minimizer of
minx\in \scrX f(x) is a local minimizer of (1.2). The following example shows that a lifted
stationary point of (1.6) is a local minimizer of (1.2) with the lower bound property
in (2.8) and is likely a global minimizer.

Example 2.1. Let problem (1.2) be in the form of

(2.9) min
0\leq x1,x2\leq 1

\scrF \ell 0(x1, x2) := | x1 + x2  - 1| + \lambda \| x\| 0.

We can easily find that \scrL \scrM := \{ x \in \BbbR 2 : x1 + x2 = 1, 0 \leq x1, x2 \leq 1\} \cup \{ (0, 0)T \} is
the set of local minimizers of (2.9). Moreover, (0, 0)T is the unique global minimizer
when \lambda > 1, the global minimizers are \{ (0, 1)T , (1, 0)T \} when \lambda < 1, and the global
minimizers are \{ (0, 1)T , (1, 0)T , (0, 0)T \} when \lambda = 1. Here, \=\nu in Lemma 2.3 can be
min\{ 

\surd 
2\lambda /2, 1\} . With \nu < min\{ 

\surd 
2\lambda /2, 1\} , the lifted stationary points of (1.6) for this

example are \{ x \in \BbbR 2 : x1 + x2 = 1, \nu \leq x1, x2 \leq 1\} 
\bigcup 
\{ (0, 0)T , (1, 0)T , (0, 1)T \} , which

is a proper subset of \scrL \scrM . Especially, if
\surd 

2/2 < \lambda \leq 1 and 1/2 < \nu < min\{ 
\surd 

2\lambda /2, 1\} ,
the lifted stationary points of (1.6) are \{ (1, 0)T , (0, 1)T , (0, 0)T \} .

When f is convex, \=x is a local minimizer of (1.2) if and only if \=x \in \scrX satisfies

(2.10) 0 \in [\partial f(\=x) +N\scrX (\=x)]i \forall i \in \scrA (\=x),
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which is a criterion for the local minimizers of (1.2) [40]. From Lemma 2.3 and
Theorem 2.4, we find that the lower bound property in (2.8) holds for any global
minimizer of (1.2) but is not true for all of its local minimizers. This inspires us to
define a class of strong local minimizers of (1.2) by combining the optimality condition
in (2.10) and the lower bound property in (2.8).

Definition 2.6. We call \=x \in \scrX a \nu -strong local minimizer of ( 1.2) if there exist
\=\xi \in \partial f(\=x) and \=\eta \in N\scrX (\=x) such that for any i \in \scrA (\=x), it holds that

\=\xi i + \=\eta i = 0 and | \=xi| \geq \nu .

By (2.10), any \nu -strong local minimizer of (1.2) is a local minimizer of it. To close
this section, we give a result on the relationship between the \nu -strong local minimizers
of (1.2) and the lifted stationary points of (1.6).

Proposition 2.7. \=x \in \scrX is a \nu -strong local minimizer of (1.2) if and only if it
is a lifted stationary point of (1.6). Moreover, if \=x \in \scrX is a \nu -strong local minimizer
of (1.2), then it holds that

\scrF \ell 0(\=x) \leq \scrF \ell 0(x), \forall x \in \scrX \cap (\=x - \nu e, \=x+ \nu e),

f(\=x) \leq f(x), \forall x \in \{ x \in \scrX : \scrA (x) \subseteq \scrA (\=x)\} ,(2.11)

\=x is an oracle solution defined in ( 1.1) if \scrA (\=x) = \scrA (x \star ).(2.12)

Proof. From Lemma 2.3, we can easily verify the first statement. By (2.6), we
see that if \=x is a lifted stationary point of (1.6), then

\scrF \ell 0(\=x) = f(\=x)+\lambda \| \=x\| 0 = f(\=x)+\lambda \Phi (\=x) = f(\=x)+\lambda \Phi d\=x

(\=x) \leq f(x)+\lambda \Phi d\=x

(x) \forall x \in \scrX .

Due to Lemma 2.3, we then have \scrF \ell 0(\=x) \leq \scrF \ell 0(x) \forall x \in \scrX \cap (\=x - \nu 1n, \=x+\nu 1n), which

holds from \Phi d\=x

(x) \leq \| x\| 0 \forall x \in (\=x - \nu 1n, \=x+ \nu 1n). Recalling (2.6) again, we obtain
f(\=x) \leq f(x) + \lambda 

\sum 
i \not \in \scrA (\=x) | xi| /\nu \forall x \in \scrX . If \scrA (x) \subseteq \scrA (\=x), then xi = 0 for i \not \in \scrA (\=x).

Hence, (2.11) holds, which immediately implies (2.12).

Remark 2.3. In [50], the authors gave a unified view of exact continuous penal-
ties for \ell 2-\ell 0 minimization, which derives necessary and sufficient conditions on \ell 0
continuous relaxations such that each (local and global) minimizer of the underlying
relaxation is also a minimizer of the \ell 2-\ell 0 problem. However, the property that any
local minimizer of the relaxation problem with the capped-\ell 1 penalty is a local mini-
mizer of the \ell 2-\ell 0 problem cannot be verified by the results in [50]. In this paper, we
prove this property for the capped-\ell 1 penalty by its lifted stationary points.

To end this section, we use Figure 1 to give a brief description on the links between
problems (1.2) and (1.6) when \nu < \=\nu .

3. Numerical algorithm and its convergence analysis. In this section, we
focus on the numerical algorithm for finding a lifted stationary point of (1.6), which
is a \nu -strong local minimizer of (1.2). The first two subsections briefly introduce some
useful preliminary results on smoothing methods and the proximal gradient algorithm,
the third subsection presents a new proximal gradient algorithm combined with the
smoothing method, and the last two subsections show the convergence of the proposed
algorithm for solving (1.6).

3.1. Smoothing approximation method. A well-known method for solving
nonsmooth optimization problems is to approximate the original problem by a se-
quence of smooth problems, which own rich theory and powerful numerical algorithms

D
ow

nl
oa

de
d 

04
/0

3/
23

 to
 1

58
.1

32
.1

61
.1

85
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

866 WEI BIAN AND XIAOJUN CHEN

Fig. 1. Links between problems (1.2) and (1.6).

[42]. For the sake of completeness, we formally define a class of smoothing functions
for f in (1.6).

Definition 3.1. We call \~f : \BbbR n \times [0, \=\mu ] \rightarrow \BbbR with \=\mu > 0 a smoothing function of
the convex function f in ( 1.6) if \~f(\cdot , \mu ) is continuously differentiable in \BbbR n for any
fixed \mu > 0 and satisfies the following conditions:

(i) limz\rightarrow x,\mu \downarrow 0 \~f(z, \mu ) = f(x) \forall x \in \scrX ;

(ii) (convexity) \~f(x, \mu ) is convex with respect to x in \scrX for any fixed \mu > 0;
(iii) (gradient consistency) \{ limz\rightarrow x,\mu \downarrow 0 \nabla z

\~f(z, \mu )\} \subseteq \partial f(x) \forall x \in \scrX ;
(iv) (Lipschitz continuity with respect to \mu ) there exists a positive constant \kappa such

that
| \~f(x, \mu 2)  - \~f(x, \mu 1)| \leq \kappa | \mu 1  - \mu 2| \forall x \in \scrX , \mu 1, \mu 2 \in [0, \=\mu ];

(v) (Lipschitz continuity with respect to x) there exists a constant L > 0 such
that for any \mu \in (0, \=\mu ], \nabla x

\~f(\cdot , \mu ) is Lipschitz continuous on \scrX with Lipschitz
constant L\mu  - 1.

Throughout this paper, we denote \~f a smoothing function of f in (1.6). When it
is clear from the context, the derivative of \~f(x, \mu ) with respect to x is simply denoted
as \nabla \~f(x, \mu ). Definition 3.1(iv) implies that

(3.1) | \~f(x, \mu )  - f(x)| \leq \kappa \mu \forall x \in \scrX , 0 < \mu \leq \=\mu .

Example 3.1. Many existing results in [16, 34, 49] give us some theoretical basis
for constructing smoothing functions satisfying the conditions in Definition 3.1. A
smoothing function of the \ell 1 loss function in (1.3) can be defined by

(3.2) \~f(x, \mu ) =
1

m

m\sum 
i=1

\~\theta (Aix - bi, \mu ) with \~\theta (s, \mu ) =

\left\{   
| s| if | s| > \mu ,

s2

2\mu 
+
\mu 

2
if | s| \leq \mu .

For the loss function in (1.4) with p = 1, a smoothing function of it can be defined by

(3.3) \~f(x, \mu ) =
1

m

m\sum 
i=1

\~\theta (\~\phi (Aix, \mu ) - bi, \mu ) with \~\phi (s, \mu ) =

\left\{   
max\{ s, 0\} if | s| > \mu ,

(s+ \mu )2

4\mu 
if | s| \leq \mu .

We end this subsection by giving the notations

\~\scrF d(x, \mu ) \triangleq \~f(x, \mu ) + \lambda \Phi d(x) and \~\scrF (x, \mu ) \triangleq \~f(x, \mu ) + \lambda \Phi (x),

where \~f is a smoothing function of f , \mu > 0, and d \in \BbbD n. For any fixed \mu > 0 and
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d \in \BbbD n, both \~\scrF d(x, \mu ) and \~\scrF (x, \mu ) are nonsmooth, \~\scrF d(x, \mu ) is convex, but \~\scrF (x, \mu ) is
nonconvex. Moreover,

(3.4) \~\scrF d(x, \mu ) \geq \~\scrF (x, \mu ) \forall d \in \BbbD n, x \in \scrX , \mu \in (0, \=\mu ].

3.2. Proximal gradient method. In this subsection, we consider the following
constrained convex optimization problem with given smoothing parameter \mu > 0 and
vector d \in \BbbD n:

(3.5) min
x\in \scrX 

\~\scrF d(x, \mu ).

It is good news that, for any given vectors d \in \BbbD n, w \in \BbbR n, and a positive number
\tau > 0, the proximal operator of \tau \Phi d on \scrX has a closed-form solution; i.e.,

(3.6) \^x = arg min
x\in \scrX 

\biggl\{ 
\tau \Phi d(x) +

1

2
\| x - w\| 2

\biggr\} 
can be calculated by \^xi = min\{ max\{ li, yi\} , ui\} for i = 1, . . . , n, where

(3.7) yi =

\left\{     
0 if | \=wi| \leq \tau /\nu ,

\=wi  - \tau /\nu if \=wi > \tau /\nu ,

\=wi + \tau /\nu if \=wi <  - \tau /\nu 

with \=wi = wi for di = 1, \=wi = wi + \tau /\nu for di = 2, and \=wi = wi  - \tau /\nu for di = 3.
Toward this end, we consider an approximation of \~\scrF d(\cdot , \mu ) around a given point z,
given by

(3.8) Qd,\gamma (x, z, \mu ) = \~f(z, \mu ) + \langle x - z,\nabla \~f(z, \mu )\rangle +
1

2
\gamma \mu  - 1\| x - z\| 2 + \lambda \Phi d(x)

with a constant \gamma > 0. Since \Phi d(x) is convex with respect to x for any fixed d \in \BbbD n,
function Qd,\gamma (x, z, \mu ) is a strongly convex function with respect to x for any fixed
d, \gamma , z, and \mu . Then, minimization problem minx\in \scrX Qd,\gamma (x, z, \mu ) admits a unique
minimizer, denoted by \^x, which can be calculated by (3.7) with \tau = \lambda \gamma  - 1\mu and
w = z  - \gamma  - 1\mu \nabla \~f(z, \mu ).

3.3. SPG algorithm. In this subsection, we propose a new algorithm for finding
a lifted stationary point of (1.6). Since the proposed algorithm combines the smooth-
ing method and the proximal gradient algorithm, we call it a smoothing proximal
gradient (SPG) algorithm.

For convenience of further reading, we begin this subsection by emphasizing the
following assumptions needed in the convergence analysis of the SPG algorithm:

\bullet (A1) Assumption 1 and Assumption 2 hold.
\bullet (A2) \~f is a smoothing function of f defined in Definition 3.1.
\bullet (A3) \scrF in (1.6) (or \scrF \ell 0 in (1.2)) is level bounded on \scrX .1

As the feasible region \scrX is bounded, assumption (A3) holds naturally. We give some
more details on the parameters in these assumptions. Parameter Lf in Assumption 1
is used to define \nu such that problems (1.2) and (1.6) have the consistency in Theorem
2.4 and Proposition 2.5. Parameter \kappa in Definition 3.1 is used in the SPG algorithm,

1We say function \scrF is level bounded on \scrX , if for any \Gamma > 0, the level set \{ x \in \scrX : \scrF (x) \leq \Gamma \} is
bounded.
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which can be calculated exactly for most smoothing functions [16] and \kappa = 1
2 for

the smoothing functions in (3.2) and (3.3). The value of L in Definition 3.1 is not
necessary, and we will use a simple line search method to find an acceptable value at
each iteration of the SPG algorithm. Upon the above assumptions, we present the
SPG algorithm for solving (1.6). See Algorithm 3.1.

Algorithm 3.1 SPG algorithm.

Input: Take initial iterates x - 1 = x0 \in \scrX and \mu  - 1 = \mu 0 \in (0, \=\mu ]. Choose constants
\rho > 1, \sigma \in ( 1

2 , 1), \alpha > 0, and 0 < \gamma \leq \=\gamma . Set k = 0.
While a termination criterion is not met, do

Step 1. Choose \gamma k \in [\gamma , \=\gamma ] and let dk \triangleq dx
k

, where dx
k

is defined in (2.4).
Step 2. 2a) Compute

(3.9) \^xk+1 = arg minx\in \scrX Qdk,\gamma k
(x, xk, \mu k).

2b) If \^xk+1 satisfies

(3.10) \~\scrF dk

(\^xk+1, \mu k) \leq Qdk,\gamma k
(\^xk+1, xk, \mu k),

set

(3.11) xk+1 = \^xk+1,

and go to Step 3. Otherwise, let \gamma k = \rho \gamma k, and return to 2a).
Step 3: If

(3.12) \~\scrF (xk+1, \mu k) + \kappa \mu k  - \~\scrF (xk, \mu k - 1)  - \kappa \mu k - 1 \leq  - \alpha \mu 2
k,

set \mu k+1 = \mu k; otherwise, set

(3.13) \mu k+1 =
\mu 0

(k + 1)\sigma 
.

Increment k by one, and return to Step 1.
end while

At each iteration, this algorithm takes the proximal gradient algorithm for solving
(3.5) with fixed \mu k, \gamma k, and dk and uses a simple criterion for updating \mu k. The
values of \gamma k are chosen independently in Step 1 of each iteration. Step 3 updates
the smoothing parameter \mu k by using (3.12), where \~\scrF (xk+1, \mu k) + \kappa \mu k can be seen
as an energy function, and its monotone nonincreasing property will be proved in
Lemma 3.3. If the energy function is decreased more than the given scale at the
current iteration, then the current smoothing parameter is still acceptable for the
next iteration; otherwise, we reduce its value by the updating rule in (3.13) for the
next iteration. Let

\scrN s = \{ k \in \BbbN : \mu k+1 \not = \mu k\} ,
and denote nsr the rth smallest number in \scrN s. Then, we can obtain following updating
method of \{ \mu k\} :

(3.14) \mu k = \mu ns
r+1 =

\mu 0

(nsr + 1)\sigma 
\forall nsr + 1 \leq k \leq nsr+1,

this will be used in the proof of Lemmas 3.2 and 3.5.
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3.4. Basic convergence analysis of the SPG algorithm. Denote \{ xk\} ,
\{ \gamma k\} , and \{ \mu k\} to be the sequences generated by the SPG algorithm. In this sub-
section, we first establish some basic properties of the iterates \{ xk\} , \{ \gamma k\} and \{ \mu k\} 
in Lemma 3.2. Then, by the level boundedness assumption of \scrF (or \scrF \ell 0) on \scrX , the
boundedness of \{ xk\} is obtained in Lemma 3.3. Finally, the subsequential convergence
of \{ xk : k \in \scrN s\} to a lifted stationary point of (1.6) is established in Proposition 3.4.

Lemma 3.2. The proposed SPG algorithm is well defined, and the sequences \{ xk\} ,
\{ \gamma k\} , and \{ \mu k\} generated by it own the following properties:

(i) \{ xk\} \subseteq \scrX and \{ \gamma k\} \subseteq 
\bigl[ 
\gamma ,max\{ \=\gamma , \rho L\} 

\bigr] 
;

(ii) there are infinite elements in \scrN s and limk\rightarrow \infty \mu k = 0.

Proof. (i) Upon rearranging terms, (3.10) can be rewritten as

\~f(\^xk+1, \mu k) \leq \~f(xk, \mu k) + \langle \nabla \~f(xk, \mu k), \^xk+1  - xk\rangle +
1

2
\gamma k\mu 

 - 1
k \| \^xk+1  - xk\| 2.

Invoking Definition 3.1(v), (3.10) holds when \gamma k \geq L. Thus, the updating of \gamma k in
Step 2 is at most log\eta (L/\gamma ) + 1 times at each iteration. Hence, the SPG algorithm is
well defined, and we have that \gamma k \leq max\{ \=\gamma , \rho L\} \forall k \in \BbbN . From (3.11), it is easy to
verify that xk+1 \in \scrX by xk \in \scrX and \^xk+1 \in \scrX .

(ii) Since \{ \mu k\} is nonincreasing, to prove (ii), we assume that limk\rightarrow \infty \mu k = \^\mu > 0
by contradiction. Then, (3.13) happens finite times at most, which means that there
exists K \in \BbbN such that \mu k = \^\mu \forall k \geq K. Then,

\~\scrF (xk+1, \mu k) + \kappa \mu k  - \~\scrF (xk, \mu k - 1)  - \kappa \mu k - 1 \leq  - \alpha \^\mu 2 \forall k \geq K + 1.

We obtain from the above inequality that

(3.15) lim
k\rightarrow \infty 

\~\scrF (xk+1, \mu k) + \kappa \mu k =  - \infty .

However, by \{ xk\} \subseteq \scrX and (3.1), we see that

(3.16) \~\scrF (xk+1, \mu k) + \kappa \mu k \geq \scrF (xk+1) \geq min
x\in \scrX 

\scrF (x) = min
x\in \scrX 

\scrF \ell 0(x) \forall k \geq K,

where the last equality follows from Theorem 2.4. Thus, the contradiction between
(3.15) and (3.16) implies (ii).

Lemma 3.3. For any k \in \BbbN , we have

(3.17) \~\scrF (xk+1, \mu k)  - \~\scrF (xk, \mu k) \leq  - 1

2
\gamma k\mu 

 - 1
k \| xk+1  - xk\| 2,

which implies that \{ \~\scrF (xk+1, \mu k) + \kappa \mu k\} is nonincreasing and limk\rightarrow \infty \~\scrF (xk+1, \mu k) =
limk\rightarrow \infty \scrF (xk). Moreover, there exists R > 0 such that \| xk\| \leq R \forall k \in \BbbN .

Proof. Since Qdk,\gamma k
(x, xk, \mu k) is strongly convex with modulus \gamma k\mu 

 - 1
k , using the

definition of \^xk+1 in (3.9) and xk+1 = \^xk+1 when (3.10) holds, we obtain

Qdk,\gamma k
(xk+1, xk, \mu k) \leq Qdk,\gamma k

(x, xk, \mu k)  - 1

2
\gamma k\mu 

 - 1
k \| xk+1  - x\| 2 \forall x \in \scrX .

By the definition of function Qdk,\gamma k
given in (3.8), upon rearranging the terms,

we have
(3.18)

\lambda \Phi dk

(xk+1) \leq \lambda \Phi dk

(x) + \langle x - xk+1,\nabla \~f(xk, \mu k)\rangle 

+
1

2
\gamma k\mu 

 - 1
k \| x - xk\| 2  - 1

2
\gamma k\mu 

 - 1
k \| xk+1  - xk\| 2  - 1

2
\gamma k\mu 

 - 1
k \| xk+1  - x\| 2.
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Moreover, (3.10) can be written as

\~\scrF dk

(xk+1, \mu k) \leq \~f(xk, \mu k) + \langle xk+1  - xk,\nabla \~f(xk, \mu k)\rangle (3.19)

+
1

2
\gamma k\mu 

 - 1
k \| xk+1  - xk\| 2 + \lambda \Phi dk

(xk+1).

Summing up (3.18) and (3.19), we notice that
(3.20)

\~\scrF dk

(xk+1, \mu k) \leq \~f(xk, \mu k) + \lambda \Phi dk

(x) + \langle x - xk,\nabla \~f(xk, \mu k)\rangle 

+
1

2
\gamma k\mu 

 - 1
k \| x - xk\| 2  - 1

2
\gamma k\mu 

 - 1
k \| xk+1  - x\| 2 \forall x \in \scrX .

For a fixed \mu > 0, the convexity of \~f(x, \mu ) with respect to x invokes

(3.21) \~f(xk, \mu k) + \langle x - xk,\nabla \~f(xk, \mu k)\rangle \leq \~f(x, \mu k) \forall x \in \scrX .

Combining (3.20) and (3.21) and recalling the definition of \~\scrF dk

, one has
(3.22)

\~\scrF dk

(xk+1, \mu k) \leq \~\scrF dk

(x, \mu k) +
1

2
\gamma k\mu 

 - 1
k \| x - xk\| 2  - 1

2
\gamma k\mu 

 - 1
k \| xk+1  - x\| 2 \forall x \in \scrX .

Letting x = xk in (3.22) and by dk = dx
k

, we obtain

(3.23) \~\scrF dk

(xk+1, \mu k) +
1

2
\gamma k\mu 

 - 1
k \| xk+1  - xk\| 2 \leq \~\scrF (xk, \mu k).

Thanks to \~\scrF dk

(xk+1, \mu k) \geq \~\scrF (xk+1, \mu k), (3.23) leads to (3.17).
Since \~\scrF (xk, \mu k) \leq \~\scrF (xk, \mu k - 1) + \kappa (\mu k - 1  - \mu k), by (3.17), we obtain

(3.24) \~\scrF (xk+1, \mu k) + \kappa \mu k +
1

2
\gamma k\mu 

 - 1
k \| xk+1  - xk\| 2 \leq \~\scrF (xk, \mu k - 1) + \kappa \mu k - 1,

which implies the nonincreasing property of \{ \~\scrF (xk+1, \mu k) + \kappa \mu k\} . Together this re-
sult with (3.16) ensures the existence of limk\rightarrow \infty \~\scrF (xk+1, \mu k) + \kappa \mu k. By virtue of
limk\rightarrow \infty \mu k = 0 and Definition 3.1(i), we get limk\rightarrow \infty \~\scrF (xk+1, \mu k) = limk\rightarrow \infty \scrF (xk).

Recalling the nonincreasing property of \{ \~\scrF (xk+1, \mu k) + \kappa \mu k\} again, we see that

\scrF (xk+1) \leq \~\scrF (xk+1, \mu k) + \kappa \mu k \leq \~\scrF (x1, \mu 0) + \kappa \mu 0 <\infty .

We then obtain the boundedness of \{ xk\} from \{ xk\} \subseteq \scrX and the level bounded
assumption of \scrF on \scrX . Observe that

\scrF \ell 0(x) \geq \scrF (x) = \scrF \ell 0(x)  - \lambda 
\sum 

| xi| <\nu 

(1  - | xi| /\nu ) \geq \scrF \ell 0(x)  - \lambda n \forall x \in \BbbR n.

Then, it is easy to verify the level boundedness of \scrF by the level boundedness of \scrF \ell 0

on \scrX . Hence, the same results in Lemma 3.3 hold when \scrF \ell 0 is level bounded on \scrX .

The following proposition shows that there exists a subsequence of \{ xk\} converg-
ing to a lifted stationary point of (1.6), which lays a foundation for the sequence
convergence of \{ xk\} .

Proposition 3.4. Any accumulation point of \{ xk : k \in \scrN s\} is a lifted stationary
point of ( 1.6).
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Proof. When \scrF (or \scrF \ell 0) is level bounded on \scrX , by Lemma 3.3, \{ xk\} is bounded.
Suppose \=x is an accumulation point of \{ xk\} k\in \scrN s with the convergence of subsequence
\{ xki\} ki\in \scrN s .

Since (3.12) fails for ki \in \scrN s, by rearranging (3.24), we obtain that \gamma ki\mu 
 - 1
ki

\| xki+1 - 

xki\| 2. \leq 2\alpha \mu 2
ki

, which gives \| xki+1  - xki\| \leq 
\sqrt{} 

2\alpha \gamma  - 1
ki
\mu 3
ki

. Thus, \gamma ki
\mu  - 1
ki

\| xki+1  - 
xki\| \leq 

\surd 
2\alpha \gamma ki

\mu ki
, which together with limi\rightarrow \infty \mu ki

= 0 and \{ \gamma ki
\} \subseteq 

\bigl[ 
\gamma ,max\{ \=\gamma , \rho L\} 

\bigr] 
implies that

(3.25) lim
i\rightarrow \infty 

\gamma ki\mu 
 - 1
ki

\| xki+1  - xki\| = 0 and lim
i\rightarrow \infty 

xki+1 = \=x.

Recalling xki+1 = \^xki+1 defined in (3.9) and by its first-order necessary optimality
condition, we have
(3.26)

\langle \nabla \~f(xki , \mu ki)+\gamma ki\mu 
 - 1
ki

(xki+1 - xki)+\lambda \zeta ki , x - xki+1\rangle \geq 0 \forall \zeta ki \in \partial \Phi dki
(xki+1), x \in \scrX .

Since the elements in \{ dki : i \in \BbbN \} are finite and limi\rightarrow \infty xki+1 = \=x, there exists

a subsequence of \{ ki\} , denoted as \{ kij\} , and \=d \in \scrD (\=x) such that dkij = \=d \forall j \in \BbbN . By

the upper semicontinuity of \partial \Phi 
\=d and limj\rightarrow \infty xkij

+1 = \=x, it gives

(3.27)

\biggl\{ 
lim
j\rightarrow \infty 

\zeta kij : \zeta kij \in \partial \Phi d
kij

(xkij
+1)

\biggr\} 
\subseteq \partial \Phi 

\=d(\=x).

Along with the subsequence \{ kij\} and letting j \rightarrow \infty in (3.26), from Definition 3.1(iii),

(3.25), and (3.27), we obtain that there exist \=\xi \in \partial f(\=x) and \=\zeta 
\=d \in \partial \Phi 

\=d(\=x) such that

(3.28) \langle \=\xi + \lambda \=\zeta 
\=d, x - \=x\rangle \geq 0 \forall x \in \scrX .

By \=d \in \scrD (\=x), the definition of \Phi 
\=d in (2.5), and the convexity of \scrX , (3.28) implies that

\=x is a lifted stationary point of (1.6).

Remark 3.1. The convexity of \Phi d plays an important role in the analysis of the
SPG algorithm. It is easy to check that all the results in subsection 3.4 are true when
the penalty can be described by the min of a class of simple convex functions whose
proximal operators can be calculated effectively.

3.5. Global sequence convergence of the SPG algorithm for problem
(1.6). It is interesting that the proposed SPG algorithm for this kind of nonconvex
nonsmooth optimization problem owns the global sequence convergence without the
K-L condition or error bound condition on the objective function, while the special
structure of the continuous relaxation for \| x\| 0 and the updating rule for \mu k are the
key points. Throughout this subsection, the analysis uses the same assumptions in
subsection 3.4.

We begin this subsection by giving some preliminary analysis, which are Lemmas
3.5 and 3.6 and Proposition 3.7. Based on these results, we present the two main
results for the SPG algorithm: the sequence convergence of \{ xk\} in Theorem 3.8, the
local convergence rate of \{ \scrF (xk)\} , and the finite-iteration identification of \scrA (xk) in
Theorem 3.9.

Lemma 3.5. The following statements hold:
(i)
\sum \infty 

k=0 \gamma k\mu 
 - 1
k \| xk+1  - xk\| 2 \leq 2

\bigl( 
\scrF (x0, \mu  - 1) + \kappa \mu  - 1  - min\scrX \scrF 

\bigr) 
;

(ii)
\sum \infty 

k=0 \mu 
2
k \leq \Lambda with \Lambda = 1

\alpha ( \~\scrF (x0, \mu  - 1) + \kappa \mu  - 1  - minx\in \scrX \scrF (x)) +
2\mu 2

0\sigma 
2\sigma  - 1 <\infty ;
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(iii) \scrA (xk+1) \subseteq \scrA (xk).

Proof. (i) Recalling (3.24), for all k \in \BbbN , we obtain

(3.29) \gamma k\mu 
 - 1
k \| xk+1  - xk\| 2 \leq 2

\Bigl( 
\~\scrF (xk, \mu k - 1) + \kappa \mu k - 1  - \~\scrF (xk+1, \mu k)  - \kappa \mu k

\Bigr) 
.

Summing up the above inequality over k = 0, . . . ,K, it gives

(3.30)
K\sum 

k=0

\gamma k\mu 
 - 1
k \| xk+1  - xk\| 2 \leq 2

\Bigl( 
\~\scrF (x0, \mu  - 1) + \kappa \mu  - 1  - \~\scrF (xK+1, \mu K)  - \kappa \mu K

\Bigr) 
.

By letting K in (3.30) tend to infinity and along with (3.16), we obtain (i).
(ii) From (3.14), we have

(3.31)
\sum 
k\in \scrN s

\mu 2
k =

\infty \sum 
r=1

\mu 2
0

1

(nsr + 1)2\sigma 
\leq 

\infty \sum 
k=1

\mu 2
0

k2\sigma 
\leq 2\mu 2

0\sigma 

2\sigma  - 1
,

where nsr is the rth smallest element in \scrN s.
When k \not \in \scrN s, (3.12) gives \alpha \mu 2

k \leq \~\scrF (xk, \mu k - 1) + \kappa \mu k - 1  - \~\scrF (xk+1, \mu k)  - \kappa \mu k,

which together with the nonincreasing property of \{ \~\scrF (xk+1, \mu k) + \kappa \mu k\} and (3.16)
implies that

(3.32)
\sum 
k \not \in \scrN s

\mu 2
k \leq 1

\alpha 

\Bigl( 
\~\scrF (x0, \mu  - 1) + \kappa \mu  - 1  - min

\scrX 
\scrF 
\Bigr) 
.

Combining (3.31) and (3.32), we finish the proof for the estimation in item (ii).
(iii) We only need to prove that if xki = 0, then xk+1

i = 0. If xki = 0, we get
dki = 1. From (3.7) and \nu < \lambda /Lf , we have\bigm| \bigm| \bigm| xki  - \gamma  - 1

k \mu k\nabla i
\~f(xk, \mu k)

\bigm| \bigm| \bigm| \leq \gamma  - 1
k \mu k

\bigm\| \bigm\| \bigm\| \nabla \~f(xk, \mu k)
\bigm\| \bigm\| \bigm\| \leq (\lambda \gamma  - 1

k \mu k)/\nu .

By (3.7), we obtain xk+1
i = 0, which completes the proof of this statement.

For \{ xk\} , denote

(3.33) \scrN 1 = \{ k \in \BbbN : there exists i \in \{ 1, . . . , n\} such that 0 < | xki | < \nu \} .

The next lemma gives some estimation on \{ xk\} and \{ \mu k\} when k is sufficiently
large.

Lemma 3.6. There exists K \in \BbbN such that for all k \geq K, it holds that

(i)
\bigm\| \bigm\| \bigm\| \nabla \~f(xk, \mu k)

\bigm\| \bigm\| \bigm\| < 1
2 (\lambda /\nu + Lf );

(ii)
\bigm\| \bigm\| xk+1  - xk

\bigm\| \bigm\| \leq 3(\lambda /\nu )
\surd 
n\gamma  - 1\mu k;

(iii) for any k \in \scrN 1, either
\bigm\| \bigm\| xk+1

\bigm\| \bigm\| 
0
\leq 
\bigm\| \bigm\| xk\bigm\| \bigm\| 

0
 - 1 or

\bigm\| \bigm\| xk+1  - xk
\bigm\| \bigm\| 

\geq 1
2 (\lambda /\nu  - Lf ) \gamma  - 1

k \mu k;
(iv)

\sum 
k\in \scrN 1,k\geq K

\bigm\| \bigm\| xk+1  - xk
\bigm\| \bigm\| <\infty and

\sum 
k\in \scrN 1,k\geq K \mu k <\infty .

Proof. (i) We argue it by contradiction. Suppose there is a subsequence of \{ xk\} ,
denoted by \{ xki\} , such that

(3.34)
\bigm\| \bigm\| \bigm\| \nabla \~f(xki , \mu ki

)
\bigm\| \bigm\| \bigm\| \geq 1

2
(\lambda /\nu + Lf ) > Lf \forall i \in \BbbN .
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Since \{ xki\} is bounded, which is proved in Lemma 3.3, there exists a subsequence of
\{ xki\} (also denoted by \{ xki\} for simplicity) and \=x \in \scrX such that limi\rightarrow \infty xki = \=x.
Due to limi\rightarrow \infty \mu ki

= 0, the property of \~f in Definition 3.1(iii), \lambda /\nu , and (3.34) imply
the existence of \=\xi \in \partial f(\=x) such that \| \=\xi \| > Lf , which leads to a contradiction to the
definition of Lf given in Assumption 1. Hence, we establish result (i) in this lemma.

(ii) For any i \in \{ 1, 2, . . . , n\} , by (3.7) and Lf < \lambda /\nu , we have\bigm| \bigm| xk+1
i  - xki

\bigm| \bigm| \leq 2(\lambda /\nu )\gamma  - 1
k \mu k + \gamma  - 1

k \mu k

\bigm| \bigm| \bigm| \nabla i
\~f(xk, \mu k)

\bigm| \bigm| \bigm| \leq 3(\lambda /\nu )\gamma  - 1
k \mu k,

which completes the proof for item (ii).
(iii) Denote wk = xk  - \gamma  - 1

k \mu k\nabla \~f(xk, \mu k). For a fixed k \in \scrN 1 and k \geq K, there
exists j such that 0 < | xkj | < \nu . Then, dkj = 1 by (2.4). Next, we will prove that

either xk+1
j = 0 or

\bigm| \bigm| xk+1
j  - xkj

\bigm| \bigm| \geq 1
2 (\lambda /\nu  - Lf ) \gamma  - 1

k \mu k. We split the proof into three
cases.

Case 1. If | wk
j | \leq (\lambda /\nu )\gamma  - 1

k \mu k, by (3.7), we get xk+1
j = 0, which together with

\scrA (xk+1) \subseteq \scrA (xk) implies that \| xk+1\| 0 \leq \| xk\| 0  - 1.
Case 2. If wk

j > (\lambda /\nu )\gamma  - 1
k \mu k, by (3.7) and result (i) of this lemma, we obtain that\bigm| \bigm| xk+1

j  - xkj
\bigm| \bigm| \geq (\lambda /\nu )\gamma  - 1

k \mu k  - 
\bigm| \bigm| \bigm| \gamma  - 1

k \mu k\nabla i
\~f(xk, \mu k)

\bigm| \bigm| \bigm| \geq 1

2
(\lambda /\nu  - Lf ) \gamma  - 1

k \mu k,

which implies that

(3.35)
\bigm\| \bigm\| xk+1  - xk

\bigm\| \bigm\| \geq 1

2
(\lambda /\nu  - Lf ) \gamma  - 1

k \mu k.

Case 3. If wk
j <  - (\lambda /\nu )\gamma  - 1

k \mu k, similar to the analysis in Case 1, we see that
(3.35) holds. Thus, we complete the proof of statement (iii).

(iv) We introduce the notations \scrN 11 = \{ k \in \scrN 1 : k \geq K,
\bigm\| \bigm\| xk+1

\bigm\| \bigm\| 
0
\leq 
\bigm\| \bigm\| xk\bigm\| \bigm\| 

0
 - 1\} 

and \scrN 12 = \{ k : k \geq K, k \in \scrN 1\setminus \scrN 11\} . By Lemma 3.5(iii), \scrN 11 has at most n elements.
From result (iii) of this lemma, we have \gamma k\mu 

 - 1
k

\bigm\| \bigm\| xk+1  - xk
\bigm\| \bigm\| \geq 1

2 (\lambda /\nu  - Lf ) \forall k \in \scrN 12.
Then, we have

1

2
(\lambda /\nu  - Lf )

\sum 
k\in \scrN 12

\bigm\| \bigm\| xk+1  - xk
\bigm\| \bigm\| \leq 

\sum 
k\in \scrN 12

\gamma k\mu 
 - 1
k

\bigm\| \bigm\| xk+1  - xk
\bigm\| \bigm\| 2(3.36)

\leq 2
\Bigl( 

\~\scrF (x0, \mu  - 1) + \kappa \mu  - 1  - min
\scrX 

\scrF 
\Bigr) 
,

where the second inequality follows from Lemma 3.5(i). Equation (3.36) implies that\sum 
k\in \scrN 12

\bigm\| \bigm\| xk+1  - xk
\bigm\| \bigm\| <\infty ,

which together with the finiteness of the elements in \scrN 11 gives\sum 
k\in \scrN 1,k\geq K

\bigm\| \bigm\| xk+1  - xk
\bigm\| \bigm\| <\infty .

Moreover, \sum 
k\in \scrN 12

\gamma k\mu 
 - 1
k

\bigm\| \bigm\| xk+1  - xk
\bigm\| \bigm\| 2 =

\sum 
k\in \scrN 12

\bigl( 
\gamma k\mu 

 - 1
k

\bigm\| \bigm\| xk+1  - xk
\bigm\| \bigm\| \bigr) 2 \gamma  - 1

k \mu k

\geq 1

4
(\lambda /\nu  - Lf )

2
\sum 

k\in \scrN 12

\gamma  - 1
k \mu k,
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which together with the second inequality of (3.36) and Lemma 3.2(i) implies
that

\sum 
k\in \scrN 12

\mu k < \infty . By
\sum 

k\in \scrN 11
\mu k \leq n\mu 0, we conclude that

\sum 
k\in \scrN 1,k\geq K \mu k <

\infty .

The next proposition explores that all accumulation points of \{ xk\} own a common
support set and a unified lower bound, which provides the main technical support for
the forthcoming Theorem 3.8.

Proposition 3.7. Denote \=\scrX = \{ \=x \in \scrX : \=x is an accumulation point of \{ xk\} \} .
Then, there exists \scrA ( \=\scrX ) \subseteq \{ 1, 2, . . . , n\} such that for any \=x \in \=\scrX , it holds that

| \=xi| \geq \nu for any i \in \scrA ( \=\scrX ) and \=xi = 0 for any i \not \in \scrA ( \=\scrX ).

Proof. We first prove the following result:

(3.37) for any \=x \in \=\scrX and any i \in \{ 1, . . . , n\} , either \=xi = 0 or | \=xi| \geq \nu .

If (3.37) does not hold, there exists \^x \in \=\scrX with the convergence sequence \{ xkj\} and
\iota \in \{ 1, . . . , n\} such that 0 < | \^x\iota | < \nu . In what follows, without loss of generality, we
suppose \^x\iota > 0.

Since any accumulation point of \{ xk\} k\in \scrN s is an accumulation point of \{ xk\} , there
exists \=x \in \=\scrX and a subsequence of \{ xk\} , denoted by \{ xtj\} , such that limj\rightarrow \infty xtj = \=x.
By taking subsequences of \{ xkj\} and \{ xtj\} if necessary, we assume for the simplicity
of notation that kj < tj < kj+1 \forall j \in \BbbN . Combining Proposition 2.5, Lemma 2.3, and
Proposition 3.4, either \=x\iota = 0 or | \=x\iota | \geq \nu .

Let \varepsilon = min
\bigl\{ 

\nu  - \^x\iota 

2 , \^x\iota 

4

\bigr\} 
> 0. If \=x\iota = 0, there exists J \in \BbbN such that

| xkj
\iota  - \^x\iota | \leq \varepsilon and | xtj\iota | \leq \varepsilon \forall j \geq J,

which implies that

(3.38)
3

4
\^x\iota \leq \^x\iota  - \varepsilon \leq xkj

\iota \leq \varepsilon +\^x\iota \leq 
\nu + \^x\iota 

2
< \nu and  - 1

4
\^x\iota \leq xtj\iota \leq 1

4
\^x\iota \forall j \geq J.

Then, x
kj
\iota  - x

tj
\iota \geq 1

2 \^x\iota \forall j \geq J . Thus,

(3.39)

\infty \sum 
j=J

\bigm| \bigm| xtj\iota  - xkj
\iota 

\bigm| \bigm| = +\infty .

If there exists r \geq J such that xtr\iota = 0, Lemma 3.5(iii) gives x
kj+1
\iota = 0 \forall j \geq r,

which leads to a contradiction to the first inequality in (3.38). Thus, (3.38) gives

0 < | xkj
\iota | < \nu and 0 < | xtj\iota | < \nu , which implies that \{ xkj , xtj : j \geq J\} \subseteq \scrN 1 with \scrN 1

defined in (3.33). Together this with Lemma 3.6(ii), (iv), and limk\rightarrow \infty \mu k = 0, there
exists J1 \geq J such that

\infty \sum 
j=J1

\bigm| \bigm| xtj\iota  - xkj
\iota 

\bigm| \bigm| \leq \sum 
k\in \scrN 1,k\geq K

\bigm\| \bigm\| xk+1  - xk
\bigm\| \bigm\| <\infty ,

which leads to a contradiction to (3.39). Likewise, we can obtain a similar contradic-
tion when | \=x\iota | \geq \nu . Therefore, the above analysis ensures the validity of statement
(3.37). Together (3.37) with limk\rightarrow \infty \| xk+1  - xk\| = 0, we complete the proof of this
proposition.

We next prove the global sequence convergence of iterates \{ xk\} .
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Theorem 3.8. The iterates \{ xk\} generated by the SPG algorithm is globally con-
vergent to a lifted stationary point of ( 1.6); i.e., there exists a lifted stationary point
\=x of ( 1.6) such that limk\rightarrow \infty xk = \=x.

Proof. Let K be a positive integer such that the estimations in Lemma 3.6 hold
and \=x be an accumulation point of \{ xk\} k\in \scrN s . Suppose \{ xkj\} is a subsequence of \{ xk\} 
such that

(3.40) lim
j\rightarrow \infty 

xkj = \=x.

By Proposition 3.4, \=x is a lifted stationary point of (1.6).
From Lemma 2.3, for any i \in \{ 1, . . . , n\} , either \=xi = 0 or | \=xi| \geq \nu . Denote

\scrN (\=x) = \{ k \in \BbbN : dki \in \scrD (\=xi), \forall i = 1, . . . , n\} ,

where \scrD (\=xi) is defined in (2.1). We then evaluate \| xk+1  - \=x\| 2 by considering two
cases.

Case 1. In this case, we consider the iteration for k \in \scrN (\=x), which implies that
\~\scrF dk

(\=x, \mu k) = \~\scrF (\=x, \mu k). Letting x = \=x in (3.22), we have

\~\scrF dk

(xk+1, \mu k)  - \~\scrF (\=x, \mu k) \leq 1

2
\gamma k\mu 

 - 1
k

\bigm\| \bigm\| xk  - \=x
\bigm\| \bigm\| 2  - 1

2
\gamma k\mu 

 - 1
k

\bigm\| \bigm\| xk+1  - \=x
\bigm\| \bigm\| 2 ,

combining which with (3.1) and (3.4), we obtain

(3.41) 2\gamma  - 1
k \mu k

\Bigl( 
\~\scrF (xk+1, \mu k) + \kappa \mu k  - \scrF (\=x)

\Bigr) 
\leq 
\bigm\| \bigm\| xk  - \=x

\bigm\| \bigm\| 2 - \bigm\| \bigm\| xk+1  - \=x
\bigm\| \bigm\| 2 + 4\kappa \gamma  - 1

k \mu 2
k.

Due to the nonincreasing property of \{ \~\scrF (xk+1, \mu k)+\kappa \mu k\} and limk\rightarrow \infty \~\scrF (xk+1, \mu k)+
\kappa \mu k = \scrF (\=x), we obtain

(3.42)
\bigm\| \bigm\| xk+1  - \=x

\bigm\| \bigm\| 2 \leq 
\bigm\| \bigm\| xk  - \=x

\bigm\| \bigm\| 2 + 4\kappa \gamma  - 1
k \mu 2

k, \forall k \in \scrN (\=x).

Case 2. In this case, we consider the iteration for k \not \in \scrN (\=x). From Proposition
3.7, there exists K1 \geq K such that for any k \geq K1, it holds that\bigm| \bigm| xki \bigm| \bigm| < \nu /2 for i \not \in \scrA ( \=\scrX ) and

\bigm| \bigm| xki \bigm| \bigm| \geq \nu /2 for i \in \scrA ( \=\scrX ),

where \scrA ( \=\scrX ) is defined in Proposition 3.7.
Hence, for k \not \in \scrN (\=x) and k \geq K1, there exists \iota k \in \scrA ( \=\scrX ) such that \nu /2 \leq 

\bigm| \bigm| xk\iota k \bigm| \bigm| <
\nu , which means that k \in \scrN 1 with \scrN 1 defined in (3.33). Then,

(3.43)

\bigm\| \bigm\| xk+1  - \=x
\bigm\| \bigm\| 2 =

\bigm\| \bigm\| xk  - \=x
\bigm\| \bigm\| 2 +

\bigm\| \bigm\| xk+1  - xk
\bigm\| \bigm\| 2 + 2\langle xk+1  - xk, xk  - \=x\rangle 

\leq 
\bigm\| \bigm\| xk  - \=x

\bigm\| \bigm\| 2 + c1\mu 
2
k + 4R

\bigm\| \bigm\| xk+1  - xk
\bigm\| \bigm\| \forall k \not \in \scrN (\=x),

where c1 = 9(\lambda /\nu )2n\gamma  - 2 follows from Lemma 3.6(ii) and R comes from Lemma 3.3.
By (3.42) and (3.43), for any t \geq K1 and s \in \BbbN , we have

(3.44)
\bigm\| \bigm\| xt+s+1  - \=x

\bigm\| \bigm\| 2 \leq 
\bigm\| \bigm\| xt  - \=x

\bigm\| \bigm\| 2 + c2

t+s\sum 
k=t

\mu 2
k + 4R

t+s\sum 
k = t,

k \not \in \scrN (\=x)

\bigm\| \bigm\| xk+1  - xk
\bigm\| \bigm\| ,

where c2 = max\{ 4\kappa \gamma  - 1, c1\} .
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Fix an \epsilon > 0. There exists K2 \geq K1 such that when kj \geq K2, it holds that

(3.45)
\bigm\| \bigm\| xkj  - \=x

\bigm\| \bigm\| 2 \leq \epsilon 2/3,

\infty \sum 
k=kj

\mu 2
k \leq \epsilon 2/3c2,

\infty \sum 
k = kj,

k \not \in \scrN (\=x)

\bigm\| \bigm\| xk+1  - xk
\bigm\| \bigm\| \leq \epsilon 2/12R,

where the first inequality follows from (3.40), the second inequality follows from
Lemma 3.5(ii), and the third inequality follows from and \{ k : k \geq K1, k \not \in \scrN (\=x)\} \subseteq \scrN 1

and Lemma 3.6(iv).
Letting t = kj in (3.44) with kj \geq K2, from (3.45), we obtain \| xk  - \=x\| \leq \epsilon \forall k \geq 

K3, where K3 = min\{ kj : kj \geq K2\} . Due to the arbitrariness of \epsilon > 0, we get
limk\rightarrow \infty xk = \=x.

The lower bound property is used to prove the estimation in Lemma 3.6(iii), which
is the key point to guarantee the global sequence convergence of \{ xk\} . Without this
lower bound property, due to the nonconvexity of the objective function in (1.6), it
is almost impossible to propose a global sequence convergence algorithm without the
regularity conditions. Among the existing penalties, only capped-\ell 1 penalty can be
expressed by the min of a class of simple convex functions and make the stationary
points of the corresponding minimization problem own a unified lower bound. This
is the main motivation of this paper on studying the cardinality penalty problem by
the capped-\ell 1 relaxation. Moreover, from the proof of Theorem 3.9, we find that the
descent criterion and the updating method for \mu k are also important to guarantee the
global sequence convergence of \{ xk\} since it needs that \Sigma \infty 

k=1\mu 
2
k < +\infty .

The limit point of \{ xk\} is most likely different with different initial iterates x0

and \mu 0. The zero vector is a trivial \nu -strong local minimizer of (1.2), which is not
what we want. By property (iii) of Lemma 3.5, our theoretical results hold for any
initial iterate x0 \in \scrX . To find interesting \nu -strong local minimizers, we chose x0

without a zero component in the numerical experiments. How to choose an initial
point such that the accumulation point of \{ xk\} is a global minimizer (or an oracle
solution) of (1.2) would be an interesting work. To the best of our knowledge, it is
still an open problem. Fan, Xue, and Zou [24, Theorem 1] gave some discussion on
this topic for the linear approximation algorithm to solve the sparsity problem with
the SCAD penalty. Similar results can be expected for the SPG algorithm.

The following theorem gives a local convergence rate of the SPG algorithm on
the objective function values of problem (1.6) and the finite iteration convergence of
\{ xk\} in a subspace.

Theorem 3.9. There exist c > 0 and K \in \BbbN such that, for k \geq K, we have

(3.46) \scrF (xk+1)  - \scrF (\=x) \leq ck - (1 - \sigma ) and
\bigm\| \bigm\| \bigm\| xk\scrA (\=x)c  - \=x\scrA (\=x)c

\bigm\| \bigm\| \bigm\| = 0,

where \=x is the limit of \{ xk\} .
Proof. Denote \epsilon = min \{ \nu ,min\{ | \=xi|  - \nu : | \=xi| > \nu , i = 1, . . . , n\} \} . From Theorem

3.8, there exists K1 \in \BbbN such that \| xk  - \=x\| < \epsilon , \forall k \geq K1. Then, k \in \scrN (\=x) \forall k \geq K1.
From the proof of Theorem 3.8, (3.41) holds for any k \geq K1. Summing up (3.41)

for k = K1,K1 + 1, . . . ,K1 + t, we have

(3.47)

2tmax\{ \=\gamma , \rho L\}  - 1\mu K1+t

\Bigl( 
\~\scrF (xK1+t+1, \mu K1+t) + \kappa \mu K1+t  - \scrF (\=x)

\Bigr) 
\leq \| xK1  - \=x\| 2  - \| xK1+t+1  - \=x\| 2 + 4\kappa 

K1+t\sum 
k=K1

\gamma  - 1
k \mu 2

k,
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where we use \~\scrF (xk+1, \mu k)+\kappa \mu k \geq \scrF (\=x), \{ \gamma k\} \subseteq [ \gamma ,max\{ \=\gamma , \rho L\} ], and the nonincreas-

ing property of \{ \mu k\} and \{ \~\scrF (xk+1, \mu k) + \kappa \mu k\} .

We first consider the right-hand side of (3.47). We observe that 4\kappa 
\sum K1+t

k=K1
\gamma  - 1
k \mu 2

k

\leq 4\kappa \gamma  - 1\Lambda , where \Lambda is defined in Lemma 3.5(ii). Then,

(3.48)
\bigm\| \bigm\| xK1  - \=x

\bigm\| \bigm\| 2  - \bigm\| \bigm\| xK1+t+1  - \=x
\bigm\| \bigm\| 2 + 4\kappa 

K1+t\sum 
k=K1

\gamma  - 1
k \mu 2

k \leq 4R2 + 4\kappa \gamma  - 1\Lambda \forall t \in \BbbN 

with R defined in Lemma 3.3.
By \mu K1+t \geq \mu 0(K1+t) - \sigma and \~\scrF (xK1+t+1, \mu K1+t)+\kappa \mu K1+t \geq \scrF (xK1+t+1) \forall t \in \BbbN ,

we observe from (3.47) and (3.48) that

\scrF (xK1+t+1)  - \scrF (\=x) \leq 

\Biggl( 
(4R2 + 4\kappa \gamma  - 1\Lambda ) max\{ \=\gamma , \rho L\} 

2\mu 0

\Biggr) \biggl( 
(K1 + t)\sigma 

t

\biggr) 
.

Therefore, letting c = (4R2 + 4\kappa \gamma  - 1\Lambda ) max\{ \=\gamma , \rho L\} /\mu 0, we obtain

\scrF (xk+1)  - \scrF (\=x) \leq c

2

\biggl( 
k\sigma 

k  - K1

\biggr) 
\leq ck - (1 - \sigma ) \forall k \geq 2K1.

To prove the second statement in (3.46), we argue it by contradiction. If there is
no K \in \BbbN such that xki = 0 for all i \in \scrA (\=x)c and k \geq K, then there is a subsequence

of \{ xk\} , denoted by \{ xkj\} , and \^i \in \scrA (\=x)c such that | xkj

\^i
| \not = 0. Since \scrA (xk+1) \subseteq \scrA (xk)

and limk\rightarrow \infty xk = \=x, the above assumption implies that there exists K1 \in \BbbN such that
0 < | xk\^i | < \nu \forall k \geq K1. Thus, for all k \geq K1, it gives k \in \scrN 1 with \scrN 1 given in (3.33).

Recalling Lemma 3.6(iv), we get
\sum \infty 

k=K1
\mu k <\infty . However, due to \mu k \geq \mu 0k

 - \sigma with

\sigma < 1, we have
\sum \infty 

k=K1
\mu k = \infty , which leads to a contradiction. Therefore, the second

statement in (3.46) holds.

Following the proof of Theorem 3.9, the local convergence rate of \scrF (xk)  - \scrF (\=x)
is O( 1

k\mu k
). Moreover, thanks to the lower bound property, the SPG algorithm owns

the finite iteration identification on the support set of the limit point of \{ xk\} , which
inspires us to think that the local convergence rate can be improved when f satisfies
some proper conditions. For example, when f is strongly convex with modulus \delta > 0,
then the local convergence rate can be exponential; when f satisfies the K-L inequality
on \scrX with exponent \alpha \in [0, 1), then \{ xk\} is convergent finitely if \alpha = 0, linearly if
\alpha \in (0, 12 ], and sublinearly if \alpha \in ( 1

2 , 1).

4. Numerical experiments. To verify and illustrate the performance of the
continuous relaxation (1.6) and the SPG algorithm, we use a test example and gener-
ate two examples randomly with normal distribution. All experiments are performed
in MATLAB 2016a on a Lenovo PC (3.00GHz, 2.00GB of RAM). In the following
examples, the stopping criterion is set as

(4.1) number of iterations \leq \ttM \tta \ttx \tti \ttt \tte \ttr or \mu k \leq \epsilon .

Denote \=x the output of iterate xk, \ttI \ttt \tte \ttr the number of running iterations, and \ttT \tti \ttm \tte 

the CPU time of the SPG algorithm by the criterion in (4.1). Examples 4.1 and 4.2
are for the underdetermined linear regression problems. Moreover, Example 4.1 is
a typical underdetermined linear regression problem, which shows that the proposed
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Table 1
Numerical results of the SPG algorithm for problem (2.9) with different \lambda and \nu .

\lambda \scrG \scrM \nu \ttI \ttt \tte \ttr \=x
0.7/0.8/0.9 (1, 0), (0, 1) 0.4/0.5/0.6 18/19/10 (1, 0)/(1, 0)/(1, 0)

1/1/1 (1, 0), (0, 1), (0, 0) 0.7/0.5/0.3 21/11/5 (0, 0)/(1, 0)/(0.6, 0.4)
1.1/1.2/1.3 (0, 0) 0.7/0.9/1 18/17/16 (0, 0)/(0, 0)/(0, 0)

method in this paper can find a global solution with certain sparsity. The aim of
Example 4.2 is to solve a random generated underdetermined sparse linear regression
problem, while Example 4.3 is to solve a overdetermined censored regression problem.

Example 4.1 (a test example). We consider the problem in Example 2.1 to verify
the validity of the theoretical results and the efficiency of SPG algorithm. Problem
(2.9) is an example of problem (1.2) with the \ell 1 loss function given in (1.3), where
m = 1, \bfitA = (1 1), and b = 1.

Let the smoothing function of f be defined by (3.2). Some fixed parameters in
the SPG algorithm are given as follows:

\gamma = \=\gamma =
\surd 

2, \alpha = 1, \sigma = 0.8, \rho = 1.1, \ttM \tta \ttx \tti \ttt \tte \ttr = 104, \epsilon = 10 - 3, \kappa = 1/2, Lf =
\surd 

2.

Let \scrL \scrM , \nu  - \scrL \scrM , and \scrG \scrM denote the sets of local minimizers, \nu -strong local
minimizers, and global minimizers of (2.9), respectively. When \nu < \lambda /Lf ,

\nu  - \scrL \scrM =\{ x : x1 + x2 = 1, \nu \leq x1, x2 \leq 1\} \cup \{ (1, 0)T , (0, 1)T , (0, 0)T \} .

Set \mu 0 = 0.1 and x0 = (1, 0.8)T . The other parameters and the numerical results are
listed in Table 1, where the global minimizers are the same for the cases in one line.
For problem (2.9), many different values of \lambda and the corresponding \nu if \nu < \lambda /Lf

are given in Table 1, which shows that \=x is always a \nu -strong local minimizer and
sometimes a global minimizer of (2.9). In particular, when \lambda = 0.7, \nu = 0.4, and
x0 = (1, 0.8)T , the SPG algorithm finds a global solution of (2.9). Moreover, we
consider the influence of the values of \nu on the SPG algorithm for solving (2.9) in
Table 1. When \lambda = 1, \=\nu as defined in Assumption 2 is 0.7071. From Table 1, we find
that the SPG algorithm finds a different \nu -strong local minimizer for different values
of \nu satisfying \nu < \=\nu . And it is interesting that when \nu \geq 0.5, the SPG algorithm
converges to a global minimizer. We notice that when \nu is a lower bound for the
global minimizers, it holds that

(4.2) \scrG \scrM \subseteq \nu 1-\scrL \scrM \subseteq \nu 2-\scrL \scrM \forall \nu 2 \leq \nu 1 \leq \nu .

Hence, when \nu is a lower bound for the global minimizers, the larger \nu is likely to let
the SPG algorithm converge to a global minimizer with higher possibility.

The updating rule for \mu k in the SPG algorithm is to ensure its global sequence
convergence. How to improve the local convergence rate with the guarantee of global
sequence convergence is an interesting work for further research.

Using the same parameters and initial point, the IRL1 and IRTight algorithms in
[43] may generate

(4.3) xk = arg min
0\leq x1,x2\leq 1

| x1 + x2  - 1| 

for k \geq 0 with xk \equiv (\alpha , \beta ) > 0 and \alpha + \beta = 1. Obviously, xk is not a global
minimizer of (2.9). Hence, almost surely, the reweighted algorithms in [43] cannot
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find a global minimizer (2.9). In fact, at any point xk > 0, the derivative of \| xk\| 0
is (0, 0)T , and xk+1 = (\alpha , \beta ) > 0 with \alpha + \beta = 1 is an optimal solution of the
subproblem min0\leq x1,x2\leq 1 | x1+x2 - 1| in the algorithms. Hence, the SPG algorithm has
better performance than the algorithms in [43] for solving the nonsmooth optimization
problems with cardinality penalty (1.2).

Example 4.2 (linear regression problem). The linear regression problem is the
most representative problem in sparse regression, which has been widely used in in-
formation theory [12], image restoration [5, 10, 41], signal processing [10, 41], and
variable selection [23, 24] problems. The least square function is the most frequently
used loss function due to its convexity and differentiability [24, 29, 31, 32, 54]. How-
ever, the \ell 1 loss function often owns the stronger outlier-resistant property than the
least square loss function [23]. So, in this example, we consider the following cardi-
nality penalty problem with \ell 1 loss function:

(4.4) min
0\leq x\leq 10\bfone n

\scrF \ell 0(x) :=
1

m
\| \bfitA x - b\| 1 + \lambda \| x\| 0,

here, b \in \BbbR m and A \in \BbbR m\times n with m < n.

Generating data and setting parameters. For positive integers m, n, and
s, we generate the original signal x \star with \| x \star \| 0 = s, sensing matrix \bfitA \in \BbbR m\times n, and
observation b \in \BbbR m as follows:

index=randperm(n); index=index(1:s); x \star =zeros(n,1); B=randn(n,m);

x \star (index)=unifrnd(2,10,[s,1]); A=orth(B)'; b = A*x \star + 0.01*randn(size(b)).

In the proposed SPG algorithm, we use the smoothing function of f in (3.2) and set
the parameters as below:

\gamma = \=\gamma = 1, \alpha = 1, \mu 0 = 50, \rho = 1.1, \sigma = 0.9, \ttM \tta \ttx \tti \ttt \tte \ttr = 104, \kappa = 1/2.
It is not hard to show that all assumptions in sections 2 and 3 hold. Thus,

the sequence \{ xk\} of the SPG algorithm should be convergent to a \nu -strong local
minimizer of (4.4).

Generate A, b, and x \star with m = 80, n = 160, and s = 16, and set \lambda = 18.8 in
(4.4) and \epsilon = 10 - 3 in the stopping criterion (4.1). We calculate that Lf = 10.6168
and define \nu = 1.77, x0 = 1.97\ast ones(n, 1). The numerical results are shown in Figure
2. Figure 2(a) plots x \star and \=x. From Figure 2(a), we see that the output of xk is very
close to the original generated signal and satisfies the lower bound property in (2.8).
Figure 2(b) exhibits the convergence of \mu k and \scrF (xk)  - \scrF (\=x).

Example 4.3 (censored regression problem). A typical class of censored regression
problem is the linear regression model with left-censoring (or right-censoring) at zero,
i.e.,

max\{ Aix - ci, 0\} \approx bi, i = 1, . . . ,m,

where Ai, bi, and ci are defined as in (1.4). This class of problems have wide applica-
tions in wireless communication [38], machine learning [21], variable selection [23, 53],
economics [9], etc. To solve it, the loss function is often defined by (1.4), which is
nonsmooth for any p \in [1, 2]. So the censored regression problem is a typical class of
sparse regression problems with nonsmooth convex loss functions [53]. Different from
the case considered in Example 4.2, we let m\gg n in this example, which comes from
the stochastic optimization models in the portfolio management.

In this example, we let l = 0 and u = 1n in (1.2) and define the loss function f by
(1.4) with ci = 0, i = 1, . . . ,m, and p = 1. The aim of this model is to find a sparse
signal x \star \in [0,1n] for the nonlinear system max\{ \bfitA x \star , 0\} \approx b with some unobservable
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(a) (b)

Fig. 2. Numerical results of the SPG algorithm for Example 4.2.

noise, where \bfitA = (AT
1 , . . . , A

T
m)T and b = (b1, . . . , bm)T . We use the relative error

(\ttr \tte \ttl -\tte \ttr \ttr ), sparsity regression rate (\tts \ttp \tta -\ttr \tta \ttt ), and successful rate (\tts \ttu \ttc -\ttr \tta \ttt ) to judge
the performance of the continuous relaxation model for (1.2) and the proposed SPG
algorithm. Here, the relative error (\ttr \tte \ttl -\tte \ttr \ttr ) and sparsity regression rate (\tts \ttp \tta -\ttr \tta \ttt )
of \=x with respect to x \star are defined by

\ttr \tte \ttl -\tte \ttr \ttr :=
\| \=x - x \star \| 

\| \=x\| 
, \tts \ttp \tta -\ttr \tta \ttt :=

| \scrA (x \star ) \cap \scrA (\=x)| 
max\{ | \scrA (\=x)| , | \scrA (x \star )| \} 

,

where | \Xi | means the cardinality of set \Pi with finite elements. The running regression
test is regarded as a successful one if the relative error is smaller than 10 - 2 and
\scrA (\=x) = \scrA (x\ast ).

For the given positive integers m, n, and s, the data are generated by
\tti \ttn \ttd \tte \ttx = \ttr \tta \ttn \ttd \ttp \tte \ttr \ttm (\ttn ); \tti \ttn \ttd \tte \ttx = \tti \ttn \ttd \tte \ttx (\ttone :\tts ); x \star =\ttz \tte \ttr \tto \tts (\ttn ,\ttone );
x \star (\tti \ttn \ttd \tte \ttx )=\ttu \ttn \tti \ttf \ttr \ttn \ttd (\ttzero ,\ttzero .\ttnine ,[\tts ,\ttone ]); x \star =\tts \tti \ttg \ttn (x \star )*(\tta \ttb \tts (x \star )+\ttzero .\ttone )

\ttA =\ttr \tta \ttn \ttd \ttn (\ttm ,\ttn ); \ttb =max\{ \ttA *x \star +\ttzero .\ttzero \ttone *\ttr \tta \ttn \ttd \ttn (\tts \tti \ttz \tte (\ttb )),\ttzero \} ,
which let x \star satisfy | x \star i | \geq 0.1 \forall i \in \scrA (x \star ).

We use the smoothing function of f in (3.3). Let Lf = \| \bfitA \| \infty , and set \nu =
min\{ \lambda /Lf , 1\} . Set x0 = 0.1 \ast ones(n, 1), \mu 0 = 1, and \epsilon = 0.01. Let the other
parameters in the SPG algorithm be the same as in Example 4.2.

For each group of given numbers m, n, and s, we generate the codes with 100
independent trials, and the results displayed in Table 2 are the average values for these
100 independent tests. For each test, regarding the lower bound of the true solution x \star ,
we run the SPG algorithm for problem (1.2) with \lambda := \delta Lf for \delta \in [0.001 : 0.001 : 0.1]
and report the result with the smallest \ttr \tte \ttl -\tte \ttr \ttr for this test. From the displayed
results in Table 2, we see that the the proposed SPG algorithm can find the true
solution with high possibility, and all the sparsity regression rates are more than 90\%.
In particular, when m = 2000 and n = 400, the SPG algorithm can identify almost
all the locations of \scrA (x \star ) when the sparsity levels of x \star are 10\%, 20\%, and 30\%.
Correctly identifying the zero and nonzero locations of the true solution is the most
important thing in solving the variable selection and classification problems. When
m = 1000 and n = 200, the values of relative error and sparsity regression rates by
the 100 tests are plotted in Figure 3 for s = 20, 40, and 60, respectively.
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Table 2
Average numerical results of the SPG algorithm for the censored regression problem.

m n s \ttT \tti \ttm \tte \ttI \ttt \tte \ttr \ttr \tte \ttl -\tte \ttr \ttr \scrA (\=x) \tts \ttp \tta -\ttr \tta \ttt \tts \ttu \ttc -\ttr \tta \ttt 

1000 200 20 0.612 166 173e-3 19.99 100\% 99\%
1000 200 40 0.659 178 5.73e-3 39.96 99.7\% 89\%
1000 200 60 0.708 204 9.12e-3 59.94 92.7\% 69\%
2000 400 40 2.079 181 1.96e-3 40 100\% 96\%
2000 400 80 2.686 217 6.93e-3 79.89 99.7\% 83\%
2000 400 120 3.658 291 9.34e-3 119.91 99.3\% 64\%
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Fig. 3. The values of relative error and sparsity regression rate for the 100 tests with m = 1000
and n = 200.

5. Conclusions. Problem (1.2) includes a class of constrained optimization
problems with the objective function defined by the sum of a nonsmooth convex
function and a cardinality function. Using the capped-\ell 1 penalty, we propose a con-
tinuous relaxation (1.6) of problem (1.2). We prove that the sets of global minimizers
of problems (1.2) and (1.6) are same, and local minimizers of (1.6) are local minimiz-
ers of (1.2) with the lower bound property. Moreover, \=x is a local minimizer of (1.2)
satisfying a desired lower bound property if and only if it is a lifted stationary point of
the continuous relaxation problem (1.6). Though problem (1.6) is a nonsmooth and
nonconvex optimization problem, its piecewise linear penalty offers us the opportunity
to solve it efficiently. Following this idea, we propose the SPG algorithm based on
the smoothing method and the proximal gradient algorithm to solve problem (1.6),
which can find a ``good"" local minimizer of (1.2) that satisfies the desired lower bound.
The proposed algorithm is simple, whose subproblem has a closed-form solution and
can be run efficiently. We prove the global sequence convergence without using the
K-L condition. Another interesting result is that the local convergence rate of the
SPG algorithm on the objective function value is o(k - \tau ) with \tau \in (0, 12 ), and the zero
entries of a lifted stationary point of (1.6) can be identified in finite iterations.
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