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ABSTRACT. The aim of this paper is to design and analyze a nonlinear mech-
anistic model for chikungunya (CHIKV) and dengue (DENV) co-endemicity.
The model can assess the epidemiological consequences of the spread of each
disease on the co-infection transmission dynamics. Although the two diseases
are different, they exhibit similar dynamical features which show that to com-
bat/control CHIKV virus (or co-infection with DENV virus) we can employ
DENYV control strategies and vice versa. Our analytical results show that
each sub-model and the full model have two disease-free equilibria (i.e., triv-
ial disease-free equilibrium (TDFE) and non-trivial disease-free equilibrium
(NTDFE)). Further, qualitative analyses reveal that each of the sub-models
exhibits the phenomenon of backward bifurcation (where a stable NTDFE co-
exits with a stable endemic equilibrium (EE)). Epidemiologically, this implies
that, in each case (CHIKV or DENV), the basic requirement of making the
associated reproduction number to be less-than unity is no longer sufficient for
the disease eradication. We further highlight that the full model, consisting of
twenty-six (26) mutually exclusive compartments representing the human and
mosquito dynamics, also exhibits the phenomenon of backward bifurcation.
We fit the full model and its sub-models using realistic data from India. Sensi-
tivity analysis using the partial rank correlation coefficient (PRCC) is used for
ranking the importance of each parameter-output. The results suggested that
the mosquito removal rates, the transmission rates, and the mosquito matu-
ration rate are the top control parameters for combating CHIKV, DENV and
CHIKV-DENYV co-infection outbreaks.

Keywords: Co-infection, Chikungunya, Dengue, Stability, Sensitivity Analysis.

1. Introduction. Chikungunya virus (CHIKV), a vector-borne disease transmit-
ted by an infected female mosquito, is an arboviral disease caused by a member of
the genus alphavirus which belongs to the Togaviridae family [8, 26, 28, 30, 39, 49].
Whereas, Dengue virus (DENV) belongs to the genus Flavivirus, under the fam-
ily of Flaviviridae, and there are four serotypes of DENV which causes a wide
spectrum of illness from asymptomatic to symptomatic or severe fatal Dengue
Hemorrhagic Fever or Dengue Shock Syndrome (DHF/DSS) (the DHF/DSS has
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a high mortality risk with death occurring within 24hrs after the onset of shock)
[17, 25, 29, 33, 35, 46]. Infection with one serotype of DENV gives lifelong immunity
to subsequent infection by the same serotype, but, it does not confer strong immu-
nity against infection with other serotypes of the DENV virus, whereas CHIKV
gives permanent immunity [2, 26, 39].

It has been reported that CHIKV virus is endemic in more than 60 countries in
Asia, Africa, Europe, and America causing deaths and several clinical cases [10, 39,
47]. Unlike DENV, CHIKV has a low death rate, therefore it is not considered as a
life-threatening disease [16]. Over 1.3 million suspected CHIKV cases and about 200
deaths have been reported in the Latin American countries, and Caribbean islands in
April 2015 [47, 49]. While DENV is endemic in more than 100 countries in Africa,
the Americas, the Eastern Mediterranean and subtropical regions of the world,
populated by over 2.5 billion people [16, 26, 39, 48]. DENV is a deadly mosquito-
borne disease, with an estimate of 390 million new infections of which about 96
million are clinical and more than 20 thousand deaths per year [2, 16, 30, 45, 49].

CHIKV and DENV are transmitted by the same vectors, that is Aedes aegypti
and/or Aedes albopictus mosquitoes, and in each case, the viral infection has vir-
tually the same signs and symptoms in the patients [16, 18, 26, 38, 39]. Therefore,
it is very difficult to identify an individual infection or co-infection among the pa-
tients [39]. CHIKV-DENV co-infection cases were first reported in Thailand by
Nimmannitya et al. [32], who detected many cases after diagnosing a number of pa-
tients. The fast-growing nature of the co-infection of diseases becomes a big threat
to global public health and development [5, 13, 14, 26, 39]. In recent years the
arboviral disease has been increased very rapidly, and in most of the cases CHIKV
outbreaks are considered as a DENV due to the similarity of their primary signs
and symptoms, this is especially in the DENV endemic regions. The co-infection of
CHIKYV and DENV and their co-circulation in the same region have made the prob-
lem more complicated and spreading very rapidly capturing many other countries
[39]. Furthermore, the co-infection has been reported to occur in India, Indone-
sia, Sri Lanka, Malaysia, Gabon, Cameroon, Madagascar, Thailand, and Nigeria
[5, 2, 13, 26, 32, 39]. Also, it has been reported that simultaneous/concurrent infec-
tion of CHIKV and DENYV viruses in patients occurred in many countries such as
India, Yemen, Singapore, Sri Lanka, Malaysia and so on [39]. Therefore it is very
important to consider the individual infection and the co-infection cases in order to
reduce or eliminate the problem of the CHIKV and DENV co-infection.

Currently, both CHIKV and DENV do not have a preventive vaccine (although
dengvaxia, a vaccince for the DENV, produced by Sanofi Pasteur and approved in
some countries [12]), but a number of candidate vaccines are still undergoing clinical
trials [1, 12, 45]. There is no specific treatment for the two viruses, however, the
treatment could be achieved by reducing the disease symptoms [1, 16, 47, 48].

Numerous mathematical modeling studies have been designed to show some in-
sights into the transmission dynamics of CHIKV or DENV (see [1, 10, 16, 26, 30,
39, 49]). To the author’s knowledge, the current study gives the first co-infection
model for CHIKV and DENV with the aim to assess the impact of each disease
on co-infection transmission dynamics. The model is an extension of some of the
CHIKV and DENV transmission models (e.g., those in [1, 16, 26, 49, 51]) by

(i) incorporating CHIKV-DENV co-infection in both human and mosquito pop-
ulations,
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(ii) including the dynamics of aquatic (immature) stages of the mosquito life cycle
(egg, larva and pupa stages) in each sub-model,

(iii) using a nonlinear biting rate (constant rate was used in [1, 16]), and

(iv) including a transovarial/vertical transmission of CHIKV in mosquito popula-
tion [22].

The paper is organized as follows. A new model for the transmission dynamics
of CHIKV-DENYV co-infection is formulated in Section 2. Theoretical results for
the associated sub-models are reported in Section 3. The full model is analyzed in
Section 4. Numerical analyses are carried out in Section 5.

2. Model formulation. The total humans population at time ¢, denoted by Ny (¢),
is divided into sixteen mutually exclusive compartments as follows: susceptible indi-
viduals, who are at risk of infection of both CHIKV and DENV (Sg(t)), individuals
exposed to CHIKV (E¢(¢)), individuals exposed to DENV (Ep(t)), individuals ex-
posed (i.e., asymptomatic) to both CHIKV and DENV (E¢p(t)), CHIK V-infected
(only) individuals with clinical symptoms of CHIKV (I(t)), DENV-infected (only)
individuals with clinical symptoms of DENV (Ip(t)), CHIKV-infected individuals
with clinical symptoms of CHIKV but exposed to DENV (I¢g(t)), DENV-infected
individuals with clinical symptoms of DENV but exposed to CHIKV (Ipg(t)),
dually-infected individuals with clinical symptoms of both CHIKV and DENV
(Icp(t)), individuals who recovered from CHIKV (Rq(t)), individuals who recov-
ered from DENV (Rp(t)), individuals exposed to CHIKV but recovered from DENV
with permanent immunity (Ecr(t)), individuals exposed to DENV but recovered
from CHIKV with permanent immunity (Epr(t)), CHIKV-infected individuals with
clinical symptoms of CHIKV but recovered from DENV with permanent immunity
(Icr(t)), DENV-infected individuals with clinical symptoms of DENV but recov-
ered from CHIKV with permanent immunity (Ip7(t)), individuals who recovered
from both CHIKV and DENV with permanent immunity (7°(¢)), so that

NH(t) = SH(t) + Ec(t) + ED(t) + ECD(t) + ECT(t) + EDT(t) + Ic(t) + ID(t)+

Icp(t) + Ipp(t) + Iop(t) + Ier(t) + Ipr(t) + Ro(t) + Rp(t) + T'(1).

The total mosquitoes population at time ¢, denoted by N, (¢), is sub-divided into
sub-populations of immature mosquitoes (eggs, larvae and pupae stages), denoted
by A(t), and adult mosquitoes (denoted by Ny(t)), so that:

N, (t) = A(t) + Ny (2),

where Np(t) is further divided into nine compartments as follows: adult mosquitoes
susceptible to both CHIKV and DENYV viruses (S, (t)), adult mosquitoes exposed to
CHIKV (E,c(t)), adult mosquitoes exposed to DENV (E,¢(t)), adult mosquitoes
exposed to both CHIKV and DENV viruses (Ej(t)), CHIKV-infected (only) adult
mosquitoes (I,c(t)), DENV-infected (only) adult mosquitoes (I,p(t)), CHIKV-
infected adult mosquitoes that are exposed to DENV (I,cg(t)), DENV-infected
adult mosquitoes that are exposed to CHIKV (I,pg(t)), adult mosquitoes infected
to both CHIKV and DENV (I,5/(t)), so that

Ny (t) =5, (t) +FE,c (t)+EvD (t)+EM (t)+IvC (t) +I,p (t)+IvCE (t) +I,pE (t)+[vjy] (t) .

The model for the CHIKV-DENV co-endemicity is given by the following deter-
ministic system of nonlinear differential equations (a flow diagram of the model is
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depicted in Figure 1 and 2 and the associated variables and parameters are tabu-
lated in Tables 1 and 2, respectively):

djTH =My — (A\c+Ap)Su — puSH,

d% = A\eSi — asApEe — (0 + pm) Eo,

dfTD = ApSy — asA¢cEp — (op + pu)Ep,

dljlfD = a1 \pEc + as \cEp — (71 + Y2 + pu)Eep,
%C = 0cEc — anAple — (¢ + 0¢ + p) e,

ddif =opEp —axAcIp — (7p + 0p + pu)Ip,

[Hd% = a1 plc +Ecp — (bce +73 + pu)low,
djd% = cIp +v2Ecp — (Opg + 4+ pu)lpE,

(1)
dlcp
—— =vlcg +vlpe — (¢ + 70 + dcp + pu)lcp,

dt
dng = AcRp — (oot + pu)Ecr,
d]fsz = ApRe — (opr + p) Epr,
diliT =1plcp +ocrEcr — (dcr + 7¢ + pu)lor,
dIdlZT =1clep + oprEpr — (6pr + 7o + pu)Ipr,
df% =171clc — A\pRc — puRe,
df% =7plp — AcRp — uuRp,
% =1clor +plpr — puT,

and
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dA

_— = H,U — (1 A,
o (1+ pa)
ds,
7 =E¢A— ()\vC + AUD)Sv — UoSy,
dFE,
dtc = AeSy — wiAepEve — (0ue + ) Eve,
dFE,
dtD = )\'UDSU — (JJQ)\UCEUD — (O'»UD + ,LLU)E'UDv
dEy

7 = wl)\vDEvC + w2)\vCEvD - (91 + 02 + ,LL’U)EM7
(2)

dfif = (1 - A+ 0pcEve — b + o) Luc,
df;fD = 0upEyp — (Mve + 1) Lup,

TCE g Byr + denlic — (1 + ),
dI;tDE = 03En + Moclup — (p2 + 1) LupE,
dIc;tM = prlvce + p2lopE — polom-

where,

_ Bebi(Nu, Ny)
i —
_ Bpbi(Ng, Ny)
==
_ BvbQ(NHva)
===
ﬁvb2(NH7Nv)
Ny

Ac (e Eve + M Ewm) + Luc + Lice + Lo,

Ap [(MopEvp +mEn) + Lup + Lupe + Lo,

Ave [(nc(Ec + Ecr) + nepEcp) + Ic + Ior +n(Icp + Ick)),

[(mp(Ep + Epr) +nepEcp) + Ip + Ipr +n(Iep + IpE)].

(3)
In Eqns (3), B¢ and Bp are the transmission probabilities of CHIKV and DENV
respectively, and 9o, n1p, nep, Mwe, Nwps M, M1 < 1 (and is positive) are the modifica-
tion parameters accounting for the assumption that infected humans and mosquitoes
are more infectious than exposed humans and mosquitoes, respectively [11], other
parameters are defined in Table 2. Furthermore, by (Ng, N,) is the per capita bit-
ing rate of female adult mosquito on the human host per unit time. Similarly,
ba(Ng, N,) is the number of bites per adult mosquito per unit time. Following [6],
the biting rates by (Ng, N,) and bo(Ng, N, ) are respectively given by,

)\vD =

om0 N, omouNg
b1 (Ng, Ny) = o NotonNg’ and  by(Nu, Ny) = o N, +onNg'

2.1. Basic properties. The basic properties of the model Eqns (1)-(2) will now
be explored. Let = min{pa, pt, }. Consider the following equations for the rate of
change of the total human and mosquito populations at time ¢.
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FIGURE 1. Schematic diagram of the model Eqn (1). The yellow
line represent infection of CHIKV from the DENV recovered class,
while the orange line represent infection of DENV from the CHIKV
recovered class. The green and the blue lines represent CHIKV and
DENYV new infection as well as the recovery of individuals, all the
parameters are defined in Table 2.

dN

TtH =y — puNg —dclc —dpIp —dcplcp — dcelcE (4)
—dpelprg —dcrlcr — dpripr <y — paNu,

and

dN,
dt :HU_HAA_ﬂUNI SH'U_IJ’NU' (5)

Furthermore, consider the region

Q= {(SHvECvEDaECDaIC>ID7-[CE7IDEijD7ECT,EDT7ICT»IDT;RC;RD;T»

II 11,
Aﬂ S’UaE’UC7E’UD7EM7[’UC7IvD7IUCE;I’UDE7I’UM) € Riﬁ . NH < i . NU S 7 .

It can be shown, by solving for Ny and N, in Eqns (4)-(5), that all solutions of
the system starting in the region Q will remain in 2 for all time ¢ (> 0). Thus, the
region {2 is positive-invariant, and it is sufficient to consider solutions restricted in

Q. In this region, the usual existence, uniqueness and continuation results hold for
the model Eqns (1)-(2) [21, 43].
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FIGURE 2. Schematic diagram of the model Equns (2). The yel-
low line represent the vertical transmission of CHIKV virus from
aquatic stage. The green and blue lines represent new infection of
CHIKYV and DENV, all the parameters are defined in Table 2.

3. Analysis of sub-models. It is instructive, however to analyse the sub-models
(CHIKV only model and DENV only model) from the full model Eqns (1)-(2) first
of all. This is done below.

3.1. The CHIKYV only sub-model. The CHIKV only sub-model (obtained by
setting Ep = Ecp = Ip = Icg = Ipg = Icp = Ecr = Epr = Ier = Ipr =
Rp=T=E,p =FEy =1I,p=IL,ce = Iypg = I,ps =0 in Eqns (1)-(2)) is given
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TABLE 1. Interpretation of the compartmental variables of the
model Equs (1)-(2).

Variable Interpretation/Description

Ny Total population of humans

SH Population of susceptible humans

Ec Population of asymptomatic CHIKV individuals

Ep Population of asymptomatic DENV individuals

Ecp Population of humans exposed to both CHIKV and DENV parasite

Ic Population of CHIKV-infected (only) humans with clinical symptoms of CHIKV

Ip Population of DENV-infected (only) humans with clinical symptoms of DENV

Icp Population of dually-infected humans with symptoms of both CHIKV and DENV

Icp Population of CHIKV-infected humans with clinical symptoms of CHIKV but exposed to DENV
Ipp Population of DENV-infected humans with clinical symptoms of DENV but exposed to CHIKV
Re Recovered CHIKV-infected humans

Rp Recovered DENV-infected humans

Ecr Population of individuals exposed to CHIKV but recovered from DENV with permanent immunity
Epr Population of individuals exposed to DENV but recovered from CHIKV with permanent immunity
Icr Population of CHIKV-infected individuals with clinical symptoms of CHIKV but recovered from DENV with permanent immunity
Ipr Population of DENV-infected individuals with clinical symptoms of DENV but recovered from CHIKV with permanent immunity
T Population of individuals who recovered from both CHIKV and DENV with permanent immunity
Ny Total population of mosquitoes

A population of immature mosquitoes (egg, lava and pupa stages)

Ny Total population of adult mosquitoes

Sy population of adult mosquito sceptible to both CHIKV and DENV

Eyc population of adult mosquitoes exposed to CHIKV

E.p population of adult mosquitoes exposed to DENV

Eum population of adult mosquitoes exposed to both CHIKV and DENV viruses

Lc Population of CHIKV-infected (only) adult mosquitoes

Lp Population of DENV-infected (only) adult mosquitoes

Lck Population of CHIKV-infected adult mosquitoes that are exposed to DENV

Lipe Population of DENV-infected adult mosquitoes that are exposed to CHIKV

IS, Population of adult mosquitoes infected to both CHIKV and DENV

dSH
dt
dE¢
dt
% =ocEc — (1c +0c + pu)lc,
dg% =171clc — puRe,

(6)
Ay, (14 pa)A
dt v bl
ddStU = £A - )\’UCS’U - ,U/vsva
dE,c
Cdt
dl,c
Sdt

=1y — A\eSu — 1uuSH,

= AcSu — (0c + pu)Ec,

= )\’UCS’U - (UUC + IU’U>E’UC3

= (1 - f)A + U’UCE’UO - ,U/vIvC'a

where,
>\C :ﬂCJ—W‘H(nUCEvC +IUC)a
(Tva +UHNH (7)
Mo =—TmIH (1 B, + I
OmNy + o Ny ’
with Ny =Sy +Ec+Ic + Re,and N, = A+ S, + E,c + L,c.

Consider the region

QC = (SH7EC7107RCaA7SU;EvCaIUC) S Ri— : NH S Bi?Nv S % 5

H

it can be shown, as in section 2, that the region )¢ is positively-invariant.
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Let Ryc = M(Fﬁ be the threshold quantity which accounts for eggs production
by female adult mosquito.

The CHIKV only sub-model (6) has two disease-free equilibria, namely the trivial
disease-free equilibrium (denoted by TDFE) and a non-trivial disease-free equilib-
rium (denoted by NDFE) as described below.

(i) Rne < 1, the CHIKV only sub-model (6) has a TDFE (where no mosquito
exist) given by: Yoo = (S}, E&, IS, R, A* SE Exg, INe) = (2—5,0, ey 0).

(ii) Ryc > 1, the CHIKV only sub-model (6) has a disease-free (mosquito
present) equilibrium (NDFE) given by:

g0 = (Sip B I, Ry A%, S5, B i) = (B2,0,0,0, ke, 48200, 0),

3.2. Asymptotic stability of disease-free equilibrium.

3.2.1. TDFE. The following Theorem 3.1 is established and the proof is given in
Appendix Al.

Theorem 3.1. The TDFE of the model (6), denoted by Yoc, is GAS in Q whenever
Ryc < 1.

It should be noted that the mosquito-free equilibrium,Y ¢, is ecologically unrealis-
tic, since mosquitoes commonly exist in the CHIKV-endemic regions of interest.

3.2.2. NDFE. The linear stability of egc will be investigated using the next gener-
ation matrix method on the system (6) [44]. It follows that, the basic reproduction
number of the CHIKV only sub-model is given by

LI By Bepn (Npin + 0v) (Nege + 00) 02302, 12 8
ROC - 2 2 5 ( )
91929312 (1 + pa)(paomlly, + pyoully)

where g1 = oc + pm, g2 = 7c + ¢ + b, g3 = Ovo + -

Lemma 3.2. The DFE (eoc), of the CHIKV only sub-model (6) is locally asymp-
totically stable (LAS) if Roc < 1, and unstable if Roc > 1.

The threshold quantity Roc is the basic reproduction number for CHIKV only
sub-model. It represents the average number of secondary cases that one infectious
individuals (or mosquitoes) would generate over the duration of the infectious period
if introduced into a completely susceptible population.

3.2.3. Endemic equilibria and backward bifurcation. The endemic equilibrium (EE)
of the model (6) in terms of the forces of infections is given by

« HH % )\EVHH % UC)\CHH
SH:*ia Ecz*i’ IC:*—’
A&+ pm g1( A& + pm) 9192\ + pimr)
RE — Tcoc Aoy o . _ €I,
7 gigopun(Ne + pmr)’ L+p 7" )N +p)
o EN:LTT, 7 = Wo(0ucAvcd + 93(1 = ) (Ave + 1))
vC — vC — ’

g3(L+ )Xo + 1)’ (1 + p)gs(Nie + 1)

We used the center manifold theory to examined the conditions on the parameter
values in the model (6) that cause forward or backward bifurcation to occur [3, 4].
The following Theorem is established and the proof is given in Appendix A2.
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Theorem 3.3. The CHIKV only model (6) undergoes backward bifurcation (BB)
at Roc = 1 whenever the bifurcation coefficient, a*, given by Eqn (A2.4) in Appen-
diz A2, is positive, i.e., a* > 0.

The public health significance of the phenomenon of backward bifurcation is that
the classical requirement of Roc < 1, although necessary, is no longer sufficient
for effective disease control (or elimination). In such a backward bifurcation (BB)
scenario, effective disease control or elimination would depend on the initial sizes of
the sub-populations (state variables) of the model (6). In other words, the presence
of backward bifurcation in CHIKV only transmission dynamics makes its effective
(population-wide) control more difficult.

3.3. The DENYV only sub-model. The DEN only sub-model can be obtained
by setting Ec = Ecp = Ic = Icg = Ipg = Icp = Ecr = Epr = Icr = Ipr =
Re=T=F,c =Fy = I,c = Iyce = Iupe = I,p = 0 in the model Eqns (1)—(2)
is given by

ds
TZ{ =1y — ApSe — tuSH,
dE
TtD = ApSu — (op + pu)ED,
dl
ch =opEp — (7p +0p + pu)Ip,
dR
TtD =71plp — paRp,
— =11, — A — A,
7 EA—pa
ds
L= A_)\v Sv_ vSm
7 § D 7
dE,
dtD = )\vDS'u - (UUD + Nv)EvDy
dIvD
= 0Oy Ev - 1)[1) 5
dt OyDLyD — MylyD
where
om0
AD :BD—H(n’UDEUD + I,p)
Uva + UHNH (10)
o Om O
AvD b a (npEp + Ip),

:Uva+O'HNH
VVlth7 NH:SH+ED+ID+RD ande :A+SU+EUD+IUD'
Consider the region

Qp = {(SH7ED7ID7RDaA>Sv7EvDaIvD) €RY : Ny < %Jl < L N, < u%

= patg’
it can be shown, as in section 2, that the region Qp is positively-invariant. It is

convenient to define the threshold quantity Ryp = m éﬂv that accounts for eggs

+
production by female adult mosquito. h)
The DENV only sub-model (9) has two disease-free equilibria, namely the trivial
disease-free equilibrium (denoted by TDFE) and a non-trivial disease-free equilib-
rium (denoted by NDFE) as described below.
(i) If Ryp <1, the DENV only sub-model (9) has a TDFE (where no mosquito

exist) given by: Yop = (S, Ep, I, R, A%, S¥ E¥p X)) = (R2.0,...,0).

HH
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(ii) If Ryp > 1, the DENV only sub-model (9) has a disease-free (mosquito
present) equilibrium (NDFE) given by:

* * * * * * * * v 11,
€OD = (SHvED7ID7RD7A aS'[ﬂEyDvIvD) = (%7()’0’07 (Hri_f)v Ng((lt+))70’0)

3.4. Asymptotic stability of disease-free equilibrium.

3.4.1. TDFE. The following theorem is established, and the proof is given in Ap-
pendix A3.

Theorem 3.4. The TDFE of the model (9), denoted by Top, is GAS in Q whenever
Ryp < 1.

3.4.2. NDFE. Let Ryp > 1 (so that the NDFE, eqp, exists). The linear stability of
eop will be investigated using the next generation matrix method on the system (9)
[44]. Tt follows that, the basic reproduction number of the DENV only sub-model
is given by using the same approach as in the case of CHIKV only sub-model

Rt — L g By Bppr (Mot + 0u)(Mph2 + op)o% o2, (11)
P hihohsm(promIl, + poglly)? ’

where hy = op + pg, ho =7p +0p + g, hs = oyp + 1, m =€ + p.
Using theorem 2 of [44], the following result is established.

Lemma 3.5. The DFE (eop), of the DENV only sub-model (9) is locally asymp-
totically stable (LAS) if Rop < 1, and unstable if Rop > 1.

3.4.3. Endemic equilibria and backward bifurcation. The endemic equilibrium (EE)
of the model (9) in terms of the forces of infections is given by

gt — Iy . Aplly « _ opAplly
TN +ue” 7P Ny pr) P haha(Np A+ pm)’
* TDUD)\EHH « Hv * £Hv

R: = R L Lo N 12
P hhopn (N + pmr) m m(Aj + ) (12)
* fA:DHU * fa-vD/\:HU

P hgm(Ny ) P haum(N + )’
We substitute Eqn (12) into Eqn (10), and after simplification, we have
b = [€BpomouIlyhihopu Ny (nuppt + 0up)(AD + 1) - (A + p)ymhsg] '
[lonlap(hahops + Np (hepmr + oppn + 0pTp)) + omllohihopn (G + p)l ™,
(13)
and
Boomoulgppr (nphe + op)\p

loaTlgp(hihopm + Xy (hopn + oppig + 0pTp)) + omIlyprhiha (N + )]
(14)

By substituting Eqn (14) into Eqn (13), it can be shown that the non-zero equilibria

of the model satisfy the following quadratic equation (in terms of \%,)

al(/\*D)Q + (12>\*D + as = O, (15)

=

where

a1 = m* (o103, p* (hopr+oppu+opTp)* +20m0 gL Uy pppghihe(hepu+oppm+
opTp) + oL I2hIh3u3; + Buomo 3 pm (nphae + op)(hepin + oppa + opTD)

+ Booz,oullullyp3 hihe(nphs + 0p)),

as = m?(20% 0% 2 ughihohs(hopg +oppg +0p7p) +20m0 g 1L g up? h3h3hs +
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20,0 gL, Mg pp hihohs(hopy + oppg +optp) + 202,102 43, hih3hs +
Boomo 113 updhs(nphe + op) + Buoz, o5 Mgl pu3 hihehs(nphe + op) —
(nahih3hs) (oL, + porlly)*REp),

as = [m2h3h3hspd (ppomlly, + poglly)?(1 — REH)].

Hence, we obtained a positive endemic equilibria of the model (9) by solving
equation (12) for A}, and substituting the positive values of A}, into the expression
in equation (15). Clearly, the coefficient a;, of Eqn (15), is always positive, and ag
is positive (negative) if Rop is less than (greater than) unity, respectively. Since
ay > 0, the existence of the positive solutions of quadratic equation (15) will depend
on the signs of as and a3. If Rgp > 1, then a3 < 0 and Eqn (15) has only positive
solution. Thus, there is unique EE whenever Rop > 1. If Rogp = 1 then a3 = 0 and
Eqn (15) has a unique nonzero solution of A}, = fg—f, which is positive if and only
if as < 0 and negative solution if as > 0. Therefore, no EE exits if Rgp = 1 and
as > 0. The case Rop < 1 makes az > 0. If ag < 0, equation (15) has two positive

solutions, given by
/7 Sz

PPN VA S LY, VA S VAL e NS T

1 2a1

2a

Theorem 3.6. The DENV model (9) has
i) a unique FE, if a3 <0 <= Rop > 1;
ii) a unique EE, if ay < 0 when az =0 or a3 — 4aja3 = 0;
iii) two EFEs if, a3 >0, as < 0 and a3 — 4ajaz > 0; or
iv) no EE, otherwise.

It is obvious from Theorem 3.6 (Case i) that the model has a unique EE when
Rop > 1. Further, Case (iii) indicates the possibility of backward bifurcation (where
the locally-asymptotically stable DFE co-exists with a locally-asymptotically stable
EE when Rop < 1) in the model (9) when Rop < 1. To check for this, we set the
discriminant (a3 —4aya3) to zero and simplify for the critical value of Rop, denoted
by R, given by

2
az

Re=4/1— .
\/ 4aq [h3h3hspdm? (g opIl, + pogIly)?]

Thus, the BB would occur for values of Rop such that R. < Rgp < 1. This
is illustrated by simulating the model with the following set of parameter values.
Note that these parameters are chosen for illustrative purpose only, and may not
necessarily be true epidemiologically: Iy = 20, II, = 40, ug = 0.000004, p =
0.00099, ép = 2.6, 6, = 0.2, o, = 0.3, oy = 0.011, 0, = 0.9, op = 0.303,
Tp = 0.47, Bp = 0.78 and B, = 0.398, np = 0.266, 1, = 0.2 (see Table 3, for the
units of the parameters). Hence, R. = 0.8990 < 1 and Rop = 0.9552 < 1 so that
R. < Rop < 1. Fig. 3 shows the backward bifurcation diagram of the model (9).

Lemma 3.7. The model (9) undergoes BB when case (i) of Theorem 5.6 holds
and R. < Rop < 1.

Although, the BB has been first shown to exist in DENV by Garba et al. [16],
and the causes have been explained in detail by Gumel [19]. Thus, the analysis in
this section show that the BB property of the DENV only sub-model (9) can be
removed whenever Rop = 1.

(17)

4. Analysis of CHIKV-DENYV co-infection model. Having analyzed the dy-
namics of the two sub-models, the full model Equs (1)-(2) is now considered.
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FIGURE 3. Backward bifurcation diagram of the model (9).

4.1. Asymptotic stability of DFE.

4.1.1. TDFE. Let the threshold quantity be given by Rycp = M(ﬁ% The full
model Eqns (1)-(2) has two disease-free equilibria, namely the trivial disease-free
equilibrium (denoted by TDFE) and a non-trivial disease-free equilibrium (denoted
by NDFE) as described below:

(i) Ryep < 1, the full model Eqns (1)-(2) has a TDFE (where no mosquito

exist) given by
TOCD = (S}:IaEE7EB7EE’D7EET7E*DTaIEWIE?Ié’EaIBEvlé’D?IE’T’IBTvR*CvR*DaTa

Iy
* * * * * * * * * .
AaSv7 vCH vaEMaIvCaIvDaLJCEvIvDEaIvM) - (

,0,...,0 ) c RS,
HH > *

(ii) Ryop > 1, the full model Eqns (1)-(2) has a disease-free (mosquito present)
equilibrium (NDFE) given by
€oCcD :(S}kﬂ Eé‘? EB’ EE‘D» EZJTv EBT? IE" IB» IE‘E? IBE? Ié‘D» IE‘T’ I;)Tv R*Cv *Dv T’

* * * * * * * * *
A»Sqﬂ vCH vDJEM’ vCH ’UD’I’UCE’I’UDE7IUM)

I 1, 1,
= (H,o,..., : ¢ ,0,...,0) C R%.
ozt T+ pa’ po(1 4 pa)

The following theorem is established, and the proof is given in Appendix A4.

Theorem 4.1. The TDFE of the full model Eqns (1)-(2), denoted by Yocp, is
GAS in Q whenever Rycp < 1.
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4.1.2. NDFE. The CHIKV-DENV co-infection model Eqns (1)-(2) has a NDFE,
given by,
€oCcD :(S%7EE7E1>57E3D7E(*JT7EBTvIé’vlgalé'D’Iz‘EvlgE)Ié'T7IZ)TvR*C’ E’T7
A,S:, :;C7 :DvEJTle$C7I:DvI$CEaISDEvLTM)
II 11, 1L,
= (=% o,..,0, , ¢ ,0...,0) C R?S.
1753 1+MA ,U/v(l"i_MA)

Following [20, 35], the basic reproduction number of the CHIKV-DENV model
Eqns (1)-(2), denoted by,

Rocp = max (Roc, Rop),

where Roc and Rop are defined in section 3. Using Theorem 2 of [44], the following
result is established.

Lemma 4.2. The NDFE, (socp), of the CHIKV-DENV model in Eqns (1)-(2) is
locally asymptotically stable (LAS) if Rocp < 1, and unstable if Rocp > 1.

The threshold quantity Rocp is the basic reproduction number of the CHIKV-
DENV co-infection model Eqns (1)-(2).

TABLE 2. Interpretation of the parameters of the model Eqns (1)-(2).

Parameter Interpretation/Description

My, Iy Recruitment rate of humans and mosquitoes, respectively

107 Natural death rate of humans

1A Death rate of immature mosquitoes

o Death rate of adult mosquitoes

pYel Rates of CHIKV force of infection in humans

Ap Rates of DENV force of infection in humans

e Rates of CHIKV force of infection in mosquitoes

AvD Rates of DENV force of infection in mosquitoes

Be Transmission probability for CHIKV to humans

Bp Transmission probability for DENV to humans

Be Transmission probability from an infectious human to a susceptible adult mosquitoes

by Number of bites per human per unit time

by Number of bites per mosquitoes per unit time

¢ Fraction of immature mosquitoes becoming susceptible adult

ay Modification parameter for the heterogeneity of DENV infection between susceptible humans and humans exposed to CHIKV
g Modification parameter for the heterogeneity of CHIKV infection between susceptible humans and humans exposed to DENV
w Modification parameter for the heterogeneity of DENV infection between susceptible adult mosquitoes and those exposed to CHIKV
wa Modification parameter for the heterogeneity of CHIKV infection between susceptible adult mosquitoes and those exposed to DENV
T Number of times a mosquito bites humans per unit time

o Maximum number of mosquito bites a human can receive per unit time

oc Progression rate of humans from exposed state of CHIKV to the infectious state of CHIKV

op Progression rate of humans from exposed state of DENV to the infectious state of DENV

el Progression rate of adult mosquitoes from exposed state of CHIKV to the infectious state of CHIKV

) Progr n rate of adult mosquitoes from exposed state of DEN to the infectious state of DENV

Yili = 1,4) Progression rates of humans to active CHIKV classes

7 =2,3) Progression rates of humans to active DENV classes

601,02 Progression rates of adult mosquitoes to active CHIKV classes

0.1 Progression rates of adult mosquitoes to active DENV classes

e Recovery rate of humans from infectious state of CHIKV to the recovered state of CHIKV

™ Recovery rate of humans from infectious state of DENV to the recovered state of DENV

" Modification parameters for the increase in infectiousness of dually-infected humans in comparison to mono-infected humans
G ND1CD T oDy M Modification parameters for the increase in infectiousness for the exposed classes in humans and mosquitoes, respectively

6¢,0p,0cE,0pE,dcp,dct, dpr _ Discase-induced death rates for humans

5. Numerical results and sensitivity Analysis.

5.1. Model fittings. We fitted each of the sub-model and the full model to the
data using the Pearson’s Chi-square and the least square methods (using the R
statistical software) [21, 35]. Firstly, each of the sub-models (6) and (9) were fitted
to the cumulative number of human cases from 2010-2017 (see Table Al for the
number of CHIKV and DENV cases) using the data obtained from National Vector
Borne Disease Control Programme (NVBDCP) India [31]. The demographic time
series are obtained from World Bank [41]. The demographic parameters (e.g., Iy
and ppg) are given by the average number of population in India which is given by
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TABLE 3. Values and ranges of the parameters of the model
Eqns (1)-(2).

Parameter | Baseline; (Range) Unit Source(s)
pr | 3.9 % 107% (3.6,4.0) x 1075  day 1, 34]
fs | 0.05714; (0.01,0.1) day ™! [37]
pa | 0.174; (0.0143,0.33) day ™! [23, 50]
Be | 0.375; (0.001,0.54) day™* 8, 42]
Bp | 0.75; (0.1,0.95) day™* [26]
By | 0.375; (0.1,0.5) day ! [8, 9, 27, 36]
om | 0.5; (0.33,1) day ™! [7, 26]
o | 1; (0.1,10) day ™! [16]
oc | 0.35; (0,1) day ™! Estimated [1, 16]
op | 0.5; (0,1) day ™! Estimated [16]
oyc | 0.25; (0.1,1) day™* Estimated [16]
ovp,0cT,opr | 0.2; (0,1) day ™! Estimated [16]
7o | 0.2(0.1429, 0.3333) day ™" Estimated [15]
7p | 0.25; (0.01,0.3) day ™! [15]
Iy | 2.5; (1,5) day™* [16]
IT, | 5000; (2500,6000) day ™! [16]
v | 0.23; (0,1) Dimensionless | Assumed
2 | 0.25; (0,1) Dimensionless | Assumed
vs 1 0.3; (0,1) Dimensionless | Assumed
va | 0.23; (0,1) Dimensionless | Assumed
dc, 6p | 1x1073; (0.0005,0.0015)  day~* [16]

dce, 0pr | 1.5 x 10~2; (0.00051,0.0015) day_1 Assumed
6CD7 6CT7 (SDT 1.2 % 10_3; (0.0005, 0.002) day* Assumed
ne,mum | 0.1; (0,1) Dimensionless | Estimated [16]
NepsvesMwp | 0.1; (0,1) Dimensionless | Estimated [16]
nnp | 0.12; (0,1) Dimensionless | Assumed
£ 10.01; (0.001,0.021) Dimensionless | Estimated [8]
ay | 0.03; (0.15,0.99) Dimensionless | Estimated
az | 0.018; (0.10,1) Dimensionless | Estimated
w1 | 0.015; (0,1) Dimensionless | Assumed
wo | 0.013; (0,0.9) Dimensionless | Assumed
61 | 0.01; (0.005,0.016) Dimensionless | Assumed
02, p1 | 0.01; (0.005,0.018) Dimensionless | Assumed

Dimensionless | Assumed

ps | 0.01; (0.0051,0.01)

1,143,638,692, and the average life expectancy in India is 59.4 years [40]. Therefore,
the term py;' = 59.4 years, implies that E—g = 1,143, 638,692, so that [T = 52, 748
per day. Note that all other parameters are fixed as in Table 3. Figs 4 and 5 show
the fitting results of the models (6) and (9), respectively.

Secondly, the full model Eqns (1)-(2) is also fitted to the human cases from 2007-
2012 (see Table A2 for the number of CHIKV-DENV co-infection cases), using
the data obtained from [13]. The demographic time series are obtained from World
Bank [41]. The demographic parameters (e.g., Il and py) are given by the average
number of population in India which is given by 1,222,063,475, and the average life
expectancy in India is 66.4 years [40]. Therefore, term ' = 66.4 years), implies
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that 5—5 = 1,222,063,475, so that Il = 50,423 per day. Note that all other
parameters are fixed as in Table 3. Fig. 6 show the fitting results of the full model

Eqns (1)-(2).
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FIGURE 4. Fitting result of the CHIKV only sub-model (6). We
used the parameter values from Table 3 and the following initial
conditions: Sy (0) = 1.3 x 10, Ec(0) = 1.2 x 10°, I(0) = 48176,
Rc(0) = 4000, A(0) = 8 x 107, S,(0) = 5 x 107, E,c(0) = 2 x
10° and I,c(0) = 10%. The vertical axes indicate the cumulative
number of CHIKV cases in India from 2010 to 2017.

5.2. Sensitivity analysis. Sensitivity analysis is used in order to establish what
factors affect both sub-models and the full model outcomes. A partial rank correla-
tion coefficient (PRCC), a method of conducting sensitivity analysis adapted from
[15, 29], is used for ranking the importance of each parameter-output. This gives
an insight into designing a meaningful control strategy.

Firstly, 5,000 random samples are taken for each model parameter from uniform
distributions using the parameter ranges of values in Table 3. Each sub-model is
simulated for each random parameter values to obtain the target biological quan-
tities (in this case, the basic reproduction number and the infection attack rate).
Further, the PRCCs were computed between each parameter and target biological
quantities. The PRCCs results highlighted that mosquito removal rates, i.e., p,
and @4, the transmission rates, i.e., 8,, B¢, and Bp, and the mosquito matura-
tion rate, i.e., &, are the top control parameters for combating CHIKV, DENV and
CHIKV-DENYV co-infection outbreaks.

6. Discussion. A CHIKV and DENV co-infection model is constructed and used
to assess the impact of the co-endemicity of these diseases on the transmission dy-
namics of each disease. In each of the CHIKV and DENV sub-models and the full
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FIGURE 5. Fitting result of the DENV only sub-model (9). We
used the parameter values from Table 3 and the following initial
conditions: Sy (0) = 1.3 x 10%, Ep(0) = 1.1 x 10°, Ip(0) = 28292,
Rp(0) = 3000, A(0) = 8 x 10°, S,(0) = 5 x 10%, E,p(0) = 2 x
10° and I,p(0) = 10°. The vertical axes indicate the cumulative
number of DENV cases in India from 2010 to 2017.

model, it has been shown, using Lyapunov function theory and LaSalle’s Invariance
Principle, that the trivial disease-free equilibrium (TDFE) is globally asymptoti-
cally stable (GAS) whenever a certain associated threshold quantity (i.e., Ryc,
RND, or Rycop) is less than unity. The mosquito-present disease-free equilibrium
of the full model (or its associated sub-models) is shown to be locally-asymptotically
stable (LAS) whenever the associated reproduction number is less than unity, and
is unstable if it exceeds unity. For the scenario where the basic reproduction num-
ber is greater than one, each of the sub-models is shown to have a unique endemic
equilibrium. The CHIKV and DENV sub-models and the full model each exhibit
the phenomenon of backward bifurcation, where the stable non-trivial disease-free
equilibrium (NDFE) co-exists with the stable endemic equilibrium when the repro-
duction number is below one. The epidemiological consequences of the phenomenon
of the backward bifurcation is that making the basic reproduction number to be
less than one is no longer a key requirement for the disease control, therefore, it is
important to consider some other features such as making the basic reproduction
number even less than a critical value (i.e., R, in the case of DENV) so that the
disease eradication could be achieved.

We fitted each of the sub-models and the full model with realistic data for
CHIKV, DENV and CHIKV-DENYV coinfection cases (obtained from, the National
Vector Borne Disease Control Programme (NVBDCP) in India [31] and from [13],
see Figs. 4, 5, and 6).
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FIGURE 6. Fitting result of the full model of Eqns (1)-(2). We
used the parameter values from Table 3 and the following initial
conditions: Sy (0) = 1179681900, E-(0) = 1200, Ep(0) = 1200,
Ecp(0) = 10, Ic(0) = 8, Ip(0) = 8, Icp(0) = 8, Ipg(0) = 8,
Icp(0) =6, Ecr(0) =12, Epr(0) = 12, Ic7(0) = 8, Ipr(0) =8,
Rc(0) =8, Rp(0) =8, T(0) = 3, A(0) = 8x 1019, 5, (0) = 5x101°,
E,c(0) =2x10%, E,p(0) = 2x10%, Epr(0) = 2x10%, I,c(0) = 104,
I,p(0) = 104, I,cg(0) = 100, I,pe(0) = 10%, and I,5,(0) = 10%
The vertical axes indicate the cumulative number of DENV cases
in India since 2007 to 2012.

The sensitivity analysis results using the partial ranked correlation coefficient
(PRCC) with 95% confidence interval show the top-ranked parameters of the model
(i-e., po, pa, Be, Bp, Bv, and &) that are sensitive to our main results, and should
be prioritized in combating CHIKV, DENV and CHIKV-DENV co-infection out-
breaks. The PRCCs results highlighted that, for any control strategy for combating
CHIKV, DENV and CHIKV-DENV co-infection outbreaks to be effective, poli-
cymakers should focus on reducing mosquitoes in the environment (for example,
spraying insecticide, proper sanitation and clearing mosquito breeding sites, etc.)
and also reduce human-mosquito contact rate by taking some protection measures
such as using insecticide-treated bed nets and curtains, insect repellent, etc.

Finally, this study can be extended by (i) including the possibility of simul-
taneous transmission of both diseases; and (ii) incorporating seasonality in order
to get insight of its effect on the transmissions dynamics of each disease and the
co-infection.
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FIGURE 7. The PRCCs (of the CHIKV only sub-model (6)) of
basic reproduction number (panel (a)) and infection attack rate
(panel (b)) with respect to the model parameters. m; denotes
the mosquito to human ratio. The blue dots are the estimated
correlations and the bars represent the 95% CIs. The ranges of
parameters are given in Table 3.

Appendices
Al. The Proof of Theorem 3.1.
Proof. Following [34], the model (6) can be re-written in matrix form or vector form

as 9 = A(Y)Y + G, where Y = (Sg, Ec,Ic, Rc, A, Sy, Ey, I,)T, and A(Y)sxs is
a M-matrix (Metzler Matrix) given by

~Ki—pg 0O 0 0 0 0 —Ks —Kg |

K1 —01 0 0 0 0 K5 K6

0 oc —g2 0 0 0 0 0

0 0 T — 0 0 0 0
AY) = c [oH

0 0 0 0 —g4 0 0

0 -K, —-Ks3; 0 § —Ki— 0

0 Ky  Kj 0 0 Ky -g93 0

0 0 0 0 9gs 0 Ovc v |
where
K, = ﬁcanz”H("]vCE1)+IU)’ Ky = BvomonncSe pro . BeomonSy

omNy+ouNu omNy+ouNg?’ omNy+ouNg’
_ Buomou(ncEc+Ic) _ Bcomoun.cSH _ BcomouSu
Ki= omNy+tougNg Ks = omNy+ouNg and K¢ = omNy+ouaNg’

and G = (IIg,0,...,0)7 € R%. Let Ry¢ < 1, so that the model (6) has only
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FIGURE 8. The PRCCs (of the DENV only sub-model (9)) of
basic reproduction number (panel (a)) and infection attack rate
(panel (b)) with respect to the model parameters. mo denotes the
mosquito to human ratio. The blue dots are the estimated correla-
tions and the bars represent the 95% CIs. The ranges of parameters
are given in Table 3.

the TDFE, Yo¢. Furthermore, let Z7 =Y — TDFE. Thus, the equation ‘% =

A(Y)Y + G can be re-written as % = B(Z)Z, where B(Z) is the coefficients of the
model (6) with variables Z;(i = 1,...,8). It is clear that TDFE, = (0,...,0) C R%
is the only equilibrium of the system % = B(Z)Z. Consider a Lyapunov function

V(Z) = (W, Z) with positive coefficient vector W = (1,1,1,1, n%’ i, u%’ M%) >0
[34]. Thus V(Z) > 0, except at Z = TDFEy, so that

aVv(Z 1 1
2) =W,B(Z2)Z) = —(Zs + Z7 + Zg) — +MAZ5+*ZS
dt IL, e
14+
:—(Z6+Z7+Zg)— NA(]._RNC)Z5.

v

Since Ryc < 1 in C([0],RY), it follows that V'(Z) < 0. Following the LaSalle’s
Invariance Principle (Theorem 6.4 of [24]), we have that, the maximal invariant
set contained in V/V'(Z) <0 is the TDFEy. Thus, the transformed equilibrium,
TDFEz, is GAS in C([0],R%) if Ryc < 1. Hence, Yoc is also GAS in C([0], RY)
whenever Ry < 1. O

A2. The Proof of Theorem 3.3. The proof is based on using centre manifold
theory [3, 4]. Consider the system ‘fl—f = f(z,v), where 9 is the bifurcation parame-
ter, f is continuously differentiable at least twice in both x and 1. The disease-free

equilibrium is the line (z0,%) and the local stability of the disease-free equilibrium
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changes at the point (zo,%) [44]. Now it shall show that there are non trivial
equilibrium near the bifurcation point (zg, ).

Now, consider the case when Roc = 1. Suppose, further, that 8¢ = B¢ is chosen
as a bifurcation parameter. Solving for Roc = 1 gives

9192939412 (LEOmIL, + oo Tly)?
LIy Bopirr (oo + 00) (NCg2 + 0 )0 02 12
By Lemma 3.2, the disease-free equilibrium Ej is locally stable when 8¢ < 8¢ and
unstable when B¢ > . Here Sc = B¢ is a bifurcation value.
For computational convenience, we let Sy = z1, Fc = x2, Ic = x3, Rc = x4,
A=zx5 S, = x5, Eye = x7, I,c = xg, so that Ny = x1 + z9 + 3 + x4 and
N, = x5 + xg + x7 + xg. Further, by adopting the same vector notations with

Bc = Bc =

z = (21,22, ...,x5)T, the model (6) can be written in the form 4 = F(X) where
F = (f1, f2,..., fs)T as follows:
dx
hi= dTl =1y — Acz1 — puar,
dx
fo= CT; = Act1 — 122,
f d.’l?g
= —— = 0cXy — §ok
3 dt cT2 — g223,
d.%‘4
fa= - TCT3 — HHT4,
(A2.1)
f _ dﬂ?{, I — .
5 dt v g4Ts,
dzx
Jo = dTG = &x5 — Ay s — Ho s,
dx
fr= CT: = ApoTe — 937,
dxg
fs = a9 + OveT7 — o Ts,

with the associated forces of infection given by

Buomoa(NcTas + x3)

A\ _ Beomou(nuorr + x8) N
c= 5 T MvC =

8
Om D Ti+og Y, xy Om > Ti+0q
i=5 i=1 i=5

The Jacobian matrix of the system (A2.1) , evaluated at the DFE (eo¢) with
Bc = B¢ (denoted by Je,.), is given by

4
N (A2.2)
=1

K2

[ —pm O 0 0 0 —s; —so |
0 -g1 O 0 0 S1 S92
0 oc —-go O 0 0 0

J(eoc) = 0 0 ro —pr 00 g (A2.3)

0 0 0 0 -—gi O 0
0 —s3 —s4 O § —tw O 0
0 S3 Sy 0 0 0 —gs3 0

0 0 0 0 g 0 oo —pw |
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where,
51 Bcomauanuela o (14-pa) 8o = Bcomo e, (1+pa)
T Wa(tpa)om+omIlypm) o +omll uMHé’ 27 Mu(+pa)ontomlopm) ot omllypn€’
S3 = BvomouancE Iy e Bovomoug&llyuy
Oy (o +E)pa+orlmp,(1+pa)’ T oI, (ot paton iy (1t pa)

The Jacoblan J(eoc), of the hnearlzed system has a simple zero eigenvalue (with
all other eigenvalues having negative real part). Hence, the Center Manifold Theory
[3, 4] can be used to analyze the dynamics of the system (A2.1) around f¢ = 8¢. In
particular, a theorem 4.1 in [4]. Using the notation in [4], the following computations
are carried out.

Eigenvectors of J(goc)so=pz: For the case when Roc = 1 it can be shown that
the J(eoc) has a right eigenvector (corresponding to the zero eigenvalue), given by
w = [wy, wy, ..., ws]", where

53092 $20yC ;5392 w3 g2 TC

wy = —[E(B2 4 gy I3 L Ny = Py s > 0w = —Cw,
gs oc Hvg3  OC 1234 oc 12324
8392 + 0S4 8392 + 0S4 (0we) (8392 + 0c54)

Wy = 0,’[1}6 = W3, W7y = — W3, Wsg = ws

HyOC gsoc Hy0C g3
Similarly, the components of the left eigenvector of J(goc) (corresponding to the

zero eigenvalue), denoted by v = [v1,va, ..., vg], are given by

0CcS4 + 8392 (g552)(0cS4 + 5394)

v1=0, vo=——"""uv3, v3>0, v4=0, v5= U3,
S401 9194y S4
g2 82540¢C + 525394
vg =0, v;r="w3, vg=-——-—"""T—0
S4 9154ty

Note that the free right eigenvectors, w3 and left eigenvector, vz , are chosen to be
928400-&-8393-&-918400
gi1sa0C ’

Ap = qz(83gsz-i;84dc) + (520“0)(S4UC+SBZ4L(5392+S4UC), so that v - w = 1 (in line with
[4]) g3saoc 9193#U 40C

It can be shown, by computing the non-zero partial derivatives of the right-hand
side functions, f;(i =1, ...,8), that the associated backward bifurcation coefficients,
a* and b*, are given, respectively, by (see Theoram 4.1 in [4]).

vy = 1, and wz = ﬁ’ where, A; =

n
Pfi(0,0) a1 +qe
Y= ;W L = A24
a Z VkW;W; 8%18.%] qs ) ( )

where,
q1 = 2(—gap1((p20m + omps)v2fc — viweBuoapa) g+
FLH(U2w1p5ﬂC + 'U7w66vp6)Hv0'm);U'v»
= pull,(vow1omprBe — (P80 H + OmDe)v7P1060)E) (1 + 1 A) Lo LEH T H O,
a3 = (Mg pwgacm + omIlypm (o + €))?), p1 = (ws +wrnue), p2 = (w3 + ws + ws),
p3 = (w7 +ws +we), pa = (w3 + wane), ps = (ws + wrnuc), pe = (w3 + wanc),
pr = (wg+wrnue), ps = (w2 +wy +w3+w4) P9 = (w7 +ws) and p1p = (w3 +wanc),
and

Z sza Ji(0,0) (wane + w3) L fpnonomvr (A2.5)

kim1 0x;08} HH,M'U(l+HA)0'H+0'mHv,UH(,Uv+£).

Since the coefficient b* is always positive, it follows that the model (6), or it is
transformed equivalent (A2.1), will undergo backward bifurcation if the coefficient
* is positive.
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A3. Proof of Theorem 3.4.

Proof. Following [34], the model (9) can be re-written as % = A*(Y*)Y* + G*,

where Y* = (Sy, Ep,Ip, Rp, A, Sv, Evp, I,p)T , G* = (Ily,0,...,0)T" C RY, and
A*(Y*)sxs is an M-matrix (Metzler Matrix) given by

—Li—pg 0O 0 0 0 0 —Ls —Lg |
Ly —h 0 0 0 0 Ly  Lg
0 op —hy 0 0 0 0
AT (V") = 0 0 ™ —pg 0 0 0
0 0 0 0 -m 0 0
0 —Ly, —Ly 0 € —Li—p, O 0
0 Ly L3 0 0 Ly —hs 0
I 0 0 0 0 0 0 oD —Ho |
with Ly = 22U bR L) [, = Bufpeitinde, Ly = gutite,
Ly = B e R 0y L = ettt Lo = it

Let Rvp < 1 (so the model (9) has only the TDFE, Yop). Furthermore, let
Z* =Y* —TDFE. Thus, equation % = A*(Y*)Y* + G* can now be re-written
as % = B*(Z*)Z*, where B*(Z*) is the coeflicients of the model (9) with variables
Zr(i=1,..,8). It is clear that TDFE} = (0,...,0) C RY is the only equilibrium of
the system df—t* = B*(Z*)Z*. Consider a Lyapunov function V*(Z*) = (W*, Z*)
with positive coefficient vector W* = (1,1,1,1,1_[%, N%’H%’ H%) > 0 [34]. Thus
V*(Z*) > 0, except at Z* = TDFEz-, so that

—u = (W*,B*(2*)Z") = —(Zs + Z7 + Zg) — I Zs + —Zs
v 1225
* * * + *
=—(Zs + 27 + Zg) — ; HMA(l — Rnp)Z5.

Since Ryp < 1 in C([0],RY), it follows that V*'(Z*) < 0. Following the LaSalle’s
Invariance Principle (Theorem 6.4 of [24]), we have that, the maximal invariant set
contained in V*/V*(Z*) <0 is the TDF Ez~. Thus, the transformed equilibrium,
TDFEz-,is GAS in C([0],R}) if Ryp < 1. Hence, Ygp is also GAS in C([0], RY)
whenever Ryp < 1. O

A4. Proof of Theorem 4.1.

Proof. Following [34], the model Eqns (1)-(2) can be re-written as
d};:* :A**(Y**)Y** +G**, where

Y** =(Su, Ec, Ep, Ecp, Ect, Epr, Ic, Ip, Icp, Ick, IpE, IcT, IpT, Rey Rp, T
Aa S'm E’UC? E’UD7 EM; I’UC7 IvD7 IvCE; I’UDE7 IvM)T** )

A (Y**)a6x26 is a M-matrix (Metzler Matrix) which is not given here to save space

and G** = (I, 0,...,0)7" C R2%. Let Rycp < 1 (so that the model Eqns (1)-(2)

has only the TDFE, Yocp). Further, let Z** = Y** — TDFE. Thus, the equation

‘“;t** = A" (Y*)Y** + G** can be re-written as % = B**(Z**)Z**, where B(Z)

is a matrix of coeflicients of the model Eqns (1)-(2) with variables Z}*(i = 1, ..., 26).

It is clear that TDFE} = (0,...,0) C Riﬁ is the only equilibrium of the system
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Az — B**(z**)Z**. Consider a Lyapunov function V**(Z**) = (W**, Z**) with

dt
positive coefficient vector W** = (1,...,1, &, - L L 1 1 1 1 "1"1)q

where W** C R2%. Thus V(Z) > 0, except at Z** = TDFEz««, so that

_ W**, B** (7 Z**) — LA gxx _
VT g2y = My -
*k *k kK sk Kok Kok Kok ok :uU(l + IU’A)
(Z1§ + Zig + 251 + Z55 + Z33 + Z35 + Z55 + Z3g) + Toem, +1) RN
0 1 = po(L+ pa)
A v A
T 1T E: i +1)Rncp

11, 1L,

i=18
Since Rycp < 1in C([0], R29), it follows that V/(Z**) < 0. Following the LaSalle’s
Invariance Principle (Theorem 6.4 of [24]), we have that, the maximal invariant set
contained in V**/V**'(Z**) <0 is the TDFEz+-. Thus, the transformed equilib-
rium, TDFEz«-, is GAS in C([0], R3%) if Rycp < 1. Hence, Tocp is also GAS in
C([0], R?6) whenever Rycp < 1.

It is worth mentioning that, the mosquito-free equilibrium in the CHIKV only sub-
model, DENV only sub-model, and the full model, given by Yoo, Yop, and Yocp,
respectively, is ecologically unrealistic. This is because, mosquitoes are present exist
in the (CHIKV or DENV endemic) regions of interest). O

A5. CHIKV, DENV and CHIKV-DENYV reported cases time series in
India. The numbers of CHIKV, DENV and CHIKV-DENYV cases in India used for
model fitting are summarized in Tables A1 and A2, respectively.

TABLE Al. Human reported CHIKV and DENYV cases in
India [31].

Year | CHIKV DENV
2010 | 48176 28292
2011 | 20402 18860
2012 | 15977 50222
2013 | 18840 75808
2014 | 16049 40571
2015 | 27553 99913
2016 | 64057 129166
2017 | 62268 157220

TABLE A2. Human reported CHIKV-DENYV co-infection
cases in India [13].

Year | No. of cases
2007 8

2008
2009
2010
2011
2012

— O Ot o
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