
Genes & Diseases (2023) 10, 1190e1193
Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.keaipubl ishing.com/en/ journals /genes-diseases
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Development of a molecular feature-based
survival prediction model of ovarian cancer
using the deep neural network
Ovarian cancer (OC) is one of the most lethal gynecologic
cancer worldwide, and survival prediction is meaningful for
personalized treatment.1 The survival outcome of cancer
patients mainly depended on the malignancy of the primary
tumor which is tightly linked with the expression profile of
the molecular features.2 Therefore, in this study, we
developed a molecular feature-based survival prediction
model of OC using a deep neural network (DNN).

As described in the workflow diagrams of the whole
study (Fig. 1A) and data preprocessing (Fig. S1A), the
miRNA/mRNA expression data and the clinical information
were obtained in The Cancer Genome Atlas (TCGA). Patient
characteristics were summarized in Table S1. Non-primary
samples and samples/features with more than 20% missing
values were removed. The left missing values were imputed
by using K Nearest Neighbor algorithm. This process was
performed two times before and after normalization to
replace the missing values with the average expression
levels of the features in the same subtype.3 The data were
normalized by the quantile normalization algorithm (Table
S2), and after normalization, the batch effect was effi-
ciently reduced (Fig. S1B). The data were further scaled by
the Z-score algorithm (Table S3). The expression profile of
all mRNAs/miRNAs was visualized by heatmap (Fig. S1C),
while no obvious difference in survival was obtained across
the three groups of clustered patients, indicating that the
survival-related features should be extracted.

We next extracted the survival-related features by Cox-
PH and KaplaneMeier algorithm; for KaplaneMeier analysis,
the samples were grouped according to the median or
upper and lower quartile, separately. In total, 172 and 155
survival-related oncogenes and tumor suppressors were
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identified (Fig. S2 and Table S4). By evaluating the
discrimination ability for the 3/5-year overall survival rate
through the average area under the receiver operating
characteristic curve (AUC) value, 41 candidates were
selected and ranked (Table S5). The expression profile of
the survival-related mRNAs/miRNAs was visualized by
heatmap and the patients were clustered into three groups
with different survival outcomes (Fig. 1B), indicating that
the survival-related mRNA/miRNA features were success-
fully extracted.

To obtain the optimal combination of mRNA/miRNA
features, a comprehensive analysis was performed. The
patients were clustered by the K-means clustering program
with different combinations of the survival-related features
and the optimal combination was selected based on the
Silhouette coefficient, Calinski-Harabasz index, and the
maximum difference in median survival time. As shown in
Figure 1C and Figure S3, clustering the patients into six
groups with the top 13 features achieved the best perfor-
mance. The grouped patients represent three different
survival outcomes (high survival group: 3-year survival
rate z 100% and 5-year survival rate z 90%; moderate
survival group: 3-year survival rate z 90% and 5-year sur-
vival rate z 50%; poor survival group: 3-year survival
rate z 40% and 5-year survival rate z 18%) (Fig. 1D); the
best and the worst subgroups had a median survival time of
4624 and 197 days, respectively (Fig. 1E). Unsupervised
principal component analysis of 13 features in the three
groups was performed to visualize the profiling differences
and the result confirmed the apparent discrimination
(Fig. 1F).
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Figure 1 Molecular feature-based survival prediction model of ovarian cancer (OC) using deep neural network. (A) Overall
workflow. The workflow includes four steps: Step 1, dataset preparation; Step 2, data preprocessing and survival-related feature
selection; Step 3, Patient clustering; Step 4, model development and verification. In step 1, the whole dataset compose of miRNA
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We next used DNN to develop a survival prediction model.
The workflow of model development and verification was
described in Figure S4A. In this study, an 8/2 split was used for
generating training and testing data, and five-fold cross-vali-
dation was used for hyperparameter optimization.4 The
optimal hyperparameters were given in Figure S4B. Themodel
developed through the training sets (named trained model)
was evaluated through the testing sets. As shown in Figure 1G,
the trained model achieved an average AUC of 0.9982.

For predicting the individual samples tested in reality, a
data transformation program base on the parameters used
in data preprocessing was developed (the source code was
provided on the GitHub website https://github.com/
ymy948/OV). As a result, the model (named integrated
model) was finally developed by integrating it with the data
transformation program. To further confirm the model by
mimicking reality, the original TCGA data were used;
importantly, the samples were individually subjected to the
model. The result showed that the integrated model ach-
ieved a high performance (AUC Z 0.9408) (Fig. 1H) and the
survival differences were reflected (Fig. S4C).

To understand the molecular basis of the discrimination
ability of the survival analysis model, the 13 survival-related
genes employed by the prediction model were subjected to
pathway analysis. These genes were enriched in biological
functions, including metabolism of carbohydrates, meta-
bolism of lipids, integration of energy metabolism, meta-
bolism of vitamins and cofactors, post-translational protein
modification, SLD-mediated transmembrane transport,
plasma lipoprotein assembly, remodeling and clearance, ER
to Golgi anterograde transport, intra-Golgi and retrograde
Golgi-to-ER traffic, AMPK inhibits chREBP transcriptional
activation activity, and canonical pathways, including
NOTCH signaling and Hedgehog signaling (Fig. 1I). Deeper
analysis indicated that activation of functions/pathways,
including retinoid metabolism and transport, GPLD hydroly-
ses GPI-anchors from proteins, ubiquitination of NOTCH1 by
ITCH in the absence of ligand, degradation of GLI1 by pro-
teasome, phosphorylation of ChREBP at serine 568 by AMPK,
cis-Golgi t-SNAREs bind YKT6 on tethered vesicle,
and mRNA data in The Cancer Genome Atlas was prepared. In ste
features. In step 3, the patients were optimally grouped into 6 su
trained and integrated models were subsequently developed, foll
mimicking reality. (B) Heatmap presenting the expression profile of
The median survival times of the grouped patients were shown.
parameters for patient clustering. (D) The patients were optimall
comes (high, moderate, and poor survival) according to 13 survival-
of 13 survival-related features used in optimal clustering in OC sol
were shown. (F) Score plot of unsupervised principal component an
moderate, and poor survival groups. (G) Receiver operating charact
between high, moderate, and poor survival groups through prepro
discriminate between high, moderate, and poor survival groups thro
analysis of 13 survival-related mRNAs used in the prediction mode
neddylation, and uptake of hyaluronic acid, and inhibition of
choline transports from the extracellular space to the
cytosol, are associated with the poor prognosis of OC pa-
tients (Fig. S5A). The details of inhibition of NOTCH and
Hedgehog signaling in cancer cells within OC patients with
poor prognosis were shown in Figure S5B and S5C, respec-
tively. These results also strongly suggested that the stem-
ness of the cancer cells is tightly linked with OC prognosis.5

We next wonder if this stratification is correlatedwith the
clinical features. The Chiesquare test was used. We found
that the clinical features, including patients with tumor-free
cancer status, complete remission/response, days to new
tumor event after initial treatment <365, and age at initial
pathological diagnosis <365, have a higher probability of
falling into high or moderate survival groups (Table S6).

In summary, an OC survival prediction DNN model was
developed which robustly stratifies patients into three
groups with distinct survival outcomes.
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Appendix A. Supplementary data
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