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Abstract

The sailing speed optimization problem aims to determine the optimal cruising speeds of
ships by balancing the number of ships required on services, the fuel consumption, and
the level of service provided for customers. The level of service can be incorporated into a
sailing speed optimization model from the perspective of supply chain management or from
the perspective of shipping lines. We design a polynomial-time algorithm workable to solve
the two models based on bi-section search methods. The novelties of the algorithm include
constructing a new parameter on which the bi-section search will be executed and deriving
a near-optimal solution by taking advantage of the problem structure. We also provide

theoretical results that guarantee the validity of the polynomial-time algorithm.

Keywords: Bi-section search, Containership, Sailing speed, Bunker fuel, Transit time,

Polynomial-time algorithm

1 1. Introduction

2 In this paper, we study the well-known containership sailing speed optimization problem,
s in which a container shipping line needs to determine the number of ships to be deployed

+ on each service (or equivalently, ship route) as well as the sailing speed for each leg on each
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service to minimize the total cost.

To solve the problem, several trade-offs need to be balanced. First, the shipping line
has a limited fleet of containerships, which causes that, if one service uses too many ships,
the shipping line may fall in short of containerships for other services. Second, if one or
more ships are removed from an existing service, the remaining ships have to sail faster
in order to maintain a 7-day service frequency. As a result, the faster sailing speed will
incur a higher fuel consumption rate, since it has been well known that the daily bunker
consumption is approximately proportional to the sailing speed to the power three. On the
other hand, the shipping line could reduce fuel consumption by utilizing as many ships as it
can. However, doing so might create a need of running more ships and produce a potential
cost for chartering extra ships. Third, a lower sailing speed saves fuel consumption but
often leads to a longer port-to-port transit time, which increases the pipeline inventory of
customers. Hence, a low sailing speed might not be favored from customers’ point of view.

There are two different voices on how to address the impact of transit time (equivalently,
sailing speed) in the problem. The first one advocates minimizing the supply chain cost
that includes the container shipping line’s cost (ship chartering cost and fuel cost) and the
customers’ cost (pipeline inventory cost) (Alvarez, 2012; Kim, 2014). In this approach, longer
transit time is penalized by higher inventory costs. The rationale behind this approach is
that by taking into account customers’ inventory costs, the shipping line actually provides
higher customer service levels. It will thereby be rewarded as customers are willing to pay
higher freight rates and/or let it transport more of their cargoes. The other is solely from
the perspective of a shipping line and suggests minimizing the sum of the chartering cost
of ships and fuel cost while providing a certain level of service to customers by imposing a
maximum port-to-port transit time constraint (Karsten et al., 2015). The idea is that it is
very difficult for the shipping line to obtain accurate information on customers’ inventories

as there are too many customers, and even if it can, the shipping line will not be immediately



31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

rewarded. Therefore, the shipping line could simply impose a maximum port-to-port transit
time constraint and exclude the cargo inventory costs from its objective function. Liner
service planners from Orient Overseas Container Line (OOCL) told us that they determine
the port-to-port transit time for key legs (e.g., the leg from the last port of call in Asia to
the first port of call in North America on a trans-Pacific service) based on the prevailing
transit time of the shipping market. Similar to Karsten et al. (2015, 2016), our study also
defines the transit time constraints on each service individually.

Given a fleet of containerships to be deployed in a liner shipping network, Wang (2016)
proposed a pseudo-polynomial-time algorithm to solve the sailing speed optimization model
that is built from the perspective of supply chain management so as to minimize the supply
chain cost. This paper formulates the problem as a mathematical programming model from
the perspective of shipping lines, with the objective to minimize the sum of the chartering
cost of ships and fuel cost subject to the maximum allowed transit times between ports on
individual services. This paper extends the work of Wang (2016) and makes the following

contributions to the literature on shipping service design:

(1) We show that the model from shipping lines’ perspective can also be solved in pseudo-
polynomial time in the size of the problem.

(2) We propose a polynomial-time algorithm workable for solving the speed optimization
model formulated from the perspective of supply chain management or from the per-
spective of shipping lines based on bi-section search methods. The novelties of the
algorithm include constructing a new parameter on which the bi-section search will
be executed and deriving a near-optimal solution by taking advantage of the problem
structure. The polynomial-time algorithm improves over the pseudo-polynomial-time
algorithm in Wang (2016).

(3) We also provide theoretical results that guarantee the validity of the polynomial-time

algorithm.
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2. Literature Review

Unlike road transport in which the speeds of vehicles are determined by traffic conditions,
in maritime transport the speeds of ships are mainly determined by economical considera-
tions. In particular, the daily fuel consumption of a ship increases dramatically with the
speed, often proportional to the speed cubed (Notteboom and Vernimmen, 2009) or even
proportional to the speed to the power of four or higher (Du et al., 2011; Song and Dong,
2013; Meng et al., 2016). As a result, slow steaming saves fuel costs. On the other hand,
slow steaming means more ships are required on a liner service in order to provide a weekly
frequency. Hence, a natural choice of speed is to balance the trade-off between ship char-
tering costs and fuel costs in an optimal manner. To this end, Ronen (2011) optimized
the speed of containerships for a liner service by enumerating all of the possible number of
ships to be deployed; Wang and Meng (2012b) optimized the speed of containerships for a
network consisting of many liner services by solving a mixed-integer nonlinear programming
model. Du et al. (2015) proposed a practical fuel budget problem that aims to determine a
group of bunker fuel budget values for a liner container ship over a round-trip voyage under
uncertainties caused by severe weather conditions and addressed the problem with robust
optimization techniques. Psaraftis and Kontovas (2013, 2014) have presented comprehensive
reviews on ship speed optimization taxonomy, models, and algorithms.

There are also many models that integrate ship speed optimization with other planning
decisions. As the ship speed affects the bunker consumption and thereby pollutant emission,
a number of models for determining the sailing speeds while incorporating pollutant emission
have been developed (Cariou, 2011; Kontovas and Psaraftis, 2011; Kim et al., 2012, 2013,
2014; Mansouri et al., 2015; Song et al., 2015; Wong et al., 2015). When different bunker
fuel prices at different ports are taken into account, the sailing speed decisions must be
made in combination with the choice of bunkering ports (Yao et al., 2012; Kim, 2014; Ghosh

et al., 2015). The sailing speed is also closely related to the schedule design for liner services

4
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because once the planned arrival and departure time at each port of call is determined, the
planning sailing speed from one port to the next is also determined. Schedule design may
also be examined accounting fortransit time limits (Wang and Meng, 2012a) and port time
uncertainty (Qi and Song, 2012; Wang and Meng, 2012a). In reality, ships are often not
able to follow the planned schedule and in case of delay, ships often speed up. As a result,
ship speed optimization is also used for analyzing schedule reliability (Song et al., 2015) and
schedule recovery at the operational level (Li et al., 2015, 2016). Ship speed optimization
is also modeled in the context of line network design (Karsten et al., 2016), tramp shipping
(Hvattum et al., 2013), and transit-time-sensitive demand (Wang et al., 2013).

Slow steaming means a long port-to-port transit time, which increases the pipeline inven-
tory of the customers. Hence, the sailing speed should not be too low from the customers’
point of view. Alvarez (2012) argued that the level of service experienced by the shippers
under different fleet configurations should be properly addressed, for which the inventory
holding costs are used as a practical alternative to represent the shippers’ level of service in
a liner network. Kim (2014) presented an interesting Lagrangian heuristic to optimize the
sailing speeds for a liner service while taking into account the time cost (inventory cost) of
the containers in the objective function. Wang (2016) proposed a pseudo-polynomial-time
algorithm to determine the optimal speed for each leg of each service in a liner network with
the objective of minimizing the sum of chartering costs of ships, fuel costs, and inventory
costs. Both Kim (2014) and Wang (2016) adopted the supply-chain approach for speed
optimization.

Another possible approach for speed optimization is solely from the perspective of the
shipping line: minimizing the sum of chartering costs of ships and fuel costs while imposing
a maximum port-to-port transit time constraint. A relevant study is Karsten et al. (2015),
which decides how to transport containers considering a maximum port-to-port transit time

constraint without optimizing the speeds for containerships. Karsten et al. (2016) extended
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their previous research by designing a liner shipping network considering a maximum port-
to-port transit time constraint on individual services.

Features that distinguish our research from most of the existing studies include: (1)
for the deployment of vessels on the services the vessels are taken from a pool shared by
all the services and therefore this optimization of the individual services is interdependent;
(2) we examine two models that incorporate the level of service from the perspective of
supply chain management and from the perspective of shipping lines, respectively; in the
latter the transit time constraints are only defined on each service individually; (3) most
importantly, we propose a polynomial-time algorithm for obtaining the optimal speeds for

both the models.

3. Problem Description

We list the notation used in the paper below:

Sets
R Set of services in a liner shipping network; r € R refers to a service
V Set of ship types; v € V refers to a ship type
R, Set of services that use ships of type v € V
I, Set of legs on service r € R; i € I, denotes the leg from the i-th port of call to
the (i + 1)-th port of call
7z Set of nonnegative integers
Parameters
Q Bunker fuel price
Cy Chartering cost of a ship of type v € V' per week
Upi Sailing speed of ships on leg 7 € I, where r € R

L, Travel distance along leg i € I,., where r € R
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Gri(vri) = a,i(vy)i. Fuel consumption per unit distance on leg i of service r as
a function of sailing speed v,;. Note that a,; and b,; are both parameters.
Thus, the total fuel consumption on the leg is computed as L.; - gi(v.) =
Lyi - @pi(Lyi [t4)" = api( L)1 (t,5) 7, where b,; > 1.

P Inventory cost of containers on leg i € I, of service r € R per unit travel time

M, Maximum number of ships of type v € V' in the fleet that can be chartered

t; Time spent at the i-th port of call on service r € R

{min Minimum possible sailing time of leg i € I,. on service r € R, which is equal to
L,; divided by the maximum ship speed obtainable

tr;- Maximum transit time allowed from the -th port of call to the j-th port of
call on service r, where i, j € I, with i # 7, which is the elapsed time from the

departure of a ship at the i-th port of call to the arrival of the ship at the j-th

port of call. If there is no transit time requirement for the two ports of call,

tmax

then we can simply set £775* to be a large number.

Uy Type of ships deployed on service r with v, € V', where r € R

Decision variables

my Number of ships to be deployed on service r € R to maintain a weekly service
frequency

i Sailing time on leg i of service r € R, which determines the sailing speed on
the leg

Quantities to be calculated
C*(v) Optimal objective function value (8) of model [P1-v]

C,.(m,) Optimal objective function value (9), which is the minimum sum of ship char-

tering costs and fuel costs of service r given m,. ships are deployed on r
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m Minimizer of function C,(m,), i.e., m! € argming,, c2,..m,} Cr(my), which
can be understood as the number of ships to be deployed on service r € R,, to
minimize C,(m,) without considering other services

m™®  Minimum number of ships to be deployed on service r € R, such that C,(m,)
is finite, i.e., m™™ := min{m, € {1,2,..., M,}|C,(m,) < +oo}

m,(6) Number of ships to be deployed on service r € R, for a given 6 as defined in

Lemma 7
my Optimal number of ships assigned on service r € R by solving model [P1-v]
my Number of ships deployed on service r € R in an e-approximation solution to [P1-v]

The speed optimization problem for a liner shipping network solely from the perspective
of shipping lines can be formulated as a mixed-integer nonlinear optimization model with
decision variables m, and t,;:

[P1-shipping line]  min Z Z CoMy + Z Z Qi (L ) 70 (£,5) 70 (1)

My trs
veEV reRy, reR iel,

subject to:
d ti+ Y ti = 168m,Vre R (2)
iEIr iEIT
Ztrk—l— Z te < ¥ VreRVielLVjel,j>i  (3)
k=i+1
L] ur
Ztrk+2trk+ > b +Zt7,k < e VreRViel Vjel,j<i (4
k=i+1
Zmr < M,YweV (5)
rER,
ty > tUvYrc RVicl, (6)
m, € Z,,¥reR. (7)
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The objective function (1) minimizes the sum of chartering costs of ships and fuel costs. Con-
straints (2) ensure the number of ships deployed could ensure a weekly frequency, in which
“168” is the number of hours in a week and we use “hours” as time units. Constraints (3)
and (4) guarantee a certain level of service to customers in terms of maximum port-to-port
transit times. Constraints (5) are the resource sharing constraints enforcing that the to-
tal number of ships of each type deployed cannot exceed the number of available ships in
the fleet. Constraints (6) define the minimum sailing time on each leg and Constraints (7)
require the number of ships deployed on each service is a nonnegative integer.

The speed optimization problem from the supply chain perspective in Wang (2016) is sim-
ilar to [P1-shipping line] except that the level-of-service constraints (3) and (4) are replaced

by a term in the objective function to represent the inventory cost:

[P1’-supply chain] 721}1511 Z Z CoMmy + Z Z ari(Lri)Hb”(tri)_b” + Z Z hyitri

veEV reRy reR iel, reR i€l

subject to Constraints (2), (5), (6) and (7). All of the algorithms we propose for [P1-shipping
line] are also applicable to [P1’-supply chain] with minimum revision. Hence, we will only
analyze [P1-shipping line| in the sequel.

It is not difficult to see that [P1-shipping line] can be decomposed for each ship type

veV:

- i (Lo b (b
[Pl U] rg},ltr,«ll Z CoMy + Z ZQTZ(LM) (tm) (8)

TERy r€R, i€ly

subjec to:

Dty o= 168m, — Y b, Vre R,

i€l i€l

j—1 j—1

St < = Y g, VreR, Vi jEL,j>i
k=i k=i+1

9
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< - Zthtrk V1€ Ry, Vi j €1, j <i
k=i+1

< M,

> tﬁm,VTER Vi e I,

€ Z.,¥r € R,.

As [P1-shipping line] involves solving |V| models of [P1-v], if [P1-v] can be solved in poly-

nomial time, [P1-shipping line] can also be solved in polynomial time. We thus focus our

attention on how to solve [P1-v] throughout the rest of the paper.

4. A Pseudo-polynomial-time Algorithm

4.1. Properties of the optimal cost of a service with a given number of ships

We first investigate the optimal sailing time t,; on each leg i € I,. of service r € R with a

given number of ships m,.. We have the following nonlinear programming model [P2(r, m,.)].

[P2(r, m,)] - Crlmy) = ey +mina Y (L) () 7

subject to:

Z tri

icly

7j—1
Ztrk
1A
Z trk + Z trk

tri

IN

IN

Y

T4

i€l
168m, — Y i
i€ly
j—1
trij — Z by, Vi € I, V) € I, >
k=i+1
1|
el DR +Ztm Vi€ LVjel,j<i
k=i+1

tmm‘v’TER Vi e I,.

re )

10

(9)
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We assume that [P2(r, m,.)] is feasible for at least one m, € {1,2,..., M,} for all r € R and
define C,.(m,) := +oo for all m, € [0, M,] such that [P2(r, m,)| is infeasible.
As the following Lemma 1 shows, the parametric optimal objective function value of

[P2(r, m,.)] turns out to be strictly convex in m, € [0, M,].

Lemma 1. We temporarily assume that the parameter m, in model [P2(r, m,)] can take
fractional quantities. For a given service r, C.(m,) : [0, M,] — R is a strictly convez function

of m,..

Proof. Given m,(ﬂl), m7(~3), 0<A<1,and m® = xm (1)+(1 )\)mr , denote by (t,; = =0

(1) (3)

I,) and (t,; =t i € I,.) the optimal sailing times in models [P2(r, m{")] and [P2(r, m\™)],

e )

respectively. Then, (t.; = tfj) = /\tﬁ) + (1 =Mt9 i € 1) is a feasible solution to [P2(r,

Y )

m,(?))] because all of the constraints in [P2(r, m,.)] are linear. We thus have

Com®) = com® 4 a3 an(L) o (12)
i€l
_b'ri
= ¢, mY + (1= )mP] 4+« Z i (L) 10 ()\tg) +(1-— A)tf?)
icl,

< cum® 4 (1= Nm] + a3 api(Le) 0 M) (1= X)) ]

icl,
= [cw )+ aZam pi) O (1))71’ +
ZEIT
(1 . /\ [CU (3) +Oézam m 1+bm t(3)) ]
'LEIT

b

where the inequality holds because function x~° is strictly convex as b,; > 1 and x > 0. [

Lemma 1 implies

11
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Corollary 1. Consider integer values of m,.. For a given service r, C,.(m,.) : {0,1, ..., M} —

R satisfies C.(m, + 2) — Cr.(m, + 1) > C.(m, + 1) — C.(m,), m, =0,1,..., M, — 2.

Note that model [P2(r, m,)] minimizes a separable convex function subject to linear
constraints. Thus, we have Lemma 2 that follows from the time complexity analysis of the
proposed scaling algorithm in Theorem 12 of Chubanov (2016) and its subsequent discussion

“the scaling algorithm is polynomial, provided that we use a polynomial algorithm for LP”.

Lemma 2. Model [P2(r, m,)] can be solved in polynomial time with regard to the size of the

mput using interior point methods.

4.2. Definitions and domain of the number of ships to deploy on a ship route

Definition 1. Define m as the best number of ships deployed on service r € R, without

considering other services. In case of tie, choose the smallest m?. That is

my =min{m, € {1,2,..., M,}|C.(m,) < C.(m.),Ym. € {1,2,...,M,}}.

Definition 2. Define (m, = m},r € R,) as the optimal solution to [P1-v].

It is very easy to see that if ) ., m; < M,, then (7h; = m;,r € R,) is an opti-

T

mal solution for [P1-v]. Therefore, unless otherwise specified, in the following we assume

ZT’ERU m: > MU‘

Definition 3. Define m™™" as the smallest number of ships to be deployed on service r € R,

such that [P2(r, m,)] is feasible. That is

m™ = min{m, € {1,2,..., M,}|C.(m,) < +oc}.

T

Definition 3 implies that if Y- _. m™ > M,, then [P1-v] is infeasible; if Y _, m™" =

M, then the only feasible solution to [P1-v] is (m, = m™" r € R,), which is of course

12
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optimal. Hence, in the sequel we always assume that ) . R, m™n < M, — 1. Moreover, if

for a service r € R, we have m™™ = m*, then in at least one optimal solution to [P1-v] the

- =

min

" and hence this service can be excluded from

number of ships deployed on the service is m
the model. Therefore, we also assume that m™® < m* — 1 for all » € R,. Naturally, The
optimal solution to [P1-v], (m, = m},r € R,), satisfies m™® < m* < m* r € R,.

Lemma 1 implies

min
ro

Corollary 2. C.(m,) < +oo for all m, = m™" m™® + 1 ... m* because m, is a conver

min

combination of m)

and m;.

Lemma 3. The value of m™®, if exists (i.e., [P2(r, m,)] is feasible for at least one m, €

{1,2,...,M,}), can be determined in the following manner:

m™ = min {mr €{1,2,... M,}|168m, > > tn" 4+ Zt} . (14)

i€l i€l

Equivalently,

(15)

min __ Zieh tﬁin + Zig[r tAri
m - )
' 168

where [x] is the smallest integer larger than or equal to x.

Proof. Evidently, no m, smaller than m™" defined in Eq. (15) is feasible. Hence, we just

need to prove that C,(m™") < +oco. Suppose that C,(m™") = +o0o and there exists an

T T
m!. > m™" such that C,.(m)) < +oo. Let (t,; = t.,,i € I,) be the optimal solution to [P2(r,

min

mim ] in the following manner:

m,.)]. Then we can construct a feasible solution to [P2(r, m

~

168mp™ — 37 )t =3y b

by =t 4 () — min . —iel,
( ) 168m;, = > e, ti™ = Dier, tri
meaning that [P2(r, m™")] is feasible and thereby C,(m™") < +oo0. O

13
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Lemma 4. Checking whether C,(m™") < +o00, in which m™® is defined in Eq. (15), can
be done by solving the following linear programming model and hence can be completed in

polynomial time.
min 0 (16)

subject to Constraints (11), (12), (13) and

Dty =168mr" =Y i

i€l i€l

4.8. Solving [P1-v] in pseudo-polynomial time

Based on Corollary 1, Wang (2016) proved the following Theorem 1.

Theorem 1. Solution (m, = m;,r € R,) is optimal to [P1-v] if and only if: 3 _p m; = M,
and for any two services ry € R, and ry € R, we have C,, () —1)—=C, (m)) > Cy,(m;,) —
Cr, (M, +1). In words, shifting one ship from service ry to service vy cannot reduce the total

cost.

Based on Theorem 1 and similar to Wang (2016), we can develop the following pseudo-
polynomial-time Algorithm 1 for [P1-v].

Remark 1 asserts that Algorithm 1 is of pseudo-polynomial computational time.

Remark 1. In Step 0 of Algorithm 1, [P2(r, m,.)] is solved |R,|M, times. Lemma 2 implies
that [P2(r, m,)] can be solved in polynomial time of the input. Therefore, the time complex-
ity of Step 0 is |R,|M, times the complexity of the scaling algorithm of Chubanov (2016).
Step 2 of Algorithm 1 is repeated at most M, times, each of which has a complexity of |R,|.
Therefore, Algorithm 1 can find an optimal solution to [P1-v] in pseudo-polynomial time as

the time complexity depends on the value of M,,.

14
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Algorithm 1: A PSEUDO-POLYNOMIAL-TIME ALGORITHM FOR [P1-v]

Step 0. For each service r € R, calculate m™™ by Eq. (15). Check whether [P2(r, m™")] is
feasible (Lemma 4). If there is an 7' € R, such that [P2(r/, m®%™)] is infeasible,
[P1-v] is infeasible and stop.

Step 1. For each service r € R,, obtain C,.(m,) for each m, € {m™® m™" +1 ... M,} by
solving [P2(r, m,)|. Find m} € argmin,, cq12,..0m,3 Cr(m,). Define 1, := m;.

Step 2. If ) . m, < M,, then (m, = m,,r € R,) is the optimal solution to [P1-v] and
stop.

Step 3. Set C,.(m™™ — 1) <~ +oco. Find a service r* satisfying

r

r* € arg min[C,.(m, — 1) — C,.(m,)].
rER,
That is, reducing one ship on service r* leads to the smallest increase in the total
cost.
Set M« < m,+» — 1. Go to Step 2.

5. A polynomial-time algorithm to solve [P1-v]

We strengthen the results in the above section as well as the results in Wang (2016) by
proposing a polynomial-time algorithm based on a bi-section search scheme. To this end, we
need to construct a parameter that is amenable to the bi-section search and closely related
to the optimal solution to model [P1-v]. Prior to this step, we examine more properties of

model [P2(r, m,)].

5.1. A parameter 0 that is amenable to bi-section search

Theorem 1 can be restated as:

Lemma 5. Solution (m, = m;,r € R,) is optimal to [P1-v] if and only if Y . My = M,
and there ezists a value 0* such that C.(m}: — 1) — C.(m}) > 0* > C,.(m}) — C.(mk + 1) for
all services v € R,. (We define C.(M, + 1) := 400.)

Proof. The “if” part is proved first. For any two services r, € R, and 5 € R, \ {r1}, the

definition of 6* implies

15
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Chy (g, — 1) = Gy (1},) > 07 > Cyy (1r,) = G, (125, + 1),

T1 T1

which yields
Cﬁ (m* - 1) - Crl (m;ﬁl) 2 07“2 (m:2> - CT‘Q (m:g + 1)'

T1

Then, it follows from Theorem 1 that (m, = m},r € R,) is an optimal solution to model
[P1-v].
We then prove the “only if” part. Consider a particular service r; € R,. Theorem 1

implies that

CTl (m* - 1) - CTl (m;) > CT2 (m:2> - CT2 (m:Q + 1),V7’2 € RU \ {Tl}'

T1

Corollary 1 implies

Gy (1, — 1) = Cy, (12,) > Cyy (102) = Cry (F, +1), Y7y € Ry,

1

Combining the above two equations,

C, (175 — 1) — Gy, (i7,) > Co(if) — Cyy (i + 1),V € R,.

T1

That is,
Cy (my, — 1) = Gy (M) > max|C. () — Cr(my + 1))

m reR, "

As ry can be any service, we have

: Ak _ Ak > AN Ak
min G, (i — 1) = Cr (1) ] > max{C (i) — Cr (1 + 1))

Hence, 6* := max,egr, [C, (1)) — C.(m} + 1)] satisfies the lemma. O
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As it will soon be clearer in the subsequent Eq. (20) and Algorithm 2, the main process of
the polynomial-time algorithm uses a bi-section search scheme over the domain of parameter
0, which measures the (negative) marginal cost of a service with respect to the number of
ships deployed on the service, i.e., C.(m,) — C.(m, + 1). Hence, we need to find a finite

domain of 6.

5.2. Upper bound on the domain of 0

When one more ship is deployed on a service r € R,, the ship chartering cost is in-
creased by ¢, and the fuel cost is reduced. When the ships sail at the highest speed, the
fuel consumption is the highest and can be computed by a7, ; api(Ly;)" "ori (t05") 0 If
Y icp @i Lyg) o () b < ¢y, then the marginal ship chartering cost of deploying one
more ship is always larger than the marginal benefit of fuel savings. As a result, the smallest

min
T

number of ships m™" should be deployed on r. Otherwise, in Lemma 5, we must have

Co(riy) = Co(imp + 1) < | > api(Lyg) Pri(E3™) ™" | — ¢, Vr € R,.

I
i€l

Hence, the value of #* in Lemma 5 has an upper bound 6™** defined as
075 = max a Y api(Ly) ()T — ¢, (17)
il

5.8. Procedures and properties used for designing a polynomial-time algorithm

We now state a few procedures and properties that will be used for designing a polynomial-

time algorithm.

Lemma 6. Finding the best number of ships to be deployed on service r € R, without
considering other services, i.e., finding m) € arg ming,, cqi,2...m,3 Cr(my), can be completed

in polynomial time.
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Proof. As C,.(m,) is convex, we can solve model [P2(r, m,)] with different m,’s in a golden
section search manner over m, = 1,2,..., M,. Because m, is an integer, model [P2(r, m,)]
needs to be solved at most O(log M,) times. Since model [P2(r, m,)] can be solved in

polynomial time, m; can be found in polynomial time. O

Using (m,r € R,), the smallest value of 6 is defined as

o™ .= max(C,(m}) — Cp.(m* +1)). (18)

TER'L}

Since later we will use bi-section on 6 over the domain [#™", 6™>] we need a finite 6™,
If C.(mf+ 1) = +oo for all » € R,, then without loss of generality, we can assume the

C,(m* + 1) are not infinity but a very large number. In particular, we define

Co(my +1) =) [m:ﬂncv oY ap(Ly) (tf;in)‘b"i] 7 € R,

TER’U ielr

and ™" is redefined as

™" = max Cp(my) — Y [mf‘incv o) (L)t (tﬁn)—bm‘] : (19)

reR, .
re€R, i€l

The following Lemma 7 can then be obtained.

Lemma 7. Consider any 0 € [0™™ 0™*|. Then, for any r € R,, there erists m,(f) €

min

min pmin 40 om*} (i.e., the number of ships to be deployed on service r € R,) such

{m
that

Moreover, finding m,(0) can be completed in polynomial time with bi-section search.

Proof. The result holds because C,.(m})—C,(m*+1) < ™" and C,(m™»—1)—C,(m™") = oo

r

(we define C,.(0) = +00). O
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321

Recall that we assume » . m; > M,. Then, the following Lemma 8 holds.
Lemma 8. It holds that ) . m,(0™™) > M,.

Proof. By definition of m, C,.(m; — 1) — C.(m}) > 0 for all » € R,. Eq. (18) implies that
gmin < 0. Then C,(m} — 1) — C.(m?) > 0™ for all r € R,. Together with the definition of

™™ in Eq. (18) we have m,(6™™) = m for all 7 € R, and thereby > . m,(0™") > M,. [
Corollary 1 implies that

Lemma 9. For a service r € R, m,.(6) decreases strictly monotonically with 0.
The following Lemma 10 follows from Lemma 5 with Lemma 9.

Lemma 10. Recall that (m, = m},r € R,) is the (to be determined) optimal solution to

[P1-v] with Y, . p i = M,. Consider any 6 € [™",0™>]. The following results hold:
(1) If > cp, mr(0) < My, then m,(0) < 1y for all v € R,.
(2) If 3 e, mr(0) > M,, then m,(0) > m; for allT € R,.

Proof. We only need to prove (1). Result (2) follows from a similar argument. Lemma 5
implies that there exists 0* such that m; = m,.(6*) and ) ., m.(0*) = M, for all r € R,.

Lemma 9 implies that ) . m,(¢) decreases monotonically with 6. Hence, if . m,(0)

A\

M, =3 ,cp, m:(0%), we have 0 > 0*. Using Lemma 9 again, we have m,.(0) < m,(0%) = m

*
"

U

for all r € R,,.

The following Lemmas 11 and 12 are the most important for establishing the polynomial-

time algorithm.

Lemma 11. For any 0, if Y .p m.(0) < M,, then it follows from (20) that increasing the
number of ships deployed on v from m,(0) to m,(0)+1 reduces the total cost by at most 0. The

convezity of C.(m,) implies that increasing the number of ships deployed on r from m,(0) to

19



322

323

324

325

326

327
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329

my reduces the total cost by at most 0(m:—m,(0)), i.e., C.(m,.(60))—C,.(m}) < 0(mi—m,.(0)).

Hence,

Y Come(0) = Y Coliieg) < Y 61y —me(6)) = 6(M, — Y m,(6)).

reRy reRy rERy rERy

Lemma 12. Consider any 61 > 0y such that ZTGRU m.(01) < M, and ZreRv m,.(02) > M,.
Then, there exists an integer vector (m, := myi,r € R,) with m,.(01) < m} < m,(62) such

that 3, cp my = M, and

Z Cr(my(61)) — Z Cr(my) = Z Oo(my — my(61)) = b2 | M, — Z mr(91)> . (21)

reR, rERy reR, ( reR,

Proof. Let 7 be such that

v |Ro|
Po= omin g € {12, [RFD) me(0a) + Y ma(61) > M, p (22)
r=1 r=r/+4+1
Note that 7 € R, exists since ) _p m,(62) > M,. Define
m,.(02) for r=1,2,...,7—1,
my = m,.(61) for r=r+1,7+2,... R, (23)
It follows from (22) that
-1 |yl
S () + ma(0) + S ma(6) = M, (24)
r=1 r=r+1
-1 | Ry
D ma(0a) + ma(6r) + Y ma(6) < M, (25)
r=1 r=f
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338

It follows from (24) that m} = M, — )

rero\ {1} M < mi(62) and it follows from (25) that
<

my = My=3 cpogey M > mp(01). Thus, my(61) < m; < mi(02). Thus, (m, == m;,r € Ry)

is an integer vector with m,.(6,) < m; < m,(0;). Clearly, > ., m; = M,.
It follows from (20) that increasing the number of ships deployed on r by 1, as long as
the number after increase does not exceed m.,.(6s), leads to a cost reduction at least 65, which

further gives (21). O

We present the polynomial-time algorithm in Algorithm 2.

Algorithm 2: A POLYNOMIAL-TIME ALGORITHM FOR SOLVING [P1-v]

Input: [P1-v] model, [P2(r, m,)] model for all r € R,, € > 0. Set index x < 1.

Output: e-optimal solution (), r € R,) to the [P1-v] model

Step 0. Pre-processing. Execute Algorithm 3.

Step 1. Set 6 < (UB" + LB*)/2. For each r € R,, use bi-section search to find the
number of ships to be deployed, denoted by m,.(#), such that (20) holds
(Lemma 7).

Step 2. If ) ., m,(0) = M,, then (1
[P1-v] and stop (Lemma 5).
Step 3. If ) .p m,(0) > M,, then (m, = m,(0),r € R,) is infeasible to [P1-v]. We
thus need to increase the value of # (Lemma 9). Set LB*™! < 6,
UB"*! «+ UB", k + k+ 1, and go to Step 1.

m,(0),r € R,) is the optimal solution to

Step 4. If Y .. m,(0) < M,, then (m, = m,(0),r € R,) is feasible but not optimal.

We first check the optimality gap.

(4.1) If (0 — LB")M, <€, i.e., if |§ — LB*| < ¢/M,, find an integer vector
(m, :=mk,r € R,) such that m,(0) < m: < m,(LB") and
> rer, Mr = M, according to (23). Then, (1 :=m;,r € R,) is an
e-approximation solution and stop.

(4.2) TIf (0 — LB*)M, > ¢, set UB"™ «+ 0, LB*"! < LB* k + r+ 1, and go to
Step 1.

Recall that C*(v) is the (unknown) optimal objective function value of [P1-v]. Define

tolerance error € > 0 and the algorithm will stop if we find a solution with objective value
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Algorithm 3: THE PRE-PROCESSING IN ALGORITHM 2

Input: [P1-v] model, [P2(r, m,)] model for all r € R,

Output: UB!, LB!, (m™" r € R,), (m¥,r € R,)

Step 0. For each service r € R, calculate m™™® by Eq. (15). Check whether [P2(r,

m™™)] is feasible (Lemma 4). If there is an 7’ € R, such that [P2(r/, m%™")] is

infeasible, [P1-v] is infeasible and stop.

Step 1. For each service r € R,, use bi-section search on m, € {m™" m™® + 1, ... M,}
to find the optimal solution to [P2(r, m,.)], denoted by m* (Lemma 6). If

Y e r, My < M,, then we should deploy m; ships on service r and stop.

Step 2. Check each service r € R,. If m* = m™n, then we should deploy m; ships on it
and hence we set M, < M, —m} and R, < R, \ {r}. If R, = &, stop.

Step 3. Compute 6™** by Eq. (17). Compute ™™ by Eq. (18) or Eq. (19).

Step 4. Set upper bound UB! := §™% lower bound LB! := g™,

of at most C*(v) 4+ €. We define a upper bound on 6 as UB" := §™* and a lower bound on
0 as LB' := 0™". Note that it follows from Lemma 8 that 3 _. m,(LB") > M,.

The following Remark 2 guarantees the validity of the stopping criterion in Step (4.1).
Remark 2. If Algorithm 2 stops in Step (4.1), then »_ . C.(m;)) — C*(v) < e.
To see this, Lemma 11 implies that

D Co(ma(8)) = C*(v) < O(M, — Y mi(6)). (26)

rERy r€R,

Note that (m, = m,(LB"),r € R,) is infeasible as ) ., m.(LB*) > M,. We can thus
choose an integer vector (m, := m},r € R,) such that m,(0) < m' < m,(LB") and

> rer, My = M, according to (23), then (m, := m;,r € R,) is feasible to [P1-v] and
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Lemma 12 implies

> Crme(0)) = Y Co(my) = LB (M, — > m,(6)). (27)

reR, reR, reR,

Egs. (26) and (27) lead to

> Co(my) = C*(v) < (0 — LB)(M, — Y _ m,(0)) < (0 — LB")M,.

The following Remark 3 claims that Algorithm 2 is a polynomial-time algorithm with

respect to precision € > 0.

Hmax_gmin

Remark 3. Step 1 of Algorithm 2 is implemented for O (log pivh

) times, i.e.,

O (log(]\/lv(emaLX — 0™™)) + log 1)
€

times. Each iteration of Step 1 needs to find |R,| values of m,.(6), which can be completed
in polynomial time according to Lemma 7. Therefore, Algorithm 2 can find an optimal

solution to [P1-v] in polynomial time.

Remark 4. The sequence of solutions (m) := m’,r € R,) obtained in Step (4.1) of Algo-

r

rithm 2 in different iterations x converges to the optimal solution with rate of convergence

O (1/2%), meaning that the sequence (m’ := m*,r € R,) in different iterations s approxi-

mately linearly converges to the optimal solution.

6. Numerical experiments

In this section we report the results of computational experiments. The experiments are
implemented on a PC equipped with 3.30GHz of Intel Core i5 CPU and 4GB of RAM. The

algorithm is coded in Matlab 2011b.
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6.1. Efficiency of Algorithm 2

The first group of test instances is on sailing speed optimization, i.e., Model [P1-v]. We
solve the problems using Algorithm 2, in which Model [P2(r, m,.)] is solved by the interior
point method of Matlab function “fmincon”.

We consider ships with a capacity of 8,000 twenty-foot equivalent units with parameters
c, = $210,000/week, a,; = 4.667 x 107*, b = 2.118, and #,; = 24 hours (Wang and Meng,
2012b). The bunker price v = $200/ton. We consider different combinations of the number of
services |R,| € {5,10,15} and maximum number of ports of call on a service (max,cg, I;) €
{5,10,15} (Ng, 2014). The number of ships of type v in the fleet is M, := [0.8 x |R,| X
max,cgr, I.|. The voyage distance of a leg L,; is uniformly generated between 1 and 5000

min

nautical miles. The minimum sailing time ¢;

is equal to L,; divided by the maximum

max
r1J

sailing speed, which is defined to be 25 knots. The maximum transit time t%2* is equal to
twice the minimum possible transit time from the ith port of call to the jth on service r.
For each combination of |R,| and max,cg, I, we randomly generate 20 instances, each of
which has different numbers of ports of call on a service (uniformly generated between 2 and
max,cg, I) and different voyage distances of a leg. The computation error € in Algorithm 2
is set to be $100/week.

The results of computation time are reported in Table 1. We can see that as expected,
the computation time increases with the number of services and the maximum number of
ports of call on a service. The number of services has a larger impact on the computation
time than the maximum number of ports of call on a service. Overall, Algorithm 2 is very
efficient: when there are 15 services with a maximum of 15 ports of call on a service and
180 ships in the fleet, the average computation time is less than half a minute. Finally, we

note that most of the computation time is spent in solving Model [P2(r, m,)] by the interior

point method of Matlab function “fmincon”.
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Table 1: Average computation time per instance of the sailing speed optimization problem

|R,| max.er, I, M, CPU time (s) || |R,] max,cr, I, M, CPU time (s)
D ) 20 1.7238 10 10 80 7.8328
d 10 40 1.5366 10 15 120 8.9498
d 15 60 2.1185 15 10 120 17.8301
10 ) 40 4.5451 15 15 180 26.0646

6.2. Comparison between Algorithm 1 and Algorithm 2

The second group of test instances is conducted in order to show the superiority of
Algorithm 2, the polynomial algorithm, over Algorithm 1, the pseudo-polynomial algorithm.
We consider similar settings as the ones in Section 6.1. The random test instances have
different numbers of services: |R| € {5, 10,20, 50,100}. For each |R|, we randomly generate
20 instances, each of which has different numbers of ships. Moreover, different services have
different voyage distances and time spent at port. The computation error € is set to be 1.

We let all ™™ be 0 and all tyi;* be infinity. As a result, given the number of ships to
deploy on a service, we can easily solve [P2(r, m,)]) as the optimal speeds on different legs are
the same. Therefore, we compare the number of times C,.(m,.) is computed (through solving
[P2(r, m,)]) when Algorithm 1 is used and that when Algorithm 2 is used. The results are
reported in Table 2, where the column “#Pseudo-polynomial” means the average number of
times C.(m,) is computed per instance by Algorithm 1, the column “#Polynomial” means
the average number of times C,.(m,) is computed per instance by Algorithm 2, and the
column “Ratio” is the ratio of the computation times by the two algorithms. We stress
again that we report the number of times C,.(m,) is computed because both algorithms
are very efficient. From the results we can see that the polynomial algorithm significantly
reduces the number of times C,.(m,) is computed. More importantly, when the problem
size increases, the advantage of the polynomial algorithm over the pseudo-polynomial one
is more evident. This provides strong evidence of the practical relevance of the polynomial

algorithm.
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Table 2: Average number of times C,.(m,.) is computed per instance by the two algorithms

|R| | #Pseudo-polynomial #Polynomial Ratio
5) 140.60 61.05 2.3
10 613.50 158.30 3.9
20 2372.70 376.50 6.3
50 16122.95 1150.55 14.0
100 63857.50 2581.75 24.7

7. Concluding comments

In this paper, we looked into the containership sailing speed optimization problem, in
which a container shipping line needs to allocate its limited resources (i.e., containerships)
over a network of services (i.e., ship routes). The problem can be formulated as a mixed-
integer nonlinear programming model from the perspective of supply chain management
and a model from the perspective of shipping lines. The main contribution of our research
lies in that we show the sailing speed optimization problem with containership resource
sharing is not NP-hard, but in P, by proposing a polynomial-time algorithm that can be
used to solve both the models. The algorithm uses a bi-section search method over a finite
domain of a parameter that measures the marginal cost of each service and finds an e-
approximation solution in polynomial time. We provided various theoretical results that
justify the validity of the algorithm. While our algorithm was designed with the intention
to solve the sailing speed optimization problem, it could potentially be applied to solve a
general class of mathematical programming models that can be decomposed as a bunch
of sub-models linked with a resource sharing constraint, such as how to allocate buses to

different bus routes (Liu et al., 2016), and how to allocate trains to subway routes.
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