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Abstract

The sailing speed optimization problem aims to determine the optimal cruising speeds of

ships by balancing the number of ships required on services, the fuel consumption, and

the level of service provided for customers. The level of service can be incorporated into a

sailing speed optimization model from the perspective of supply chain management or from

the perspective of shipping lines. We design a polynomial-time algorithm workable to solve

the two models based on bi-section search methods. The novelties of the algorithm include

constructing a new parameter on which the bi-section search will be executed and deriving

a near-optimal solution by taking advantage of the problem structure. We also provide

theoretical results that guarantee the validity of the polynomial-time algorithm.

Keywords: Bi-section search, Containership, Sailing speed, Bunker fuel, Transit time,

Polynomial-time algorithm

1. Introduction1

In this paper, we study the well-known containership sailing speed optimization problem,2

in which a container shipping line needs to determine the number of ships to be deployed3

on each service (or equivalently, ship route) as well as the sailing speed for each leg on each4
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service to minimize the total cost.5

To solve the problem, several trade-offs need to be balanced. First, the shipping line6

has a limited fleet of containerships, which causes that, if one service uses too many ships,7

the shipping line may fall in short of containerships for other services. Second, if one or8

more ships are removed from an existing service, the remaining ships have to sail faster9

in order to maintain a 7-day service frequency. As a result, the faster sailing speed will10

incur a higher fuel consumption rate, since it has been well known that the daily bunker11

consumption is approximately proportional to the sailing speed to the power three. On the12

other hand, the shipping line could reduce fuel consumption by utilizing as many ships as it13

can. However, doing so might create a need of running more ships and produce a potential14

cost for chartering extra ships. Third, a lower sailing speed saves fuel consumption but15

often leads to a longer port-to-port transit time, which increases the pipeline inventory of16

customers. Hence, a low sailing speed might not be favored from customers’ point of view.17

There are two different voices on how to address the impact of transit time (equivalently,18

sailing speed) in the problem. The first one advocates minimizing the supply chain cost19

that includes the container shipping line’s cost (ship chartering cost and fuel cost) and the20

customers’ cost (pipeline inventory cost) (Álvarez, 2012; Kim, 2014). In this approach, longer21

transit time is penalized by higher inventory costs. The rationale behind this approach is22

that by taking into account customers’ inventory costs, the shipping line actually provides23

higher customer service levels. It will thereby be rewarded as customers are willing to pay24

higher freight rates and/or let it transport more of their cargoes. The other is solely from25

the perspective of a shipping line and suggests minimizing the sum of the chartering cost26

of ships and fuel cost while providing a certain level of service to customers by imposing a27

maximum port-to-port transit time constraint (Karsten et al., 2015). The idea is that it is28

very difficult for the shipping line to obtain accurate information on customers’ inventories29

as there are too many customers, and even if it can, the shipping line will not be immediately30

2



rewarded. Therefore, the shipping line could simply impose a maximum port-to-port transit31

time constraint and exclude the cargo inventory costs from its objective function. Liner32

service planners from Orient Overseas Container Line (OOCL) told us that they determine33

the port-to-port transit time for key legs (e.g., the leg from the last port of call in Asia to34

the first port of call in North America on a trans-Pacific service) based on the prevailing35

transit time of the shipping market. Similar to Karsten et al. (2015, 2016), our study also36

defines the transit time constraints on each service individually.37

Given a fleet of containerships to be deployed in a liner shipping network, Wang (2016)38

proposed a pseudo-polynomial-time algorithm to solve the sailing speed optimization model39

that is built from the perspective of supply chain management so as to minimize the supply40

chain cost. This paper formulates the problem as a mathematical programming model from41

the perspective of shipping lines, with the objective to minimize the sum of the chartering42

cost of ships and fuel cost subject to the maximum allowed transit times between ports on43

individual services. This paper extends the work of Wang (2016) and makes the following44

contributions to the literature on shipping service design:45

(1) We show that the model from shipping lines’ perspective can also be solved in pseudo-46

polynomial time in the size of the problem.47

(2) We propose a polynomial-time algorithm workable for solving the speed optimization48

model formulated from the perspective of supply chain management or from the per-49

spective of shipping lines based on bi-section search methods. The novelties of the50

algorithm include constructing a new parameter on which the bi-section search will51

be executed and deriving a near-optimal solution by taking advantage of the problem52

structure. The polynomial-time algorithm improves over the pseudo-polynomial-time53

algorithm in Wang (2016).54

(3) We also provide theoretical results that guarantee the validity of the polynomial-time55

algorithm.56
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2. Literature Review57

Unlike road transport in which the speeds of vehicles are determined by traffic conditions,58

in maritime transport the speeds of ships are mainly determined by economical considera-59

tions. In particular, the daily fuel consumption of a ship increases dramatically with the60

speed, often proportional to the speed cubed (Notteboom and Vernimmen, 2009) or even61

proportional to the speed to the power of four or higher (Du et al., 2011; Song and Dong,62

2013; Meng et al., 2016). As a result, slow steaming saves fuel costs. On the other hand,63

slow steaming means more ships are required on a liner service in order to provide a weekly64

frequency. Hence, a natural choice of speed is to balance the trade-off between ship char-65

tering costs and fuel costs in an optimal manner. To this end, Ronen (2011) optimized66

the speed of containerships for a liner service by enumerating all of the possible number of67

ships to be deployed; Wang and Meng (2012b) optimized the speed of containerships for a68

network consisting of many liner services by solving a mixed-integer nonlinear programming69

model. Du et al. (2015) proposed a practical fuel budget problem that aims to determine a70

group of bunker fuel budget values for a liner container ship over a round-trip voyage under71

uncertainties caused by severe weather conditions and addressed the problem with robust72

optimization techniques. Psaraftis and Kontovas (2013, 2014) have presented comprehensive73

reviews on ship speed optimization taxonomy, models, and algorithms.74

There are also many models that integrate ship speed optimization with other planning75

decisions. As the ship speed affects the bunker consumption and thereby pollutant emission,76

a number of models for determining the sailing speeds while incorporating pollutant emission77

have been developed (Cariou, 2011; Kontovas and Psaraftis, 2011; Kim et al., 2012, 2013,78

2014; Mansouri et al., 2015; Song et al., 2015; Wong et al., 2015). When different bunker79

fuel prices at different ports are taken into account, the sailing speed decisions must be80

made in combination with the choice of bunkering ports (Yao et al., 2012; Kim, 2014; Ghosh81

et al., 2015). The sailing speed is also closely related to the schedule design for liner services82
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because once the planned arrival and departure time at each port of call is determined, the83

planning sailing speed from one port to the next is also determined. Schedule design may84

also be examined accounting fortransit time limits (Wang and Meng, 2012a) and port time85

uncertainty (Qi and Song, 2012; Wang and Meng, 2012a). In reality, ships are often not86

able to follow the planned schedule and in case of delay, ships often speed up. As a result,87

ship speed optimization is also used for analyzing schedule reliability (Song et al., 2015) and88

schedule recovery at the operational level (Li et al., 2015, 2016). Ship speed optimization89

is also modeled in the context of line network design (Karsten et al., 2016), tramp shipping90

(Hvattum et al., 2013), and transit-time-sensitive demand (Wang et al., 2013).91

Slow steaming means a long port-to-port transit time, which increases the pipeline inven-92

tory of the customers. Hence, the sailing speed should not be too low from the customers’93

point of view. Álvarez (2012) argued that the level of service experienced by the shippers94

under different fleet configurations should be properly addressed, for which the inventory95

holding costs are used as a practical alternative to represent the shippers’ level of service in96

a liner network. Kim (2014) presented an interesting Lagrangian heuristic to optimize the97

sailing speeds for a liner service while taking into account the time cost (inventory cost) of98

the containers in the objective function. Wang (2016) proposed a pseudo-polynomial-time99

algorithm to determine the optimal speed for each leg of each service in a liner network with100

the objective of minimizing the sum of chartering costs of ships, fuel costs, and inventory101

costs. Both Kim (2014) and Wang (2016) adopted the supply-chain approach for speed102

optimization.103

Another possible approach for speed optimization is solely from the perspective of the104

shipping line: minimizing the sum of chartering costs of ships and fuel costs while imposing105

a maximum port-to-port transit time constraint. A relevant study is Karsten et al. (2015),106

which decides how to transport containers considering a maximum port-to-port transit time107

constraint without optimizing the speeds for containerships. Karsten et al. (2016) extended108
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their previous research by designing a liner shipping network considering a maximum port-109

to-port transit time constraint on individual services.110

Features that distinguish our research from most of the existing studies include: (1)111

for the deployment of vessels on the services the vessels are taken from a pool shared by112

all the services and therefore this optimization of the individual services is interdependent;113

(2) we examine two models that incorporate the level of service from the perspective of114

supply chain management and from the perspective of shipping lines, respectively; in the115

latter the transit time constraints are only defined on each service individually; (3) most116

importantly, we propose a polynomial-time algorithm for obtaining the optimal speeds for117

both the models.118

3. Problem Description119

We list the notation used in the paper below:120

Sets121

R Set of services in a liner shipping network; r ∈ R refers to a service122

V Set of ship types; v ∈ V refers to a ship type123

Rv Set of services that use ships of type v ∈ V124

Ir Set of legs on service r ∈ R; i ∈ Ir denotes the leg from the i-th port of call to

the (i+ 1)-th port of call
125

Z+ Set of nonnegative integers126

Parameters127

α Bunker fuel price128

cv Chartering cost of a ship of type v ∈ V per week129

vri Sailing speed of ships on leg i ∈ Ir, where r ∈ R130

Lri Travel distance along leg i ∈ Ir, where r ∈ R131
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gri(vri) := ari(vri)
bri . Fuel consumption per unit distance on leg i of service r as

a function of sailing speed vri. Note that ari and bri are both parameters.

Thus, the total fuel consumption on the leg is computed as Lri · gri(vri) =

Lri · ari(Lri/tri)bri = ari(Lri)
1+bri(tri)

−bri , where bri > 1.

132

hri Inventory cost of containers on leg i ∈ Ir of service r ∈ R per unit travel time133

Mv Maximum number of ships of type v ∈ V in the fleet that can be chartered134

t̂ri Time spent at the i-th port of call on service r ∈ R135

tmin
ri Minimum possible sailing time of leg i ∈ Ir on service r ∈ R, which is equal to

Lri divided by the maximum ship speed obtainable
136

tmax
rij Maximum transit time allowed from the i-th port of call to the j-th port of

call on service r, where i, j ∈ Ir with i 6= j, which is the elapsed time from the

departure of a ship at the i-th port of call to the arrival of the ship at the j-th

port of call. If there is no transit time requirement for the two ports of call,

then we can simply set tmax
rij to be a large number.

137

vr Type of ships deployed on service r with vr ∈ V , where r ∈ R138

Decision variables139

mr Number of ships to be deployed on service r ∈ R to maintain a weekly service

frequency
140

tri Sailing time on leg i of service r ∈ R, which determines the sailing speed on

the leg
141

Quantities to be calculated142

C∗(v) Optimal objective function value (8) of model [P1-v]143

Cr(mr) Optimal objective function value (9), which is the minimum sum of ship char-

tering costs and fuel costs of service r given mr ships are deployed on r
144
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m∗r Minimizer of function Cr(mr), i.e., m∗r ∈ arg minmr∈{1,2,...,Mv}Cr(mr), which

can be understood as the number of ships to be deployed on service r ∈ Rv to

minimize Cr(mr) without considering other services

145

mmin
r Minimum number of ships to be deployed on service r ∈ Rv such that Cr(mr)

is finite, i.e., mmin
r := min{mr ∈ {1, 2, . . . ,Mv}|Cr(mr) < +∞}

146

mr(θ) Number of ships to be deployed on service r ∈ Rv for a given θ as defined in

Lemma 7
147

m̂∗r Optimal number of ships assigned on service r ∈ R by solving model [P1-v]148

m̄∗r Number of ships deployed on service r ∈ R in an ε-approximation solution to [P1-v]149

The speed optimization problem for a liner shipping network solely from the perspective150

of shipping lines can be formulated as a mixed-integer nonlinear optimization model with151

decision variables mr and tri:152

[P1-shipping line] min
mr,tri

∑
v∈V

∑
r∈Rv

cvmr + α
∑
r∈R

∑
i∈Ir

ari(Lri)
1+bri(tri)

−bri (1)

subject to:153

∑
i∈Ir

tri +
∑
i∈Ir

t̂ri = 168mr,∀r ∈ R (2)

j−1∑
k=i

trk +

j−1∑
k=i+1

t̂rk ≤ tmax
rij ,∀r ∈ R, ∀i ∈ Ir, ∀j ∈ Ir, j > i (3)

|Ir|∑
k=i

trk +

j−1∑
k=1

trk +

|Ir|∑
k=i+1

t̂rk +

j−1∑
k=1

t̂rk ≤ tmax
rij ,∀r ∈ R, ∀i ∈ Ir, ∀j ∈ Ir, j < i (4)∑

r∈Rv

mr ≤ Mv,∀v ∈ V (5)

tri ≥ tmin
ri ,∀r ∈ R, ∀i ∈ Ir (6)

mr ∈ Z+,∀r ∈ R. (7)
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The objective function (1) minimizes the sum of chartering costs of ships and fuel costs. Con-154

straints (2) ensure the number of ships deployed could ensure a weekly frequency, in which155

“168” is the number of hours in a week and we use “hours” as time units. Constraints (3)156

and (4) guarantee a certain level of service to customers in terms of maximum port-to-port157

transit times. Constraints (5) are the resource sharing constraints enforcing that the to-158

tal number of ships of each type deployed cannot exceed the number of available ships in159

the fleet. Constraints (6) define the minimum sailing time on each leg and Constraints (7)160

require the number of ships deployed on each service is a nonnegative integer.161

The speed optimization problem from the supply chain perspective in Wang (2016) is sim-162

ilar to [P1-shipping line] except that the level-of-service constraints (3) and (4) are replaced163

by a term in the objective function to represent the inventory cost:164

[P1’-supply chain] min
mr,tri

∑
v∈V

∑
r∈Rv

cvmr + α
∑
r∈R

∑
i∈Ir

ari(Lri)
1+bri(tri)

−bri +
∑
r∈R

∑
i∈Ir

hritri

subject to Constraints (2), (5), (6) and (7). All of the algorithms we propose for [P1-shipping165

line] are also applicable to [P1’-supply chain] with minimum revision. Hence, we will only166

analyze [P1-shipping line] in the sequel.167

It is not difficult to see that [P1-shipping line] can be decomposed for each ship type168

v ∈ V :169

[P1-v] min
mr,tri

∑
r∈Rv

cvmr + α
∑
r∈Rv

∑
i∈Ir

ari(Lri)
1+bri(tri)

−bri (8)

subjec to:170

∑
i∈Ir

tri = 168mr −
∑
i∈Ir

t̂ri,∀r ∈ Rv

j−1∑
k=i

trk ≤ tmax
rij −

j−1∑
k=i+1

t̂rk,∀r ∈ Rv,∀i, j ∈ Ir, j > i
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|Ir|∑
k=i

trk +

j−1∑
k=1

trk ≤ tmax
rij −

 |Ir|∑
k=i+1

t̂rk +

j−1∑
k=1

t̂rk

 ,∀r ∈ Rv,∀i, j ∈ Ir, j < i

∑
r∈Rv

mr ≤ Mv

tri ≥ tmin
ri ,∀r ∈ Rv,∀i ∈ Ir

mr ∈ Z+,∀r ∈ Rv.

As [P1-shipping line] involves solving |V | models of [P1-v], if [P1-v] can be solved in poly-171

nomial time, [P1-shipping line] can also be solved in polynomial time. We thus focus our172

attention on how to solve [P1-v] throughout the rest of the paper.173

4. A Pseudo-polynomial-time Algorithm174

4.1. Properties of the optimal cost of a service with a given number of ships175

We first investigate the optimal sailing time tri on each leg i ∈ Ir of service r ∈ R with a176

given number of ships mr. We have the following nonlinear programming model [P2(r, mr)].177

[P2(r, mr)] Cr(mr) := cvrmr + min
tri

α
∑
i∈Ir

ari(Lri)
1+bri(tri)

−bri (9)

subject to:178

∑
i∈Ir

tri = 168mr −
∑
i∈Ir

t̂ri (10)

j−1∑
k=i

trk ≤ tmax
rij −

j−1∑
k=i+1

t̂rk, ∀i ∈ Ir,∀j ∈ Ir, j > i (11)

|Ir|∑
k=i

trk +

j−1∑
k=1

trk ≤ tmax
rij −

 |Ir|∑
k=i+1

t̂rk +

j−1∑
k=1

t̂rk

 ,∀i ∈ Ir,∀j ∈ Ir, j < i (12)

tri ≥ tmin
ri ,∀r ∈ Rv,∀i ∈ Ir. (13)
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We assume that [P2(r, mr)] is feasible for at least one mr ∈ {1, 2, . . . ,Mv} for all r ∈ R and179

define Cr(mr) := +∞ for all mr ∈ [0,Mv] such that [P2(r, mr)] is infeasible.180

As the following Lemma 1 shows, the parametric optimal objective function value of181

[P2(r, mr)] turns out to be strictly convex in mr ∈ [0,Mv].182

Lemma 1. We temporarily assume that the parameter mr in model [P2(r, mr)] can take183

fractional quantities. For a given service r, Cr(mr) : [0,Mv] 7→ R is a strictly convex function184

of mr.185

Proof. Given m
(1)
r , m

(3)
r , 0 < λ < 1, and m

(2)
r := λm

(1)
r +(1−λ)m

(3)
r , denote by (tri = t

(1)
ri , i ∈186

Ir) and (tri = t
(3)
ri , i ∈ Ir) the optimal sailing times in models [P2(r, m

(1)
r )] and [P2(r, m

(3)
r )],187

respectively. Then, (tri = t
(2)
ri := λt

(1)
ri + (1 − λ)t

(3)
ri , i ∈ Ir) is a feasible solution to [P2(r,188

m
(2)
r )] because all of the constraints in [P2(r, mr)] are linear. We thus have189

Cr(m
(2)
r ) = cvrm

(2)
r + α

∑
i∈Ir

ari(Lri)
1+bri(t

(2)
ri )−bri

= cvr [λm
(1)
r + (1− λ)m(3)

r ] + α
∑
i∈Ir

ari(Lri)
1+bri

(
λt

(1)
ri + (1− λ)t

(3)
ri

)−bri
< cvr [λm

(1)
r + (1− λ)m(3)

r ] + α
∑
i∈Ir

ari(Lri)
1+bri

[
λ(t

(1)
ri )−bri + (1− λ)(t

(3)
ri )−bri

]
= λ

[
cvrm

(1)
r + α

∑
i∈Ir

ari(Lri)
1+bri(t

(1)
ri )−bri

]
+

(1− λ)

[
cvrm

(3)
r + α

∑
i∈Ir

ari(Lri)
1+bri(t

(3)
ri )−bri

]
= λCr(m

(1)
r ) + (1− λ)Cr(m

(3)
r ),

where the inequality holds because function x−bri is strictly convex as bri > 1 and x > 0.190

Lemma 1 implies191
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Corollary 1. Consider integer values of mr. For a given service r, Cr(mr) : {0, 1, ...,Mv} 7→192

R satisfies Cr(mr + 2)− Cr(mr + 1) > Cr(mr + 1)− Cr(mr), mr = 0, 1, ...,Mv − 2.193

Note that model [P2(r, mr)] minimizes a separable convex function subject to linear194

constraints. Thus, we have Lemma 2 that follows from the time complexity analysis of the195

proposed scaling algorithm in Theorem 12 of Chubanov (2016) and its subsequent discussion196

“the scaling algorithm is polynomial, provided that we use a polynomial algorithm for LP”.197

Lemma 2. Model [P2(r, mr)] can be solved in polynomial time with regard to the size of the198

input using interior point methods.199

4.2. Definitions and domain of the number of ships to deploy on a ship route200

Definition 1. Define m∗r as the best number of ships deployed on service r ∈ Rv without201

considering other services. In case of tie, choose the smallest m∗r. That is202

m∗r = min {mr ∈ {1, 2, . . . ,Mv}|Cr(mr) ≤ Cr(m
′
r), ∀m′r ∈ {1, 2, . . . ,Mv}} .

Definition 2. Define (mr = m̂∗r, r ∈ Rv) as the optimal solution to [P1-v].203

It is very easy to see that if
∑

r∈Rv
m∗r ≤ Mv, then (m̂∗r = m∗r, r ∈ Rv) is an opti-204

mal solution for [P1-v]. Therefore, unless otherwise specified, in the following we assume205 ∑
r∈Rv

m∗r > Mv.206

Definition 3. Define mmin
r as the smallest number of ships to be deployed on service r ∈ Rv207

such that [P2(r, mr)] is feasible. That is208

mmin
r := min{mr ∈ {1, 2, . . . ,Mv}|Cr(mr) < +∞}.

Definition 3 implies that if
∑

r∈Rv
mmin
r > Mv, then [P1-v] is infeasible; if

∑
r∈Rv

mmin
r =209

Mv, then the only feasible solution to [P1-v] is (mr = mmin
r , r ∈ Rv), which is of course210
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optimal. Hence, in the sequel we always assume that
∑

r∈Rv
mmin
r ≤ Mv − 1. Moreover, if211

for a service r ∈ Rv we have mmin
r = m∗r, then in at least one optimal solution to [P1-v] the212

number of ships deployed on the service is mmin
r and hence this service can be excluded from213

the model. Therefore, we also assume that mmin
r ≤ m∗r − 1 for all r ∈ Rv. Naturally, The214

optimal solution to [P1-v], (mr = m̂∗r, r ∈ Rv), satisfies mmin
r ≤ m̂∗r ≤ m∗r, r ∈ Rv.215

Lemma 1 implies216

Corollary 2. Cr(mr) < +∞ for all mr = mmin
r ,mmin

r + 1, ...,m∗r because mr is a convex217

combination of mmin
r and m∗r.218

Lemma 3. The value of mmin
r , if exists (i.e., [P2(r, mr)] is feasible for at least one mr ∈219

{1, 2, . . . ,Mv}), can be determined in the following manner:220

mmin
r = min

{
mr ∈ {1, 2, . . . ,Mv}|168mr ≥

∑
i∈Ir

tmin
ri +

∑
i∈Ir

t̂ri

}
. (14)

Equivalently,221

mmin
r =

⌈∑
i∈Ir t

min
ri +

∑
i∈Ir t̂ri

168

⌉
, (15)

where dxe is the smallest integer larger than or equal to x.222

Proof. Evidently, no mr smaller than mmin
r defined in Eq. (15) is feasible. Hence, we just

need to prove that Cr(m
min
r ) < +∞. Suppose that Cr(m

min
r ) = +∞ and there exists an

m′r > mmin
r such that Cr(m

′
r) < +∞. Let (tri = t′ri, i ∈ Ir) be the optimal solution to [P2(r,

m′r)]. Then we can construct a feasible solution to [P2(r, mmin
r )] in the following manner:

tri = tmin
ri + (t′ri − tmin

ri )
168mmin

r −
∑

i∈Ir t
min
ri −

∑
i∈Ir t̂ri

168m′r −
∑

i∈Ir t
min
ri −

∑
i∈Ir t̂ri

, i ∈ Ir,

meaning that [P2(r, mmin
r )] is feasible and thereby Cr(m

min
r ) < +∞.223
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Lemma 4. Checking whether Cr(m
min
r ) < +∞, in which mmin

r is defined in Eq. (15), can224

be done by solving the following linear programming model and hence can be completed in225

polynomial time.226

min 0 (16)

subject to Constraints (11), (12), (13) and

∑
i∈Ir

tri = 168mmin
r −

∑
i∈Ir

t̂ri.

4.3. Solving [P1-v] in pseudo-polynomial time227

Based on Corollary 1, Wang (2016) proved the following Theorem 1.228

Theorem 1. Solution (mr = m̂∗r, r ∈ Rv) is optimal to [P1-v] if and only if:
∑

r∈Rv
m̂∗r = Mv229

and for any two services r1 ∈ Rv and r2 ∈ Rv, we have Cr1(m̂
∗
r1
−1)−Cr1(m̂∗r1) ≥ Cr2(m̂

∗
r2

)−230

Cr2(m̂
∗
r2

+1). In words, shifting one ship from service r1 to service r2 cannot reduce the total231

cost.232

Based on Theorem 1 and similar to Wang (2016), we can develop the following pseudo-233

polynomial-time Algorithm 1 for [P1-v].234

Remark 1 asserts that Algorithm 1 is of pseudo-polynomial computational time.235

Remark 1. In Step 0 of Algorithm 1, [P2(r, mr)] is solved |Rv|Mv times. Lemma 2 implies236

that [P2(r, mr)] can be solved in polynomial time of the input. Therefore, the time complex-237

ity of Step 0 is |Rv|Mv times the complexity of the scaling algorithm of Chubanov (2016).238

Step 2 of Algorithm 1 is repeated at most Mv times, each of which has a complexity of |Rv|.239

Therefore, Algorithm 1 can find an optimal solution to [P1-v] in pseudo-polynomial time as240

the time complexity depends on the value of Mv.241
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Algorithm 1: A pseudo-polynomial-time algorithm for [P1-v]

Step 0. For each service r ∈ Rv, calculate mmin
r by Eq. (15). Check whether [P2(r, mmin

r )] is
feasible (Lemma 4). If there is an r′ ∈ Rv such that [P2(r′, mmin

r′ )] is infeasible,
[P1-v] is infeasible and stop.

Step 1. For each service r ∈ Rv, obtain Cr(mr) for each mr ∈ {mmin
r ,mmin

r + 1, . . . ,Mv} by
solving [P2(r, mr)]. Find m∗r ∈ arg minmr∈{1,2,...,Mv}Cr(mr). Define m̂r := m∗r.

Step 2. If
∑

r∈Rv
m̂r ≤Mv, then (mr = m̂r, r ∈ Rv) is the optimal solution to [P1-v] and

stop.

Step 3. Set Cr(m
min
r − 1)← +∞. Find a service r∗ satisfying

r∗ ∈ arg min
r∈Rv

[Cr(m̂r − 1)− Cr(m̂r)].

That is, reducing one ship on service r∗ leads to the smallest increase in the total
cost.
Set m̂r∗ ← m̂r∗ − 1. Go to Step 2.

5. A polynomial-time algorithm to solve [P1-v]242

We strengthen the results in the above section as well as the results in Wang (2016) by243

proposing a polynomial-time algorithm based on a bi-section search scheme. To this end, we244

need to construct a parameter that is amenable to the bi-section search and closely related245

to the optimal solution to model [P1-v]. Prior to this step, we examine more properties of246

model [P2(r, mr)].247

5.1. A parameter θ that is amenable to bi-section search248

Theorem 1 can be restated as:249

Lemma 5. Solution (mr = m̂∗r, r ∈ Rv) is optimal to [P1-v] if and only if
∑

r∈Rv
m̂∗r = Mv250

and there exists a value θ∗ such that Cr(m̂
∗
r − 1)− Cr(m̂∗r) ≥ θ∗ ≥ Cr(m̂

∗
r)− Cr(m̂∗r + 1) for251

all services r ∈ Rv. (We define Cr(Mv + 1) := +∞.)252

Proof. The “if” part is proved first. For any two services r1 ∈ Rv and r2 ∈ Rv \ {r1}, the253

definition of θ∗ implies254
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Cr1(m̂
∗
r1
− 1)− Cr1(m̂∗r1) ≥ θ∗ ≥ Cr2(m̂

∗
r2

)− Cr2(m̂∗r2 + 1),

which yields255

Cr1(m̂
∗
r1
− 1)− Cr1(m̂∗r1) ≥ Cr2(m̂

∗
r2

)− Cr2(m̂∗r2 + 1).

Then, it follows from Theorem 1 that (mr = m̂∗r, r ∈ Rv) is an optimal solution to model256

[P1-v].257

We then prove the “only if” part. Consider a particular service r1 ∈ Rv. Theorem 1258

implies that259

Cr1(m̂
∗
r1
− 1)− Cr1(m̂∗r1) ≥ Cr2(m̂

∗
r2

)− Cr2(m̂∗r2 + 1), ∀r2 ∈ Rv \ {r1}.

Corollary 1 implies260

Cr1(m̂
∗
r1
− 1)− Cr1(m̂∗r1) > Cr1(m̂

∗
r1

)− Cr1(m̂∗r1 + 1), ∀r2 ∈ Rv.

Combining the above two equations,261

Cr1(m̂
∗
r1
− 1)− Cr1(m̂∗r1) ≥ Cr(m̂

∗
r)− Cr2(m̂∗r + 1),∀r ∈ Rv.

That is,262

Cr1(m̂
∗
r1
− 1)− Cr1(m̂∗r1) ≥ max

r∈Rv

[Cr(m̂
∗
r)− Cr(m̂∗r + 1)].

As r1 can be any service, we have263

min
r∈Rv

[Cr(m̂
∗
r − 1)− Cr(m̂∗r)] ≥ max

r∈Rv

[Cr(m̂
∗
r)− Cr(m̂∗r + 1)].

Hence, θ∗ := maxr∈Rv [Cr(m̂
∗
r)− Cr(m̂∗r + 1)] satisfies the lemma.264
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As it will soon be clearer in the subsequent Eq. (20) and Algorithm 2, the main process of265

the polynomial-time algorithm uses a bi-section search scheme over the domain of parameter266

θ, which measures the (negative) marginal cost of a service with respect to the number of267

ships deployed on the service, i.e., Cr(mr) − Cr(mr + 1). Hence, we need to find a finite268

domain of θ.269

5.2. Upper bound on the domain of θ270

When one more ship is deployed on a service r ∈ Rv, the ship chartering cost is in-271

creased by cv and the fuel cost is reduced. When the ships sail at the highest speed, the272

fuel consumption is the highest and can be computed by α
∑

i∈Ir ari(Lri)
1+bri(tmin

ri )−bri . If273

α
∑

i∈Ir ari(Lri)
1+bri(tmin

ri )−bri < cv, then the marginal ship chartering cost of deploying one274

more ship is always larger than the marginal benefit of fuel savings. As a result, the smallest275

number of ships mmin
r should be deployed on r. Otherwise, in Lemma 5, we must have276

Cr(m̂
∗
r)− Cr(m̂∗r + 1) ≤

[
α
∑
i∈Ir

ari(Lri)
1+bri(tmin

ri )−bri

]
− cv,∀r ∈ Rv.

Hence, the value of θ∗ in Lemma 5 has an upper bound θmax defined as277

θmax := max
r∈Rv

α
∑
i∈Ir

ari(Lri)
1+bri(tmin

ri )−bri − cv. (17)

5.3. Procedures and properties used for designing a polynomial-time algorithm278

We now state a few procedures and properties that will be used for designing a polynomial-279

time algorithm.280

Lemma 6. Finding the best number of ships to be deployed on service r ∈ Rv without281

considering other services, i.e., finding m∗r ∈ arg minmr∈{1,2,...,Mv}Cr(mr), can be completed282

in polynomial time.283
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Proof. As Cr(mr) is convex, we can solve model [P2(r, mr)] with different mr’s in a golden284

section search manner over mr = 1, 2, . . . ,Mv. Because mr is an integer, model [P2(r, mr)]285

needs to be solved at most O(logMv) times. Since model [P2(r, mr)] can be solved in286

polynomial time, m∗r can be found in polynomial time.287

Using (m∗r, r ∈ Rv), the smallest value of θ is defined as288

θmin := max
r∈Rv

(Cr(m
∗
r)− Cr(m∗r + 1)). (18)

Since later we will use bi-section on θ over the domain [θmin, θmax], we need a finite θmin.289

If Cr(m
∗
r + 1) = +∞ for all r ∈ Rv, then without loss of generality, we can assume the290

Cr(m
∗
r + 1) are not infinity but a very large number. In particular, we define291

Cr′(m
∗
r′ + 1) =

∑
r∈Rv

[
mmin
r cv + α

∑
i∈Ir

ari(Lri)
1+bri(tmin

ri )−bri

]
, r′ ∈ Rv

and θmin is redefined as292

θmin := max
r∈Rv

Cr(m
∗
r)−

∑
r∈Rv

[
mmin
r cv + α

∑
i∈Ir

ari(Lri)
1+bri(tmin

ri )−bri

]
. (19)

The following Lemma 7 can then be obtained.293

Lemma 7. Consider any θ ∈ [θmin, θmax]. Then, for any r ∈ Rv, there exists mr(θ) ∈294

{mmin
r ,mmin

r + 1, . . . ,m∗r} (i.e., the number of ships to be deployed on service r ∈ Rv) such295

that296

Cr(mr(θ))− Cr(mr(θ) + 1) ≤ θ ≤ Cr(mr(θ)− 1)− Cr(mr(θ)). (20)

Moreover, finding mr(θ) can be completed in polynomial time with bi-section search.297

Proof. The result holds because Cr(m
∗
r)−Cr(m∗r+1) ≤ θmin and Cr(m

min
r −1)−Cr(mmin

r ) =∞298

(we define Cr(0) = +∞).299
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Recall that we assume
∑

r∈Rv
m∗r > Mv. Then, the following Lemma 8 holds.300

Lemma 8. It holds that
∑

r∈Rv
mr(θ

min) > Mv.301

Proof. By definition of m∗r, Cr(m
∗
r − 1) − Cr(m∗r) > 0 for all r ∈ Rv. Eq. (18) implies that302

θmin ≤ 0. Then Cr(m
∗
r − 1)− Cr(m∗r) ≥ θmin for all r ∈ Rv. Together with the definition of303

θmin in Eq. (18) we have mr(θ
min) = m∗r for all r ∈ Rv and thereby

∑
r∈Rv

mr(θ
min) > Mv.304

Corollary 1 implies that305

Lemma 9. For a service r ∈ Rv, mr(θ) decreases strictly monotonically with θ.306

The following Lemma 10 follows from Lemma 5 with Lemma 9.307

Lemma 10. Recall that (mr = m̂∗r, r ∈ Rv) is the (to be determined) optimal solution to308

[P1-v] with
∑

r∈Rv
m̂∗r = Mv. Consider any θ ∈ [θmin, θmax]. The following results hold:309

(1) If
∑

r∈Rv
mr(θ) < Mv, then mr(θ) ≤ m̂∗r for all r ∈ Rv.310

(2) If
∑

r∈Rv
mr(θ) > Mv, then mr(θ) ≥ m̂∗r for all r ∈ Rv.311

Proof. We only need to prove (1). Result (2) follows from a similar argument. Lemma 5312

implies that there exists θ∗ such that m̂∗r = mr(θ
∗) and

∑
r∈Rv

mr(θ
∗) = Mv for all r ∈ Rv.313

Lemma 9 implies that
∑

r∈Rv
mr(θ) decreases monotonically with θ. Hence, if

∑
r∈Rv

mr(θ) <314

Mv =
∑

r∈Rv
mr(θ

∗), we have θ > θ∗. Using Lemma 9 again, we have mr(θ) ≤ mr(θ
∗) = m̂∗r315

for all r ∈ Rv.316

The following Lemmas 11 and 12 are the most important for establishing the polynomial-317

time algorithm.318

Lemma 11. For any θ, if
∑

r∈Rv
mr(θ) < Mv, then it follows from (20) that increasing the319

number of ships deployed on r from mr(θ) to mr(θ)+1 reduces the total cost by at most θ. The320

convexity of Cr(mr) implies that increasing the number of ships deployed on r from mr(θ) to321
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m̂∗r reduces the total cost by at most θ(m̂∗r−mr(θ)), i.e., Cr(mr(θ))−Cr(m̂∗r) ≤ θ(m̂∗r−mr(θ)).322

Hence,323

∑
r∈Rv

Cr(mr(θ))−
∑
r∈Rv

Cr(m̂
∗
r) ≤

∑
r∈Rv

θ(m̂∗r −mr(θ)) = θ(Mv −
∑
r∈Rv

mr(θ)).

Lemma 12. Consider any θ1 > θ2 such that
∑

r∈Rv
mr(θ1) < Mv and

∑
r∈Rv

mr(θ2) > Mv.324

Then, there exists an integer vector (mr := m̄∗r, r ∈ Rv) with mr(θ1) ≤ m̄∗r ≤ mr(θ2) such325

that
∑

r∈Rv
m̄∗r = Mv and326

∑
r∈Rv

Cr(mr(θ1))−
∑
r∈Rv

Cr(m̄
∗
r) ≥

∑
r∈Rv

θ2(m̄
∗
r −mr(θ1)) = θ2

(
Mv −

∑
r∈Rv

mr(θ1)

)
. (21)

Proof. Let r̂ be such that327

r̂ := min

r′ ∈ {1, 2, . . . , |Rv|}
∣∣∣∣ r′∑
r=1

mr(θ2) +

|Rv |∑
r=r′+1

mr(θ1) ≥Mv

 . (22)

Note that r̂ ∈ Rv exists since
∑

r∈Rv
mr(θ2) > Mv. Define328

m̄∗r =


mr(θ2) for r = 1, 2, . . . , r̂ − 1,

mr(θ1) for r = r̂ + 1, r̂ + 2, . . . , |Rv|,

Mv −
∑

r∈Rv\{r̂} m̄
∗
r for r = r̂.

(23)

It follows from (22) that329

r̂−1∑
r=1

mr(θ2) +mr̂(θ2) +

|Rv |∑
r=r̂+1

mr(θ1) ≥ Mv, (24)

r̂−1∑
r=1

mr(θ2) +mr̂(θ1) +

|Rv |∑
r=r̂

mr(θ1) < Mv. (25)
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It follows from (24) that m̄∗r̂ = Mv −
∑

r∈Rv\{r̂} m̄
∗
r ≤ mr̂(θ2) and it follows from (25) that330

m̄∗r̂ = Mv−
∑

r∈Rv\{r̂} m̄
∗
r > mr̂(θ1). Thus, mr̂(θ1) ≤ m̄∗r̂ ≤ mr̂(θ2). Thus, (mr := m̄∗r, r ∈ Rv)331

is an integer vector with mr(θ1) ≤ m̄∗r ≤ mr(θ2). Clearly,
∑

r∈Rv
m̄∗r = Mv.332

It follows from (20) that increasing the number of ships deployed on r by 1, as long as333

the number after increase does not exceed mr(θ2), leads to a cost reduction at least θ2, which334

further gives (21).335

We present the polynomial-time algorithm in Algorithm 2.336

Algorithm 2: A polynomial-time algorithm for solving [P1-v]

Input: [P1-v] model, [P2(r, mr)] model for all r ∈ Rv, ε > 0. Set index κ← 1.

Output: ε-optimal solution (m̂∗r, r ∈ Rv) to the [P1-v] model

Step 0. Pre-processing. Execute Algorithm 3.

Step 1. Set θ ← (UBκ + LBκ)/2. For each r ∈ Rv, use bi-section search to find the

number of ships to be deployed, denoted by mr(θ), such that (20) holds

(Lemma 7).

Step 2. If
∑

r∈Rv
mr(θ) = Mv, then (m̂∗r = mr(θ), r ∈ Rv) is the optimal solution to

[P1-v] and stop (Lemma 5).

Step 3. If
∑

r∈Rv
mr(θ) > Mv, then (mr = mr(θ), r ∈ Rv) is infeasible to [P1-v]. We

thus need to increase the value of θ (Lemma 9). Set LBκ+1 ← θ,

UBκ+1 ← UBκ, κ← κ+ 1, and go to Step 1.

Step 4. If
∑

r∈Rv
mr(θ) < Mv, then (mr = mr(θ), r ∈ Rv) is feasible but not optimal.

We first check the optimality gap.

(4.1) If (θ − LBκ)Mv ≤ ε, i.e., if |θ − LBκ| ≤ ε/Mv, find an integer vector

(mr := m̄∗r, r ∈ Rv) such that mr(θ) ≤ m̄∗r ≤ mr(LB
κ) and∑

r∈Rv
m̄∗r = Mv according to (23). Then, (m̂∗r := m̄∗r, r ∈ Rv) is an

ε-approximation solution and stop.

(4.2) If (θ − LBκ)Mv ≥ ε, set UBκ+1 ← θ, LBκ+1 ← LBκ, κ← κ+ 1, and go to

Step 1.

Recall that C∗(v) is the (unknown) optimal objective function value of [P1-v]. Define337

tolerance error ε > 0 and the algorithm will stop if we find a solution with objective value338
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Algorithm 3: The pre-processing in Algorithm 2

Input: [P1-v] model, [P2(r, mr)] model for all r ∈ Rv.

Output: UB1, LB1, (mmin
r , r ∈ Rv), (m∗r, r ∈ Rv)

Step 0. For each service r ∈ Rv, calculate mmin
r by Eq. (15). Check whether [P2(r,

mmin
r )] is feasible (Lemma 4). If there is an r′ ∈ Rv such that [P2(r′, mmin

r′ )] is

infeasible, [P1-v] is infeasible and stop.

Step 1. For each service r ∈ Rv, use bi-section search on mr ∈ {mmin
r ,mmin

r + 1, . . . ,Mv}
to find the optimal solution to [P2(r, mr)], denoted by m∗r (Lemma 6). If∑

r∈Rv
m∗r ≤Mv, then we should deploy m∗r ships on service r and stop.

Step 2. Check each service r ∈ Rv. If m∗r = mmin
r , then we should deploy m∗r ships on it

and hence we set Mv ←Mv −m∗r and Rv ← Rv \ {r}. If Rv = ∅, stop.

Step 3. Compute θmax by Eq. (17). Compute θmin by Eq. (18) or Eq. (19).

Step 4. Set upper bound UB1 := θmax, lower bound LB1 := θmin.

of at most C∗(v) + ε. We define a upper bound on θ as UB1 := θmax and a lower bound on339

θ as LB1 := θmin. Note that it follows from Lemma 8 that
∑

r∈Rv
mr(LB

1) > Mv.340

The following Remark 2 guarantees the validity of the stopping criterion in Step (4.1).341

Remark 2. If Algorithm 2 stops in Step (4.1), then
∑

r∈Rv
Cr(m̄

∗
r)− C∗(v) ≤ ε.342

To see this, Lemma 11 implies that343

∑
r∈Rv

Cr(mr(θ))− C∗(v) ≤ θ(Mv −
∑
r∈Rv

mr(θ)). (26)

Note that (mr = mr(LB
κ), r ∈ Rv) is infeasible as

∑
r∈Rv

mr(LB
κ) > Mv. We can thus344

choose an integer vector (mr := m̄∗r, r ∈ Rv) such that mr(θ) ≤ m̄∗r ≤ mr(LB
κ) and345 ∑

r∈Rv
m̄∗r = Mv according to (23), then (mr := m̄∗r, r ∈ Rv) is feasible to [P1-v] and346
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Lemma 12 implies347

∑
r∈Rv

Cr(mr(θ))−
∑
r∈Rv

Cr(m̄
∗
r) ≥ LBκ(Mv −

∑
r∈Rv

mr(θ)). (27)

Eqs. (26) and (27) lead to348

∑
r∈Rv

Cr(m̄
∗
r)− C∗(v) ≤ (θ − LBκ)(Mv −

∑
r∈Rv

mr(θ)) ≤ (θ − LBκ)Mv.

The following Remark 3 claims that Algorithm 2 is a polynomial-time algorithm with349

respect to precision ε > 0.350

Remark 3. Step 1 of Algorithm 2 is implemented for O
(

log θmax−θmin

ε/Mv

)
times, i.e.,351

O

(
log(Mv(θ

max − θmin)) + log
1

ε

)

times. Each iteration of Step 1 needs to find |Rv| values of mr(θ), which can be completed352

in polynomial time according to Lemma 7. Therefore, Algorithm 2 can find an optimal353

solution to [P1-v] in polynomial time.354

Remark 4. The sequence of solutions (m̂∗r := m̄∗r, r ∈ Rv) obtained in Step (4.1) of Algo-355

rithm 2 in different iterations κ converges to the optimal solution with rate of convergence356

O (1/2κ), meaning that the sequence (m̂∗r := m̄∗r, r ∈ Rv) in different iterations κ approxi-357

mately linearly converges to the optimal solution.358

6. Numerical experiments359

In this section we report the results of computational experiments. The experiments are360

implemented on a PC equipped with 3.30GHz of Intel Core i5 CPU and 4GB of RAM. The361

algorithm is coded in Matlab 2011b.362
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6.1. Efficiency of Algorithm 2363

The first group of test instances is on sailing speed optimization, i.e., Model [P1-v]. We364

solve the problems using Algorithm 2, in which Model [P2(r, mr)] is solved by the interior365

point method of Matlab function “fmincon”.366

We consider ships with a capacity of 8,000 twenty-foot equivalent units with parameters367

cv = $210, 000/week, ari = 4.667 × 10−4, b = 2.118, and t̂ri = 24 hours (Wang and Meng,368

2012b). The bunker price α = $200/ton. We consider different combinations of the number of369

services |Rv| ∈ {5, 10, 15} and maximum number of ports of call on a service (maxr∈Rv Ir) ∈370

{5, 10, 15} (Ng, 2014). The number of ships of type v in the fleet is Mv := d0.8 × |Rv| ×371

maxr∈Rv Ire. The voyage distance of a leg Lri is uniformly generated between 1 and 5000372

nautical miles. The minimum sailing time tmin
ri is equal to Lri divided by the maximum373

sailing speed, which is defined to be 25 knots. The maximum transit time tmax
rij is equal to374

twice the minimum possible transit time from the ith port of call to the jth on service r.375

For each combination of |Rv| and maxr∈Rv Ir, we randomly generate 20 instances, each of376

which has different numbers of ports of call on a service (uniformly generated between 2 and377

maxr∈Rv Ir) and different voyage distances of a leg. The computation error ε in Algorithm 2378

is set to be $100/week.379

The results of computation time are reported in Table 1. We can see that as expected,380

the computation time increases with the number of services and the maximum number of381

ports of call on a service. The number of services has a larger impact on the computation382

time than the maximum number of ports of call on a service. Overall, Algorithm 2 is very383

efficient: when there are 15 services with a maximum of 15 ports of call on a service and384

180 ships in the fleet, the average computation time is less than half a minute. Finally, we385

note that most of the computation time is spent in solving Model [P2(r, mr)] by the interior386

point method of Matlab function “fmincon”.387
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Table 1: Average computation time per instance of the sailing speed optimization problem

|Rv| maxr∈Rv Ir Mv CPU time (s) |Rv| maxr∈Rv Ir Mv CPU time (s)
5 5 20 1.7238 10 10 80 7.8328
5 10 40 1.5366 10 15 120 8.9498
5 15 60 2.1185 15 10 120 17.8301

10 5 40 4.5451 15 15 180 26.0646

6.2. Comparison between Algorithm 1 and Algorithm 2388

The second group of test instances is conducted in order to show the superiority of389

Algorithm 2, the polynomial algorithm, over Algorithm 1, the pseudo-polynomial algorithm.390

We consider similar settings as the ones in Section 6.1. The random test instances have391

different numbers of services: |R| ∈ {5, 10, 20, 50, 100}. For each |R|, we randomly generate392

20 instances, each of which has different numbers of ships. Moreover, different services have393

different voyage distances and time spent at port. The computation error ε is set to be 1.394

We let all tmin
ri be 0 and all tmax

rij be infinity. As a result, given the number of ships to395

deploy on a service, we can easily solve [P2(r, mr)]) as the optimal speeds on different legs are396

the same. Therefore, we compare the number of times Cr(mr) is computed (through solving397

[P2(r, mr)]) when Algorithm 1 is used and that when Algorithm 2 is used. The results are398

reported in Table 2, where the column “#Pseudo-polynomial” means the average number of399

times Cr(mr) is computed per instance by Algorithm 1, the column “#Polynomial” means400

the average number of times Cr(mr) is computed per instance by Algorithm 2, and the401

column “Ratio” is the ratio of the computation times by the two algorithms. We stress402

again that we report the number of times Cr(mr) is computed because both algorithms403

are very efficient. From the results we can see that the polynomial algorithm significantly404

reduces the number of times Cr(mr) is computed. More importantly, when the problem405

size increases, the advantage of the polynomial algorithm over the pseudo-polynomial one406

is more evident. This provides strong evidence of the practical relevance of the polynomial407

algorithm.408
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Table 2: Average number of times Cr(mr) is computed per instance by the two algorithms

|R| #Pseudo-polynomial #Polynomial Ratio
5 140.60 61.05 2.3

10 613.50 158.30 3.9
20 2372.70 376.50 6.3
50 16122.95 1150.55 14.0

100 63857.50 2581.75 24.7

7. Concluding comments409

In this paper, we looked into the containership sailing speed optimization problem, in410

which a container shipping line needs to allocate its limited resources (i.e., containerships)411

over a network of services (i.e., ship routes). The problem can be formulated as a mixed-412

integer nonlinear programming model from the perspective of supply chain management413

and a model from the perspective of shipping lines. The main contribution of our research414

lies in that we show the sailing speed optimization problem with containership resource415

sharing is not NP-hard, but in P, by proposing a polynomial-time algorithm that can be416

used to solve both the models. The algorithm uses a bi-section search method over a finite417

domain of a parameter that measures the marginal cost of each service and finds an ε-418

approximation solution in polynomial time. We provided various theoretical results that419

justify the validity of the algorithm. While our algorithm was designed with the intention420

to solve the sailing speed optimization problem, it could potentially be applied to solve a421

general class of mathematical programming models that can be decomposed as a bunch422

of sub-models linked with a resource sharing constraint, such as how to allocate buses to423

different bus routes (Liu et al., 2016), and how to allocate trains to subway routes.424
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