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Abstract: The cruise industry has maintained a steady growth in the past 20 years. Due to the
large number of cruise passengers and regulations on sea environment protection, determining at
which ports to dispose of the waste generated onboard a cruise ship is a key decision to reduce
the cost for a cruise company. We address four versions of the problem: the cruise itinerary is
either static or dynamic and the amount of waste generated on each voyage leg is either
deterministic or stochastic. We propose a polynomial-time solution algorithm for the static
deterministic model, and the idea of the algorithm can also be used to solve the static stochastic
model and the dynamic deterministic model. Second, we identify the structure of the optimal
policy to the dynamic stochastic problem, based on which an efficient dynamic programming
algorithm is developed. Extensive numerical experiments derived from problems of real-case

scales demonstrate the efficiency of the proposed algorithms.
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1 Introduction

The cruise industry provides a package of recreational activities to passengers. On-board
activities include casino gaming, gift shop sales, entertainment arcades, art auctions, photo sales,
spa services, bingo games and lottery tickets, enhanced dining experiences in alternative
restaurants, video diaries, golf lessons, and snorkel equipment rentals. Moreover, cruise ships
will stay at several ports, which are often in different countries, and passengers can have a tour

in the port cities. The cruising industry has maintained a steady increase in supply for the past
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20 years. In 2014, the world cruise fleet had 296 ships (Cruise Ship Statistics, 2015), the number
of cruise passengers reached a total of 22.04 million, and the global cruise industry generated
revenues of 37.1 billion U.S. dollars (Cruise Industry, 2015).

A large cruise ship carries over 6,000 passengers and 1,500 crew members, and therefore the
amount of waste generated by a cruise ship is also considerable. This significantly contrasts
cargo ships, e.g., bulk ships (Magirou et al., 2015) and container ships (Bell et al., 2013;
Psaraftis and Kontovas, 2013, 2014; Ng, 2015), which are usually manned with fewer than 30
crew members. There are mainly five waste streams from cruise ships: sewage, graywater, oily
bilge water, solid waste, and hazardous waste (EPA, 2008). Sewage from cruise ships, also
known as “black water”, generally means human body wastes. Graywater generally means
wastewater from sinks, baths, showers, laundry, and galleys. Oily bilge water is the mixture of
water, oily fluids and lubricants from the machinery spaces of a cruise ship. Solid waste is the
food waste, garbage, refuse, sludge, rubbish, trash, and other discarded materials. Hazardous
waste is a type of waste containing hazardous instances. As reported by EPA (2008), every day a
large cruise ship may generate 74,000 gallons of sewage, 249,000 gallons of grey water, 5,300
gallons of bilge water, 50 ton of garbage, 12,000 bottles and 12,000 cans, and 10 tons of
hazardous waste. Different waste streams are treated differently. Some waste must be off-loaded
to shore reception facilities at ports for recycling or disposal, for instance, synthetic ropes,
plastic bags, some solid waste that cannot be incinerated, a proportion of oily bilge water, and
hazardous waste. Annexes V and VI of The International Convention for the Prevention of
Pollution from Ships (MARPOL) of the International Maritime Organization (IMO) have
regulated the types of wastes that can be discharged into the sea and have imposed ships to
provide facilities for the reception of waste. Most cruise lines have implemented environmental
management systems to reduce, select, and manage the waste generated onboard, in order to be
in compliance to the MARPOL requirements (Pallis, 2015).

This paper considers the waste that must be landed to the shore reception facilities. A cruise
ship has an environmental officer (EO) onboard, a crew member in charge of looking after the
waste. The EO reports to the Chief Officer the amount of waste that is onboard and the Chief

Officer reports to the shore-side headquarter to decide whether to discharge the waste at the next
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port of call or not. Cost is a major concern in the choice of waste discharge port. Different ports
have quite different prices for waste discharging: some ports, e.g., ports in Cyprus, impose a
fixed charge no matter whether a ship actually discharges waste or not (that is equivalent to not
cost for waste discharging in the decision process), and other ports can charge up to several
thousand dollars. Therefore, it is vital to decide at which ports to discharge waste is the most
cost-effective. Given a cruise ship that visits a sequence of ports according to a pre-determined
schedule and waste is generated continuously along the voyage and the waste holding tank has
limited capacity, we study the problem of determining at which port to dispose of the generated
waste so as to minimize the total cost. We identify special structures of the problem and develop
dynamic programming based solution approaches to address the problem. Our numerical
experiments show a cost reduction of 30% using the proposed methods relative to a greedy

waste disposal heuristic.

1.1 Literature review

There are some qualitative works on waste generated onboard cruise ships. Dixon and Hughes
(2000) reviewed the current regulations on cruise ship waste management set by IMO, mainly
the MARPOL regulations. They also discussed a typical design of waste management systems
onboard cruise ships. Johnson (2002) categorized the environmental impacts of cruise tourism,
including (i) infrastructure impacts such as ship construction, the creation of cruise passenger
terminal facilities and berthing access requirements; (ii) operational impacts involving the use of
energy and water and air quality pollution; (iii) distribution impacts associated with tourists’
travel and the logistics of supplying a cruise liner with provisions; (iv) use impacts which
comprise the cultural impact of wealthy tourists and overcrowding created by large numbers of
visitors at one destination; and (v) waste impact. He explored the potential strategies that can be
employed by cruise line operators and cruise tourism destinations to manage the impact. He
concluded that although the industry was taking a number of belated positive steps, the decision-
makers in cruise tourism destinations, such as cruise port operators and port city governments,
should work closely with cruise lines to facilitate integrated waste management and sustainable

development. Polglaze (2003) highlighted the importance of management of ships’ food waste



and summarized the estimated rates of food waste generation for merchant ships, passenger
ships, and fishing ships, by different sources such as the US National Research Council and
International Maritime Organization (IMO). He conducted a survey of six ships and the survey
revealed a general upward trend in per capita waste generation rate as a function of crew size.
Based on surveys undertaken in 2000 and 2002 regarding the availability of port reception
facilities for ship waste in the North Sea area, Carpenter and Macgill (2005) found that most
North Sea ports had sufficient reception facilities and already met the EU Directive on reception
facilities for ship waste. Butt (2007) studied cruise ship’s waste management Status in
Southampton and investigated the disposal options for ship generated waste and the impacts of
the waste on ports. He recommended all cruise ships should pursue a waste reduction strategy
and the ports should provide adequate recycling, reduction and re-use facilities for waste.
Macpherson (2008) reviewed the environmental, economic and societal impacts of cruise ship
tourism. He pointed out that sustainable tourism policies and effective management of the
tourism could yield high returns with low risks. Using a life cycle assessment, Zuin et al. (2009)
identified and quantified the environmental impacts caused by ships’ waste management in the
port of Koper, Slovenia. They argued that critical environmental issues are caused by
carcinogens substance, inorganic emissions and heavy metals, while the recovery of ship-
generated oils is beneficial to reduce the fossil fuel consumption. Klein (2011) measured the
impact of cruise tourism with the focus on the perceptions of host communities. Challenges
faced by government, communities and the cruise industry were identified and analyzed to give
a direction on how tourism can grow in a sustainable and responsible way. Therefore, the
existing literature mainly focuses on technological and legal aspect of waste management by
cruise ships. To the best of our knowledge, there is no study focusing on how a cruise ship could
choose ports to dispose of its waste in the most cost-effective manner.

Our work is also related to literature on dynamic programming applications. Dynamic
programming has been applied in many areas, such as inventory management, revenue
management, electric vehicle charging, traffic sensor deployment, and appointment scheduling.
Berman and Larson (2001) formulated a stochastic dynamic programming model for a vehicle

product-delivery problem in which the volume of product required by each customer on a route
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is random, which is similar with the randomness of the generated waste in this study. The
difference is, the problem in Berman and Larson (2001) does not have a nice structure and hence
they applied several rules to identify high-quality solutions. Lam et al. (2007) addressed an
empty container repositioning problem. As the problem has the curse-of-dimensionality
difficulty, they applied an approximate dynamic programming approach. Truong (2015)
investigated a dynamic advance scheduling problem in a hospital, where advance scheduling is,
when a patient calls, she will immediately be given an appointment in the future or be rejected.
Truong (2015) derived a characterization of an optimal policy and based on it, showed that the
straightforward dynamic programming formulation with an exponential number of states can be
transformed to one with a polynomial number of states. In our problem setting, cruise ships
repeat their itineraries (in contrast to an open end planning horizon) and there are “recourse”
actions (use of waste disposal vessel in case the waste holding tank is full at sea) when
considering random amount of waste generated. These differences enable us to examine special

structures of the problem and develop tailored solution approaches.

1.2 Objectives and contributions
The objective of this study is to examine how a cruise company should choose waste disposal
ports for a cruise ship to discharge waste at minimum cost. We develop four models for the
problem. The four models are categorized according to two dimensions, i.e., the itinerary (either
static or dynamic) and the amount of waste generated on each voyage leg (either deterministic or
stochastic). By combining the two options in each of the two dimensions, four different models
are formulated as follows.

(1) The first is a static deterministic model. It is static in the sense that the cruise ship repeats

its itinerary many times and the same waste disposal ports are used in each repetition. It is
deterministic as the amount of waste generated on each voyage leg is assumed to be fixed.

(2) The second one is static stochastic as it captures the stochastic nature of the amount of

waste generated on each voyage leg. Due to the stochasticity of the amount of waste generated,
it is possible that the waste holding tank is full during a voyage; and if this happens, a waste

disposal vessel must be called to dispose of the waste at a high cost.



(3) The third model is dynamic deterministic: the amount of waste generated on each voyage

leg is fixed, and the cruise ship may provide any itineraries (rather than repeating the same
itinerary) in a finite planning horizon.

(4) The fourth one is dynamic stochastic that captures the stochasticity of the amount of waste

generated.

This study is one of the very few attempts on cruise shipping using quantitative approaches.
The contribution of the paper is twofold. First, we propose a polynomial-time solution algorithm
for the static deterministic model, and the idea of the algorithm can also be used to solve the
static stochastic model and the dynamic deterministic model efficiently. Second, we identify the
structure of the optimal policy to the dynamic stochastic problem, based on which an efficient
dynamic programming algorithm is developed. Extensive numerical experiments based on
problems of real-case scales demonstrate the efficiency of the proposed algorithms.

The remainder of the paper is organized as follows. Section 2 presents the static models,
including the static deterministic model and the static stochastic model, and solution algorithms.
Section 3 presents the dynamic models, including the dynamic deterministic model and the
dynamic stochastic model, as well as solution algorithms. Section 4 reports the results of
numerical experiments to validate the efficiency of the proposed algorithms. Conclusions are

then outlined in Section 5.

2 Static models

Consider a cruise ship that provides a regular cruising itinerary, visiting Ports 1, 2...n, and
visiting Port 1 again, similar to container liner shipping (Wang et al., 2014). Port 1 is the home
port and the other n—1 ports are ports of call. The itinerary starts from the home port to pick up
passengers and returns to the home port where cruise passengers get off the cruise ship. After
that, the itinerary starts again, as shown in Figure 1. For instance, the cruise ship “Quantum of
the Seas” operated by Royal Caribbean International (RCI, 2015) visits Shanghai (China) as the
home port, then Busan (South Korea), Nagasaki (Japan), and returns to Shanghai in the first
rotation; then it starts its second rotation visiting Busan, Nagasaki, and Shanghai again. The

same itinerary is repeated many times. The voyage from Port i to Port i+1 is called Leg i.



The capacity of the waste holding tank of the ship (waste holding capacity), i.e., the maximal

amount of waste that can be stored in the ship, is denoted by V . The cost for disposing of the

waste stored in the ship at Port i is denoted by c,. In the static setting, we need to identify the

ports at which the waste is disposed of (discharged). In Sections 2.1 and 2.2, we assume that the
same ports are used to dispose of waste in every repetition of the itinerary for the sake of
uniformity in managerial decision making; therefore, we only need to take into account one

itinerary. Section 2.3 discusses the cases when relaxing this requirement.

® -
@

Figure 1: Itinerary in static models

2.1 Static deterministic model

In the deterministic model, we assume that the amount of waste generated on Leg i, denoted

by g, 0<q <V, is deterministic. We assume that Zi”:lqi >V , because otherwise we only
dispose of the waste at Port i” eargmin,_;, . C;.
2.1.1 Mixed-integer linear programming model

The static deterministic problem can be formulated as a mixed-integer linear programming

model. The decision variables are: z, is binary which equals 1 if and only if the waste is
disposed of at Port i, and vy, is the amount of waste onboard the ship when the ship just leaves

Port i. In the model, we define y, =y, and q,:=q,. The model is:

[M1] min Zn:cizi Q)

subject to:

y,+q, <V,i=12---n (2



Y 2V, +G,—-Vz,i=12--n ®)

y,>0,i=12---n. 4)

z, €{0,3},i=12---n. (5)
Eqg. (1) minimizes the total cost of discharging the waste for one itinerary. Constraints (2)
impose that when the ship arrives at Port i+1, the amount of waste in the ship vy, + g, should not

exceed the capacity of the waste holding tank. Egs. (3), in which V is actually the “big-M”, are

a linear form of the following constraints:

1% a2 (6)
= Yiat 0y ifZi:O’ T

Egs. (6) imply when the waste is disposed of at Port i, i.e., z, =1, then there is no waste in the

ship when it leaves Port i; otherwise the amount of waste in the ship when it leaves Port i is

equal to the amount when it leaves the previous port (Port i—1) plus the amount generated

during the voyage from Port i—1 to Port i. Constraints (4) define y, as nonnegative variables

and Constraints (5) define z, as binary variables.

2.1.2 A polynomial-time solution approach

The mixed-integer linear formulation M1 can generally be solved by off-the-shelf mixed-
integer linear programming solvers. Nevertheless, we still investigate the properties of the static
deterministic problem to gain insights which might be helpful for us to address more complex
problems such as the static stochastic one in the next sub-section. We find that M1 has nice
properties for us to develop a polynomial-time solution approach.

Consider the example in Figure 2: Figure 2(a) shows the parameters. For instance, the cost for

disposing of waste at Port 2 is 2 (unit: 1000 dollars), the amount of waste generated on the leg

from Port 2 to Port 3 is ¢, =3, and the holding capacity is V =6.
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Figure 2: Reformulated network
It occurs to us that if we consider the choice of two adjacent waste disposal ports rather than
the choice of each port as in Model M1, the problem will become easier. To this end, we
reformulate the network in Figure 2(a) to Figure 2(b). For each Port i, we check for every other
Port j whether it is possible to dispose of the waste at i and j, but not any port in between. An
arc (i,j),i=42---n,j=12---n, j =i, is created if and only if after discharging the waste at
Port i, the vessel does not need to discharge waste at any of Ports i+1i+2--- j—1 before

discharging at Port j. Mathematically, the set of arcs to create is all of the (i, j) ’s that satisfy

(i, j)e{l,2---n}x{1,2---n} @)
I# ] (8)
ifi<j, Jiqk <V

k=i

) i ©)
ifi>j D g+ 0<V.
k=i k=1

The cost of Arc (i, j), denoted by c;, is defined as (c; +c;)/2. We divide by two because

each port will be included in two arcs in a solution to the new problem: to find a minimum cost
cycle in the reformulated network. Note that not all nodes must be visited in the cycle.
By now the new problem is not much different from M1: both need to determine at which

ports to discharge the waste. Therefore, the number of potentially feasible cycles to the new



problem can be up to 2", which increases exponentially with regard to the size the problem n.

However, the new problem has a nice structure that leads to the following theorem.

Theorem 1: The static deterministic problem can be solved in time O(n®).
Proof: The construction of the reformulated network takes time O(n?) as we need to check

O(n?) port pairs to see whether an arc between each port pair should be added. The time

required for checking a port pair (e.g., from i to j), which involves one summation (sum of the
wastes generated on Leg j—1 and the wastes generated from port i to port j—1) and the

comparison of the sum with the holding capacity, is O(1). Then, we need to find the shortest
cycle in the reformulated network, which can be completed in time O(n®) (Lawler, 1976). o

Theorem 1 proves that the static deterministic problem is an easy problem that can be

efficiently solved to optimality.

2.2 Static stochastic model

We now consider the case in which the waste generated on a leg is a random variable. Unlike
cargo ships whose waste produced is almost constant every day (as the waste is mainly from the
ship itself, e.g., oily bilge water), a cruise ship carries up to 5,000 passengers who produce a
large amount of waste. As pointed out by Pallis (2015), “[t]he amount and types of waste might
vary from one cruise ship to another, yet cruises are generators of the highest amount of garbage.
A cruise ship with 3,000 passengers and crew generates about 50 tonnes of solid waste in a
single week. An average cruise passenger generates a minimum of one kilogram of solid waste
plus two bottles and two cans per day and an average of 50 tonnes of sewage per day. As cruise
activities grow, the size of the waste produced during every single cruise [...] cannot be
ignored.” Therefore, the amount of waste generated depends on (i) the number of passengers
onboard, and (ii) the amount of waste each passenger produces, which is up to the passenger’s
consumption of food, beverages, shampoo, newspapers, etc. V&onneau and Roy (2009) stated
that “[t]he reality for cruise companies is that when there is a new itinerary or different

demographics, a ship’s consumption is unpredictable. There is no real statistical model that
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confirms that the English consume two pounds of roast beef on a daily basis while Spaniards eat

more fish.” Therefore, the amount of waste generated on a leg is indeed random.

Denote by & the waste generated on Leg i with cumulative distribution function F(x).

Similar to Sections 2.1, we assume that in each repetition of the itinerary, the same ports are
used to dispose of waste due to ease of management; therefore, we only need to take into
account one itinerary. The requirement that the same ports are used to dispose of waste further
implies that the choice of waste disposal ports does not change with the actual amount of waste

generated.

We assume that & and &; are independent, i= j. Define vector &§=(&,&,---§,). If, during
the voyage from one port to the next the amount of waste onboard reaches the capacity V , a
waste disposal vessel must be called so that the waste can be discharged to the waste disposal
vessel. Using the waste disposal vessel incurs a very high cost C > max{c,,i=12---n}. The
static stochastic problem determines the ports at which the waste is disposed of. It is possible
that, due to the stochastic nature of the amount of waste generated, the amount of waste onboard
reaches the holding capacity during the voyage; then the cost of using waste disposal vessels is

incurred. The objective of the static stochastic problem is to minimize the sum of disposing

costs at ports and the expected cost of using waste disposal vessels.

Define a vector of decision variables z:=(z,,z,---z,). The static stochastic problem can be

formulated as a two-stage stochastic program. The first-stage model is:

[M2.1] min Zn:cizi +E[f(z,8)] (10)
2. e{0,3},i=12--n. (11)

In Eq. (10), E[ f (z,&)] is the expected cost of using waste disposal vessels when the decision is

Z.

We now calculate E[ f (z,&)]. Define Z, as the set of nonnegative integers. For a realization

of the amount of waste vector &, denoted by q:=(q,,0,--q,), we define decision variable m,
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as the number of times waste disposal vessels are used on Leg i and y, as the amount of waste

in the ship when the ship just leaves Port i. The second stage problem is:

[M2.2] f(z,g) = min Czn:mi (12)
=
subject to:
Y, +0,—Vm <V,i=12.--n (13)
Y, > Y, +0, —Vm, —Vz,i=12--n (14)
mez,,i=12---n (15)
y, >0,i=12---n. (16)

The objective function (12) minimizes the expected cost of using waste disposal vessels.
Constraints (13) calculate how many times waste disposal vessels are used on each leg.

Constraints (14) are similar to (6) and use the “big-M” method to define the relation between

Y. ., 0, and y.. Constraints (15) define the number of times waste disposal vessels are used

on each leg as a nonnegative integer. Constraints (16) enforce that the amount of waste onboard
when the ship just leaves a port is nonnegative.
2.2.1 Dynamic programming based on the reformulated network

The model M2.1 embedded with M2.2 seems to be very difficult as it is a two-stage stochastic
program with integer variables in the first stage and both integer and continuous variables in the
second stage. Moreover, we find that it is challenging to calculate the number of times waste
disposal vessels are used on each leg, as this number depends on the amount of waste onboard
when the ship just departs from the start port of the leg; however, enlightened by the
reformulated network in Figure 2(b), the number of times waste disposal vessels are used on
each arc in Figure 2(b) can be determined a priori using Monte-Carlo simulation. Similar to the
static deterministic problem, we also use the arcs in Figure 2(b) as the first-stage decisions.
There are two differences from the static deterministic problem. First, all of the arcs (i, j),i # ]
that connect a pair of nodes should be considered because with stochastic amount of waste EQs.

(9) are no longer meaningful. Second, the expected cost of Arc (i, j) is no longer just
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(c;+c;)/2, but also includes the expected costs of using waste disposal vessels which can be

determined a priori. Hence, this stochastic problem can be formulated as a deterministic one, as

shown by the algorithm below.
Algorithm 1: Solving the static stochastic problem
Step 1: The total expected cost for discharging at only one port is
) 2
Go :(,min ci)+C><1E = ) 17)
i=1,2---n V
The first term in the above equation means if the waste is discharged at exactly one port,

it should be the one with the lowest cost. The second term is the expected costs of using

waste disposal vessels, in which the expectation operator calculates the expected number
of times of using waste disposal vessels in an itinerary and LXJ is the largest integer not
greater than x.

Step 2: Construct a new network consisting of n nodes representing the n ports and n(n-1)

arcs, i.e., there is an arc connecting any two nodes. The expected cost of arc (i, j) is

j-1
C+C, — Zak
'2’+C><E % ifi<j
C; = _ (18)
n j-1
cac || 2ET2E
I21+CXE % ,|f|>J

Step 3: Find the least cost cycle in the new network in Step 2, denoted by C, and the lowest

expected total cost is
min(éo,é). (19)

and the optimal solution can be found accordingly. o
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2.2.2 Monte-Carlo simulation
Calculating the exact values of the expectations in Egs. (17) and (18) could be challenging as
they involve multi-dimensional integration. Nevertheless, the expectations can easily be

estimated with a high precision using Monte-Carlo simulation. Take the expectation in Eq. (17)
as the example, we could generate N realizations of the &, denoted by &®,&®...c™  and

according to strong law of large numbers, the expectation can be estimated by

l E =1
_— ~ — I N— 20
\ N Vv (20)

Our numerical tests show that using N =5,000 realizations is accurate enough.

2.3 Relaxation of the same waste disposal ports on different repetitions of an
itinerary

This section discusses the cases in which the sets of waste disposal ports on different
repetitions of an itinerary can be different.

In the deterministic model, consider an infinite planning horizon. Because disposing the waste
will mean a ‘clean slate’ of the state of the system, it can be shown that there is an optimal
solution such that from a certain repetition of the itineraries, the choice of waste disposal ports
will be periodic every few repetitions and the period is at most n repetitions. Given this periodic
structure, an optimal solution can be identified based on enumeration and the dynamic
programming in Section 3.1.

In the stochastic model, if the set of ports at which to dispose of waste is to be determined at
the beginning of an infinite planning horizon, then the optimal solution also has the periodic
structure and can be obtained in a similar way to the above deterministic case; if whether to
dispose of waste at a port is to be determined after observing the amount of waste on board

when the ship arrives at the port, then the model in Section 3.2 can be applied.
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3 Dynamic models

In the static settings, we assume that the cruise ship provides the same itinerary repeatedly,
e.g., Shanghai—Busan—Nagasaki—Shanghai—Busan—Nagasaki—Shanghai, and fixed ports
are used to dispose of waste in each itinerary. If we allow different ports to be used to dispose of
waste in different repetitions of the itinerary, for example, Busan is used in the first repetition
and Shanghai and Nagasaki are used in the second repetition, we then need to select the waste
disposal ports dynamically. Moreover, if the ship provides different itineraries in a planning
horizon, e.g., the first itinerary is Shanghai—Busan—Nagasaki—Shanghai, and the second
itinerary is Shanghai—Jeju—Shanghai, we also need to select the waste disposal ports
dynamically.

In the dynamic setting, we consider all of the ports visited by the ship in a planning horizon
of e.g. 180 days, defined from Port 1 to Port n, as shown in Figure 3. Note that here n is the
total number of ports visited in the planning horizon and is usually much larger than the n in the
static setting which means the total number of ports in an itinerary. The decisions are at which

ports to discharge waste.

Figure 3: Dynamic setting

3.1 Dynamic deterministic model

If the amount of waste generated on each leg is deterministic, the dynamic deterministic
problem can be easily solved using dynamic programming (DP) based on a reformulated
network similar to the one in Figure 2(b), and we only need to find the shortest path from a

dummy source node to a dummy sink node in the reformulated network.

3.2 Dynamic stochastic model
Now we examine the dynamic stochastic problem. In the dynamic stochastic problem, the

amount of waste generated on each leg is a random variable. Moreover, whether the ship will
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dispose of its waste at a port is not determined a priori, but determined at the time of arrival.

Therefore, we need to identify the optimal policy for the dynamic stochastic problem.

The amount of waste generated on Leg i=12---n—-1 is a random variable &, with known

distribution functions. We assume that & has support [0,V] for the purpose of ease of
presentation, although our model can easily be revised to accommodate the general case in
which the amount of waste generated on a leg may be larger than the holding capacity. Values
of & variables are independent for different indexes of i. Due to stochasticity, it is possible that

the disposal tank is full of waste during the voyage and a waste disposal vessel is used to

discharge the waste at the cost of C . Now the decision when the ship arrives at Port

i=12,3---n—1 is: whether the waste should be disposed of if the amount when the ship arrives
at the port is u, . The value of u, is known.
3.2.1 Dynamic programming approach

In the dynamic stochastic problem, the optimal decision to make when the ship arrives at a
port only depends on the amount of waste onboard and is independent of the historical

information and decisions. Therefore, we could use dynamic programming to solve the problem.

The dynamic programming process has n stages, and the policy decision at state i is

whether to discharge the waste at Port i. The state of stage i, denoted by u., is the amount of

waste onboard when the ship arrives at Port i. The backward reduction procedure for the

problem is as follows. Let 6 be a binary decision variable where 6 =0 means the waste is not
discharged and 6 =1 means the waste is discharged at a port. Define ¥; (u;) as the minimum
sum of total expected cost incurred during the interval from the arrival at Port i to the arrival at

Port n if the amount of waste when the ship arrives at Port i is u, . The recursive relation is
¥ (ui)zerer}gg}{ci-9+C-Pr(ui—ui-6+§i >V)+E[\Pi+1(ai+l)]}, i=1,2,3---n-1 (21)

subject to

u —u,-0+&;, ifu-u-0+¢ <V
i = . (22)
U, —u;,-0+§& -V, otherwise
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where the ‘tilde’ in U, ,

highlights that the state at stage i+1 is a random variable, whose value
depends on the random variable &, and the boundary conditions are

¥ (u)=0, u, e[0V]. (23)
In Egs. (21), the first term c -0 is the waste disposal cost at Port i; the second term
C-Pr(u —u, -0+& >V) is the expected cost of using waste disposal vessel on Leg i, where
u; —u, -6 is the amount of waste onboard the ship when it just leaves Port i ; note that the waste

disposal vessel is used at most once as we assume &; has support [0,V]; the third term has the

expectation operator because the amount of waste onboard when the ship arrives at Port i+1 is

a random variable. Note that if the random variable & may take a value larger than V , we only

need to slightly change Egs. (21) and (22). The dynamic stochastic problem aims to find a

policy to minimize ¥, (u,).
Note that P (u,) is neither convex nor concave. For example, suppose that there are only

two ports and one leg. The amount of waste generated on the leg is 10, and the waste tank
capacity is 20. The waste disposal cost at the port 1 is $2000. Then, the total cost is O if the
amount of waste onboard when the ship arrives at port 1 is not greater than 10, and is $2000
when the waste onboard is greater than 10.

3.2.2 Structure
Define 0;(u,) as the optimal value of © for Port i given u, in Egs. (21), i=1,2,3---n—1.
Proposition 1: The optimal policy for the dynamic stochastic problem is threshold-based.

That is, there exists a vector (ui*,i =1,2,3---n-1), such that the ship at Port i should dispose of
the waste if u; >u; and should not dispose of the waste, i.e., 0;(u;) =1 if u;>u; and 6;(u,)=0
ifu<u’,i=123---n-1.

Proof: We have (i) ¥;,,(u,,) is non-decreasing in u,,; (ii) ¢, -0+C-Pr(u, —u, -0 +& >V) is

non-decreasing in u; for all 6 and all i; (iii) Pr(,,, > x|u,,0) is non-decreasing in u, for all

i+1 —
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given xe[0,V], all 0 and all i; (iv) ¥,(u,) is non-decreasing in u, . Then, based on
Proposition 4.7.3 of Puterman (2014), ©;(u,) is non-decreasing in u, for all 6 and all i. Since
0 can either be 0 or 1, there exists a vector (u;,i=1,2,3:--n—1) such that 6, (u,) =1 if u; >u;
and 6:(u)=0ifu<u,i=123---n-1.0

The above threshold-based solution structure is similar to some inventory management,
revenue management, and electric vehicle routing problems, in which the amount of on-hand
inventory, the available capacity, and the amount of electricity stored in the vehicle at each stage
are the thresholds, respectively.

Proposition 1 shows that to determine the optimal policy, we only need to determine the
vector (u;,i=1,2,3---n-1). Evidently, we should not dispose of the waste if the amount when
the ship arrives at a port is 0, and we should always dispose of the waste if the amount is V . We
thus must have O<u; <V,i=1,2,3---n-1.

Define n:=(w;,,i=12,3---n-1), O<=x, <V,i=12,3---n—-1, as a threshold-based policy: if
we use policy wt, then the waste will be disposed of at Port i if and only if the amount of waste
onboard the ship when it arrives at Port i is greater than or equal to =, . We further define A(r)

as the total expected cost of policy .

Remark 1: The function A(r) is not convex.

Proof: We prove the remark by constructing a counter-example. Suppose that n=3, u, =0,
& has three possible realizations 0.4, 0.5, and 0.6 with probabilities 0.8, 0.1, and 0.1,
respectively; &, is deterministic and equal to 0.9; V =1, ¢, =1, C =10. Then we can calculate

that if we never dispose of the waste at Port 2, e.g.,m:=(V,V) , then A(x=(V,V))=C =10; if
we always dispose of the waste at Port 2, i.e., m:=(g,e) where ¢ is a very small positive

number, then A(n=(g,&)) =c, =1. For this simple case, it is easy to see that an optimal policy

is © =(n,,m,)=(10.4), i.e., we do not dispose of the waste at Port 1 and we dispose of the
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waste at Port 2 if the amount is at least 0.4. Note that as u, =0, any value of =, €(0,1] is
optimal; we also note that any r, € (0,0.4] is optimal. The total expected cost of the optimal
policy A(n’) =1.

Consider two other policies n® = (n!”,7$") = (1,0.5) and n® = (=?,7?) =(1,0.6) . We thus
have  A(n”)=08C+0.2c,=82 and A(n?®)=09C+0.1c,=9.1 .  Although

n® =0.51"+0.51, we have A(n®)>0.5A(n")+0.5A(n?). o
Remark 2: The function A(r) is not strictly quasi-convex.
Proof: We prove the remark by constructing a counter-example. Consider the example in the

proof of Remark 1. The policy n" =(n,n,)=(10.4) is optimal with A(x")=1. The policy
t=(1,0.3) is optimal with A(7) =1. The policy = = (=¥, n{’) = (1,0.5) has the total expected
cost A(n?)=0.8C +0.2c,=8.2 . Although A(7) <A(r®") and =" =0.57+0.57" , we have

A(®) = min{A(7), A(r®)}. 0

Remark 1 and Remark 2 show that the function A(r) may not have a nice structure for us to
apply nonlinear optimization techniques to find the optimal threshold-based policy =" for a
general problem. Therefore, we do not take advantage of continuous approximation methods to
address the above continuous state dynamic program. Instead, since the system state has only
one dimension, we take advantage of Proposition 1 to develop a discretization method, which is
elaborated below.

3.2.3 Discretization algorithm

Since u, is between 0 and V , we can discretize u, and use dynamic programming over the
discretized values. In the DP process, we make a decision at each port (stage) when the amount
of waste onboard is a discretized value (state). We can take advantage of Proposition 1 to reduce

the search space. The algorithm is elaborated below and we will explain the details later.

Algorithm 2: Solving the dynamic stochastic problem
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Step 0: Define i =n and the step size of amount of waste A (e.g., 1 cubic meter) (for ease of

presentation, we assume that V / A is an integer; otherwise we simply reset the capacity
to |V /A]A). Define aset W :={0,A,2A,---,(V / A)A} . The set W works as follows: the
amount of waste generated on each leg is rounded up to a discrete value in the set W . For
instance, if the amount is 2.34A, then we consider it as 3A . Define the boundary
conditions ¥, (u,)=0, u, eW .

Step 1: If i =1, output the optimal policy, and stop. Otherwise set i «—i—1.

Step 1.1: Set u, =0 and do not discharge waste at the port and
0;(u,=0)=0 (24)

\P:(ui = O) = Z Pr(ui+l -A< &i < ui+l)\P:+1(ui+1) (25)

U1 W (O}

Step 1.2: Set u; «<—u; +A. Calculate

Vi (u;,0) = Z Pr(U, —A <y, +& <u W1, (ug,)

U1 €{U +A,U;+2A,-+,(V/A) A}

_ (26)
+ Z Priu,, +V —A<u;+§ <u, +V)|:C+lPi+1(ui+1):|
U €{A, 24, Ui}
\Pi (ui ’1) = Ci + z IDr(ui+l —A< (ii = ui+1)\P:+l(ui+1) (27)
U1 W {0}
0; (u;) < arg min ¥, (u;, 6) (28)
LP*ik(ui) =Y, (ui’e:(ui)) (29)
If 0; (u;) =1, then due to Proposition 1, we have
0;(X) =1 X=U +A,U +2A,..V (30)
Y (X) =V (u), X=U, +AU +2A,...V (31)
and go to Step 1. Otherwise, go to Step 1.2.
and go to Step 1. O
In Eq. (26), when & <V -u , waste disposal vessels are not used and

Uy € {U; + AU +2A, -+, (V I A)A}; when V —u, <& <V, a waste disposal vessel is used and
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Uy, €{A,2A,--,u;} . In Eq. (27), since the waste is disposed of at Port i, the amount of waste

onboard the ship at Port i+1 is equal to the amount of waste generated on Leg i. We consider

the amount as u,, if it is in the interval (u,,, —A,u,,,]. When the distribution functions of the

i+1

random variables &, are known and Pr(u ) can be computed in time complexity

i+1

-A<& <u

i+1
O(1) , then the time complexity of Algorithm 2 is O(n|W ) =O(nV?/ A?).
The optimal policy obtained by Algorithm 2 is actually a near-optimal policy and the value of

W, (u,) obtained by Algorithm 2 is an upper bound on the minimum total expected cost due to
the discretization of u,. To obtain a lower bound, we can simply round down the amount of

waste generated on each leg to a discrete value in the set W (and treat the capacity as fV /MA

if V /A isnot an integer). That is, we replace Egs. (25) to (27) by the equations below:
lPT (ui =0)= z Pr(ui+1 < &i <U, + A)\P:u(um) (32)

Ui eW{(V/A) A}

Z Pr(u;,, <u;+& <u., + A7, (u,),

U1 EW\{O}

U =A

¥i(u;,0) = Z Pr(u,, <u +& <u., + A, (u,,) (33)
Ui (U Ui+, (V/A)A}

+ > Pr(u.,+V <u +§ <u

Ui €{A, 24, U —A}

+V +A) I:C + lP:ﬂ (Ui+1)] )

i+1

u €W \{0,A}
Yiu.)=c+ > Pru

Ui eW{(V/A)A}

< &_,i <Uj, + A)\P:ﬂ(um) (34)

i+1 i+1

Then the value of W (u,) obtained by Algorithm 2 with Egs. (32) to (34) is a lower bound on

the minimum total expected cost of the stochastic dynamic problem.

4 Numerical experiments

Numerical experiments are conducted to evaluate the performance of the proposed models,
which are implemented by Visual Studio 2008 on a PC (Intel Core i5, 1.7GHz; Memory, 8G).
The parameters are set as follows. The cost of discharging the waste at a port is between $100

and $1000 and the cost of using a waste disposal vessel is between $20,000 and $50,000, both of
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which follow the Uniform Distribution (Penco and Di Vaio, 2014). The sailing time between
two ports is randomly generated by using Uniform Distribution from one day to five days. The
passenger capacity of a cruise ship is an integer uniformly distributed between 2000 and 6000.
The amount of waste generated on each leg follows the Truncated Normal Distribution, with the
mean value equal to sailing time > number of passengers > 6 liters per passenger per day, the
standard deviation equal to 1/12 of the mean, truncated over the interval [mean — 12,000, mean
+ 12,000]. The waste holding capacity of a cruise ship is equal to 14 days > number of
passengers <6 liters per passenger per day (Dixon and Hughes, 1999).

The algorithms are very efficient. Computational experiments with randomly generated
instances show that: it takes less than 0.01 second to solve a static/dynamic deterministic case
with 50 ports; the time required to solve a 50-port instance of the static stochastic problem is

less than three minutes.

4.1 Comparing the static deterministic model and the static stochastic model
We now examine what benefit is gained by using the more complex static stochastic model
rather than the static deterministic model. To this end, we first clarify how a deterministic model
works in a stochastic environment. A modeler or a planner may have an estimate of the amount
of waste generated on each leg and then use the deterministic estimate as input to decide at
which ports to dispose of waste. If the amount of waste generated turns out to be too large, then
it is necessary to use waste disposal vessels. We do not assume that the modeler adopts the
expected amount of waste on each leg as input; instead, we consider a number of choices: use
the 50th percentile (i.e., the expected value), 60th, 70th, 80th, 90th, and 95th percentiles. For
instance, if the amount of waste on a leg is uniformly distributed between 0 and 100, then we
solve different static deterministic models assuming the amount of waste is 50, 60, 70, 80, 90,
and 95. After the static stochastic model and the static deterministic models are solved, we
compare each deterministic model with the stochastic one by generating another 5,000 scenarios
of waste. We report in Table 1 the average cost ratio between a deterministic model and the
stochastic one over ten instances (Column “Average cost ratio”) and the number of instances for

which the deterministic and the stochastic model give the same result of at which ports to
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dispose of waste (Column “#identical solutions™). In case the deterministic and the stochastic
model give different decisions of waste disposal ports, we analyze whether the results are
significantly different statistically. As we generate 5,000 scenarios of waste to evaluate the
decisions by the deterministic and the stochastic model, we use a paired-t test and consider two
decisions to be significantly different with a significance level of 0.003 (i.e., when the average
difference is larger than three times the standard deviation of the difference). The statistical
analysis results are shown in the last two columns of Table 1.

According to the average cost ratio in Table 1, the stochastic model outperforms the
deterministic model in the average sense. Moreover, the stochastic model significantly
outperforms the deterministic model for most instances, especially for the instances with a large
number of ports. No deterministic model significantly outperforms the stochastic model for any
instance. In addition, with the increase in the number of ports, it is less likely that the stochastic
model and the deterministic model give the same solution. Finally, even if we were to use the
deterministic model, we should never use the average amount of waste generated as the input.

The numerical results show that using the 90th percentile is much preferable.
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Table 1: Comparison of the static deterministic model and the static stochastic model

#solutions

Number  Deterministic . . . #solutions
Number Average  #identical with no o
of model . : e significantly
of ports . . costratio  solutions  significant .
instances (percentile) ) different
difference
50% 1760% 2 4 6
60% 1337% 1 4 6
70% 1007% 0 3 7
10 10 80% 3519 1 2 8
90% 192% 0 0 10
95% 244% 0 0 10
50% 2457% 0 6 4
60% 1303% 0 5 5
70% 1021% 0 5 5
20 10 80% 398% O 4 6
90% 334% 0 2 8
95% 227% 0 2 8
50% 2046% 0 2 8
60% 1637% 0 5 5
70% T47% 0 4 6
30 10 80% 212% 0 3 7
90% 102% 0 0 10
95% 264% 0 0 10
50% 2840% 0 1 9
60% 2061% 0 3 7
70% 1107% 0 2 8
40 10 80% 254% 0 3 7
90% 121% 0 4 6
95% 240% 0 1 9
50% 1206% 0 1 9
60% 1402% 0 0 10
70% 585% 0 2 8
50 10 80% 482% 0 2 8
90% 402% 0 1 9
95% 433% 0 0 10

4.2 Results of the dynamic deterministic model

We investigate the difference between the static deterministic and the dynamic deterministic
models. Suppose that an itinerary is to be repeated for ten times. In the static deterministic
model, each repetition must use the same disposal ports, whereas in the dynamic deterministic
model, different disposal ports may be used in different repetitions, thus providing more
flexibility for the decisions. We compute the ratio of the cost using the static deterministic and

the dynamic deterministic models and report the results in Table 2. The results show that
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allowing different disposal ports to be used in different repetitions can reduce up to one third of
cost. Therefore, cruise companies should dispose of waste in a flexible manner rather than

dispose at a few fixed ports.

Table 2: Comparison between the static and the dynamic deterministic models

Number of ports Number of instances Average cost ratio (static/dynamic)
10 100 1.33
20 100 1.17
30 100 1.11
40 100 1.07
50 100 1.08

We further compare the quality of the solutions obtained by the exact DP method and a
greedy heuristic for the dynamic deterministic models. The greedy heuristic works as follows:
the ship does not discharge waste at a port unless there is no sufficient capacity for the next
sailing leg. The total costs of the solutions obtained by the two methods are reported in Table 3.
The results show the DP method significantly outperforms the greedy heuristic and this

demonstrates the necessity of developing an exact method.

Table 3: Comparison between the exact dynamic programming approach and a greedy heuristic

#Port #Instance  DP average cost Greedy heuristic average cost Gap

10 100 731 977 25.18%
20 100 1406 2020 30.40%
50 100 3472 5289 34.35%
80 100 5535 8408 34.17%
100 100 6880 10654 35.42%

Note: Gap = (the average cost of the greedy heuristic — the average cost of DP) / the average
cost of the greedy heuristic

4.3 Computational efficiency of the dynamic stochastic model

Finally, we report the results of the computational performance of the dynamic stochastic
model. We carry out six groups of experiments with 50, 60, 70, 80, 90, and 100 ports. Each
group has ten instances. The step size of discretization A is set to be 1/25 of the capacity of the
waste holding tank of the cruise ship. We take advantage of Proposition 1 to accelerate the

dynamic programming algorithm. Table 4 reports the average upper bound of the ten instances
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in each group, the average CPU time required to find the upper bound (i.e., to solve an instance),
the average lower bound of the ten instances in each group, the average CPU time required to
find the lower bound, and the gap between the upper and lower bounds. We can see that the
dynamic stochastic model is much more difficult to solve than the deterministic one. However,
even a large instance with 100 ports can be solved in 8 minutes, which is fast enough for
practical purposes. Moreover, the optimality gap is less than 0.1%, which demonstrates that the

solutions obtained are near-optimal.

Table 4: Computational efficiency of the dynamic stochastic model

Upper bound Lower bound Average

Aver Aver gap
#Ports  #Instances #Discretization  Average € e}ge Average € e}ge between

CPU time CPU time

total cost total cost the
©) ©) bounds
50 10 25 3627 231 3625 235 0.06%
60 10 25 4266 263 4264 263 0.05%
70 10 25 4993 294 4989 296 0.08%
80 10 25 5837 365 5833 368 0.07%
90 10 25 6839 394 6836 397 0.04%
100 10 25 7353 461 7349 463 0.05%

5 Conclusions

Due to the large number of cruise passengers and regulations on sea environment protection,
determining at which ports to dispose of the waste generated onboard a cruise ship is a key
decision to reduce the cost for a cruise company. We have addressed four versions of the
problem: the cruise itinerary is either static or dynamic and the amount of waste generated on
each voyage leg is either deterministic or stochastic. We have proposed a polynomial-time
solution algorithm for the static deterministic model, and the idea of the algorithm can also be
used to solve the static stochastic model and the dynamic deterministic model. Second, we have
identified the structure of the optimal policy to the dynamic stochastic problem, i.e., a threshold-
based optimal policy, based on which an efficient dynamic programming algorithm is developed.
Computational results demonstrate that although the static stochastic model and the dynamic
stochastic model are much harder than their deterministic counterparts, all of the four models

can be efficiently solved for large-scale problem instances. The comparison of the static
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deterministic model and the static stochastic model shows that considerable cost reductions are
achieved by incorporating the randomness in waste generation on each leg. If a static
deterministic model must be used, then using the average amount of waste generated on a leg is
inferior to using a higher percentile value (e.g., 90th percentile for the truncated normal
distribution in our numerical computation). The comparison of the static deterministic model
and the dynamic deterministic model shows that allowing different disposal ports to be used in
different repetitions of the itinerary can reduce up to one third of cost. Therefore, cruise
companies should dispose of waste in a flexible manner rather than dispose at a few fixed ports.
Finally, the dynamic stochastic model for a large instance with 100 ports can be solved in 8
minutes with an optimality gap less than 0.1%, which is fast enough for practical purposes.

This study is one of the very few attempts on cruise shipping using quantitative approaches.
Although there are many quantitative models for other shipping modes such as tramp shipping
(Christiansen et al., 2013) and liner shipping (Meng et al., 2014; Lee and Song, 2017), most
literature on cruise shipping is descriptive, with a few exceptions of Maddah et al. (2010), Wang
et al. (2017a, b). Nevertheless, cruise shipping has its own characteristics that need to be
explored by industrial engineers/operations researchers. Moreover, the cruise market has
maintained steady growth in the past 20 years despite of the economic crisis in 2008 and
cruising companies have ordered a number of large cruise ships to serve the mass market of
cruising. We believe that there are a broad range of research topics in cruise shipping. Hopefully,

more quantitative models will be developed for such an emerging area.
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