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Abstract: The cruise industry has maintained a steady growth in the past 20 years. Due to the 

large number of cruise passengers and regulations on sea environment protection, determining at 

which ports to dispose of the waste generated onboard a cruise ship is a key decision to reduce 

the cost for a cruise company. We address four versions of the problem: the cruise itinerary is 

either static or dynamic and the amount of waste generated on each voyage leg is either 

deterministic or stochastic. We propose a polynomial-time solution algorithm for the static 

deterministic model, and the idea of the algorithm can also be used to solve the static stochastic 

model and the dynamic deterministic model. Second, we identify the structure of the optimal 

policy to the dynamic stochastic problem, based on which an efficient dynamic programming 

algorithm is developed. Extensive numerical experiments derived from problems of real-case 

scales demonstrate the efficiency of the proposed algorithms. 
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1 Introduction 

The cruise industry provides a package of recreational activities to passengers. On-board 

activities include casino gaming, gift shop sales, entertainment arcades, art auctions, photo sales, 

spa services, bingo games and lottery tickets, enhanced dining experiences in alternative 

restaurants, video diaries, golf lessons, and snorkel equipment rentals. Moreover, cruise ships 

will stay at several ports, which are often in different countries, and passengers can have a tour 

in the port cities. The cruising industry has maintained a steady increase in supply for the past 
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20 years. In 2014, the world cruise fleet had 296 ships (Cruise Ship Statistics, 2015), the number 

of cruise passengers reached a total of 22.04 million, and the global cruise industry generated 

revenues of 37.1 billion U.S. dollars (Cruise Industry, 2015). 

A large cruise ship carries over 6,000 passengers and 1,500 crew members, and therefore the 

amount of waste generated by a cruise ship is also considerable. This significantly contrasts 

cargo ships, e.g., bulk ships (Magirou et al., 2015) and container ships (Bell et al., 2013; 

Psaraftis and Kontovas, 2013, 2014; Ng, 2015), which are usually manned with fewer than 30 

crew members. There are mainly five waste streams from cruise ships: sewage, graywater, oily 

bilge water, solid waste, and hazardous waste (EPA, 2008). Sewage from cruise ships, also 

known as “black water”, generally means human body wastes. Graywater generally means 

wastewater from sinks, baths, showers, laundry, and galleys. Oily bilge water is the mixture of 

water, oily fluids and lubricants from the machinery spaces of a cruise ship. Solid waste is the 

food waste, garbage, refuse, sludge, rubbish, trash, and other discarded materials. Hazardous 

waste is a type of waste containing hazardous instances. As reported by EPA (2008), every day a 

large cruise ship may generate 74,000 gallons of sewage, 249,000 gallons of grey water, 5,300 

gallons of bilge water, 50 ton of garbage, 12,000 bottles and 12,000 cans, and 10 tons of 

hazardous waste. Different waste streams are treated differently. Some waste must be off-loaded 

to shore reception facilities at ports for recycling or disposal, for instance, synthetic ropes, 

plastic bags, some solid waste that cannot be incinerated, a proportion of oily bilge water, and 

hazardous waste. Annexes V and VI of The International Convention for the Prevention of 

Pollution from Ships (MARPOL) of the International Maritime Organization (IMO) have 

regulated the types of wastes that can be discharged into the sea and have imposed ships to 

provide facilities for the reception of waste. Most cruise lines have implemented environmental 

management systems to reduce, select, and manage the waste generated onboard, in order to be 

in compliance to the MARPOL requirements (Pallis, 2015). 

This paper considers the waste that must be landed to the shore reception facilities. A cruise 

ship has an environmental officer (EO) onboard, a crew member in charge of looking after the 

waste. The EO reports to the Chief Officer the amount of waste that is onboard and the Chief 

Officer reports to the shore-side headquarter to decide whether to discharge the waste at the next 
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port of call or not. Cost is a major concern in the choice of waste discharge port. Different ports 

have quite different prices for waste discharging: some ports, e.g., ports in Cyprus, impose a 

fixed charge no matter whether a ship actually discharges waste or not (that is equivalent to not 

cost for waste discharging in the decision process), and other ports can charge up to several 

thousand dollars. Therefore, it is vital to decide at which ports to discharge waste is the most 

cost-effective. Given a cruise ship that visits a sequence of ports according to a pre-determined 

schedule and waste is generated continuously along the voyage and the waste holding tank has 

limited capacity, we study the problem of determining at which port to dispose of the generated 

waste so as to minimize the total cost. We identify special structures of the problem and develop 

dynamic programming based solution approaches to address the problem. Our numerical 

experiments show a cost reduction of 30% using the proposed methods relative to a greedy 

waste disposal heuristic.  

1.1 Literature review 

There are some qualitative works on waste generated onboard cruise ships. Dixon and Hughes 

(2000) reviewed the current regulations on cruise ship waste management set by IMO, mainly 

the MARPOL regulations. They also discussed a typical design of waste management systems 

onboard cruise ships. Johnson (2002) categorized the environmental impacts of cruise tourism, 

including (i) infrastructure impacts such as ship construction, the creation of cruise passenger 

terminal facilities and berthing access requirements; (ii) operational impacts involving the use of 

energy and water and air quality pollution; (iii) distribution impacts associated with tourists’ 

travel and the logistics of supplying a cruise liner with provisions; (iv) use impacts which 

comprise the cultural impact of wealthy tourists and overcrowding created by large numbers of 

visitors at one destination; and (v) waste impact. He explored the potential strategies that can be 

employed by cruise line operators and cruise tourism destinations to manage the impact. He 

concluded that although the industry was taking a number of belated positive steps, the decision-

makers in cruise tourism destinations, such as cruise port operators and port city governments, 

should work closely with cruise lines to facilitate integrated waste management and sustainable 

development. Polglaze (2003) highlighted the importance of management of ships’ food waste 
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and summarized the estimated rates of food waste generation for merchant ships, passenger 

ships, and fishing ships, by different sources such as the US National Research Council and 

International Maritime Organization (IMO). He conducted a survey of six ships and the survey 

revealed a general upward trend in per capita waste generation rate as a function of crew size. 

Based on surveys undertaken in 2000 and 2002 regarding the availability of port reception 

facilities for ship waste in the North Sea area, Carpenter and Macgill (2005) found that most 

North Sea ports had sufficient reception facilities and already met the EU Directive on reception 

facilities for ship waste. Butt (2007) studied cruise ship’s waste management status in 

Southampton and investigated the disposal options for ship generated waste and the impacts of 

the waste on ports. He recommended all cruise ships should pursue a waste reduction strategy 

and the ports should provide adequate recycling, reduction and re-use facilities for waste. 

Macpherson (2008) reviewed the environmental, economic and societal impacts of cruise ship 

tourism. He pointed out that sustainable tourism policies and effective management of the 

tourism could yield high returns with low risks. Using a life cycle assessment, Zuin et al. (2009) 

identified and quantified the environmental impacts caused by ships’ waste management in the 

port of Koper, Slovenia. They argued that critical environmental issues are caused by 

carcinogens substance, inorganic emissions and heavy metals, while the recovery of ship-

generated oils is beneficial to reduce the fossil fuel consumption. Klein (2011) measured the 

impact of cruise tourism with the focus on the perceptions of host communities. Challenges 

faced by government, communities and the cruise industry were identified and analyzed to give 

a direction on how tourism can grow in a sustainable and responsible way. Therefore, the 

existing literature mainly focuses on technological and legal aspect of waste management by 

cruise ships. To the best of our knowledge, there is no study focusing on how a cruise ship could 

choose ports to dispose of its waste in the most cost-effective manner.  

Our work is also related to literature on dynamic programming applications. Dynamic 

programming has been applied in many areas, such as inventory management, revenue 

management, electric vehicle charging, traffic sensor deployment, and appointment scheduling. 

Berman and Larson (2001) formulated a stochastic dynamic programming model for a vehicle 

product-delivery problem in which the volume of product required by each customer on a route 
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is random, which is similar with the randomness of the generated waste in this study. The 

difference is, the problem in Berman and Larson (2001) does not have a nice structure and hence 

they applied several rules to identify high-quality solutions. Lam et al. (2007) addressed an 

empty container repositioning problem. As the problem has the curse-of-dimensionality 

difficulty, they applied an approximate dynamic programming approach. Truong (2015) 

investigated a dynamic advance scheduling problem in a hospital, where advance scheduling is, 

when a patient calls, she will immediately be given an appointment in the future or be rejected. 

Truong (2015) derived a characterization of an optimal policy and based on it, showed that the 

straightforward dynamic programming formulation with an exponential number of states can be 

transformed to one with a polynomial number of states. In our problem setting, cruise ships 

repeat their itineraries (in contrast to an open end planning horizon) and there are “recourse” 

actions (use of waste disposal vessel in case the waste holding tank is full at sea) when 

considering random amount of waste generated. These differences enable us to examine special 

structures of the problem and develop tailored solution approaches. 

1.2 Objectives and contributions 

The objective of this study is to examine how a cruise company should choose waste disposal 

ports for a cruise ship to discharge waste at minimum cost. We develop four models for the 

problem. The four models are categorized according to two dimensions, i.e., the itinerary (either 

static or dynamic) and the amount of waste generated on each voyage leg (either deterministic or 

stochastic). By combining the two options in each of the two dimensions, four different models 

are formulated as follows.  

(1) The first is a static deterministic model. It is static in the sense that the cruise ship repeats 

its itinerary many times and the same waste disposal ports are used in each repetition. It is 

deterministic as the amount of waste generated on each voyage leg is assumed to be fixed.  

(2) The second one is static stochastic as it captures the stochastic nature of the amount of 

waste generated on each voyage leg. Due to the stochasticity of the amount of waste generated, 

it is possible that the waste holding tank is full during a voyage; and if this happens, a waste 

disposal vessel must be called to dispose of the waste at a high cost.  
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(3) The third model is dynamic deterministic: the amount of waste generated on each voyage 

leg is fixed, and the cruise ship may provide any itineraries (rather than repeating the same 

itinerary) in a finite planning horizon.  

(4) The fourth one is dynamic stochastic that captures the stochasticity of the amount of waste 

generated. 

This study is one of the very few attempts on cruise shipping using quantitative approaches. 

The contribution of the paper is twofold. First, we propose a polynomial-time solution algorithm 

for the static deterministic model, and the idea of the algorithm can also be used to solve the 

static stochastic model and the dynamic deterministic model efficiently. Second, we identify the 

structure of the optimal policy to the dynamic stochastic problem, based on which an efficient 

dynamic programming algorithm is developed. Extensive numerical experiments based on 

problems of real-case scales demonstrate the efficiency of the proposed algorithms. 

The remainder of the paper is organized as follows. Section 2 presents the static models, 

including the static deterministic model and the static stochastic model, and solution algorithms. 

Section 3 presents the dynamic models, including the dynamic deterministic model and the 

dynamic stochastic model, as well as solution algorithms. Section 4 reports the results of 

numerical experiments to validate the efficiency of the proposed algorithms. Conclusions are 

then outlined in Section 5. 

2 Static models 

Consider a cruise ship that provides a regular cruising itinerary, visiting Ports 1, 2… n , and 

visiting Port 1 again, similar to container liner shipping (Wang et al., 2014). Port 1 is the home 

port and the other 1n−  ports are ports of call. The itinerary starts from the home port to pick up 

passengers and returns to the home port where cruise passengers get off the cruise ship. After 

that, the itinerary starts again, as shown in Figure 1. For instance, the cruise ship “Quantum of 

the Seas” operated by Royal Caribbean International (RCI, 2015) visits Shanghai (China) as the 

home port, then Busan (South Korea), Nagasaki (Japan), and returns to Shanghai in the first 

rotation; then it starts its second rotation visiting Busan, Nagasaki, and Shanghai again. The 

same itinerary is repeated many times. The voyage from Port i  to Port 1i +  is called Leg i .  
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The capacity of the waste holding tank of the ship (waste holding capacity), i.e., the maximal 

amount of waste that can be stored in the ship, is denoted by V . The cost for disposing of the 

waste stored in the ship at Port i  is denoted by 
ic . In the static setting, we need to identify the 

ports at which the waste is disposed of (discharged). In Sections 2.1 and 2.2, we assume that the 

same ports are used to dispose of waste in every repetition of the itinerary for the sake of 

uniformity in managerial decision making; therefore, we only need to take into account one 

itinerary. Section 2.3 discusses the cases when relaxing this requirement. 

Port

1

Port

2
Port

3

Port

n

Port

n-1

Port

i

 

Figure 1: Itinerary in static models  

2.1 Static deterministic model 

In the deterministic model, we assume that the amount of waste generated on Leg i , denoted 

by iq , 0 iq V  , is deterministic. We assume that 
1

n

ii
q V

=
 , because otherwise we only 

dispose of the waste at Port 
*

1,2arg min i n ii c= . 

2.1.1 Mixed-integer linear programming model 

The static deterministic problem can be formulated as a mixed-integer linear programming 

model. The decision variables are: iz  is binary which equals 1 if and only if the waste is 

disposed of at Port i , and iy  is the amount of waste onboard the ship when the ship just leaves 

Port i . In the model, we define 0 : ny y=   and 0 : nq q= . The model is: 

[M1] 
1

min
n

i i

i

c z
=

  (1) 

subject to: 

 , 1,2i iy q V i n+  =  (2) 
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1 1 , 1,2i i i iy y q Vz i n− − + − =  (3) 

 0, 1,2iy i n = . (4) 

 {0,1}, 1,2iz i n = . (5) 

Eq. (1) minimizes the total cost of discharging the waste for one itinerary. Constraints (2) 

impose that when the ship arrives at Port 1i + , the amount of waste in the ship 
i iy q+  should not 

exceed the capacity of the waste holding tank. Eqs. (3), in which V  is actually the “big-M”, are 

a linear form of the following constraints: 

 
1 1

0,  if 1
, 1,2

,  if 0

i

i

i i i

z
y i n

y q z− −

=
= =

+ =
 (6) 

Eqs. (6) imply when the waste is disposed of at Port i , i.e., 1iz = , then there is no waste in the 

ship when it leaves Port i ; otherwise the amount of waste in the ship when it leaves Port i  is 

equal to the amount when it leaves the previous port (Port 1i − ) plus the amount generated 

during the voyage from Port 1i −  to Port i . Constraints (4) define 
iy  as nonnegative variables 

and Constraints (5) define iz  as binary variables. 

2.1.2 A polynomial-time solution approach 

The mixed-integer linear formulation M1 can generally be solved by off-the-shelf mixed-

integer linear programming solvers. Nevertheless, we still investigate the properties of the static 

deterministic problem to gain insights which might be helpful for us to address more complex 

problems such as the static stochastic one in the next sub-section. We find that M1 has nice 

properties for us to develop a polynomial-time solution approach. 

Consider the example in Figure 2: Figure 2(a) shows the parameters. For instance, the cost for 

disposing of waste at Port 2 is 2 (unit: 1000 dollars), the amount of waste generated on the leg 

from Port 2 to Port 3 is 2 3q = , and the holding capacity is 6V = .  

 



 9 

Port

1

Port

2

Port

3

Port

6

Port

5

Port

4

3

3

Port

1

Port

2

Port

3

Port

6

Port

5

Port

4

$2.5

$5.5

$1

$2 $3

$4

$5$6

6V =

$4
$4

(a)

(b)  

Figure 2: Reformulated network  

It occurs to us that if we consider the choice of two adjacent waste disposal ports rather than 

the choice of each port as in Model M1, the problem will become easier. To this end, we 

reformulate the network in Figure 2(a) to Figure 2(b). For each Port i , we check for every other 

Port j  whether it is possible to dispose of the waste at i  and j , but not any port in between. An 

arc ( , )i j , 1,2 , 1,2 ,i n j n j i= =  , is created if and only if after discharging the waste at 

Port i , the vessel does not need to discharge waste at any of Ports 1, 2 1i i j+ + −  before 

discharging at Port j . Mathematically, the set of arcs to create is all of the ( , )i j ’s that satisfy 

    ( , ) 1, 2 1, 2i j n n   (7) 

 i j  (8) 

 

1

1

1

if , 

if , .

j

k

k i

jn

k k

k i k

i j q V

i j q q V

−

=

−

= =


 



  + 




 

 (9) 

The cost of Arc ( , )i j , denoted by ijc , is defined as ( ) / 2i jc c+ . We divide by two because 

each port will be included in two arcs in a solution to the new problem: to find a minimum cost 

cycle in the reformulated network. Note that not all nodes must be visited in the cycle.  

By now the new problem is not much different from M1: both need to determine at which 

ports to discharge the waste. Therefore, the number of potentially feasible cycles to the new 
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problem can be up to 2n , which increases exponentially with regard to the size the problem n . 

However, the new problem has a nice structure that leads to the following theorem.  

Theorem 1: The static deterministic problem can be solved in time 3( )O n . 

Proof: The construction of the reformulated network takes time 2( )O n  as we need to check 

2( )O n  port pairs to see whether an arc between each port pair should be added. The time 

required for checking a port pair (e.g., from i  to j ), which involves one summation (sum of the 

wastes generated on Leg 1j −  and the wastes generated from port i  to port 1j − ) and the 

comparison of the sum with the holding capacity, is (1)O . Then, we need to find the shortest 

cycle in the reformulated network, which can be completed in time 3( )O n  (Lawler, 1976). □ 

Theorem 1 proves that the static deterministic problem is an easy problem that can be 

efficiently solved to optimality. 

2.2 Static stochastic model 

We now consider the case in which the waste generated on a leg is a random variable. Unlike 

cargo ships whose waste produced is almost constant every day (as the waste is mainly from the 

ship itself, e.g., oily bilge water), a cruise ship carries up to 5,000 passengers who produce a 

large amount of waste. As pointed out by Pallis (2015), “[t]he amount and types of waste might 

vary from one cruise ship to another, yet cruises are generators of the highest amount of garbage. 

A cruise ship with 3,000 passengers and crew generates about 50 tonnes of solid waste in a 

single week. An average cruise passenger generates a minimum of one kilogram of solid waste 

plus two bottles and two cans per day and an average of 50 tonnes of sewage per day. As cruise 

activities grow, the size of the waste produced during every single cruise […] cannot be 

ignored.” Therefore, the amount of waste generated depends on (i) the number of passengers 

onboard, and (ii) the amount of waste each passenger produces, which is up to the passenger’s 

consumption of food, beverages, shampoo, newspapers, etc. Véronneau and Roy (2009) stated 

that “[t]he reality for cruise companies is that when there is a new itinerary or different 

demographics, a ship’s consumption is unpredictable. There is no real statistical model that 
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confirms that the English consume two pounds of roast beef on a daily basis while Spaniards eat 

more fish.” Therefore, the amount of waste generated on a leg is indeed random. 

Denote by 
i  the waste generated on Leg i  with cumulative distribution function ( )iF x . 

Similar to Sections 2.1, we assume that in each repetition of the itinerary, the same ports are 

used to dispose of waste due to ease of management; therefore, we only need to take into 

account one itinerary. The requirement that the same ports are used to dispose of waste further 

implies that the choice of waste disposal ports does not change with the actual amount of waste 

generated.  

We assume that 
i  and j  are independent, i j . Define vector 1 2( , )n=   ξ . If, during 

the voyage from one port to the next the amount of waste onboard reaches the capacity V ,  a 

waste disposal vessel must be called so that the waste can be discharged to the waste disposal 

vessel. Using the waste disposal vessel incurs a very high cost max{ , 1,2 }iC c i n = . The 

static stochastic problem determines the ports at which the waste is disposed of. It is possible 

that, due to the stochastic nature of the amount of waste generated, the amount of waste onboard 

reaches the holding capacity during the voyage; then the cost of using waste disposal vessels is 

incurred. The objective of the static stochastic problem is to minimize the sum of disposing 

costs at ports and the expected cost of using waste disposal vessels. 

Define a vector of decision variables 
1 2: ( , )nz z z=z . The static stochastic problem can be 

formulated as a two-stage stochastic program. The first-stage model is: 

[M2.1]   
1

min ( , )
n

i i

i

c z f
=

+ z ξ  (10) 

 {0,1}, 1,2iz i n = . (11) 

In Eq. (10),  ( , )f z ξ  is the expected cost of using waste disposal vessels when the decision is 

z .  

We now calculate  ( , )f z ξ . Define +  as the set of nonnegative integers. For a realization 

of the amount of waste vector ξ , denoted by 1 2: ( , )nq q q=q , we define decision variable im  
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as the number of times waste disposal vessels are used on Leg i  and 
iy  as the amount of waste 

in the ship when the ship just leaves Port i . The second stage problem is: 

[M2.2] 
1

( , ) min
n

i

i

f C m
=

= z q  (12) 

subject to: 

 , 1,2i i iy q Vm V i n+ −  =  (13) 

 
1 1 1 , 1,2i i i i iy y q Vm Vz i n− − − + − − =  (14) 

 , 1,2im i n+ =  (15) 

 0, 1,2iy i n = . (16) 

The objective function (12) minimizes the expected cost of using waste disposal vessels. 

Constraints (13) calculate how many times waste disposal vessels are used on each leg. 

Constraints (14) are similar to (6) and use the “big-M” method to define the relation between 

1iy −
, 

1iq −
, and 

iy . Constraints (15) define the number of times waste disposal vessels are used 

on each leg as a nonnegative integer. Constraints (16) enforce that the amount of waste onboard 

when the ship just leaves a port is nonnegative. 

2.2.1 Dynamic programming based on the reformulated network 

The model M2.1 embedded with M2.2 seems to be very difficult as it is a two-stage stochastic 

program with integer variables in the first stage and both integer and continuous variables in the 

second stage. Moreover, we find that it is challenging to calculate the number of times waste 

disposal vessels are used on each leg, as this number depends on the amount of waste onboard 

when the ship just departs from the start port of the leg; however, enlightened by the 

reformulated network in Figure 2(b), the number of times waste disposal vessels are used on 

each arc in Figure 2(b) can be determined a priori using Monte-Carlo simulation. Similar to the 

static deterministic problem, we also use the arcs in Figure 2(b) as the first-stage decisions. 

There are two differences from the static deterministic problem. First, all of the arcs ( , ),i j i j  

that connect a pair of nodes should be considered because with stochastic amount of waste Eqs. 

(9) are no longer meaningful. Second, the expected cost of Arc ( , )i j  is no longer just 
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( ) / 2i jc c+ , but also includes the expected costs of using waste disposal vessels which can be 

determined a priori. Hence, this stochastic problem can be formulated as a deterministic one, as 

shown by the algorithm below. 

Algorithm 1: Solving the static stochastic problem 

Step 1: The total expected cost for discharging at only one port is 

  ( )0 1

1,2

ˆ min

n

i

i
i

i n
C c C

V

=

=

  
  

  = + 
  
    


. (17) 

The first term in the above equation means if the waste is discharged at exactly one port, 

it should be the one with the lowest cost. The second term is the expected costs of using 

waste disposal vessels, in which the expectation operator calculates the expected number 

of times of using waste disposal vessels in an itinerary and x    is the largest integer not 

greater than x . 

Step 2: Construct a new network consisting of n  nodes representing the n  ports and ( 1)n n−  

arcs, i.e., there is an arc connecting any two nodes. The expected cost of arc ( , )i j  is 

 

1

1

1

,  if 
2

,  if .
2

j

k
i j k i

ij
jn

k k
i j k i k

c c
C i j

V

c

c c
C i j

V

−

=

−

= =

   
   +

   +  
   
   

   
= 

  
 +    +

  +  
  
     



 

 (18) 

Step 3: Find the least cost cycle in the new network in Step 2, denoted by Ĉ , and the lowest 

expected total cost is  

 ( )0ˆ ˆmin ,C C . (19) 

and the optimal solution can be found accordingly. □ 
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2.2.2 Monte-Carlo simulation 

Calculating the exact values of the expectations in Eqs. (17) and (18) could be challenging as 

they involve multi-dimensional integration. Nevertheless, the expectations can easily be 

estimated with a high precision using Monte-Carlo simulation. Take the expectation in Eq. (17) 

as the example, we could generate N  realizations of the ξ , denoted by (1) (2) ( ), N
ξ ξ ξ , and 

according to strong law of large numbers, the expectation can be estimated by 

 

( )

1 1

1

1

n n
k

i iN
i i

kV N V

= =

=

    
     

    
    
        

 
  (20) 

Our numerical tests show that using 5,000N =  realizations is accurate enough. 

2.3 Relaxation of the same waste disposal ports on different repetitions of an 

itinerary 

This section discusses the cases in which the sets of waste disposal ports on different 

repetitions of an itinerary can be different.  

In the deterministic model, consider an infinite planning horizon. Because disposing the waste 

will mean a ‘clean slate’ of the state of the system, it can be shown that there is an optimal 

solution such that from a certain repetition of the itineraries, the choice of waste disposal ports 

will be periodic every few repetitions and the period is at most n  repetitions. Given this periodic 

structure, an optimal solution can be identified based on enumeration and the dynamic 

programming in Section 3.1. 

In the stochastic model, if the set of ports at which to dispose of waste is to be determined at 

the beginning of an infinite planning horizon, then the optimal solution also has the periodic 

structure and can be obtained in a similar way to the above deterministic case; if whether to 

dispose of waste at a port is to be determined after observing the amount of waste on board 

when the ship arrives at the port, then the model in Section 3.2 can be applied. 
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3 Dynamic models 

In the static settings, we assume that the cruise ship provides the same itinerary repeatedly, 

e.g., Shanghai→Busan→Nagasaki→Shanghai→Busan→Nagasaki→Shanghai, and fixed ports 

are used to dispose of waste in each itinerary. If we allow different ports to be used to dispose of 

waste in different repetitions of the itinerary, for example, Busan is used in the first repetition 

and Shanghai and Nagasaki are used in the second repetition, we then need to select the waste 

disposal ports dynamically. Moreover, if the ship provides different itineraries in a planning 

horizon, e.g., the first itinerary is Shanghai→Busan→Nagasaki→Shanghai, and the second 

itinerary is Shanghai→Jeju→Shanghai, we also need to select the waste disposal ports 

dynamically. 

In the dynamic setting, we consider all of the ports visited by the ship in a planning horizon 

of e.g. 180 days, defined from Port 1 to Port n , as shown in Figure 3. Note that here n  is the 

total number of ports visited in the planning horizon and is usually much larger than the n  in the 

static setting which means the total number of ports in an itinerary. The decisions are at which 

ports to discharge waste. 

 

Port

1

Port

2

Port

3

Port

n

Port

n–1

Port

i
 

Figure 3: Dynamic setting  

3.1 Dynamic deterministic model 

If the amount of waste generated on each leg is deterministic, the dynamic deterministic 

problem can be easily solved using dynamic programming (DP) based on a reformulated 

network similar to the one in Figure 2(b), and we only need to find the shortest path from a 

dummy source node to a dummy sink node in the reformulated network. 

3.2 Dynamic stochastic model 

Now we examine the dynamic stochastic problem. In the dynamic stochastic problem, the 

amount of waste generated on each leg is a random variable. Moreover, whether the ship will 
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dispose of its waste at a port is not determined a priori, but determined at the time of arrival. 

Therefore, we need to identify the optimal policy for the dynamic stochastic problem. 

The amount of waste generated on Leg 1,2 1i n= −  is a random variable 
i  with known 

distribution functions. We assume that 
i  has support [0, ]V  for the purpose of ease of 

presentation, although our model can easily be revised to accommodate the general case in 

which the amount of waste generated on a leg may be larger than the holding capacity. Values 

of 
i variables are independent for different indexes of i . Due to stochasticity, it is possible that 

the disposal tank is full of waste during the voyage and a waste disposal vessel is used to 

discharge the waste at the cost of C . Now the decision when the ship arrives at Port 

1,2,3 1i n= −  is: whether the waste should be disposed of if the amount when the ship arrives 

at the port is iu . The value of 1u  is known. 

3.2.1 Dynamic programming approach 

In the dynamic stochastic problem, the optimal decision to make when the ship arrives at a 

port only depends on the amount of waste onboard and is independent of the historical 

information and decisions. Therefore, we could use dynamic programming to solve the problem. 

The dynamic programming process has n  stages, and the policy decision at state i  is 

whether to discharge the waste at Port i . The state of stage i , denoted by iu , is the amount of 

waste onboard when the ship arrives at Port i . The backward reduction procedure for the 

problem is as follows. Let   be a binary decision variable where 0 =  means the waste is not 

discharged and 1 =  means the waste is discharged at a port. Define *( )i iu  as the minimum 

sum of total expected cost incurred during the interval from the arrival at Port i  to the arrival at 

Port n  if the amount of waste when the ship arrives at Port i  is iu . The recursive relation is 

  * *

1 1
{0,1}

( ) min Pr( ) ( ) ,  1, 2,3 1i i i i i i i iu c C u u V u i n+ +


  = +  − +   +  = −   (21) 

subject to 

 1

,         if 

,   otherwise               

i i i i i i

i

i i i

u u u u V
u

u u V
+

− +  − +  
= 

− +  −
 (22) 
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where the ‘tilde’ in 
1iu +
 highlights that the state at stage 1i +  is a random variable, whose value 

depends on the random variable 
i , and the boundary conditions are 

 * ( ) 0, [0, ]n n nu u V =  . (23) 

In Eqs. (21), the first term 
ic   is the waste disposal cost at Port i ; the second term 

Pr( )i i iC u u V −  +    is the expected cost of using waste disposal vessel on Leg i , where 

i iu u−   is the amount of waste onboard the ship when it just leaves Port i ; note that the waste 

disposal vessel is used at most once as we assume 
i  has support [0, ]V ; the third term has the 

expectation operator because the amount of waste onboard when the ship arrives at Port 1i +  is 

a random variable. Note that if the random variable 
i  may take a value larger than V , we only 

need to slightly change Eqs. (21) and (22). The dynamic stochastic problem aims to find a 

policy to minimize *

1 1( )u .  

Note that *

1 1( )u  is neither convex nor concave. For example, suppose that there are only 

two ports and one leg. The amount of waste generated on the leg is 10, and the waste tank 

capacity is 20. The waste disposal cost at the port 1 is $2000. Then, the total cost is 0 if the 

amount of waste onboard when the ship arrives at port 1 is not greater than 10, and is $2000 

when the waste onboard is greater than 10. 

3.2.2 Structure 

Define *( )i iu  as the optimal value of   for Port i  given iu  in Eqs. (21), 1,2,3 1i n= − . 

Proposition 1: The optimal policy for the dynamic stochastic problem is threshold-based. 

That is, there exists a vector *( , 1,2,3 1)iu i n= − , such that the ship at Port i  should dispose of 

the waste if *

i iu u  and should not dispose of the waste, i.e., *( ) 1i iu =  if  *

i iu u  and *( ) 0i iu =  

if *

i iu u , 1,2,3 1i n= − . 

Proof: We have (i) *

1 1( )i iu+ +  is non-decreasing in 1iu + ; (ii) Pr( )i i i ic C u u V+  − +    is 

non-decreasing in iu  for all   and all i ; (iii) 1Pr( | , )i iu x u+    is non-decreasing in iu  for all 
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given [0, ]x V , all   and all i ; (iv) * ( )n nu  is non-decreasing in 
nu . Then, based on 

Proposition 4.7.3 of Puterman (2014),  *( )i iu  is non-decreasing in 
iu  for all   and all i . Since 

  can either be 0 or 1, there exists a vector *( , 1,2,3 1)iu i n= −  such that *( ) 1i iu =  if  *

i iu u  

and *( ) 0i iu =  if *

i iu u , 1,2,3 1i n= − . □ 

The above threshold-based solution structure is similar to some inventory management, 

revenue management, and electric vehicle routing problems, in which the amount of on-hand 

inventory, the available capacity, and the amount of electricity stored in the vehicle at each stage 

are the thresholds, respectively. 

Proposition 1 shows that to determine the optimal policy, we only need to determine the 

vector *( , 1,2,3 1)iu i n= − . Evidently, we should not dispose of the waste if the amount when 

the ship arrives at a port is 0, and we should always dispose of the waste if the amount is V . We 

thus must have *0 , 1,2,3 1iu V i n  = − . 

Define : ( , 1,2,3 1)i i n =  = − , 0 , 1,2,3 1i V i n   = − , as a threshold-based policy: if 

we use policy  , then the waste will be disposed of at Port i  if and only if the amount of waste 

onboard the ship when it arrives at Port i  is greater than or equal to 
i . We further define ( )   

as the total expected cost of policy  .  

Remark 1: The function ( )   is not convex. 

Proof: We prove the remark by constructing a counter-example. Suppose that 3n = , 1 0u = , 

1  has three possible realizations 0.4, 0.5, and 0.6 with probabilities 0.8, 0.1, and 0.1, 

respectively; 2  is deterministic and equal to 0.9; 1V = , 2 1c = , 10C = . Then we can calculate 

that if we never dispose of the waste at Port 2, e.g., : ( , )V V =  , then ( ( , )) 10V V C  = = = ; if 

we always dispose of the waste at Port 2, i.e., : ( , ) =    where   is a very small positive 

number, then 2( ( , )) 1c  =   = = . For this simple case, it is easy to see that an optimal policy 

is * * *

1 2( , ) (1,0.4) =   = , i.e., we do not dispose of the waste at Port 1 and we dispose of the 
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waste at Port 2 if the amount is at least 0.4. Note that as 
1 0u = , any value of *

1 (0,1]   is 

optimal; we also note that any *

2 (0,0.4]   is optimal. The total expected cost of the optimal 

policy *( ) 1  = .  

Consider two other policies (1) (1) (1)

1 2( , ) (1,0.5) =   =  and (2) (2) (2)

1 2( , ) (1,0.6) =   = . We thus 

have (1)

2( ) 0.8 0.2 8.2C c  = + =  and (2)

2( ) 0.9 0.1 9.1C c  = + = . Although 

(1) * (2)0.5 0.5 =  +  ,  we have (1) * (2)( ) 0.5 ( ) 0.5 ( )     +   . □ 

Remark 2: The function ( )   is not strictly quasi-convex. 

Proof: We prove the remark by constructing a counter-example. Consider the example in the 

proof of Remark 1. The policy * * *

1 2( , ) (1,0.4) =   =  is optimal with *( ) 1  = . The policy 

ˆ (1,0.3) =  is optimal with ˆ( ) 1  = . The policy (1) (1) (1)

1 2( , ) (1,0.5) =   =  has the total expected 

cost (1)

2( ) 0.8 0.2 8.2C c  = + = . Although (1)ˆ( ) ( )      and * (1)ˆ0.5 0.5 = +  , we have 

* (1)ˆ( ) min{ ( ), ( )}  =     . □ 

Remark 1 and Remark 2 show that the function ( )   may not have a nice structure for us to 

apply nonlinear optimization techniques to find the optimal threshold-based policy * for a 

general problem. Therefore, we do not take advantage of continuous approximation methods to 

address the above continuous state dynamic program. Instead, since the system state has only 

one dimension, we take advantage of Proposition 1 to develop a discretization method, which is 

elaborated below. 

3.2.3 Discretization algorithm 

Since iu  is between 0 and V , we can discretize iu  and use dynamic programming over the 

discretized values. In the DP process, we make a decision at each port (stage) when the amount 

of waste onboard is a discretized value (state). We can take advantage of Proposition 1 to reduce 

the search space. The algorithm is elaborated below and we will explain the details later. 

Algorithm 2: Solving the dynamic stochastic problem 
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Step 0: Define i n=  and the step size of amount of waste   (e.g., 1 cubic meter) (for ease of 

presentation, we assume that /V   is an integer; otherwise we simply reset the capacity 

to /V     ). Define a set  : 0, , 2 , , ( / )W V=     . The set W  works as follows: the 

amount of waste generated on each leg is rounded up to a discrete value in the set W . For 

instance, if the amount is 2.34 , then we consider it as 3 . Define the boundary 

conditions * ( ) 0n nu = , 
nu W . 

Step 1: If 1i = , output the optimal policy, and stop. Otherwise set 1i i − . 

Step 1.1: Set 0iu =  and do not discharge waste at the port and  

 *( 0) 0i iu = =  (24) 

 
1

* *

1 1 1 1

\{0}

( 0) Pr( ) ( )
i

i i i i i i i

u W

u u u u
+

+ + + +



 = = −      (25) 

Step 1.2: Set i iu u + . Calculate 

 
 

 

1

1

*

1 1 1 1

, 2 , ,( / )

*

1 1 1 1

,2 , ,

( ,0) Pr( ) ( )

                Pr( ) ( )

i i i

i i

i i i i i i i i

u u u V

i i i i i i

u u

u u u u u

u V u u V C u

+

+

+ + + +

 + +   

+ + + +

  

 = −  +   

 + + −  +   + + 




 (26) 

 
1

*

1 1 1 1

\{0}

( ,1) Pr( ) ( )
i

i i i i i i i i

u W

u c u u u
+

+ + + +



 = + −      (27) 

 *

{0,1}
( ) arg min ( , )i i i iu u


     (28) 

 * *( ) ( , ( ))i i i i i iu u u =    (29) 

If *( ) 1i iu = , then due to Proposition 1, we have 

 *( ) 1, , 2 ,...,i i ix x u u V = = + +   (30) 

 * *( ) ( ), , 2 ,...,i i i i ix u x u u V = = + +   (31) 

and go to Step 1. Otherwise, go to Step 1.2. 

and go to Step 1. □ 

 

In Eq. (26), when i iV u  − , waste disposal vessels are not used and 

 1 , 2 , , ( / )i i iu u u V+  + +    ; when i iV u V−    , a waste disposal vessel is used and 
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 1 , 2 , ,i iu u+    . In Eq. (27), since the waste is disposed of at Port i , the amount of waste 

onboard the ship at Port 1i +  is equal to the amount of waste generated on Leg i . We consider 

the amount as 
1iu +
 if it is in the interval 

1 1( , ]i iu u+ +− . When the distribution functions of the 

random variables 
i  are known and 

1 1Pr( )i i iu u+ +−     can be computed in time complexity 

(1)O , then the time complexity of Algorithm 2 is 2 2 2( | | ) ( / )O n W O nV=  . 

The optimal policy obtained by Algorithm 2 is actually a near-optimal policy and the value of 

*

1 1( )u  obtained by Algorithm 2 is an upper bound on the minimum total expected cost due to 

the discretization of 
iu . To obtain a lower bound, we can simply round down the amount of 

waste generated on each leg to a discrete value in the set W  (and treat the capacity as /V      

if /V   is not an integer). That is, we replace Eqs. (25) to (27) by the equations below: 

 
1

* *

1 1 1 1

\{( / ) }

( 0) Pr( ) ( )
i

i i i i i i i

u W V

u u u u
+

+ + + +

  

 = =    +    (32) 

 
 

1

1

*

1 1 1 1

\{0}

*

1 1 1 1

, , ,( / )

Pr( ) ( ),

                                                                                       

( ,0) Pr( ) ( )

P

i

i i i

i i i i i i

u W

i

i i i i i i i i

u u u V

u u u u

u

u u u u u

+

+

+ + + +



+ + + +

 +  

 +   +  

= 

 =  +   +  

+





 1

*

1 1 1 1

,2 , ,

r( ) ( ) ,

                                                                                \{0, }

i i

i i i i i i

u u

i

u V u u V C u

u W

+

+ + + +

   −











 +  +   + +  + 

  



 (33) 

 
1

*

1 1 1 1

\{( / ) }

( ,1) Pr( ) ( )
i

i i i i i i i i

u W V

u c u u u
+

+ + + +

  

 = +    +    (34) 

Then the value of *

1 1( )u  obtained by Algorithm 2 with Eqs. (32) to (34) is a lower bound on 

the minimum total expected cost of the stochastic dynamic problem. 

4 Numerical experiments 

Numerical experiments are conducted to evaluate the performance of the proposed models, 

which are implemented by Visual Studio 2008 on a PC (Intel Core i5, 1.7GHz; Memory, 8G). 

The parameters are set as follows. The cost of discharging the waste at a port is between $100 

and $1000 and the cost of using a waste disposal vessel is between $20,000 and $50,000, both of 
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which follow the Uniform Distribution (Penco and Di Vaio, 2014). The sailing time between 

two ports is randomly generated by using Uniform Distribution from one day to five days. The 

passenger capacity of a cruise ship is an integer uniformly distributed between 2000 and 6000. 

The amount of waste generated on each leg follows the Truncated Normal Distribution, with the 

mean value equal to sailing time × number of passengers × 6 liters per passenger per day, the 

standard deviation equal to 1/12  of the mean, truncated over the interval [mean – 12,000, mean 

+ 12,000]. The waste holding capacity of a cruise ship is equal to 14 days × number of 

passengers × 6 liters per passenger per day (Dixon and Hughes, 1999).  

The algorithms are very efficient. Computational experiments with randomly generated 

instances show that: it takes less than 0.01 second to solve a static/dynamic deterministic case 

with 50 ports; the time required to solve a 50-port instance of the static stochastic problem is 

less than three minutes. 

4.1 Comparing the static deterministic model and the static stochastic model 

We now examine what benefit is gained by using the more complex static stochastic model 

rather than the static deterministic model. To this end, we first clarify how a deterministic model 

works in a stochastic environment. A modeler or a planner may have an estimate of the amount 

of waste generated on each leg and then use the deterministic estimate as input to decide at 

which ports to dispose of waste. If the amount of waste generated turns out to be too large, then 

it is necessary to use waste disposal vessels. We do not assume that the modeler adopts the 

expected amount of waste on each leg as input; instead, we consider a number of choices: use 

the 50th percentile (i.e., the expected value), 60th, 70th, 80th, 90th, and 95th percentiles. For 

instance, if the amount of waste on a leg is uniformly distributed between 0 and 100, then we 

solve different static deterministic models assuming the amount of waste is 50, 60, 70, 80, 90, 

and 95. After the static stochastic model and the static deterministic models are solved, we 

compare each deterministic model with the stochastic one by generating another 5,000 scenarios 

of waste. We report in Table 1 the average cost ratio between a deterministic model and the 

stochastic one over ten instances (Column “Average cost ratio”) and the number of instances for 

which the deterministic and the stochastic model give the same result of at which ports to 
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dispose of waste (Column “#identical solutions”). In case the deterministic and the stochastic 

model give different decisions of waste disposal ports, we analyze whether the results are 

significantly different statistically. As we generate 5,000 scenarios of waste to evaluate the 

decisions by the deterministic and the stochastic model, we use a paired- t  test and consider two 

decisions to be significantly different with a significance level of 0.003 (i.e., when the average 

difference is larger than three times the standard deviation of the difference). The statistical 

analysis results are shown in the last two columns of Table 1. 

According to the average cost ratio in Table 1, the stochastic model outperforms the 

deterministic model in the average sense. Moreover, the stochastic model significantly 

outperforms the deterministic model for most instances, especially for the instances with a large 

number of ports. No deterministic model significantly outperforms the stochastic model for any 

instance. In addition, with the increase in the number of ports, it is less likely that the stochastic 

model and the deterministic model give the same solution. Finally, even if we were to use the 

deterministic model, we should never use the average amount of waste generated as the input. 

The numerical results show that using the 90th percentile is much preferable. 
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Table 1: Comparison of the static deterministic model and the static stochastic model 

Number 

of ports 

Number 

of 

instances 

Deterministic 

model 

(percentile) 

Average 

cost ratio 

#identical 

solutions 

#solutions 

with no 

significant 

difference 

#solutions 

significantly 

different 

10 10 

50% 1760% 2 4 6 

60% 1337% 1 4 6 

70% 1007% 0 3 7 

80% 351% 1 2 8 

90% 192% 0 0 10 

95% 244% 0 0 10 

20 10 

50% 2457% 0 6 4 

60% 1303% 0 5 5 

70% 1021% 0 5 5 

80% 398% 0 4 6 

90% 334% 0 2 8 

95% 227% 0 2 8 

30 10 

50% 2046% 0 2 8 

60% 1637% 0 5 5 

70% 747% 0 4 6 

80% 212% 0 3 7 

90% 102% 0 0 10 

95% 264% 0 0 10 

40 10 

50% 2840% 0 1 9 

60% 2061% 0 3 7 

70% 1107% 0 2 8 

80% 254% 0 3 7 

90% 121% 0 4 6 

95% 240% 0 1 9 

50 10 

50% 1206% 0 1 9 

60% 1402% 0 0 10 

70% 585% 0 2 8 

80% 482% 0 2 8 

90% 402% 0 1 9 

95% 433% 0 0 10 

 

4.2 Results of the dynamic deterministic model  

We investigate the difference between the static deterministic and the dynamic deterministic 

models. Suppose that an itinerary is to be repeated for ten times. In the static deterministic 

model, each repetition must use the same disposal ports, whereas in the dynamic deterministic 

model, different disposal ports may be used in different repetitions, thus providing more 

flexibility for the decisions. We compute the ratio of the cost using the static deterministic and 

the dynamic deterministic models and report the results in Table 2. The results show that 
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allowing different disposal ports to be used in different repetitions can reduce up to one third of 

cost. Therefore, cruise companies should dispose of waste in a flexible manner rather than 

dispose at a few fixed ports. 

Table 2: Comparison between the static and the dynamic deterministic models 

Number of ports Number of instances Average cost ratio (static/dynamic) 

10 100 1.33 

20 100 1.17 

30 100 1.11 

40 100 1.07 

50 100 1.08 

 

We further compare the quality of the solutions obtained by the exact DP method and a 

greedy heuristic for the dynamic deterministic models. The greedy heuristic works as follows: 

the ship does not discharge waste at a port unless there is no sufficient capacity for the next 

sailing leg. The total costs of the solutions obtained by the two methods are reported in Table 3. 

The results show the DP method significantly outperforms the greedy heuristic and this 

demonstrates the necessity of developing an exact method. 

Table 3: Comparison between the exact dynamic programming approach and a greedy heuristic 

#Port #Instance DP average cost Greedy heuristic average cost Gap 

10 100 731 977 25.18% 

20 100 1406 2020 30.40% 

50 100 3472 5289 34.35% 

80 100 5535 8408 34.17% 

100 100 6880 10654 35.42% 

Note: Gap = (the average cost of the greedy heuristic − the average cost of DP) / the average 

cost of the greedy heuristic 

4.3 Computational efficiency of the dynamic stochastic model  

Finally, we report the results of the computational performance of the dynamic stochastic 

model. We carry out six groups of experiments with 50, 60, 70, 80, 90, and 100 ports. Each 

group has ten instances. The step size of discretization   is set to be 1/25 of the capacity of the 

waste holding tank of the cruise ship. We take advantage of Proposition 1 to accelerate the 

dynamic programming algorithm. Table 4 reports the average upper bound of the ten instances 
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in each group, the average CPU time required to find the upper bound (i.e., to solve an instance), 

the average lower bound of the ten instances in each group, the average CPU time required to 

find the lower bound, and the gap between the upper and lower bounds. We can see that the 

dynamic stochastic model is much more difficult to solve than the deterministic one. However, 

even a large instance with 100 ports can be solved in 8 minutes, which is fast enough for 

practical purposes. Moreover, the optimality gap is less than 0.1%, which demonstrates that the 

solutions obtained are near-optimal. 

Table 4: Computational efficiency of the dynamic stochastic model 

#Ports #Instances #Discretization 

Upper bound  Lower bound Average 

gap 

between 

the 

bounds 

Average 

total cost 

Average 

CPU time 

(s)  

 

Average 

total cost 

Average 

CPU time 

(s)  

50 10 25 3627 231  3625 235 0.06% 

60 10 25 4266 263  4264 263 0.05% 

70 10 25 4993 294  4989 296 0.08% 

80 10 25 5837 365  5833 368 0.07% 

90 10 25 6839 394  6836 397 0.04% 

100 10 25 7353 461  7349 463 0.05% 

5 Conclusions  

Due to the large number of cruise passengers and regulations on sea environment protection, 

determining at which ports to dispose of the waste generated onboard a cruise ship is a key 

decision to reduce the cost for a cruise company. We have addressed four versions of the 

problem: the cruise itinerary is either static or dynamic and the amount of waste generated on 

each voyage leg is either deterministic or stochastic. We have proposed a polynomial-time 

solution algorithm for the static deterministic model, and the idea of the algorithm can also be 

used to solve the static stochastic model and the dynamic deterministic model. Second, we have 

identified the structure of the optimal policy to the dynamic stochastic problem, i.e., a threshold-

based optimal policy, based on which an efficient dynamic programming algorithm is developed. 

Computational results demonstrate that although the static stochastic model and the dynamic 

stochastic model are much harder than their deterministic counterparts, all of the four models 

can be efficiently solved for large-scale problem instances. The comparison of the static 
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deterministic model and the static stochastic model shows that considerable cost reductions are 

achieved by incorporating the randomness in waste generation on each leg. If a static 

deterministic model must be used, then using the average amount of waste generated on a leg is 

inferior to using a higher percentile value (e.g., 90th percentile for the truncated normal 

distribution in our numerical computation). The comparison of the static deterministic model 

and the dynamic deterministic model shows that allowing different disposal ports to be used in 

different repetitions of the itinerary can reduce up to one third of cost. Therefore, cruise 

companies should dispose of waste in a flexible manner rather than dispose at a few fixed ports. 

Finally, the dynamic stochastic model for a large instance with 100 ports can be solved in 8 

minutes with an optimality gap less than 0.1%, which is fast enough for practical purposes.  

This study is one of the very few attempts on cruise shipping using quantitative approaches. 

Although there are many quantitative models for other shipping modes such as tramp shipping 

(Christiansen et al., 2013) and liner shipping (Meng et al., 2014; Lee and Song, 2017), most 

literature on cruise shipping is descriptive, with a few exceptions of Maddah et al. (2010), Wang 

et al. (2017a, b). Nevertheless, cruise shipping has its own characteristics that need to be 

explored by industrial engineers/operations researchers. Moreover, the cruise market has 

maintained steady growth in the past 20 years despite of the economic crisis in 2008 and 

cruising companies have ordered a number of large cruise ships to serve the mass market of 

cruising. We believe that there are a broad range of research topics in cruise shipping. Hopefully, 

more quantitative models will be developed for such an emerging area. 
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