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1 Introduction

Although options for travel modes have increased in many cities, bus transport remains the
dominant transportation mode for people in cities such as Hong Kong, and especially in those cities
with limited land or road spaces. Ninety percent of residents in Hong Kong commute by public
transport in their daily lives, and over fifty percent commute by bus (Gov HK, 2017). A primary
benefit of bus transport is that it alleviates road congestion; the number of vehicles traveling on
roads correspondingly decreases when people are transported in the same vehicle. An efficient bus
transport system increases the number of people who use public transport, but if a bus transport
system is inappropriately designed, traffic congestion can be a significant issue. The direct impact
of an inefficient bus transport system on passengers leads to a relatively long waiting time. If the
number of people who need to travel is high, but the bus frequency is extremely low, passengers
tend to utilize private vehicles, resulting in more vehicles traveling at peak hours and greater traffic
congestion. An efficient bus transport system is determined by many factors, including bus fleet
size, routes, timetables, and frequencies.

A bus route clustering problem (BRCP) seeks to establish an efficient bus transport system.
BRCP assigns a set of bus routes to a set of bus station boarding locations in a way that minimizes
the total waiting time of passengers. Related definitions are given first since the BRCP is a newly
proposed problem. The BRCP is defined in the background that the capacity of one boarding
location is insufficient, and the investigated bus station has more than one boarding location. A
bus route cluster refers to a set of bus routes that are assigned to the same bus station boarding
location. Figure 1(a) shows four boarding locations of the bus station “Beijing South Railway
Station South Square,” near the largest railway station in Beijing, China. Figure 1(b) shows two
boarding locations of the bus station “Fish Market,” near Norway’s most visited outdoor market
in Bergen. Distinguishing boarding locations from bus stations is essential to understand the BRCP.
Different boarding locations belonging to one bus station are very close to each other (e.g., 100
meters), and passengers waiting in one boarding location may even catch sight of another boarding
location. However, different bus stations should be separated for a certain distance (e.g., 5 minutes
walking duration) between two adjacent bus stations, since they need to cover passengers from
different origins. With given passenger demands of a focused bus station, the BRCP resolves how
passengers choose a boarding location; it focuses only on one bus station and no interaction exists

between boarding locations of two different bus stations.



In the BRCP, passengers are considered from the same region with a similar walking distance
from passengers’ origins to each boarding location. Then, different waiting times become the most
important issue for passengers choosing a boarding location. Waiting times for passengers to
arrive at their destinations depend on how bus routes are clustered at various boarding locations.
For instance, if all the bus routes reaching destination “A” are assigned to one boarding location,
bus frequencies to “A” are centralized, then passengers to “A” will have the minimum waiting
time. Sometimes, bus routes toward “A” cannot be centralized due to the capacity limitation of the
boarding location. In such a case, these bus routes should be partitioned to different clusters. If bus
routes reaching destination “A” are assigned to different boarding locations, bus frequencies to “A”
are dispersive and most passengers to “A” will correspondingly have a longer waiting time. If bus
routes are partitioned inappropriately, then passenger waiting times may largely increase. Thus,
the BRCP aims to appropriately assign bus routes to different boarding locations of the focused
bus station, in order to minimize the total waiting time of passengers toward their destinations.

The BRCP has significant practical importance since the bus station of the BRCP is commonly
located in the predominant location with heavy traffic flow, in which an inefficient bus system will
severely intensify traffic pressure and congestion. The above-mentioned “Beijing South Railway
Station South Square” (i.e., the largest railway station in Beijing) and “Fish Market” (i.e., the most
visited outdoor market in Bergen) in Figure 1 are both places with geographic significance.
Correspondingly, a geographically important bus station is commonly one of the busiest stations
in the city, passed through by a large number of bus routes with intensive bus frequencies; hence,
the capacity of one boarding location is insufficient. Due to the limited capacity of one boarding
location and heavy traffic flow, several boarding locations should be set for a bus station. The
BRCP should efficiently partition the set of bus routes passing through the bus station to several
bus route clusters, each of which is assigned to one boarding location. The BRCP is important to
be discussed since the focused bus station is passed through by complicated and overlapping bus
routes. Hundreds of destinations are reachable in the downstream of the bus station under study.
Each bus route has its bus frequency, each boarding location has its capacity, and different
destinations also have different travel demands. Thus, an efficient method of bus route clustering
is necessary. The need is especially great when facing a highly utilized network with overlapping
bus routes. Operators should make right decisions on allocating which bus route to which boarding

location, concerning limited capacity of each boarding location.
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Figure 1. Bus route clusters of (a) Beijing South Railway Station South Square and (b) Fish
Market.

This study aims at addressing a new and practical problem, the BRCP, by formulating
optimization models and designing solution algorithms. The contributions of this study are
threefold. First, we identify a novel decision problem that has not been addressed in the literature
but is experienced by bus transport planners. The BRCP is practically important both for big cities
like Beijing and Hong Kong and for small cities like Bergen. Moreover, the consequence of
ignoring the problem is serious, since the BRCP constantly deals with the busiest station with
geographic significance and faces a highly utilized network where bus routes are overlapping. An
inefficient bus system will intensify traffic pressure and congestion. The BRCP efficiently assigns
a set of bus routes passing through the bus station to its several boarding locations, to minimize
passenger waiting times and to encourage green travel by bus. Second, we develop a mixed-integer
second-order cone programming (MISOCP) formulation that can be solved by off-the-shelf solvers
efficiently and effectively. Third, we apply the proposed models on a large bus station in Hong
Kong with three clusters to determine several valuable and managerial insights. We identify that
the optimal solution structure without capacity constraints for the BRCP is that the bus routes of
different boarding locations are not overlapping. The MISOCP is then tested on larger-size
instances with different overlapping scenarios to draw in-depth analyses. For instance, the

computation time of the MISOCP is highly dependent on the overlapping degree of bus networks,
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while other factors (i.e., the number of bus routes, destinations, and boarding locations) jointly
affect the complexity of the BRCP.

The remainder of this paper is organized as follows: Section 2 reviews the related literature.
In Section 3, the BRCP is formulated as a mixed-integer second-order cone program (MISOCP).
An extension model is described in Section 4. We then apply the MISOCP model to a major bus
station in Hong Kong based on the network of actual bus routes in Section 5. Section 6 further
tests the proposed models in large scale instances with different configurations of bus route
networks. Section 7 concludes the study.

2 Literature review
BRCP has not been explicitly addressed in the literature yet, but we can draw some insights from

the following two main aspects. (i) BRCP has analogical concerns or trade-offs with problems
related to bus (route) system, i.e., the transit network design problem (TNDP), overlapping bus
routes, and frequency-based transit assignment approach. (ii) BRCP is considered a variant of the
generalized assignment problem (also called as clustering problem or partitioning problem in the
literature). The above-mentioned two aspects of studies are reviewed in this subsection. Besides,
an MISOCP formulation is proposed to solve the BRCP in this study, and reviews of SOCP are
also given.

Related literature of bus (route) system is presented first, including the three categories of the
transit network design problem (TNDP), overlapping bus routes, and frequency-based transit
assignment approach. Methodologies in existing literature cannot be directly used to solve BRCP
since each of them has different emphases on bus system problems with various considerations. A
review of each category is followed by analogies or differences analyses compared with BRCP as
follows.

TNDP is one of the three major activities in the transit network problem, along with frequency
setting and timetabling problems of transit networks (Guihaire and Hao, 2008; Meng and Qu, 2013;
Zhang et al., 2018; Varga et al., 2018; Gkiotsalitis and Cats, 2018; Kang et al., 2019). Numerous
studies have been reported on the TNDP, typically to design bus route layout and destination
locations (Ceder and Wilson, 1986; Saka, 2001; Meng and Yang, 2002; Ibeas et al., 2010; Liu et
al., 2013). Studies have also proposed methods to manage route design and frequency setting
problems simultaneously (Tom and Mohan, 2003; Szeto and Wu, 2011; Yan et al., 2013; Nikoli¢



and Teodorovi¢, 2014; Szeto and Jiang, 2014) or to handle route design and timetabling problems
simultaneously (Yan et al., 2006; Yan and Tang, 2008; Zhao and Zeng, 2008; Chu, 2018; Lyu et
al., 2019). Reviews and future research potential have been discussed by Farahani et al. (2013) and
Ibarra-Rojas et al. (2015). If we classify the BRCP to a typical category of literature, the TNDP is
the most related one, while differences between them should be declared. The TNDP attempts to
output a set of bus lines and bus stops to construct an efficiency network, whereas in the BRCP,
the network of bus routes and destination layouts are given. The BRCP solves a downstream
problem after the network design and selects a boarding location of the focused bus station for
each route passing through it, rather than to determine bus stops to be served along the route. We
focus on only one bus station which has several boarding locations, as well as all the bus routes
that visit the focused bus station.

Studies investigated overlapping bus routes in different aspects as follows. Overlapping bus
routes share common bus stops and this means more than one bus route can serve the travel demand
from the focused bus station to a destination (Yu et al., 2011). Fouilhoux et al. (2016) indicated
that different bus routes converge at specific stops of the network, and buses are easily congested
at these common bus stops of overlapping routes. They optimized the departure times of buses to
avoid the arrival of two buses at a stop at the same time, thereby ensuring short waiting times and
sufficient transfer times of passengers. Han and Wilson (1982) allocated a fleet of buses between
routes in networks, where extensive bus routes overlap, and buses frequently operate close to
capacity. The above literature discussed different effects of overlapping bus routes to be considered
when designing an efficient bus system, while they fall into the category of bus frequency setting
or timetabling problem, but not from the boarding location assignment perspective as pursued in
this study. Still, similarities are included. For example, Han and Wilson (1982) allocated buses to
bus routes to minimize waiting times and to reduce crowding levels of passengers; we allocate bus
routes to boarding locations to minimize waiting times. Passenger waiting time plays an important
role in the efficient utilization of bus resources (Chakroborty, 2003; Zolfaghari et al., 2004; Niu et
al., 2015). Besides, passengers’ choice on different bus routes to their destination is widely
concerned; in this study, passengers departing from the focused bus station should select a
boarding location with at least one bus route heading to the destination.

Frequency-based transit assignment approach is commonly used in planning bus services and

is a major precondition in the BRCP. This approach considers that buses are operated with constant



frequencies but with no trustworthy schedule; they arrive at the station every few minutes (i.e., the
service is frequent). A passenger does not worry about the schedule even though no reliable bus
schedule is provided (Chriqui and Robillard, 1975; Spiess and Florian, 1989; Oliker and Bekhor,
2018). The frequency-based approach is suitable for the BRCP, which occurs in a busy and
congested transit network where bus services are frequent, and passengers are not concerned about
the schedule. In the BRCP, we define the “connecting lines” as the bus routes heading to a
passenger’s destination. The passenger does not predetermine his path; instead, he boards the first
arriving bus among a set of connecting lines.

From another aspect, the BRCP can be considered as a variant of the generalized assignment
problem (GAP). We refer to a comprehensive literature review of GAP and its applications studied
by Oncan (2007). The GAP is to find the optimal assignment of certain items into several
knapsacks, each of which has a fixed capacity availability. The GAP is known to be NP-hard
(Sahni and Gonzalez, 1976), and heuristic or metaheuristic solution approaches are constantly
developed for the large instances in the literature (YYagiura and Ibaraki, 2004, 2007). Meanwhile,
many variants and applications (Oncan, 2007) of the GAP are developed, in which the BRCP has
not been mentioned so far. As a variant of the GAP, the BRCP has also been proved to be NP-hard
in this study by reducing it to the well-known NP-hard maximum clique problem (Bomze et al.,
1999; Osterg&d, 2002; Konc and Janezic, 2007). Objectives are various in different variants of the
GAP, while in the BRCP, the aim is to minimize the waiting time of passengers. The objective of
the BRCP involves the nonlinear interaction in the model formulation (i.e., bus frequencies of
different bus routes are clustered, which has a nonlinear relationship with waiting times of
passengers in each cluster). A related study of nonlinear constraint refers to Mazzola (1989) who
have discussed the nonlinear capacity constrained GAP. Besides, the underlining rules of
clustering are also different in each variant. Mulvey and Beck (1984) solved a capacity clustering
problem, clustering entities into several groups where the “size” of each group is restricted, with
the objective to minimize the sum of the distance between each entity and a designated group
median. Osman and Christofides (1994) defined a capacity clustering problem (CCP) in which a
given set of weighted objects is partitioned into clusters so that the total weight of objects in each
cluster is less than a given value (i.e., cluster’s capacity), while the objective is to minimize the
total scatter of objects from the “center” of the cluster to which they have been allocated. The

clustering problem discussed by De La Vega et al. (2003) also aims at minimizing the sum of all
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intra-cluster distances, while in the BRCP, the underlining rule of the clustering gathers the bus
frequencies to the same destination to shorten passenger waiting times.

To solve the BRCP, an MISOCP is proposed in this study. A second-order cone programming
(SOCP) problem is defined as a problem where a linear function is minimized over the intersection
of an affine linear manifold with the Cartesian product of second-order cones (Alizadeh and
Goldfarb, 2003). Theoretical findings and industrial applications related to SOCP have been
discussed in the past decades (Ben-Tal and Nemirovski, 2000; Ndambuki et al., 2000; Bertsimas
et al., 2004; Chen et al., 2007; Frangioni and Gentile, 2009; Du et al., 2011). For instance, Ben-
Tal and Nemirovski (2000) proposed a robust formulation in which an ellipsoid uncertainty set is
utilized to restrict uncertain parameters and obtain the worst values. Under the ellipsoidal
uncertainty set, the robust formulation becomes an SOCP. Du et al. (2011) cast a mixed-integer
nonlinear programming model as an MISOCP model to overcome the nonlinear intractability
introduced by the consideration of fuel consumption. Many off-the-shelf solvers are available to
solve SOCP models to optimality, such as CPLEX and MOSEK (Mittelmann, 2003).

3 Model Formulation
In this section, an MISOCP model is formulated for the BRCP. The model includes decisions of
assigning bus routes to different boarding locations of a bus station. Some properties of the

proposed model are also discussed in this section.

3.1  Assumptions

Before addressing the model, the underlying assumptions are clarified as follows.

(i) The origin-destination demand from the focused bus station to any destination (i.e., downstream
bus stop) in each bus route is fixed and constant over the study period.

(i) Passengers do not have preferences among connecting lines (i.e., connecting lines denote the
bus routes heading to the passenger’s destination); they also do not have preferences between buses,
and board the first arriving bus of the connecting lines.

(ii1) Passengers’ choice of bus routes does not affect the buses’ dwell time at boarding locations.
This assumption will then be relaxed in Remark 6 in Section 3.3.

(iv) Passengers select the boarding location with the highest frequency of buses that head to their

destinations.



(v) All passengers can board the buses when the first bus heading to their destination arrives at the
boarding location, considering the arriving bus has sufficient capacity after servicing upstream
stops. This assumption will then be relaxed in Remark 6 in Section 3.3.
(vi) Bus arrivals of each bus route follow a Poisson process. This assumption will then be relaxed
in Section 4 as a model extension, in which the arrival rate of buses can follow any random
distributions.
(vii) The arrival times of passengers are uniformly distributed over the study period.
Considerations and limitations of the BRCP are explained as follows. Assumption (ii)
considers passengers take the first bus of the connecting lines, which might be limited from the
perspective of express services. In reality, some lines may be more attractive than others,
depending on which other lines are available at the bus cluster. In the BRCP, we mainly concern
the waiting time, while in-vehicle travel times are not measured in the objective function. If a
serious detour of a route exists, we rule the route out from the start. We consider that the BRCP
faces an efficient bus route network with reasonable and acceptable in-vehicle times, as a
downstream study after the bus route network design. Certain limitations exist when some routes

are less express compared with other available connecting lines of a bus cluster.

3.2 Notation

The notation is defined as follows.

Sets

R: Set of bus routes;

W: Set of boarding locations;

S: Set of all destinations (i.e., downstream bus stops) of the focused bus station that is

visited by all bus routes in R;

Indices

T A bus route;

w: A boarding location;

S: A destination (i.e., downstream bus stop);

Parameters

fr: Frequency of bus route r € R (number of departures per hour);

Ors: A binary indicator equals 1 if and only if bus route r € R visits destination s € S;



Cw: Capacity of boarding location w € W, which is measured in bus frequencies;

qs: Travel demand from the focused bus station to the destination s € S (number of
passengers per hour);

Ms: A large positive number used to linearize the model that corresponds to the
destination s € S, where Mg: = Y.,¢r f+-0rs;

Main decision variables

Zyr A binary variable equals 1 if and only if bus route r € R is assigned to cluster w €
W;
VA Matrix defined as z = (z,,,,w € W,r € R);

Auxiliary decision variables

Xys: Total frequency (number of departures per hour) of all bus routes that use boarding
location w € W and visit destination s € S;

Vs A binary variable equals 1 if and only if passengers heading to destination s € S
use boarding location w € W,

Xg: Total frequency (number of departures per hour) available to destination s € S,
defined as x;: = max{x,s|w € W}, s € S, since passengers select the boarding

location with the highest frequency.

3.3  Mathematical Model
On the basis of the parameters and decision variables, the BRCP can be formulated as the following
Model M1.

[M1] minFees g5 7 1)
subject to
YwewZuwr = 1,7 ER, (2)
Yrer frzwr < Cw, W EW, ©)
Xws = XreR frOrsZuwr, W EW, s €S, (4)
xs + Ms(yys — 1) < x5, w EW, 5 €S, (5)
Xys < X, W EW, s €S, (6)
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ZWEWyWS =1,5 €85, (7)

% < xS ES, (8)
Xps = 0, WwWEW, s ES, €)]
Yws €E{0,1}, w e W, s €S, (10)
z,r €{0,1}, w e W, r €R. (12)

The objective function (1) minimizes the total waiting time of all the passengers. In consideration
of Assumption (vi), that is, bus arrivals follow a Poisson process, and Assumption (vii), that is,
passenger arrivals follow a uniform distribution, the waiting time of passengers can be regarded
as a negative exponential distribution with an average waiting time of 1/x;, which is shown in
the objective function. Constraint (2) guarantees that each bus route is designated to dwell at only
one boarding location. Constraint (3) states the capacity limitation of each boarding location.
Constraint (4) ensures that x,,; equals the total frequency of all bus routes that use boarding
location w and visit destination s. Constraints (5) and (6) indicate that passengers select the
boarding location with the highest frequency of buses heading to their destinations, where My: =
Yrer frOrs, S € S. The relationship of x,,s and y,,; follows Assumption (iv). If the boarding
location w has the highest bus frequency heading to destination s, then passengers heading to
destination s will select boarding location w and y,,¢ equals one; otherwise, y,,s equals 0.
Constraint (7) ensures that passengers can only select one boarding location to their destinations.
Constraint (8) considers that the worst situation of the passengers’ waiting time toward destination
s €S is that all frequencies to s € S are distributed on average by |W| boarding locations.
Constraints (9)—(11) define the domain of decision variables.

The aforementioned model is nonlinear with a challenge that the division 1/x, is in the
objective function. To overcome this problem, we propose an MISOCP to reformulate the model.
We introduce the following notation:

Auxiliary decision variables

t: Average waiting time of passengers heading to destination s € S, t;: = 1/x.
Given the newly added parameters and decision variables, Model M1 is modified as Model
M2.
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[MZ] min ZSES QStsa (12)
subject to Constraints (2)—(11), and

ty =>1/x,,s €S. (13)

Constraint (13) is nonlinear and causes difficulty for optimization. Thus, we rewrite it as follows:

1< x4t;, s €S. (14)
Here, 1 < x,t, is equivalent to 4 < 4x,t,, which can be transformed to 22 — 2x,t, < 2xt;,
equivalent to 2% — 2x,ts + x2 + ts2 < 2x.ts + xs2 + tg2, further equivalent to 2% + (x5 —

ts)? < (x, + t5)?. Thus, constraint (14) can be transformed to:

V22 + (xs — t5)2 < x5+ t5, S € S. (15)

Constraint (15) denotes a typical second-order cone programming (SOCP) constraint. The SOCP
model can be efficiently solved to optimality by interior point algorithms, and therefore many
commercial solvers, such as CPLEX, are capable of solving SOCP problems (Alizadeh and
Goldfarb, 2003). To enhance the practical usage of SOCP, integer variables are involved in the
SOCP, denoted as a mixed-integer second-order cone program (MISOCP). Substituting Constraint
(13) to Constraint (15), Model M2 can be transformed into an MISOCP formulation denoted by
Model M3, which can be solved by off-the-shelf solvers, such as CPLEX.

[M3]  min ¥es gsts, (16)
subject to Constraints (2)—(11) and (15).

In the following, we provide several remarks for different practical considerations of the BRCP,
e.g., concerning the detour of bus routes and passengers’ preference of one particular bus route.
Remark 1. If a particular destination s’ € S is included by only one particular route ' € R, but not
included by the others r € R\{r'}; that is, 6,,5, = 1 and &,5, = 0, r € R\{r'}, then the component
qs:/xs in Objective function (1) is a constant value which equals g, /f,,. Thus, we can exclude
the destination s’ from the optimization model without changing optimal solution z*.

Remark 2. If all the routes r € R either include both destinations s; € Sand s, € S, or exclude
both of them, that is 6,5, = &,,, r € R, then we can set the travel demands as g, < g5, + gs,and
exclude destination s, from the optimization model without changing the optimal solution z*.

Remark 3. Some passengers heading to destination s may constantly select a particular route,

although more than one route visits destination s. For example, buses that are deployed on a

12


https://www.sciencedirect.com/science/article/pii/S1366554511000706#b0005
https://www.sciencedirect.com/science/article/pii/S1366554511000706#b0005

particular route are possibly wheelchair friendly and passengers in wheelchairs constantly select
this bus route. Suppose that all g, passengers are heading to destination s and a constant number
of passengers ps, only select route € R as their preference, then we can set g5 < g5 — Y. er Psr
and exclude these passengers ).,<r P from the optimization model without changing the optimal
solution z*.

Remark 4. Suppose that each passenger only takes one particular bus route as a preference, which
indicates g, — Y.-er Psr = 0, then the objective function is ineffective because every passenger
has a fixed waiting time and this model will aim at finding a feasible solution. In this situation, the

objective function can be set as max meivr\ll (cw — Xrer frZwr)/Cw 10 maximize the smallest relative
w

capacity buffer among all the boarding locations.

Remark 5. The set of all connecting lines of a passenger waiting at boarding location w € W
towards the destination s € S can be denoted as {r € R|§,sz,,- = 1}. If all the routes belong to the
same cluster, the connecting lines of the passenger can be simplified as {r € R|§,; = 1}. If the bus
route v’ € R takes a serious detour for passengers heading to the destination s’ € S and no
passengers toward s’ choose route r', then destination s’ can be removed from the route r' by
setting 6,5, = 0 in the analysis of the BRCP.

Remark 6. In Assumption (iii), we assume that buses’ dwell times are fixed at boarding locations.
In reality, the dwell time is dependent on the number of boarding/alighting passengers and can be
formulated as d,. = t2 + 8 Y. .cs u,s for route r € R, where (i) 2 denotes the fixed dwell time (e.g.,
launching, braking time, etc.), (ii) 6 is the average time required for one passenger to board, and
(iii) u,¢ is a decision variable that denotes the number of passengers to destination s € S boarding
the arriving bus of route € R instead of the other available connecting lines.

The relation between d,., u,; and other decision variables (i.e., bus route clustering decisions

60—YreR drfrors(Cwew Ywszwr) | .6
Yrer frorsCwew ywszwr) 0 R
60 , T ER,

Z,,» and passengers’ choice decisions V) IS Uys = g X

s € S. In detailed explanation, if a bus to destination s (i.e., §,; = 1) has occupied the station
within its dwell time d,- and a passenger arrives the station during this period, the passenger will
board the dwelling bus instead of the others. Aside from passengers arriving within period d,., the

bus also services passengers previously waiting at the station within period

60—YreR dr frOrs Ewew YwsZwr)
YreR frors Ewew YwsZwr)

as an average, where Y.,.cr d,-f+ 67 Owew Yws Zuwr) denotes the total
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dwell time, and Y. ,er f+ 0rs Cwew Yws Zwr) denotes the total frequency, of all connecting lines to

60—Yrer dr frOrs Ewew YwsZwr)
2reR frOrs Ewew YwsZwr)

destination s within 60 minutes. Overall, each arriving bus takes up +

d, -6, in the total of 60 minutes. With g, passengers arriving at the station each hour follow a

uniform distribution, the bus load of the arriving bus of route r € R to destination s € S is

GO—ZrGRdrfrﬁrs(zweWJ’wszwr),d 5
TreR frors(Cwew Ywszwr) Tors
60

Urs = (s X

In Assumption (v), we assume that the arriving bus has sufficient capacity. If the capacity of
the arriving bus is not sufficient, constraint ) ses u,s < Q, for r € R should be considered, where
Q.- denotes the remaining capacity of the arriving bus of route r € R after servicing the upstream
stops, i.e., the maximum number of passengers who can board the bus at the station. Generally, by
introducing auxiliary decision variables d, and u,, and beforementioned three constraints,

Assumption (iii) and (v) can be relaxed.

3.4 Hardness of the BRCP

The following theorem of the BRCP is investigated in this subsection.

Theorem. The BRCP is NP-hard.

Proof. We prove the theorem by showing that if the BRCP can be solved in polynomial time, then
the maximum clique problem can also be solved in polynomial time, while it is well known that
the maximum clique problem is NP-hard (Karp, 1972).

The maximum clique problem can be stated as follows. We consider an undirected graph
G(V,E) formed by a finite set of vertices V and a set of unordered pairs of vertices E, which are
called edges. A clique G'(V', E") is a complete subgraph of G(V, E), consisting of a set of vertices
V' €V, asetof edges E' € E, and an edge (i,j) € E’ is between every two vertices Vi,j € V', i #
j. A maximum clique of the graph includes the largest possible number of vertices, and the
maximum clique problem aims to find such a maximum clique. The number of vertices in the
maximum clique, denoted as v, should be an integer between 1 and |V|. Hence, so long as we can
check whether there is a clique with v = 1,2, ..., |V| vertices in polynomial time, we can solve the
maximum clique problem in polynomial time.

We consider a specification of the BRCP and depict it as a maximum clique problem (i.e.,
with a given value of v = 1,2, ..., |V], whether a clique with v vertices exists in G(V, E)). In the

BRCP, we consider a total of |R| = |V| bus routes with the same frequency f, = 1; a total of
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|W| = |V| + 1 — v boarding locations, with one boarding location has the capacity v and each of
the other has the capacity 1; a total of |S| = |E| destinations with the same travel demand g, = 2,
each of which is visited by exactly two bus routes. With the capacity limitation of boarding
locations, the feasible solutions of the BRCP consist of v routes using the same cluster and each
of the other routes using exclusively one cluster. To solve the BRCP to optimality, we need to
determine which v of the total |V| bus routes are assigned together.

The above-mentioned BRCP can be depicted as a maximum clique problem. Each bus route
corresponds to a vertex in the graph; an edge connecting two vertices corresponds to a common
stop of the two bus routes. In other words, two bus routes may have a common destination (if there
is an edge between the vertices) or not; if two bus routes have a common destination s € S and are

assigned to the same cluster, then the total waiting time reduction for passengers heading to s is

% — Zq—; = 1 as a constant. If v bus routes are assigned together and any two of the v routes have a

common destination, the total waiting time reduction equals v(v — 1)/2, then a clique with v

vertices exists; otherwise, such a clique does not exist. m

4 Model Extension

The model in the previous section is formulated based on the assumption that the arrival rate of
buses follows a Poisson distribution. In this section, we extend the model in consideration of a
general situation that the arrival rate of buses can follow any random distributions. Note that the
arrival rate refers to buses deployed on the bus routes assigned to each boarding location w € W
heading to each destination s € S since these bus routes are the connecting line for passengers
toward destination s when they wait at the boarding location w.

In different bus route clustering schemes, the bus arrival rate should be different (i.e., with
more bus routes toward destination s € S assigned to the same cluster, the frequencies to
destination s should be higher; thus, the waiting time to destination s correspondingly lower). This
general situation means that the waiting times of buses toward s € S at cluster w € W can be
obtained by historical data, with given possible frequencies f,. of connecting lines.

In the following, the index ks € K, is defined as a possible bus arrival frequency at
boarding location w heading to the destination s. If we assume that the frequency f, of each bus
route r is an integer, then k, is also an integer with an upper bound denoted by |K,|

:=min (Xrers,,=1 frrCw), and Ky,s = {1,2, ..., [K,,5[}. The waiting time is infinite when k,,,; =
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0. Let parameter r"j,‘”;s, derived from the historical data, represent the average waiting time of a
passenger using boarding location w for heading to destination s if the possible frequency of all
bus routes is k..

Table 1. Example of the model extension for any bus arrival rate

ks T’v(v‘/\s/S x;(/‘gs Yws | Xws
1 o7 0
2 34 0

3 19 1 1 3

IKwsl | 5 0

Table 1 provides an example which represents a random distribution. As shown in the first
two columns, for each k., its corresponding average waiting time rf;;s can be calibrated based
on historical data from the boarding location or similar boarding locations (i.e., the third row means
the average waiting time of passengers is 19 min when the bus arrival frequency is three departures

per hour).

Then, the proposed model can be extended to handle any distributions of bus arrival rate by

introducing a new auxiliary decision variable (xv'f,vgs € {0,1}), a binary variable which equals one,
if and only if passengers heading to destination s € S use boarding location w € W with the total
bus frequency of connecting lines k,,; € K,,s. The last three columns of Table 1 are used to
illustrate the concept. In Model M1, we denote y,,; = 1 (column 4) if passengers use boarding
location w to the destination s, and denote x,,; (three departures per hour x,,; = 3 in column 5)
as the total boarding location frequency of corresponding connecting lines. By setting newly

introduced auxiliary decision variable xv'f,VSVS=3 = 1 when k,,; = 3 (column 3), the average waiting

time of passengers can be obtained as 19 minutes (r,'j,vgs = 19 in column 2). Hence, Model M4 can

be formulated as follows:

i kws , Kws
[M4] min Z sesds Z wew Yws ZkWSEKWS Tws Xws s (17)

subject to Constraints (2)—(4), (7), (9)—(11) and

Xrs ¥ MsWs — 1) < Xy, WE W, W EW, w W, s €S, (18)
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xws € {01}, w € W, s €S, kys € Kyps, (19)
Yok o€Kops X = Yips, W EW, 5 €S, (20)

Xps = Ms(1 = Yis) < T ey KunsXio® < Xoys + Mg(1 = Yys) W € W,s € Sk € Ky (21)
In Model M4, Constraints (18) indicates that passengers select the boarding location with the
highest frequency of buses heading to their destinations, where Mg:= Y, cr 05, S € S. The
relationship of x,,; and y,,s follows Assumption (iv). Constraints (20) and (21) are regarded as two
possible situations (i.e., y,s =1 and y,s =0). Given we W, s€ S, (i) if y,, =1, then
Constraint (20) indicates that one of the binary variables x s that correspond to possible

frequency k,s € K,,s must be equal to 1 and that Constraint (21) becomes x,¢ <

Dikyys€Kops kWSxf:,‘g“S < Xys. That is to say, i, ek, kwsx":,“,s” = Xx,,s, Which further implies that

xf,vgs with k,,s = x,,¢ is set to be 1. (ii) If y,,;, = 0, then Constraint (20) indicates that x,, WS for all
ks € K,s equal 0 and that Constraint (21) is constantly satisfied with M;, a relatively large
number that Mg: = Y,.cr f+-0,5, S € S.

Constraint (22) can substitute Constraint (21) to simplify Model M4. (i) If y,,; = 1, Constraint

(22) becomes kwsx s < x,. Since r’v"'\,“;s is negatively correlated with k., indicating a higher

bus frequency indicates a lower passenger waiting time of Objective (17). Thus, kas—st will be

kws>st

set to be 1, since x,, = 1 indicating kwsx $ > x,, Which violates Constraint (22) and

kws<xws

Xy = 1. (i) If y,, = 0, then Constraint (22) is constantly satisfied.
kwsxvlf/‘gs < xws + Ms(1 = yws), w €W, s €S, kys € Kys. (22)

Besides, Constraint (22) implies that ywskas —kaS then Objective function (17) can be
reformulated to Objective (23) in Model M5. Thus, Model M5 is reformulated as follows (i.e.,
Constraint (21) and Objective (17) in Model M4 is substituted by Constraint (22) and Objective
(23), respectively):

[M5] MinY. ses ds X wew Ty sekos Tus Xus”, (23)
subject to Constraints (2)—(4), (7), (9)—(11), (18)—(20), and (22).
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5 Case Study

In this section, we use the MISOCP model (i.e., Model M3) to optimize a BRCP in Hong Kong.
The investigated bus station is called “Cross-Harbor Tunnel.” This tunnel is a significant
infrastructure in Hong Kong that is located across the Victoria Harbor, which connects two
independent urban logistic networks, financial and commercial districts of both sides, Kowloon
and Hong Kong Island. For the investigated bus station from Kowloon to Hong Kong Island, three
boarding locations are called “Hong Chong Road outside Hung Hom Station,” “Hong Chong Road
outside Hung Hom Station (outer bus bay),” and “Hong Chong Road outside Cross-Harbor Tunnel

Administration Building” as shown in Figure 2.

Hong Chong
Road outside

-
il

The Hong Kong Hung Hom Hung‘Hom
Polytechnic Stifion Station
University

Hong Chong
Ia Road outside
Hung Hom
Station (outer bus
bay)

Cross Harbour Tunnel Plaza ‘

Hong Chong Road
I outside Cross
Harbour Tunnel
Administration
Building

Figure 2. Three bus route clusters of “Cross-Harbor Tunnel.”

A'total of 17 bus routes pass through “Cross-Harbor Tunnel” and visit 144 destinations. Some
routes have common destinations. The numbers of destinations for each bus route in the
downstream of the investigated bus station and the headway of each bus route are shown in Table
2, which are based on the New World First Bus Services Limited (2016) and Google Maps (2018).
Bus system in Hong Kong is a simple tap-on (without tap-off) system. Passengers only need to
tap-on by using a bus card (i.e., Octopus card) when boarding, while they are not required to tap-
off when alighting the bus. Since it is hard to access the real travel demands of passengers, travel
demands are generated randomly. We generate travel demands in the range of [50,200] from the

investigated focused bus station to the destinations. We consider that bus arrivals of each bus route

18


https://en.wikipedia.org/wiki/Victoria_Harbour

follow a Poisson process. In the results of our experiments, loads of each arriving bus are all within
acceptable values, indicating all passengers can board the first arriving bus.

Bus station “Cross-Harbor Tunnel” is considered as one of the busiest stations in Hong Kong
with intensive bus routes and downstream bus stations. This case can be considered as a large-
scale case in a real application in the BRCP. The problem size information consisting of the
numbers of variables and constraints is shown in Table 3. Information of Table 3 is deduced by
Model M3, according to the number of bus routes, boarding locations, and destinations in this
realized case, e.g., Constraint (4) with w € W and s € S refers to 432 constraints in total, since
|W| = 3 and |S| = 144 in this case. All tests are performed by using a PC with 3.40 GHz of Intel
Core 17-3770 CPU and 8 GB of RAM. The CPU time is less than five minutes for each test to
solve Model M3 to optimality. Given that the CPU time is short enough for practical applications,
the exact one is not reported for each test.

Table 2. Bus route information.

Route # Destinations Headway (min) Frequency (per hour) *
101 19 4 15.00
102 18 6 10.00
103 20 14 4.29
104 20 6 10.00
106 32 8 7.50
107 16 15 4.00
109 9 17 3.53
111 8 6 10.00
112 9 5 12.00
113 21 13 4.62
115 7 14 4.29
116 14 5 12.00
117 6 23 2.61
118 15 6 10.00
170 13 17 3.53
171 13 9 6.67
182 8 14 4.29
60min

Note: * The frequency of a bus route is counted as 60 % divided by the headway, e.g., — =

4min
15/h of Route 101.
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Table 3. Problem size of the realized case of Cross-Harbor Tunnel.

Boarding . Total Continuous . . Total
Routes . Destinations . : Binary variables .
locations constraints | variables variables
R W S 1748 tS xS ZWT st yWS 1203
17 3 144 144 | 144 | 51 | 432 | 432

5.1  Optimal solution structure without capacity constraint

In this BRCP, we allocate 17 bus routes on three boarding locations to obtain the minimum total
waiting time of passengers toward the 144 destinations. Passengers will select the boarding
location with the highest frequency toward the destination; they will not select other boarding
locations with lower frequency. Thus, the frequencies related to other boarding locations are all
wasted. That is, if all bus routes heading to a destination can be allocated to only one boarding
location, then the frequencies toward this destination can be completely used. If the frequencies
toward the 144 destinations are completely used, then the total waiting time of passengers is
minimal regardless of the capacity constraints of these boarding locations. Therefore, we establish
bus routes that share common destinations into one set called an overlapping bus route set. Bus
routes that belong to different overlapping bus route sets are non-overlapping.

In the case of Cross-Harbor Tunnel, 17 bus routes can be distinguished as three overlapping
bus route sets, that is, R* = {107,117,170,171}, R? = {102,106,112,116,118}, and R3 =
{101,103,104,109,111,113,115,182}. In the downstream of R', R?, and R3, 37, 41, and 66
destinations exist called the three unique destination sets S, $2 and $3, which are disjointed with
each other. The number of boarding locations is also three in the actual situation, as shown in
Figure 2. If the three overlapping bus route sets are allocated to three boarding locations
accordingly, then the sum of destinations shown in Table 4 equals 144, which is exactly the total
number of unique destinations in the downstream of the bus station. The frequencies toward the
144 destinations are completely used. Therefore, the objective value, which is 2514.73, cannot be
further decreased by adjusting the capacity of boarding locations. If the capacities for the three
boarding locations are not determined, then the suitable capacities are 16.80, 51.50, and 56.00.
This finding can serve as a guide when the government conducts traffic arrangement or determines
the land use of each boarding location.

As above-mentioned findings, passengers would choose the bus cluster with the highest bus

frequencies. Passengers may gather together to a bus cluster and wait for the same incoming bus.
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The number of waiting passengers to the arriving bus should be in an acceptable load and each
arriving bus has sufficient remaining capacity after servicing upstream bus stops (i.e., Assumption
(v)). Bus frequencies are high in passengers’ chosen bus cluster, while the arrival times of
passengers are uniformly distributed based on Assumption (vii) described in Section 3.1. In the
results of our experiments, loads of each arriving bus are all within acceptable values, indicating
all passengers can board the first coming bus.

The currently applied bus route clustering is presented in Table 5, in which the clustering is
not the same as the clustering without capacity constraints (Table 4). The reason for the differences
is probably the real capacity limitations of the boarding locations due to the limited land spaces.
In our field research, the land space of the boarding location “Hong Chong Road outside Cross
Harbor Tunnel Administration Building” is relatively small, which is consistent with the clustering
situation that only two routes, {115,182} € R3, are assigned to this boarding location. In the
following, we conduct sensitivity analysis on capacity since it is the major component in the BRCP.

Table 4. Optimal solution without capacity constraints.

Boarqlng Assigned bus routes Usec_zl #Destinations Sl.Jm C.)f MI.SO.CP
location capacity destinations | objective
1 107/117/170/171 16.80 37
2 102/106/112/116/118 51.50 41 144 2514.73
3 101/103/104/109/111/113/115/182 56.00 66
Table 5. Real situation of current bus route clustering in Cross-Harbor Tunnel.
. . Assigned bus routes .
Boarding location g Use(_j #Destinations S_um .Of *
R1 R2 R3 capacity destinations
Hong Chong Road outside
Hung Hom Station (outer 1077117/ 1037109/ 29.24 81
170/171 113
bus bay)
. 102/106/
Hong Chong Road Qut51de 112/116/ 101/104/ 86.50 69 162
Hung Hom Station 118 111
Hong Chong Road outside
the Cross Harbor Tunnel 115/182 8.57 12
Administration Building

Note: *Here, the destinations may not be unique.

5.2  Capacity sensitivity analysis

In practice, boarding locations have natural geographic land spaces, and the capacity of each
boarding location is known and fixed. In this section, sensitivity analysis in terms of capacity is

performed to investigate how the optimal solution changes with the capacity. The same capacity
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limitation is set for the three boarding locations (Table 6a), and different capacity limitations are
set for the three boarding locations (Table 6b). For sufficient capacities of the three boarding
locations, the used capacities are 16.80, 51.50, and 56.00, as shown in Table 4. Only if one or more
than one boarding location’s capacity is insufficient., then the allocation result will be different
from that shown in Table 4. As shown in Table 6a, the objective value increases with the decrease
in capacity. In comparison with the allocation result without capacity constraints (Table 4), the
increase in waiting time provides several insights into the problem.

For Case 1 in Table 6a, route set {101,104,109,111,113,182} < R3 is allocated to boarding
location 3 and route set {103,115} < R3 is allocated to boarding location 1 rather than allocating
the entire set R3 = {101,103,104,109,111,113,115,182} to only one boarding location. The
separation of overlapping route set R® increases the waiting time of passengers heading to three
destinations in unique destination set S3, namely “Central (Macau Ferry),” “Elizabeth House,
Gloucester Road,” and “Old Wan Chai Police Station, Gloucester Road,” which can be reached by
boarding locations 1 and 3. In specific, by taking “Central (Macau Ferry)” as an example, boarding
location 1 can reach destination “Central (Macau Ferry)” by taking bus route 115 and boarding
location 3 can also reach the same destination by taking bus routes 109, 111, and 182. However,
all passengers heading to “Central (Macau Ferry)” only select boarding location 3 with a high bus
frequency of 17.82, and no passengers select boarding location 1 with a low bus frequency of 4.29.
Then, the bus frequency toward “Central (Macau Ferry)” decreases, and the waiting time toward
“Central (Macau Ferry)” increases. Similar situations occur in the two other destinations, which
are “Elizabeth House, Gloucester Road” and “Old Wan Chai Police Station, Gloucester Road.”
Therefore, the objective value increases from 2514.73 to 2519.73 when the sum of destinations
increases from 144 to 147.

For Case 2 in Table 6a, overlapping bus route set R? is also separated into two subsets that are
allocated to two boarding locations aside from the separation of overlapping route set R3 that
increases the waiting time of passengers heading to the aforementioned three destinations in S3.
In detail, {112} € R? is allocated to boarding location 1 and {102,106,116,118} € R? is
allocated to boarding location 2 rather than allocating the entire set R? = {102,106,112,116,118}
to only one boarding location. The separation of R? increases the waiting time of passengers
heading to eight destinations in S?. Therefore, the objective value increases from 2519.73 to

2539.31 as the sum of destinations increases from 147 to 155. For Case 3 in Table 6a, the separation
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of all 3 overlapping bus route sets R*, R?, and R3 causes the frequencies of 19 (163 minus 144)
destinations in S, S% and S3 not to be completely used and the objective value becomes 2551.95.

The separation of overlapping bus route sets increases the waiting time of passengers.
However, the combination of bus routes belonging to different overlapping bus route sets does not
change (decrease) the total waiting time. We clarify this property by showing that more than one
optimal solution exists for Case 2 in Table 6a. To obtain all the optimal solutions, Algorithm 1 is

provided.

Algorithm 1. Obtaining all optimal solutions for the MISOCP model

Step 0: Let K « 1 be the iteration number. Solve Model M3 and obtain the first optimal

solution denoted by z®. Let the optimal objective value be Obj*.

Step 1: Let K « K + 1. Solve Model M3 with the following constraint:
K’ K’ I}
Swew Zrer |29y (1= 2up) + (1= 29 )z | 2 LK =1, K= 1. (24)

The above constraint excludes all the previously generated optimal solutions. If the model is
infeasible or if the optimal objective value is larger than Obj*, then the set of optimal solutions

is {z, ..., 2D}, and stop. Otherwise, let zX be the optimal solution and go to Step 1.

We can derive all the optimal solutions by applying Algorithm 1 for the case with the same
capacity limitation of 50 (i.e., Case 2 in Table 6a). A total of 12 optimal solutions exist. However,
we only show two solutions in Table 6¢ because the other solutions are permutations of the two
solutions. In Solution No. 1 in Table 6¢, the combination of {112} € R? and R! =
{107,117,170,171} is allocated to boarding location 1 and the combination of {103,115} € R3
and {102,106,116,118} < R? is allocated to boarding location 2. In Solution No. 2, the
combination of R* ={107,117,170,171}, {112} € R?, and {103,115} € R? is allocated to
boarding location 1. The two solutions have the same objective value of 2539.31 because the bus
routes in the same combination belong to different overlapping bus route sets and they do not
change the total waiting time. This condition is attributed to unique destination sets S, S% and S3
being disjointed with one another and no destinations increase their frequencies and further
decrease the waiting time of passengers after such a recombination. After all the optimal solutions

are identified, decision makers can select one of them based on the factors that are not modeled
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explicitly (e.g., whether a boarding location is more convenient and more comfortable than the
other boarding locations). Moreover, balancing the travel demands of boarding locations can also
be a proper selection method, i.e., the total passenger demand for each boarding location can be
described as Y.ses gsYws » W € W. Related issues have been explained in Remark 6 in Section 3.3.
We further set different capacity limitations for the three boarding locations. The results are
shown in Table 6b, which confirm the findings discussed in the previous paragraphs. First, the
separation of the overlapping bus route set increases the waiting time of passengers. In Table 6b,
the objective values are all 2519.73 when the sum of destinations equals 147. Although the
allocation results are different in these cases, the reason for the increase in waiting time is the same;
{103,115} € R® and {101,104,109,111,113,182} < R3 are allocated to different boarding
locations. Second, the combination of bus routes that belong to different overlapping bus route
sets does not change the waiting time of passengers, that is, the combination of {103,115} € R3
and R' ={107,117,170,171} is allocated to boarding location 1 in Cases 1 and 2; the
combination of R! ={107,117,170,171} and R? = {102,106,112,116,118} is allocated to
boarding location 3 in Case 3; and the combination of R! ={107,117,170,171}, R? =
{102,106,112,116,118} and {103,115} < R3 is allocated to boarding location 3 in Case 4.

5.3  Travel demand sensitivity analysis

For the BRCP closely related to daily life, only considering the current situation or one single
transportation mode is insufficient for making decisions. For example, the development of a new
metro line will certainly cause several influences on the travel demand for people taking buses.
Certain destinations may have no passengers due to a new metro line connection. Thus, we conduct
14 cases to determine how the optimal solution changes with the travel demand. In each case, we
select 10 out of 144 destinations to let their travel demands become 0.

We set the capacity limitations for the three boarding locations to be 50 in the 14 cases and
report the optimal solutions in Table 7. From the table, two different solutions are obtained in the
14 cases. Solution No. 1 is exactly the same as that for the situation when no travel demands of
destinations are set to be 0 (i.e., Solution No. 1 in Table 6c). A total of 12 cases have the same
optimal as Solution No. 1. The other optimal solution is slightly different from Solution No. 1.

These results demonstrate the robustness of the bus route allocation solutions.
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Table 6. Bus route allocation results for three boarding locations.

Case | Capacity Bl»oaro!mg Assigned bus routes Used capacity | # Destinations Sum of MISOCP
ocation R1 ‘ R2 R3 destinations* | objective
Table 6a. Allocation results for three boarding locations with the same capacity limitation.
55 1 107/117/170/171 103/115 25.38 62
1 55 2 102/106/112/116/118 51.50 41 147 2519.73
55 3 101/104/109/111/113/182 47.43 44
50 1 107/117/170/171 112 103/115 37.38 71
2 50 2 102/106/116/118 39.50 40 155 2539.31
50 3 101/104/109/111/113/182 47.43 44
45 1 107/170/171 112 103/109/113/115 4291 89
3 45 2 102/106/116/118 39.50 40 163 2551.95
45 3 117 101/104/111/182 41.89 34
Table 6b. Allocation results for three boarding locations with different capacity limitations.
40 1 107/117/170/171 103/115 25.38 62
1 50 2 101/104/109/111/113/182 47.43 44 147 2519.73
60 3 102/106/112/116/118 51.50 41
30 1 107/117/170/171 103/115 25.38 62
2 50 2 101/104/109/111/113/182 47.43 44 147 2519.73
70 3 102/106/112/116/118 51.50 41
20 1 103/115 8.57 25
3 50 2 101/104/109/111/113/182 47.43 44 147 2519.73
80 3 107/117/170/171 | 102/106/112/116/118 68.30 78
10 1 0.00 0
4 50 2 101/104/109/111/113/182 47.43 44 147 2519.73
90 3 107/117/170/171 | 102/106/112/116/118 103/115 76.87 103
Table 6¢. Optimal solutions for three boarding locations with the same capacity limitation of 50.
50 1 107/117/170/171 112 25.38 46
1 50 2 102/106/116/118 103/115 51.50 65 155 2539.31
50 3 101/104/109/111/113/182 47.43 44
50 1 107/117/170/171 112 103/115 37.38 71
2 50 2 102/106/116/118 39.50 40 155 2539.31
50 3 101/104/109/111/113/182 47.43 44

Note: *Here, the destinations may not be unique.
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Table 7. Allocation results for three boarding locations with the same capacity limitation 50

Solut B?r?éd Assigned bus routes Reneat
olution . - epea
No. Capacity cha_ Rl R2 R3 colimt
tion
50 1| 107/117/170/171 112 103/115
50 2 102/106/116/118
! 101/104/109/111/113/ | 12
50 3 el
50 1| 107/117/170/171 | 102/106/118
50 2 112/116 103/115
2 101/104/109/111/113/ | 2
50 3 el

Subsequently, we decrease the capacity limitation for all the three boarding locations to 45.
The results are shown in Table 8. From the table, four different solutions appear in the 14 cases.
Solution No. 1, which is repeated 9 times, is the same as the original solution when no travel
demands of destinations are set to 0. The other solutions have some changes compared with
those in Table 7, where the capacity limitation is set to 50. The changes in the solutions in
Table 8 are more intensive than those in Table 7, which are automatically analyzed because the
capacity is smaller than the previous cases. Therefore, the government should balance the trade-
off in reserving larger capacities for boarding locations to increase the robustness of the bus

route assignment decisions or reserve small capacities that require small land spaces.

Table 8. Allocation results for three boarding locations with the same capacity limitation 45

Board Assigned bus routes
Solution - -Ing Repeat
No Capacity loca- 1 2 3 count
: g R R R
tion
45 1 102/106/116/118
1 45 2 117 101/104/111/182 9
45 3 107/170/171 112 103/109/113/115
45 1 102/106/116/118
2 45 2 101/104/111/115/182 1
45 3 107/117/170/171 112 103/109/113
45 1 107/117/170/171 102/106/118
3 45 2 101/104/111/182 3
45 3 112/116 103/109/113/115
45 1 102/106/116/118
4 45 2 112 101/104/182 1
45 3 107/117/170/171 103/109/111/113/115

5.4  Comparison with a heuristic algorithm

To test the effectiveness of the proposed MISOCP model, we propose a heuristic algorithm
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based on the structure of the problem and compare the qualities of the obtained solutions by
the model and the heuristic. The principle of the heuristic is described as follows.

As previously analyzed, the increase in the waiting time of passengers is caused by the
separation of overlapping bus route set. For one destination, separating bus routes that include
this destination into different boarding locations wastes the bus frequency of this destination,
thereby increasing the waiting time of passengers toward this destination. If the travel demand
of this destination is large, then the objective value (total waiting time) is substantially more
likely to increase. Therefore, we define a parameter { for each destination s € S, as

{s = Srer fr Orsls. (25)
Then, we rank ¢, from largest to smallest to prioritize the destination with high bus frequency
and travel demand. In the heuristic, we initially take destination s with the largest { as the
active destination. The routes that include the active destination (i.e., routes r with §,; = 1)
are defined as the active bus route set, which is the set of the bus routes that are currently
allocated. We allocate all the bus routes in the active bus route set to one boarding location.

The second issue is determining a boarding location for route allocation in the active bus
route set. We define the boarding location used for allocation as the active boarding location.
For the first allocation, we can take the boarding location with the largest capacity as the active
boarding location for allocation. However, the active bus route set contains several bus routes
that are already allocated when we address previous destinations during the allocation.
Moreover, these allocated bus routes may be allocated to different boarding locations in
advance. Under such situation, we should determine the most related boarding location as the
active boarding location for allocating the rest of unallocated bus routes in this active bus route
set. The most related boarding location is set to be the boarding location with the highest
frequency toward the active destination, which is the total frequency of the already allocated
bus routes in this active bus route set.

The third issue is that each boarding location has a limited capacity. Thus, for each
allocation, we should compare the total bus frequency of all the unallocated bus routes in the
active bus route set with the available capacity of the active boarding location. If the capacity
is sufficient, then we allocate all the unallocated bus routes in the active bus route set to this
active boarding location. However, if the capacity is insufficient, then we mark this active
destination and do not allocate routes for this active destination. Thereafter, we take the next
destination with a small {; as the active destination.

Two situations may occur based on the above rules. The first situation is that all bus routes
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can be allocated before going through all the destinations s from the largest value of { to the
smallest value of {;, and the algorithm is terminated when all the bus routes are already
allocated. The second situation is that bus routes are still unallocated after we go through all
the destinations s from the largest value of {; to the smallest value of (. The reason for this
situation is that the capacity for the active boarding location is insufficient to allocate all the
unallocated bus routes in the active bus route set to only one boarding location. In this situation,
all the marked destinations are re-evaluated from the largest value of {; to the smallest value
of ¢, but the allocation strategy is changed. We allocate each unallocated bus route individually
to the most related boarding location, to the second, and the third most related boarding
locations rather than allocating all the unallocated bus routes in the active bus route set to only

one boarding location until we determine a cluster with a sufficient capacity.

Table 9. Comparison of results between the MISOCP model and the heuristic

Boarding Capacity Sum of MISOCP Heuristic Relative
location destinations®*  objective objective gap#
1 45
45 163 2551.95 2658.03 4.16%
45
50
50 155 2539.31 2587.24 1.85%
50
55
55 147 2519.73 2531.30 0.46%
55
60
60 144 2514.73 2514.73 0.00%
60
40
50 147 2519.73 2519.73 0.00%
60
30
50 147 2519.73 2519.73 0.00%
70
20
50 147 2519.73 2519.73 0.00%
80
10
50 147 2519.73 2519.73 0.00%
3 90
Note: *: Here, the destinations may not be unique.
#: Relative gap = (Heuristic objective — MISOCP objective)/MISOCP objective.

Case

N[ W[N[—=[WN[— W= [[W[N[—[WN|—]W|N|—|wWN

8

We apply the heuristic to eight cases with different boarding location capacities and

compare the results with those of the MISOCP model, as shown in Table 9. For each test, the
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CPU time of applying the heuristic is less than five minutes and similar with the CPU time of
solving the MISOCP model. Given that the CPU time is short enough for practical applications,
the exact one is not reported. However, the heuristic cannot guarantee optimal solutions. The
relative gap is larger when the sum of destinations is larger, and the relative gap is 0 in some
cases when the sum of destinations is small (e.g., from Cases 4 to 8). These results demonstrate
that the MISOCP model is especially effective when the spaces of boarding locations are

limited, and the boarding locations do not have sufficient capacities.

6 Computational Experiments
In this section, we test Model M3 on more challenging instances, in which the configuration
of the bus station is increased to more boarding locations w € W with more overlapping bus
routes 7 € R and destinations s € S. Different overlapping scenarios are illustrated as (a), (b),
(c) and (d) in Figure 3. We explain Scenario (d) first which is the simplest one, i.e., each circle
represents a set of bus routes, bus routes in the same set may overlap each other, while bus
routes in different sets cannot overlap each other. Scenario (a) is more complicated, indicating
that three sets of bus routes are independent with each other, while each of them may overlap
to another set of bus routes (i.e., the circle in the middle). For Scenario (b), neighboring circles
have intersection parts, indicating neighboring sets of bus routes may overlap with each other.
Scenario (c) 1s the most complicated one with many intersection parts as shown in the darker
areas among circles indicating the overlap. Note that Scenario (a)—(d) in Figure 3 corresponds
to (a)—(d) in Table 10, which identifies the computation results for each scenario. In reality, the
configuration of the network is not as complex as cases in Table 10, but we still aim at a deeper
understanding of the BRCP. Besides, passenger demands are in [25 + 50 ).,¢gr 6,5, 100 +
50 Y.,cr 6r5] for s € S, considering that the common destinations (i.e., visited by more than
one bus route) have more travel demands. Referring to the capacity of each cluster in all tests,
Ywew Cw — 2rer fr < min{c, |w € W} should be guaranteed to ensure that all boarding
locations are used and that the numbers of boarding locations reported in Table 10 are
meaningful. Detailed capacity information of all tests is reported in Table 13 in the Appendix.
For each scenario, different cases are considered corresponding to different configurations
of the bus route network. For instance, in Case 1 of Table 10, a total of 20 bus routes and 300
destinations are considered, with 4 boarding locations of the focused bus station, and each bus
route visits more than 10 destinations in the downstream; whereas in Case 2, each bus route

has more than 15 destinations, indicating bus routes in Case 2 are more likely to overlap with
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each other. All the cases are tested with the maximum CPU time limit of 900 seconds, to

understand the complexity of solving the MISOCP (i.e., Model M3) in each configuration.

Results of cases in each scenario are reported in the lower part of Table 10, e.g., the optimality

gap of Case 2 in Scenario (a) is 0.83%. Detailed results are reported in Table 11, consisting of

the best integer result, the best bound (i.e., corresponding to the fractional solution), and the

optimality gap between them calculated by CPLEX with a time limitation of 900 seconds. The

CPU time of each test is also reported for tests solved to optimality within 900 seconds. For

the BRCP, a trivial lower bound exists where every destination s € S gets all the available bus
route frequencies and can be formulated as Y. ;es(qs /(Xrer fr0rs)). We also report the trivial

lower bounds of all tests, from which the trivial gaps can be calculated, as shown in the last

two columns of Table 11.

OO0
e

(2) (b) (© (d)
Figure 3. Overlapping scenarios.
Table 10. Computation results of the MISOCP model in different configurations.
Case 1 2 3 4 5 6 7 8
# Bus routes 20 20 20 20 25 25 30 20
# Boarding locations 4 4 5 5 4 4 4 5
# Destinations 300 300 300 300 300 200 200 200
# Destinations/route | >10 >15 >10 >12 >10 >10 >10 >10 Average
(@] 0.00% 0.83% 053% 0.87% 0.00% 6.20% 5.51% 0.00% 1.74%
(b) | 0.00% 0.00%  0.54%  0.00%  0.00%  0.00%  0.00%  0.00%  0.07%
(¢)] 0.00% 0.85% 1.22% 1.96% 1.57% 6.59% 5.67% 5.02%  2.86%
(d ] 0.00% 0.00%  0.00%  0.00% 0.00% 0.00% 0.00% 0.00%  0.00%
Average | 0.00% 0.42%  0.57% 0.71%  039%  3.20% 2.80% 1.25%
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Table 11. Computational results, trivial bounds and gaps.

Scenario - Case Best Best Optimality CPU Trivial Trivial
Integer Bound Gap * Time Bound Gap
(a)-1 4312.76  4312.76 0.00% 37 4256.39 1.31%
(a)-2 4318.74  4282.72 0.83% 900 4137.85 4.19%
(a)-3 4597.53  4573.25 0.53% 900 4488.41 2.37%
(a)-4 417276  4136.26 0.87% 900 4066.46 2.55%
(@)-5 4907.92  4907.92 0.00% 583 4820.37 1.78%
(a)-6 2550.88 2392.63 6.20% 900 2339.94 8.27%
(a)-7 2798.20 2644.00 5.51% 900 2577.73 7.88%
(a)-8 2883.02  2883.02 0.00% 605 2813.40 2.42%
(b)-1 4510.90 4510.90 0.00% 40 4452.50 1.29%
(b)-2 4799.67  4799.67 0.00% 243 4646.17 3.20%
(b)-3 4448.69 4424.64 0.54% 900 4350.35 2.21%
(b)-4 4487.10  4487.10 0.00% 484 4412.27 1.67%
(b)-5 4827.87  4827.87 0.00% 42 4773.64 1.12%
(b)-6 2830.15 2830.15 0.00% 679 2732.07 3.47%
(b)-7 3165.19  3165.19 0.00% 800 3066.13 3.13%
(b)-8 2723.63  2723.63 0.00% 898 2646.58 2.83%
(c)-1 4615.26  4615.26 0.00% 116 4532.19 1.80%
(c)-2 454250 4503.85 0.85% 900 4375.57 3.67%
(c)-3 4293.12  4240.69 1.22% 900 4157.50 3.16%
(c)-4 4256.21  4172.95 1.96% 900 4089.94 3.91%
(c)-5 4541.37  4470.01 1.57% 900 4376.14 3.64%
(c)-6 2884.81 2694.68 6.59% 900 2603.36 9.76%
(c)-7 2983.52 2814.30 5.67% 900 2747.68 7.90%
(c)-8 2668.92  2535.05 5.02% 900 2462.56 7.73%
(d)-1 4756.99  4756.99 0.00% 6 4739.11 0.38%
(d)-2 4550.33  4550.33 0.00% 24 4496.85 1.18%
(d)-3 442559  4425.59 0.00% 12 4404.94 0.47%
(d)-4 4247.74  4247.74 0.00% 48 4206.87 0.96%
(d)-5 4433.70  4433.70 0.00% 5 4428.92 0.11%
(d)-6 3027.86  3027.86 0.00% 15 3008.85 0.63%
(d)-7 3178.77  3178.77 0.00% 2 3176.94 0.06%
(d)-8 2628.75  2628.75 0.00% 15 2591.80 1.41%

Note: *: Optimality Gap = (Best Integer — Best Bound) / Best Integer.
#: Trivial Gap = (Best Integer — Trivial Bound) / Best Integer.

As reported in Table 10, Model M3 shows its efficiency even for dealing with large-size
instances. When reaching the CPU time limitation (i.e., 15 minutes) for termination, the largest

optimality gap is only 6.59%, as shown in Case 6 of Scenario (c). Generally, smaller optimality
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gap indicates the instance is less time-consuming to be solved. Another main advantage of
Model M3 is that increasing the number of boarding locations does not contribute much to the
complexity of the BRCP, as the optimality gaps of Case 3 and 4 are just a bit larger than those
of Case 1 and 2.

Referring to different performances of scenarios, the optimality gap depends on the
overlapping complexity of each scenario, indicated by Figure 3. As shown Table 10, Scenario
(c) is most difficult to be solved with the average optimality gap 2.86%, followed by (a) and
(b), whose optimality gaps are 1.74% and 0.07%, respectively, while Scenario (d) is solved to
optimality. It is noticeable that overlapping degree can also be increased by decreasing the
number of total destinations with the other parameters unchanged; that is why the average
optimality gap of Case 6 is larger than that of Case 5 (i.e., 3.20% and 0.39%). Similarly, the
optimality gap of Case 8 is larger than that of Case 3 (i.e., 1.25% and 0.57%). Besides,
increasing the number of destinations visited by each route increases the overlapping degree
directly, with the same numbers of total destinations and routes, i.e., comparing Case 1 with 2,
or Case 3 with 4. However, the impact of increasing the number of bus routes on the complexity
of the BRCP is not obvious, as shown by comparisons between Case 1 and 5, or between Case
6and 7.

Table 12. Computation results of Model M5 in different configurations.

Case 1 2 3 4 5 6
#Bus routes | 20 20 25 25 30 35
# Boarding locations 4 5 5 6 5 6
# Destinations | 300 300 300 300 400 500
# Destinations/route | >15 >15 >15 >15 >20 >25
Optimality gap | 2.48%  4.89% 9.60%  14.36% 13.97% 23.80%

Overall, the optimality gap (as well as the computation time) of the BRCP is highly
dependent on the overlapping degree of bus networks. Referring to other factors, i.e., the
number of bus routes, destinations, and boarding locations, these issues jointly affect the
computation time, and the influence highly depends on specific topologies (e.g., topology (a)
to (d) in Figure 3) of bus route networks.

In Table 12, we test Model M5, the extension model described in Section 4, which can
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solve the BRCP considering that the arrival rate of buses follows any random distributions.
The overlapping scenarios in all cases of Table 12 are according to Scenario (a) of Figure 3,
and passenger demands are in [25 + 50 ).,cg 0,5, 100 + 50 },.cg &,5] for destination s € S.
Still, Model M5 is tested for different configurations of networks, consisting of different
numbers of total bus routes, total destinations, boarding locations, and destinations visited by
each route, as shown in the upper part of Table 12. The results are reported in the last row of
Table 12, in which all the cases are tested for 900 seconds. Results show that Model M5 can
also deal with large size instances in reasonable times and can be utilized in practice if the
historic data is sufficient for measuring passenger’s waiting time. When facing insufficient
information for the actual relationship between bus frequencies and passenger waiting times of

boarding locations with different capacities, the MISOCP (i.e., Model M3) is required.

7 Conclusion

The bus route clustering problem (BRCP) is proposed in this study, addressing the problem of
assigning bus routes to boarding locations so as to minimize passenger waiting time. The BRCP
is proven to be NP-hard by showing that if it can be solved in polynomial time, then the
maximum clique problem, which is a well-known NP-hard problem, can also be solved in
polynomial time. The BRCP is formulated as a mixed-integer second-order cone program
(MISOCP) that can be solved by off-the-shelf solvers. The MISOCP is applied to a major bus
station in Hong Kong that has 17 bus routes and 3 boarding locations. The problem size can
represent the realistic case, showing that the model is effective in dealing with a real bus route
network. The BRCP tackles a highly utilized network with overlapping bus routes and assigns
bus routes with common destinations into one boarding location to maximize the bus
frequencies of each boarding location and further minimize passenger waiting time. The
MISOCP model is demonstrated to be more effective than a greedy heuristic when the capacity
of boarding locations is insufficient. The appropriate boarding location allocation avoids long
waiting time of passengers and traffic congestion in a significant geographic location with
heavy traffic loads and limited land spaces. Larger-size instances with different overlapping
scenarios are tested to draw deeper analyses of the BRCP. Results show that the computation
time of the MISOCP is highly dependent on the overlapping degree of bus networks, while
other factors (i.e., the number of bus routes, destinations, and boarding locations) jointly affect
the computation time. More importantly, the influence is instance-specific and highly depends

on the specific overlapping scenario of bus route networks. An extension model is also
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proposed which can be utilized in realistic when sufficient historical data is provided for
passengers’ waiting times.

The BRCP is practically important to face a highly utilized network where bus routes are
overlapping, with determinations on allocating which bus route to which boarding location,
concerning limited capacity of each boarding location of the focused bus station. In this work,
we try to distribute different bus routes in such a way that each downstream stop can be served
by one boarding location if possible. Then, a passenger can access a connecting line with less
waiting time, since the passenger has a chance to board all the bus routes heading to the
destination. This study may inspire future extensions of the BRCP. For instance, it can be
extended to bus rapid transit (BRT) system, e.g., TransMilenio in Bogota Colombia, which
includes multiple boarding platforms with gates inside each station, and bus services are
assigned to these gates. In TransMilenio, multiple boarding locations of each station expand its
capacity to that only heavy rail systems had (Wright and Hook, 2007). More issues can be
considered for BRT system, such as different types of bus services (i.e., normal or express) that
may be assigned to different boarding locations of the BRT station (Pefa et al., 2013); besides,
the saturation level of passengers can also be concerned to reduce crowding levels and improve

service qualities in future study.
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Appendix.

Table 13. Boarding location capacities (corresponding to results in Table 10).

Scenario - Case cy Cy C3 Cy Cs
(a)-1 57 45 49 33 -
(a)-2 37 49 56 49 -
(a)-3 30 32 37 47 31
(a)-4 35 37 35 47 40
(a)-5 52 61 43 60 -
(a)-6 67 68 68 56 -
(@)-7 65 60 67 67 -
(a)-8 44 31 49 32 31
(b)-1 41 57 30 50 -
(b)-2 35 36 48 47 -
(b)-3 45 30 33 41 35
(b)-4 42 36 33 38 38
(b)-5 61 53 41 46 -
(b)-6 50 44 61 69 -
(b)-7 50 69 67 41 -
(b)-8 42 33 30 30 52
(c)-1 35 59 31 53 -
(c)-2 61 40 48 39 -
(c)-3 43 42 38 34 39
(c)-4 41 45 31 31 47
(c)-5 43 61 63 45 -
(c)-6 64 32 50 64 -
(c)-7 68 65 60 66 -
(c)-8 40 34 46 39 35
(d)-1 30 53 43 42 -
(d)-2 48 33 32 59 -
(d)-3 46 31 41 37 31
(d)-4 32 38 32 42 39
(d)-5 64 62 46 51 -
(d)-6 64 38 53 61 -
(d)-7 52 50 68 68 -
(d)-8 39 44 36 45 45
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