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1 Introduction 

Although options for travel modes have increased in many cities, bus transport remains the 

dominant transportation mode for people in cities such as Hong Kong, and especially in those cities 

with limited land or road spaces. Ninety percent of residents in Hong Kong commute by public 

transport in their daily lives, and over fifty percent commute by bus (Gov HK, 2017).  A primary 

benefit of bus transport is that it alleviates road congestion; the number of vehicles traveling on 

roads correspondingly decreases when people are transported in the same vehicle. An efficient bus 

transport system increases the number of people who use public transport, but if a bus transport 

system is inappropriately designed, traffic congestion can be a significant issue. The direct impact 

of an inefficient bus transport system on passengers leads to a relatively long waiting time. If the 

number of people who need to travel is high, but the bus frequency is extremely low, passengers 

tend to utilize private vehicles, resulting in more vehicles traveling at peak hours and greater traffic 

congestion. An efficient bus transport system is determined by many factors, including bus fleet 

size, routes, timetables, and frequencies.  

A bus route clustering problem (BRCP) seeks to establish an efficient bus transport system. 

BRCP assigns a set of bus routes to a set of bus station boarding locations in a way that minimizes 

the total waiting time of passengers. Related definitions are given first since the BRCP is a newly 

proposed problem. The BRCP is defined in the background that the capacity of one boarding 

location is insufficient, and the investigated bus station has more than one boarding location. A 

bus route cluster refers to a set of bus routes that are assigned to the same bus station boarding 

location. Figure 1(a) shows four boarding locations of the bus station “Beijing South Railway 

Station South Square,” near the largest railway station in Beijing, China. Figure 1(b) shows two 

boarding locations of the bus station “Fish Market,” near Norway’s most visited outdoor market 

in Bergen. Distinguishing boarding locations from bus stations is essential to understand the BRCP.  

Different boarding locations belonging to one bus station are very close to each other (e.g., 100 

meters), and passengers waiting in one boarding location may even catch sight of another boarding 

location. However, different bus stations should be separated for a certain distance (e.g., 5 minutes 

walking duration) between two adjacent bus stations, since they need to cover passengers from 

different origins. With given passenger demands of a focused bus station, the BRCP resolves how 

passengers choose a boarding location; it focuses only on one bus station and no interaction exists 

between boarding locations of two different bus stations. 
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 In the BRCP, passengers are considered from the same region with a similar walking distance 

from passengers’ origins to each boarding location. Then, different waiting times become the most 

important issue for passengers choosing a boarding location.  Waiting times for passengers to 

arrive at their destinations depend on how bus routes are clustered at various boarding locations. 

For instance, if all the bus routes reaching destination “A” are assigned to one boarding location, 

bus frequencies to “A” are centralized, then passengers to “A” will have the minimum waiting 

time. Sometimes, bus routes toward “A” cannot be centralized due to the capacity limitation of the 

boarding location. In such a case, these bus routes should be partitioned to different clusters. If bus 

routes reaching destination “A” are assigned to different boarding locations, bus frequencies to “A” 

are dispersive and most passengers to “A” will correspondingly have a longer waiting time. If bus 

routes are partitioned inappropriately, then passenger waiting times may largely increase. Thus, 

the BRCP aims to appropriately assign bus routes to different boarding locations of the focused 

bus station, in order to minimize the total waiting time of passengers toward their destinations.  

The BRCP has significant practical importance since the bus station of the BRCP is commonly 

located in the predominant location with heavy traffic flow, in which an inefficient bus system will 

severely intensify traffic pressure and congestion. The above-mentioned “Beijing South Railway 

Station South Square” (i.e., the largest railway station in Beijing) and “Fish Market” (i.e., the most 

visited outdoor market in Bergen) in Figure 1 are both places with geographic significance. 

Correspondingly, a geographically important bus station is commonly one of the busiest stations 

in the city, passed through by a large number of bus routes with intensive bus frequencies; hence, 

the capacity of one boarding location is insufficient. Due to the limited capacity of one boarding 

location and heavy traffic flow, several boarding locations should be set for a bus station. The 

BRCP should efficiently partition the set of bus routes passing through the bus station to several 

bus route clusters, each of which is assigned to one boarding location. The BRCP is important to 

be discussed since the focused bus station is passed through by complicated and overlapping bus 

routes. Hundreds of destinations are reachable in the downstream of the bus station under study. 

Each bus route has its bus frequency, each boarding location has its capacity, and different 

destinations also have different travel demands. Thus, an efficient method of bus route clustering 

is necessary. The need is especially great when facing a highly utilized network with overlapping 

bus routes. Operators should make right decisions on allocating which bus route to which boarding 

location, concerning limited capacity of each boarding location. 
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Figure 1. Bus route clusters of (a) Beijing South Railway Station South Square and (b) Fish 

Market. 

This study aims at addressing a new and practical problem, the BRCP, by formulating 

optimization models and designing solution algorithms. The contributions of this study are 

threefold. First, we identify a novel decision problem that has not been addressed in the literature 

but is experienced by bus transport planners. The BRCP is practically important both for big cities 

like Beijing and Hong Kong and for small cities like Bergen. Moreover, the consequence of 

ignoring the problem is serious, since the BRCP constantly deals with the busiest station with 

geographic significance and faces a highly utilized network where bus routes are overlapping. An 

inefficient bus system will intensify traffic pressure and congestion. The BRCP efficiently assigns 

a set of bus routes passing through the bus station to its several boarding locations, to minimize 

passenger waiting times and to encourage green travel by bus. Second, we develop a mixed-integer 

second-order cone programming (MISOCP) formulation that can be solved by off-the-shelf solvers 

efficiently and effectively. Third, we apply the proposed models on a large bus station in Hong 

Kong with three clusters to determine several valuable and managerial insights. We identify that 

the optimal solution structure without capacity constraints for the BRCP is that the bus routes of 

different boarding locations are not overlapping. The MISOCP is then tested on larger-size 

instances with different overlapping scenarios to draw in-depth analyses. For instance, the 

computation time of the MISOCP is highly dependent on the overlapping degree of bus networks, 
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while other factors (i.e., the number of bus routes, destinations, and boarding locations) jointly 

affect the complexity of the BRCP.  

The remainder of this paper is organized as follows: Section 2 reviews the related literature. 

In Section 3, the BRCP is formulated as a mixed-integer second-order cone program (MISOCP). 

An extension model is described in Section 4. We then apply the MISOCP model to a major bus 

station in Hong Kong based on the network of actual bus routes in Section 5. Section 6 further 

tests the proposed models in large scale instances with different configurations of bus route 

networks. Section 7 concludes the study.  

2 Literature review 

BRCP has not been explicitly addressed in the literature yet, but we can draw some insights from 

the following two main aspects. (i) BRCP has analogical concerns or trade-offs with problems 

related to bus (route) system, i.e., the transit network design problem (TNDP), overlapping bus 

routes, and frequency-based transit assignment approach. (ii) BRCP is considered a variant of the 

generalized assignment problem (also called as clustering problem or partitioning problem in the 

literature). The above-mentioned two aspects of studies are reviewed in this subsection. Besides, 

an MISOCP formulation is proposed to solve the BRCP in this study, and reviews of SOCP are 

also given. 

Related literature of bus (route) system is presented first, including the three categories of the 

transit network design problem (TNDP), overlapping bus routes, and frequency-based transit 

assignment approach. Methodologies in existing literature cannot be directly used to solve BRCP 

since each of them has different emphases on bus system problems with various considerations. A 

review of each category is followed by analogies or differences analyses compared with BRCP as 

follows. 

TNDP is one of the three major activities in the transit network problem, along with frequency 

setting and timetabling problems of transit networks (Guihaire and Hao, 2008; Meng and Qu, 2013; 

Zhang et al., 2018; Varga et al., 2018; Gkiotsalitis and Cats, 2018; Kang et al., 2019). Numerous 

studies have been reported on the TNDP, typically to design bus route layout and destination 

locations (Ceder and Wilson, 1986; Saka, 2001; Meng and Yang, 2002; Ibeas et al., 2010; Liu et 

al., 2013). Studies have also proposed methods to manage route design and frequency setting 

problems simultaneously (Tom and Mohan, 2003; Szeto and Wu, 2011; Yan et al., 2013; Nikolić 
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and Teodorović, 2014; Szeto and Jiang, 2014) or to handle route design and timetabling problems 

simultaneously (Yan et al., 2006; Yan and Tang, 2008; Zhao and Zeng, 2008; Chu, 2018; Lyu et 

al., 2019). Reviews and future research potential have been discussed by Farahani et al. (2013) and 

Ibarra-Rojas et al. (2015). If we classify the BRCP to a typical category of literature, the TNDP is 

the most related one, while differences between them should be declared. The TNDP attempts to 

output a set of bus lines and bus stops to construct an efficiency network, whereas in the BRCP, 

the network of bus routes and destination layouts are given. The BRCP solves a downstream 

problem after the network design and selects a boarding location of the focused bus station for 

each route passing through it, rather than to determine bus stops to be served along the route. We 

focus on only one bus station which has several boarding locations, as well as all the bus routes 

that visit the focused bus station. 

Studies investigated overlapping bus routes in different aspects as follows. Overlapping bus 

routes share common bus stops and this means more than one bus route can serve the travel demand 

from the focused bus station to a destination (Yu et al., 2011). Fouilhoux et al. (2016) indicated 

that different bus routes converge at specific stops of the network, and buses are easily congested 

at these common bus stops of overlapping routes. They optimized the departure times of buses to 

avoid the arrival of two buses at a stop at the same time, thereby ensuring short waiting times and 

sufficient transfer times of passengers. Han and Wilson (1982) allocated a fleet of buses between 

routes in networks, where extensive bus routes overlap, and buses frequently operate close to 

capacity. The above literature discussed different effects of overlapping bus routes to be considered 

when designing an efficient bus system, while they fall into the category of bus frequency setting 

or timetabling problem, but not from the boarding location assignment perspective as pursued in 

this study. Still, similarities are included.  For example, Han and Wilson (1982) allocated buses to 

bus routes to minimize waiting times and to reduce crowding levels of passengers; we allocate bus 

routes to boarding locations to minimize waiting times. Passenger waiting time plays an important 

role in the efficient utilization of bus resources (Chakroborty, 2003; Zolfaghari et al., 2004; Niu et 

al., 2015). Besides, passengers’ choice on different bus routes to their destination is widely 

concerned; in this study, passengers departing from the focused bus station should select a 

boarding location with at least one bus route heading to the destination.  

Frequency-based transit assignment approach is commonly used in planning bus services and 

is a major precondition in the BRCP. This approach considers that buses are operated with constant 
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frequencies but with no trustworthy schedule; they arrive at the station every few minutes (i.e., the 

service is frequent). A passenger does not worry about the schedule even though no reliable bus 

schedule is provided (Chriqui and Robillard, 1975; Spiess and Florian, 1989; Oliker and Bekhor, 

2018). The frequency-based approach is suitable for the BRCP, which occurs in a busy and 

congested transit network where bus services are frequent, and passengers are not concerned about 

the schedule. In the BRCP, we define the “connecting lines” as the bus routes heading to a 

passenger’s destination. The passenger does not predetermine his path; instead, he boards the first 

arriving bus among a set of connecting lines.  

From another aspect, the BRCP can be considered as a variant of the generalized assignment 

problem (GAP). We refer to a comprehensive literature review of GAP and its applications studied 

by Öncan (2007). The GAP is to find the optimal assignment of certain items into several 

knapsacks, each of which has a fixed capacity availability. The GAP is known to be NP-hard 

(Sahni and Gonzalez, 1976), and heuristic or metaheuristic solution approaches are constantly 

developed for the large instances in the literature (Yagiura and Ibaraki, 2004, 2007). Meanwhile, 

many variants and applications (Öncan, 2007) of the GAP are developed, in which the BRCP has 

not been mentioned so far. As a variant of the GAP, the BRCP has also been proved to be NP-hard 

in this study by reducing it to the well-known NP-hard maximum clique problem (Bomze et al., 

1999; Östergård, 2002; Konc and Janezic, 2007). Objectives are various in different variants of the 

GAP, while in the BRCP, the aim is to minimize the waiting time of passengers. The objective of 

the BRCP involves the nonlinear interaction in the model formulation (i.e., bus frequencies of 

different bus routes are clustered, which has a nonlinear relationship with waiting times of 

passengers in each cluster). A related study of nonlinear constraint refers to Mazzola (1989) who 

have discussed the nonlinear capacity constrained GAP. Besides, the underlining rules of 

clustering are also different in each variant. Mulvey and Beck (1984) solved a capacity clustering 

problem, clustering entities into several groups where the “size” of each group is restricted, with 

the objective to minimize the sum of the distance between each entity and a designated group 

median. Osman and Christofides (1994) defined a capacity clustering problem (CCP) in which a 

given set of weighted objects is partitioned into clusters so that the total weight of objects in each 

cluster is less than a given value (i.e., cluster’s capacity), while the objective is to minimize the 

total scatter of objects from the “center” of the cluster to which they have been allocated. The 

clustering problem discussed by De La Vega et al. (2003) also aims at minimizing the sum of all 

https://www.sciencedirect.com/science/article/pii/S0968090X18300044#b0040
https://www.sciencedirect.com/science/article/pii/S0968090X18300044#b0165
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intra-cluster distances, while in the BRCP, the underlining rule of the clustering gathers the bus 

frequencies to the same destination to shorten passenger waiting times.  

To solve the BRCP, an MISOCP is proposed in this study. A second-order cone programming 

(SOCP) problem is defined as a problem where a linear function is minimized over the intersection 

of an affine linear manifold with the Cartesian product of second-order cones (Alizadeh and 

Goldfarb, 2003). Theoretical findings and industrial applications related to SOCP have been 

discussed in the past decades (Ben-Tal and Nemirovski, 2000; Ndambuki et al., 2000; Bertsimas 

et al., 2004; Chen et al., 2007; Frangioni and Gentile, 2009; Du et al., 2011). For instance, Ben-

Tal and Nemirovski (2000) proposed a robust formulation in which an ellipsoid uncertainty set is 

utilized to restrict uncertain parameters and obtain the worst values. Under the ellipsoidal 

uncertainty set, the robust formulation becomes an SOCP. Du et al. (2011) cast a mixed-integer 

nonlinear programming model as an MISOCP model to overcome the nonlinear intractability 

introduced by the consideration of fuel consumption. Many off-the-shelf solvers are available to 

solve SOCP models to optimality, such as CPLEX and MOSEK (Mittelmann, 2003).  

3 Model Formulation 

In this section, an MISOCP model is formulated for the BRCP. The model includes decisions of 

assigning bus routes to different boarding locations of a bus station. Some properties of the 

proposed model are also discussed in this section.  

3.1 Assumptions 

Before addressing the model, the underlying assumptions are clarified as follows. 

(i) The origin-destination demand from the focused bus station to any destination (i.e., downstream 

bus stop) in each bus route is fixed and constant over the study period. 

(ii) Passengers do not have preferences among connecting lines (i.e., connecting lines denote the 

bus routes heading to the passenger’s destination); they also do not have preferences between buses, 

and board the first arriving bus of the connecting lines.  

(iii) Passengers’ choice of bus routes does not affect the buses’ dwell time at boarding locations. 

This assumption will then be relaxed in Remark 6 in Section 3.3.  

(iv) Passengers select the boarding location with the highest frequency of buses that head to their 

destinations. 
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(v) All passengers can board the buses when the first bus heading to their destination arrives at the 

boarding location, considering the arriving bus has sufficient capacity after servicing upstream 

stops. This assumption will then be relaxed in Remark 6 in Section 3.3.  

(vi) Bus arrivals of each bus route follow a Poisson process. This assumption will then be relaxed 

in Section 4 as a model extension, in which the arrival rate of buses can follow any random 

distributions.  

(vii) The arrival times of passengers are uniformly distributed over the study period. 

Considerations and limitations of the BRCP are explained as follows. Assumption (ii) 

considers passengers take the first bus of the connecting lines, which might be limited from the 

perspective of express services. In reality, some lines may be more attractive than others, 

depending on which other lines are available at the bus cluster. In the BRCP, we mainly concern 

the waiting time, while in-vehicle travel times are not measured in the objective function. If a 

serious detour of a route exists, we rule the route out from the start. We consider that the BRCP 

faces an efficient bus route network with reasonable and acceptable in-vehicle times, as a 

downstream study after the bus route network design. Certain limitations exist when some routes 

are less express compared with other available connecting lines of a bus cluster. 

3.2 Notation 

The notation is defined as follows. 

Sets 

R:  Set of bus routes; 

W:  Set of boarding locations; 

S:  Set of all destinations (i.e., downstream bus stops) of the focused bus station that is 

visited by all bus routes in R; 

Indices 

𝑟:  A bus route; 

𝑤:  A boarding location; 

𝑠:  A destination (i.e., downstream bus stop); 

Parameters 

𝑓𝑟:  Frequency of bus route 𝑟 ∈ R (number of departures per hour); 

𝛿𝑟𝑠:  A binary indicator equals 1 if and only if bus route 𝑟 ∈ R visits destination 𝑠 ∈ S; 
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𝑐𝑤:  Capacity of boarding location 𝑤 ∈ W, which is measured in bus frequencies; 

𝑞𝑠:  Travel demand from the focused bus station to the destination 𝑠 ∈ S (number of 

passengers per hour); 

𝑀𝑠:  A large positive number used to linearize the model that corresponds to the 

destination 𝑠 ∈ S, where 𝑀𝑠: = ∑ 𝑓𝑟𝛿𝑟𝑠𝑟∈R ; 

Main decision variables 

𝑧𝑤𝑟:  A binary variable equals 1 if and only if bus route 𝑟 ∈ R is assigned to cluster 𝑤 ∈

W; 

𝐳:  Matrix defined as 𝐳 ≔ (𝑧𝑤𝑟 , 𝑤 ∈ W, 𝑟 ∈ R); 

 Auxiliary decision variables 

𝑥𝑤𝑠:  Total frequency (number of departures per hour) of all bus routes that use boarding 

location 𝑤 ∈ W and visit destination 𝑠 ∈ S; 

𝑦𝑤𝑠:  A binary variable equals 1 if and only if passengers heading to destination 𝑠 ∈ S 

use boarding location 𝑤 ∈ W; 

𝑥𝑠： Total frequency (number of departures per hour) available to destination 𝑠 ∈ S , 

defined as 𝑥𝑠: = max{𝑥𝑤𝑠|𝑤 ∈ W} , 𝑠 ∈ S , since passengers select the boarding 

location with the highest frequency. 

3.3 Mathematical Model  

On the basis of the parameters and decision variables, the BRCP can be formulated as the following 

Model M1.  

 [M1]   min ∑ 𝑞𝑠𝑠∈S
1

𝑥𝑠
, (1) 

subject to 

 ∑ 𝑧𝑤𝑟𝑤∈W = 1, 𝑟 ∈ R, (2) 

 ∑ 𝑓𝑟𝑧𝑤𝑟𝑟∈R ≤ 𝑐𝑤, 𝑤 ∈ W, (3) 

 𝑥𝑤𝑠 = ∑ 𝑓𝑟𝛿𝑟𝑠𝑧𝑤𝑟𝑟∈R , 𝑤 ∈ W, 𝑠 ∈ S, (4) 

 𝑥𝑠 + 𝑀𝑠(𝑦𝑤𝑠 − 1) ≤ 𝑥𝑤𝑠, 𝑤 ∈ W, 𝑠 ∈ S, (5)  

 𝑥𝑤𝑠 ≤ 𝑥𝑠, 𝑤 ∈ W, 𝑠 ∈ S, (6) 
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 ∑ 𝑦𝑤𝑠𝑤∈W = 1, 𝑠 ∈ S, (7) 

 
∑ 𝑓𝑟𝛿𝑟𝑠𝑟∈R

|W|
≤ 𝑥𝑠, 𝑠 ∈ S, (8) 

 𝑥𝑤𝑠 ≥ 0, 𝑤 ∈ W , 𝑠 ∈ S, (9) 

  𝑦𝑤𝑠 ∈ {0,1}, 𝑤 ∈ W , 𝑠 ∈ S, (10) 

 𝑧𝑤𝑟 ∈ {0,1}, 𝑤 ∈ W, 𝑟 ∈ R. (11) 

The objective function (1) minimizes the total waiting time of all the passengers. In consideration 

of Assumption (vi), that is, bus arrivals follow a Poisson process, and Assumption (vii), that is, 

passenger arrivals follow a uniform distribution, the waiting time of passengers can be regarded 

as a negative exponential distribution with an average waiting time of  1/𝑥𝑠  , which is shown in 

the objective function. Constraint (2) guarantees that each bus route is designated to dwell at only 

one boarding location. Constraint (3) states the capacity limitation of each boarding location. 

Constraint (4) ensures that 𝑥𝑤𝑠  equals the total frequency of all bus routes that use boarding 

location 𝑤  and visit destination 𝑠 . Constraints (5) and (6) indicate that passengers select the 

boarding location with the highest frequency of buses heading to their destinations, where 𝑀𝑠: =

∑ 𝑓𝑟𝛿𝑟𝑠𝑟∈R  ,  𝑠 ∈ S . The relationship of 𝑥𝑤𝑠  and 𝑦𝑤𝑠  follows Assumption (iv). If the boarding 

location 𝑤  has the highest bus frequency heading to destination 𝑠 , then passengers heading to 

destination 𝑠  will select boarding location 𝑤  and 𝑦𝑤𝑠  equals one; otherwise, 𝑦𝑤𝑠  equals 0. 

Constraint (7) ensures that passengers can only select one boarding location to their destinations.  

Constraint (8) considers that the worst situation of the passengers’ waiting time toward destination 

𝑠 ∈ S  is that all frequencies to 𝑠 ∈ S  are distributed on average by |W|  boarding locations. 

Constraints (9)–(11) define the domain of decision variables.  

The aforementioned model is nonlinear with a challenge that the division 1/𝑥𝑠  is in the 

objective function. To overcome this problem, we propose an MISOCP to reformulate the model. 

We introduce the following notation: 

Auxiliary decision variables 

𝑡𝑠:  Average waiting time of passengers heading to destination 𝑠 ∈ S, 𝑡𝑠: = 1/𝑥𝑠. 

Given the newly added parameters and decision variables, Model M1 is modified as Model 

M2. 
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 [M2]  min ∑ 𝑞𝑠𝑡𝑠𝑠∈S , (12) 

subject to Constraints (2)–(11), and 

 𝑡𝑠 ≥ 1/𝑥𝑠, 𝑠 ∈ S. (13) 

Constraint (13) is nonlinear and causes difficulty for optimization. Thus, we rewrite it as follows: 

 1 ≤ 𝑥𝑠𝑡𝑠, 𝑠 ∈ S. (14) 

Here, 1 ≤ 𝑥𝑠𝑡𝑠  is equivalent to 4 ≤ 4𝑥𝑠𝑡𝑠 , which can be transformed to 22 − 2𝑥𝑠𝑡𝑠 ≤ 2𝑥𝑠𝑡𝑠 ,  

equivalent to 22 − 2𝑥𝑠𝑡𝑠 + 𝑥𝑠
2 + 𝑡𝑠

2 ≤ 2𝑥𝑠𝑡𝑠 + 𝑥𝑠
2 + 𝑡𝑠

2 , further equivalent to 22 + (𝑥𝑠 −

𝑡𝑠)2 ≤ (𝑥𝑠 + 𝑡𝑠)2. Thus, constraint (14) can be transformed to: 

 √22 + (𝑥𝑠 − 𝑡𝑠)2 ≤ 𝑥𝑠 + 𝑡𝑠, 𝑠 ∈ S. (15) 

Constraint (15) denotes a typical second-order cone programming (SOCP) constraint. The SOCP 

model can be efficiently solved to optimality by interior point algorithms, and therefore many 

commercial solvers, such as CPLEX, are capable of solving SOCP problems (Alizadeh and 

Goldfarb, 2003). To enhance the practical usage of SOCP, integer variables are involved in the 

SOCP, denoted as a mixed-integer second-order cone program (MISOCP). Substituting Constraint 

(13) to Constraint (15), Model M2 can be transformed into an MISOCP formulation denoted by 

Model M3, which can be solved by off-the-shelf solvers, such as CPLEX. 

 [M3]    min ∑ 𝑞𝑠𝑡𝑠𝑠∈S , (16) 

subject to Constraints (2)–(11) and (15). 

In the following, we provide several remarks for different practical considerations of the BRCP, 

e.g., concerning the detour of bus routes and passengers’ preference of one particular bus route. 

Remark 1. If a particular destination 𝑠′ ∈ S is included by only one particular route 𝑟′ ∈ R, but not 

included by the others 𝑟 ∈ R\{𝑟′}; that is, 𝛿𝑟′𝑠′ = 1 and 𝛿𝑟𝑠′ = 0, 𝑟 ∈ R\{𝑟′}, then the component 

𝑞𝑠′/𝑥𝑠′ in Objective function (1) is a constant value which equals 𝑞𝑠′/𝑓𝑟′. Thus, we can exclude 

the destination 𝑠′ from the optimization model without changing optimal solution 𝐳∗. 

Remark 2. If all the routes 𝑟 ∈ R either include both destinations 𝑠1 ∈ S and 𝑠2 ∈ S, or exclude 

both of them, that is 𝛿𝑟𝑠1
= 𝛿𝑟𝑠2

, 𝑟 ∈ R, then we can set the travel demands as 𝑞𝑠1
← 𝑞𝑠1

+ 𝑞𝑠2
and 

exclude destination 𝑠2 from the optimization model without changing the optimal solution 𝐳∗. 

Remark 3. Some passengers heading to destination 𝑠 may constantly select a particular route, 

although more than one route visits destination 𝑠. For example, buses that are deployed on a 

https://www.sciencedirect.com/science/article/pii/S1366554511000706#b0005
https://www.sciencedirect.com/science/article/pii/S1366554511000706#b0005
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particular route are possibly wheelchair friendly and passengers in wheelchairs constantly select 

this bus route. Suppose that all 𝑞𝑠 passengers are heading to destination 𝑠 and a constant number 

of passengers 𝑝𝑠𝑟 only select route 𝑟 ∈ R as their preference, then we can set 𝑞𝑠 ← 𝑞𝑠 − ∑ 𝑝𝑠𝑟𝑟∈R  

and exclude these passengers ∑ 𝑝𝑠𝑟𝑟∈R  from the optimization model without changing the optimal 

solution 𝐳∗. 

Remark 4. Suppose that each passenger only takes one particular bus route as a preference, which 

indicates 𝑞𝑠 − ∑ 𝑝𝑠𝑟𝑟∈R = 0, then the objective function is ineffective because every passenger 

has a fixed waiting time and this model will aim at finding a feasible solution. In this situation, the 

objective function can be set as max min
𝑤∈W

(𝑐𝑤 − ∑ 𝑓𝑟𝑧𝑤𝑟𝑟∈R )/𝑐𝑤 to maximize the smallest relative 

capacity buffer among all the boarding locations. 

Remark 5. The set of all connecting lines of a passenger waiting at boarding location 𝑤 ∈ W 

towards the destination 𝑠 ∈ S can be denoted as {𝑟 ∈ R|𝛿𝑟𝑠𝑧𝑤𝑟 = 1}. If all the routes belong to the 

same cluster, the connecting lines of the passenger can be simplified as {𝑟 ∈ R|𝛿𝑟𝑠 = 1}. If the bus 

route 𝑟′ ∈ R  takes a serious detour for passengers heading to the destination 𝑠′ ∈ S  and no 

passengers toward 𝑠′ choose route 𝑟′, then destination 𝑠′ can be removed from the route 𝑟′ by 

setting 𝛿𝑟′𝑠′ = 0 in the analysis of the BRCP. 

Remark 6. In Assumption (iii), we assume that buses’ dwell times are fixed at boarding locations. 

In reality, the dwell time is dependent on the number of boarding/alighting passengers and can be 

formulated as 𝑑𝑟 = 𝑡𝑟
0 + 𝜃 ∑ 𝑢𝑟𝑠𝑠∈S  for route 𝑟 ∈ R, where (i) 𝑡𝑟

0 denotes the fixed dwell time (e.g., 

launching, braking time, etc.), (ii) 𝜃 is the average time required for one passenger to board, and 

(iii) 𝑢𝑟𝑠 is a decision variable that denotes the number of passengers to destination 𝑠 ∈ S boarding 

the arriving bus of route 𝑟 ∈ R instead of the other available connecting lines.  

The relation between 𝑑𝑟, 𝑢𝑟𝑠 and other decision variables (i.e., bus route clustering decisions 

𝑧𝑤𝑟 and passengers’ choice decisions 𝑦𝑤𝑠) is 𝑢𝑟𝑠 = 𝑞𝑠 ×

60−∑ 𝑑𝑟𝑓𝑟𝑟∈R 𝛿𝑟𝑠(∑ 𝑦𝑤𝑠𝑤∈W 𝑧𝑤𝑟)

∑ 𝑓𝑟𝑟∈R 𝛿𝑟𝑠(∑ 𝑦𝑤𝑠𝑤∈W 𝑧𝑤𝑟)
+𝑑𝑟𝛿𝑟𝑠

60
, 𝑟 ∈ R, 

𝑠 ∈ S. In detailed explanation, if a bus to destination 𝑠 (i.e., 𝛿𝑟𝑠 = 1) has occupied the station 

within its dwell time 𝑑𝑟 and a passenger arrives the station during this period, the passenger will 

board the dwelling bus instead of the others. Aside from passengers arriving within period 𝑑𝑟, the 

bus also services passengers previously waiting at the station within period 

60−∑ 𝑑𝑟𝑓𝑟𝑟∈R 𝛿𝑟𝑠(∑ 𝑦𝑤𝑠𝑤∈W 𝑧𝑤𝑟)

∑ 𝑓𝑟𝑟∈R 𝛿𝑟𝑠(∑ 𝑦𝑤𝑠𝑤∈W 𝑧𝑤𝑟)
 as an average, where ∑ 𝑑𝑟𝑓𝑟𝑟∈R 𝛿𝑟𝑠(∑ 𝑦𝑤𝑠𝑤∈W 𝑧𝑤𝑟) denotes the total 
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dwell time, and ∑ 𝑓𝑟𝑟∈R 𝛿𝑟𝑠(∑ 𝑦𝑤𝑠𝑤∈W 𝑧𝑤𝑟) denotes the total frequency, of all connecting lines to 

destination 𝑠 within 60 minutes. Overall, each arriving bus takes up 
60−∑ 𝑑𝑟𝑓𝑟𝑟∈R 𝛿𝑟𝑠(∑ 𝑦𝑤𝑠𝑤∈W 𝑧𝑤𝑟)

∑ 𝑓𝑟𝑟∈R 𝛿𝑟𝑠(∑ 𝑦𝑤𝑠𝑤∈W 𝑧𝑤𝑟)
+

𝑑𝑟𝛿𝑟𝑠 in the total of 60 minutes. With 𝑞𝑠 passengers arriving at the station each hour follow a 

uniform distribution, the bus load of the arriving bus of route 𝑟 ∈ R  to destination 𝑠 ∈ S  is 

𝑢𝑟𝑠 = 𝑞𝑠 ×

60−∑ 𝑑𝑟𝑓𝑟𝑟∈R 𝛿𝑟𝑠(∑ 𝑦𝑤𝑠𝑤∈W 𝑧𝑤𝑟)

∑ 𝑓𝑟𝑟∈R 𝛿𝑟𝑠(∑ 𝑦𝑤𝑠𝑤∈W 𝑧𝑤𝑟)
+𝑑𝑟𝛿𝑟𝑠

60
. 

In Assumption (v), we assume that the arriving bus has sufficient capacity. If the capacity of 

the arriving bus is not sufficient, constraint ∑ 𝑢𝑟𝑠𝑠∈S ≤ 𝑄𝑟 for 𝑟 ∈ R should be considered, where 

𝑄𝑟 denotes the remaining capacity of the arriving bus of route 𝑟 ∈ R after servicing the upstream 

stops, i.e., the maximum number of passengers who can board the bus at the station. Generally, by 

introducing auxiliary decision variables 𝑑𝑟  and 𝑢𝑟𝑠 , and beforementioned three constraints, 

Assumption (iii) and (v) can be relaxed. 

3.4 Hardness of the BRCP 

The following theorem of the BRCP is investigated in this subsection. 

Theorem. The BRCP is NP-hard.  

Proof. We prove the theorem by showing that if the BRCP can be solved in polynomial time, then 

the maximum clique problem can also be solved in polynomial time, while it is well known that 

the maximum clique problem is NP-hard (Karp, 1972).  

The maximum clique problem can be stated as follows. We consider an undirected graph 

G(V, E) formed by a finite set of vertices V and a set of unordered pairs of vertices E, which are 

called edges. A clique G′(V′, E′) is a complete subgraph of G(V, E), consisting of a set of vertices 

V′ ⊆ V, a set of edges E′ ⊆ E, and an edge (𝑖, 𝑗) ∈ E′ is between every two vertices ∀𝑖, 𝑗 ∈ V′, 𝑖 ≠

𝑗 . A maximum clique of the graph includes the largest possible number of vertices, and the 

maximum clique problem aims to find such a maximum clique. The number of vertices in the 

maximum clique, denoted as 𝑣, should be an integer between 1 and |V|. Hence, so long as we can 

check whether there is a clique with 𝑣 = 1,2, … , |V| vertices in polynomial time, we can solve the 

maximum clique problem in polynomial time. 

We consider a specification of the BRCP and depict it as a maximum clique problem (i.e., 

with a given value of 𝑣 = 1,2, … , |V|, whether a clique with 𝑣 vertices exists in G(V, E)). In the 

BRCP, we consider a total of |R| = |V| bus routes with the same frequency 𝑓𝑟 = 1; a total of 
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|W| = |V| + 1 − 𝑣 boarding locations, with one boarding location has the capacity 𝑣 and each of 

the other has the capacity 1; a total of |S| = |E| destinations with the same travel demand 𝑞𝑠 = 2, 

each of which is visited by exactly two bus routes. With the capacity limitation of boarding 

locations, the feasible solutions of the BRCP consist of 𝑣 routes using the same cluster and each 

of the other routes using exclusively one cluster. To solve the BRCP to optimality, we need to 

determine which 𝑣 of the total |V| bus routes are assigned together. 

The above-mentioned BRCP can be depicted as a maximum clique problem. Each bus route 

corresponds to a vertex in the graph; an edge connecting two vertices corresponds to a common 

stop of the two bus routes. In other words, two bus routes may have a common destination (if there 

is an edge between the vertices) or not; if two bus routes have a common destination 𝑠 ∈ S and are 

assigned to the same cluster, then the total waiting time reduction for passengers heading to 𝑠 is 

𝑞𝑠

𝑓𝑠
−

𝑞𝑠

2𝑓𝑠
= 1 as a constant. If 𝑣 bus routes are assigned together and any two of the 𝑣 routes have a 

common destination, the total waiting time reduction equals 𝑣(𝑣 − 1)/2, then a clique with 𝑣 

vertices exists; otherwise, such a clique does not exist. ∎ 

4 Model Extension 

The model in the previous section is formulated based on the assumption that the arrival rate of 

buses follows a Poisson distribution. In this section, we extend the model in consideration of a 

general situation that the arrival rate of buses can follow any random distributions. Note that the 

arrival rate refers to buses deployed on the bus routes assigned to each boarding location 𝑤 ∈ W 

heading to each destination 𝑠 ∈ S since these bus routes are the connecting line for passengers 

toward destination 𝑠 when they wait at the boarding location 𝑤.  

In different bus route clustering schemes, the bus arrival rate should be different (i.e., with 

more bus routes toward destination 𝑠 ∈ S  assigned to the same cluster, the frequencies to 

destination 𝑠 should be higher; thus, the waiting time to destination 𝑠 correspondingly lower). This 

general situation means that the waiting times of buses toward 𝑠 ∈ S at cluster 𝑤 ∈ W can be 

obtained by historical data, with given possible frequencies 𝑓𝑟 of connecting lines.  

In the following, the index 𝑘𝑤𝑠 ∈ K𝑤𝑠  is defined as a possible bus arrival frequency at 

boarding location 𝑤 heading to the destination 𝑠. If we assume that the frequency 𝑓𝑟 of each bus 

route  𝑟  is an integer, then 𝑘𝑤𝑠  is also an integer with an upper bound denoted by |K𝑤𝑠|

∶= min (∑  𝑓𝑟𝑟∈R,𝛿𝑟𝑠=1 , 𝑐𝑤),  and K𝑤𝑠 = {1,2, … , |K𝑤𝑠|}. The waiting time is infinite when 𝑘𝑤𝑠 =
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0. Let parameter τ𝑤𝑠
𝑘𝑤𝑠, derived from the historical data, represent the average waiting time of a 

passenger using boarding location 𝑤 for heading to destination 𝑠 if the possible frequency of all 

bus routes is 𝑘𝑤𝑠.  

Table 1. Example of the model extension for any bus arrival rate 

𝑘𝑤𝑠 τ𝑤𝑠
𝑘𝑤𝑠 𝑥𝑤𝑠

𝑘𝑤𝑠 𝑦𝑤𝑠 𝑥𝑤𝑠 

1 57 0 

1 3 

2 34 0 

3 19 1 

… … … 

|K𝑤𝑠| 5 0 

Table 1 provides an example which represents a random distribution. As shown in the first 

two columns, for each 𝑘𝑤𝑠, its corresponding average waiting time τ𝑤𝑠
𝑘𝑤𝑠 can be calibrated based 

on historical data from the boarding location or similar boarding locations (i.e., the third row means 

the average waiting time of passengers is 19 min when the bus arrival frequency is three departures 

per hour). 

Then, the proposed model can be extended to handle any distributions of bus arrival rate by 

introducing a new auxiliary decision variable (𝑥𝑤𝑠
𝑘𝑤𝑠 ∈ {0,1}), a binary variable which equals one, 

if and only if passengers heading to destination 𝑠 ∈ S use boarding location 𝑤 ∈ W with the total 

bus frequency of connecting lines 𝑘𝑤𝑠 ∈ K𝑤𝑠 . The last three columns of Table 1 are used to 

illustrate the concept. In Model M1, we denote 𝑦𝑤𝑠 = 1 (column 4) if passengers use boarding 

location 𝑤 to the destination 𝑠, and denote 𝑥𝑤𝑠 (three departures per hour 𝑥𝑤𝑠 = 3 in column 5) 

as the total boarding location frequency of corresponding connecting lines. By setting newly 

introduced auxiliary decision variable 𝑥𝑤𝑠
𝑘𝑤𝑠=3

= 1 when 𝑘𝑤𝑠 = 3 (column 3), the average waiting 

time of passengers can be obtained as 19 minutes (τ𝑤𝑠
𝑘𝑤𝑠 = 19 in column 2). Hence, Model M4 can 

be formulated as follows: 

 [M4]     min ∑ 𝑞𝑠 𝑠∈S ∑ 𝑦𝑤𝑠 𝑤∈W ∑ τ𝑤𝑠
𝑘𝑤𝑠𝑥𝑤𝑠

𝑘𝑤𝑠
𝑘𝑤𝑠∈K𝑤𝑠

, (17) 

subject to Constraints (2)–(4), (7), (9)–(11) and 

 𝑥𝑤′𝑠 + 𝑀𝑠(𝑦𝑤𝑠 − 1) ≤ 𝑥𝑤𝑠, 𝑤 ∈ W, 𝑤′ ∈ W, 𝑤 ≠ 𝑤′, 𝑠 ∈ S, (18) 
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 𝑥𝑤𝑠
𝑘𝑤𝑠 ∈ {0,1}, 𝑤 ∈ W, 𝑠 ∈ S,  𝑘𝑤𝑠 ∈ K𝑤𝑠, (19) 

 ∑ 𝑥𝑤𝑠
𝑘𝑤𝑠

𝑘𝑤𝑠∈K𝑤𝑠
= 𝑦𝑤𝑠, 𝑤 ∈ W, 𝑠 ∈ S, (20) 

 𝑥𝑤𝑠 − 𝑀𝑠(1 − 𝑦𝑤𝑠) ≤ ∑ 𝑘𝑤𝑠𝑥𝑤𝑠
𝑘𝑤𝑠

𝑘𝑤𝑠∈K𝑤𝑠
≤ 𝑥𝑤𝑠 + 𝑀𝑠(1 − 𝑦𝑤𝑠),𝑤 ∈ W,𝑠 ∈ S,𝑘𝑤𝑠 ∈ K𝑤𝑠. (21) 

In Model M4, Constraints (18) indicates that passengers select the boarding location with the 

highest frequency of buses heading to their destinations, where  𝑀𝑠: = ∑ 𝑓𝑟𝛿𝑟𝑠𝑟∈R , 𝑠 ∈ S. The 

relationship of 𝑥𝑤𝑠 and 𝑦𝑤𝑠 follows Assumption (iv). Constraints (20) and (21) are regarded as two 

possible situations (i.e., 𝑦𝑤𝑠 = 1  and 𝑦𝑤𝑠 = 0 ). Given 𝑤 ∈ W , 𝑠 ∈ S , (i) if 𝑦𝑤𝑠 = 1 , then 

Constraint (20) indicates that one of the binary variables 𝑥𝑤𝑠
𝑘𝑤𝑠  that correspond to possible 

frequency 𝑘𝑤𝑠 ∈ K𝑤𝑠  must be equal to 1 and that Constraint (21) becomes 𝑥𝑤𝑠 ≤

∑ 𝑘𝑤𝑠𝑥𝑤𝑠
𝑘𝑤𝑠

𝑘𝑤𝑠∈K𝑤𝑠
≤ 𝑥𝑤𝑠 . That is to say, ∑ 𝑘𝑤𝑠𝑥𝑤𝑠

𝑘𝑤𝑠
𝑘𝑤𝑠∈K𝑤𝑠

= 𝑥𝑤𝑠 , which further implies that 

𝑥𝑤𝑠
𝑘𝑤𝑠 with 𝑘𝑤𝑠 = 𝑥𝑤𝑠 is set to be 1. (ii) If 𝑦𝑤𝑠 = 0, then Constraint (20) indicates that 𝑥𝑤𝑠

𝑘𝑤𝑠 for all 

𝑘𝑤𝑠 ∈ K𝑤𝑠  equal 0 and that Constraint (21) is constantly satisfied with 𝑀𝑠 , a relatively large 

number that 𝑀𝑠: = ∑ 𝑓𝑟𝛿𝑟𝑠𝑟∈R , 𝑠 ∈ S.  

Constraint (22) can substitute Constraint (21) to simplify Model M4. (i) If 𝑦𝑤𝑠 = 1, Constraint 

(22) becomes 𝑘𝑤𝑠𝑥𝑤𝑠
𝑘𝑤𝑠 ≤ 𝑥𝑤𝑠. Since τ𝑤𝑠

𝑘𝑤𝑠 is negatively correlated with 𝑘𝑤𝑠, indicating a higher 

bus frequency indicates a lower passenger waiting time of Objective (17). Thus, 𝑥𝑤𝑠
𝑘𝑤𝑠=𝑥𝑤𝑠 will be 

set to be 1, since  𝑥𝑤𝑠
𝑘𝑤𝑠>𝑥𝑤𝑠 = 1 indicating 𝑘𝑤𝑠𝑥𝑤𝑠

𝑘𝑤𝑠 > 𝑥𝑤𝑠  which violates Constraint (22) and 

𝑥𝑤𝑠
𝑘𝑤𝑠<𝑥𝑤𝑠 = 1. (ii) If 𝑦𝑤𝑠 = 0, then Constraint (22) is constantly satisfied. 

 𝑘𝑤𝑠𝑥𝑤𝑠
𝑘𝑤𝑠 ≤ 𝑥𝑤𝑠 + 𝑀𝑠(1 − 𝑦𝑤𝑠), 𝑤 ∈ W, 𝑠 ∈ S,  𝑘𝑤𝑠 ∈ K𝑤𝑠. (22) 

Besides, Constraint (22) implies that 𝑦𝑤𝑠𝑥𝑤𝑠
𝑘𝑤𝑠 = 𝑥𝑤𝑠

𝑘𝑤𝑠  then Objective function (17) can be 

reformulated to Objective (23) in Model M5. Thus, Model M5 is reformulated as follows (i.e., 

Constraint (21) and Objective (17) in Model M4 is substituted by Constraint (22) and Objective 

(23), respectively): 

 [M5]   min∑ 𝑞𝑠 𝑠∈S ∑ ∑ τ𝑤𝑠
𝑘𝑤𝑠𝑥𝑤𝑠

𝑘𝑤𝑠
𝑘𝑤𝑠∈K𝑤𝑠 𝑤∈W , (23) 

subject to Constraints (2)–(4), (7), (9)–(11), (18)–(20), and (22). 
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5 Case Study 

In this section, we use the MISOCP model (i.e., Model M3) to optimize a BRCP in Hong Kong. 

The investigated bus station is called “Cross-Harbor Tunnel.” This tunnel is a significant 

infrastructure in Hong Kong that is located across the Victoria Harbor, which connects two 

independent urban logistic networks, financial and commercial districts of both sides, Kowloon 

and Hong Kong Island. For the investigated bus station from Kowloon to Hong Kong Island, three 

boarding locations are called “Hong Chong Road outside Hung Hom Station,” “Hong Chong Road 

outside Hung Hom Station (outer bus bay),” and “Hong Chong Road outside Cross-Harbor Tunnel 

Administration Building” as shown in Figure 2.  

 

Figure 2. Three bus route clusters of “Cross-Harbor Tunnel.”  

A total of 17 bus routes pass through “Cross-Harbor Tunnel” and visit 144 destinations. Some 

routes have common destinations. The numbers of destinations for each bus route in the 

downstream of the investigated bus station and the headway of each bus route are shown in Table 

2, which are based on the New World First Bus Services Limited (2016) and Google Maps (2018). 

Bus system in Hong Kong is a simple tap-on (without tap-off) system. Passengers only need to 

tap-on by using a bus card (i.e., Octopus card) when boarding, while they are not required to tap-

off when alighting the bus. Since it is hard to access the real travel demands of passengers, travel 

demands are generated randomly. We generate travel demands in the range of [50,200] from the 

investigated focused bus station to the destinations. We consider that bus arrivals of each bus route 

https://en.wikipedia.org/wiki/Victoria_Harbour
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follow a Poisson process. In the results of our experiments, loads of each arriving bus are all within 

acceptable values, indicating all passengers can board the first arriving bus. 

Bus station “Cross-Harbor Tunnel” is considered as one of the busiest stations in Hong Kong 

with intensive bus routes and downstream bus stations. This case can be considered as a large-

scale case in a real application in the BRCP. The problem size information consisting of the 

numbers of variables and constraints is shown in Table 3. Information of Table 3 is deduced by 

Model M3, according to the number of bus routes, boarding locations, and destinations in this 

realized case, e.g., Constraint (4) with 𝑤 ∈ W and 𝑠 ∈ S refers to 432 constraints in total, since 

|W| = 3 and |S| = 144 in this case. All tests are performed by using a PC with 3.40 GHz of Intel 

Core i7-3770 CPU and 8 GB of RAM. The CPU time is less than five minutes for each test to 

solve Model M3 to optimality. Given that the CPU time is short enough for practical applications, 

the exact one is not reported for each test. 

Table 2. Bus route information. 

Route # Destinations Headway (min) Frequency (per hour) * 

101 19   4 15.00 

102 18   6 10.00 

103 20 14   4.29 

104 20   6 10.00 

106 32   8   7.50 

107 16 15   4.00 

109   9 17   3.53 

111   8   6 10.00 

112   9   5 12.00 

113 21 13   4.62 

115   7 14   4.29 

116 14   5 12.00 

117   6 23   2.61 

118 15   6 10.00 

170 13 17   3.53 

171 13   9   6.67 

182   8 14   4.29 

Note: * The frequency of a bus route is counted as 60
min

h
 divided by the headway, e.g., 

60
min

h

4min
=

15/h of Route 101. 
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Table 3. Problem size of the realized case of Cross-Harbor Tunnel. 

5.1 Optimal solution structure without capacity constraint 

In this BRCP, we allocate 17 bus routes on three boarding locations to obtain the minimum total 

waiting time of passengers toward the 144 destinations. Passengers will select the boarding 

location with the highest frequency toward the destination; they will not select other boarding 

locations with lower frequency. Thus, the frequencies related to other boarding locations are all 

wasted. That is, if all bus routes heading to a destination can be allocated to only one boarding 

location, then the frequencies toward this destination can be completely used. If the frequencies 

toward the 144 destinations are completely used, then the total waiting time of passengers is 

minimal regardless of the capacity constraints of these boarding locations. Therefore, we establish 

bus routes that share common destinations into one set called an overlapping bus route set. Bus 

routes that belong to different overlapping bus route sets are non-overlapping.  

In the case of Cross-Harbor Tunnel, 17 bus routes can be distinguished as three overlapping 

bus route sets, that is, 𝑅1 = {107,117,170,171} ,  𝑅2 = {102,106,112,116,118} , and 𝑅3 =

{101,103,104,109,111,113,115,182}. In the downstream of 𝑅1 , 𝑅2 , and 𝑅3 , 37, 41, and 66 

destinations exist called the three unique destination sets 𝑆1, 𝑆2 and 𝑆3, which are disjointed with 

each other. The number of boarding locations is also three in the actual situation, as shown in 

Figure 2. If the three overlapping bus route sets are allocated to three boarding locations 

accordingly, then the sum of destinations shown in Table 4 equals 144, which is exactly the total 

number of unique destinations in the downstream of the bus station. The frequencies toward the 

144 destinations are completely used. Therefore, the objective value, which is 2514.73, cannot be 

further decreased by adjusting the capacity of boarding locations. If the capacities for the three 

boarding locations are not determined, then the suitable capacities are 16.80, 51.50, and 56.00. 

This finding can serve as a guide when the government conducts traffic arrangement or determines 

the land use of each boarding location.  

As above-mentioned findings, passengers would choose the bus cluster with the highest bus 

frequencies. Passengers may gather together to a bus cluster and wait for the same incoming bus. 

Routes 
Boarding 

locations 
Destinations 

Total 

constraints 

Continuous 

variables 
Binary variables 

Total 

variables 

R W S 
1748 

𝑡𝑠 𝑥𝑠 𝑧𝑤𝑟 𝑥𝑤𝑠 𝑦𝑤𝑠 
1203 

17 3 144 144 144 51 432 432 
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The number of waiting passengers to the arriving bus should be in an acceptable load and each 

arriving bus has sufficient remaining capacity after servicing upstream bus stops (i.e., Assumption 

(v)). Bus frequencies are high in passengers’ chosen bus cluster, while the arrival times of 

passengers are uniformly distributed based on Assumption (vii) described in Section 3.1. In the 

results of our experiments, loads of each arriving bus are all within acceptable values, indicating 

all passengers can board the first coming bus. 

The currently applied bus route clustering is presented in Table 5, in which the clustering is 

not the same as the clustering without capacity constraints (Table 4). The reason for the differences 

is probably the real capacity limitations of the boarding locations due to the limited land spaces. 

In our field research, the land space of the boarding location “Hong Chong Road outside Cross 

Harbor Tunnel Administration Building” is relatively small, which is consistent with the clustering 

situation that only two routes, {115,182} ⊆ 𝑅3, are assigned to this boarding location. In the 

following, we conduct sensitivity analysis on capacity since it is the major component in the BRCP.  

Table 4. Optimal solution without capacity constraints. 

Boarding 

location 
Assigned bus routes 

Used 

capacity 
#Destinations 

Sum of 

destinations 

MISOCP  

objective 

1 107/117/170/171 16.80 37 

144 2514.73 2 102/106/112/116/118 51.50 41 

3 101/103/104/109/111/113/115/182 56.00 66 

Table 5. Real situation of current bus route clustering in Cross-Harbor Tunnel. 

Boarding location 
Assigned bus routes Used 

capacity 
#Destinations 

Sum of 

destinations* 𝑅1 𝑅2 𝑅3 

Hong Chong Road outside 

Hung Hom Station (outer 

bus bay) 

107/117/

170/171 
 

103/109/

113 
29.24 81 

162 
Hong Chong Road outside 

Hung Hom Station 
 

102/106/

112/116/

118 

101/104/

111 
86.50 69 

Hong Chong Road outside 

the Cross Harbor Tunnel 

Administration Building 

  115/182 8.57 12 

Note: *Here, the destinations may not be unique. 

5.2 Capacity sensitivity analysis 

In practice, boarding locations have natural geographic land spaces, and the capacity of each 

boarding location is known and fixed. In this section, sensitivity analysis in terms of capacity is 

performed to investigate how the optimal solution changes with the capacity. The same capacity 
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limitation is set for the three boarding locations (Table 6a), and different capacity limitations are 

set for the three boarding locations (Table 6b). For sufficient capacities of the three boarding 

locations, the used capacities are 16.80, 51.50, and 56.00, as shown in Table 4. Only if one or more 

than one boarding location’s capacity is insufficient., then the allocation result will be different 

from that shown in Table 4. As shown in Table 6a, the objective value increases with the decrease 

in capacity. In comparison with the allocation result without capacity constraints (Table 4), the 

increase in waiting time provides several insights into the problem. 

For Case 1 in Table 6a, route set {101,104,109,111,113,182} ⊆ 𝑅3 is allocated to boarding 

location 3 and route set {103,115} ⊆ 𝑅3 is allocated to boarding location 1 rather than allocating 

the entire set  𝑅3 = {101,103,104,109,111,113,115,182} to only one boarding location. The 

separation of overlapping route set 𝑅3 increases the waiting time of passengers heading to three 

destinations in unique destination set 𝑆3, namely “Central (Macau Ferry),” “Elizabeth House, 

Gloucester Road,” and “Old Wan Chai Police Station, Gloucester Road,” which can be reached by 

boarding locations 1 and 3. In specific, by taking “Central (Macau Ferry)” as an example, boarding 

location 1 can reach destination “Central (Macau Ferry)” by taking bus route 115 and boarding 

location 3 can also reach the same destination by taking bus routes 109, 111, and 182. However, 

all passengers heading to “Central (Macau Ferry)” only select boarding location 3 with a high bus 

frequency of 17.82, and no passengers select boarding location 1 with a low bus frequency of 4.29. 

Then, the bus frequency toward “Central (Macau Ferry)” decreases, and the waiting time toward 

“Central (Macau Ferry)” increases. Similar situations occur in the two other destinations, which 

are “Elizabeth House, Gloucester Road” and “Old Wan Chai Police Station, Gloucester Road.” 

Therefore, the objective value increases from 2514.73 to 2519.73 when the sum of destinations 

increases from 144 to 147.  

For Case 2 in Table 6a, overlapping bus route set 𝑅2 is also separated into two subsets that are 

allocated to two boarding locations aside from the separation of overlapping route set 𝑅3  that 

increases the waiting time of passengers heading to the aforementioned three destinations in 𝑆3. 

In detail, {112} ⊆ 𝑅2  is allocated to boarding location 1 and {102,106,116,118} ⊆ 𝑅2  is 

allocated to boarding location 2 rather than allocating the entire set 𝑅2 = {102,106,112,116,118} 

to only one boarding location. The separation of 𝑅2  increases the waiting time of passengers 

heading to eight destinations in 𝑆2 . Therefore, the objective value increases from 2519.73 to 

2539.31 as the sum of destinations increases from 147 to 155. For Case 3 in Table 6a, the separation 
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of all 3 overlapping bus route sets  𝑅1, 𝑅2, and 𝑅3 causes the frequencies of 19 (163 minus 144) 

destinations in 𝑆1, 𝑆2 and 𝑆3 not to be completely used and the objective value becomes 2551.95.  

The separation of overlapping bus route sets increases the waiting time of passengers. 

However, the combination of bus routes belonging to different overlapping bus route sets does not 

change (decrease) the total waiting time. We clarify this property by showing that more than one 

optimal solution exists for Case 2 in Table 6a. To obtain all the optimal solutions, Algorithm 1 is 

provided.  

We can derive all the optimal solutions by applying Algorithm 1 for the case with the same 

capacity limitation of 50 (i.e., Case 2 in Table 6a). A total of 12 optimal solutions exist. However, 

we only show two solutions in Table 6c because the other solutions are permutations of the two 

solutions. In Solution No. 1 in Table 6c, the combination of {112} ⊆ 𝑅2  and 𝑅1 =

{107,117,170,171} is allocated to boarding location 1 and the combination of {103,115} ⊆ 𝑅3 

and {102,106,116,118} ⊆ 𝑅2  is allocated to boarding location 2. In Solution No. 2, the 

combination of 𝑅1 = {107,117,170,171} , {112} ⊆ 𝑅2 , and {103,115} ⊆ 𝑅3  is allocated to 

boarding location 1. The two solutions have the same objective value of 2539.31 because the bus 

routes in the same combination belong to different overlapping bus route sets and they do not 

change the total waiting time. This condition is attributed to unique destination sets 𝑆1, 𝑆2 and 𝑆3 

being disjointed with one another and no destinations increase their frequencies and further 

decrease the waiting time of passengers after such a recombination. After all the optimal solutions 

are identified, decision makers can select one of them based on the factors that are not modeled 

Algorithm 1. Obtaining all optimal solutions for the MISOCP model 

Step 0: Let Κ ← 1 be the iteration number. Solve Model M3 and obtain the first optimal 

solution denoted by 𝐳(Κ). Let the optimal objective value be Obj∗.  

Step 1: Let Κ ← Κ + 1. Solve Model M3 with the following constraint: 

∑ ∑ [𝑧𝑤𝑟
(Κ′)(1 − 𝑧𝑤𝑟) + (1 − 𝑧𝑤𝑟

(Κ′)
)𝑧𝑤𝑟] ≥ 1𝑟∈R𝑤∈W , Κ′ = 1, … , Κ − 1. (24) 

The above constraint excludes all the previously generated optimal solutions. If the model is 

infeasible or if the optimal objective value is larger than Obj∗, then the set of optimal solutions 

is {𝐳(1), … , 𝐳(Κ−1)}, and stop. Otherwise, let 𝐳(Κ) be the optimal solution and go to Step 1. 
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explicitly (e.g., whether a boarding location is more convenient and more comfortable than the 

other boarding locations). Moreover, balancing the travel demands of boarding locations can also 

be a proper selection method, i.e., the total passenger demand for each boarding location can be 

described as ∑ 𝑞𝑠𝑦𝑤𝑠𝑠∈S , 𝑤 ∈ 𝑊. Related issues have been explained in Remark 6 in Section 3.3. 

We further set different capacity limitations for the three boarding locations. The results are 

shown in Table 6b, which confirm the findings discussed in the previous paragraphs. First, the 

separation of the overlapping bus route set increases the waiting time of passengers. In Table 6b, 

the objective values are all 2519.73 when the sum of destinations equals 147. Although the 

allocation results are different in these cases, the reason for the increase in waiting time is the same; 

{103,115} ⊆ 𝑅3  and {101,104,109,111,113,182} ⊆ 𝑅3 are allocated to different boarding 

locations. Second, the combination of bus routes that belong to different overlapping bus route 

sets does not change the waiting time of passengers, that is, the combination of {103,115} ⊆ 𝑅3 

and 𝑅1 = {107,117,170,171}  is allocated to boarding location 1 in Cases 1 and 2; the 

combination of 𝑅1 = {107,117,170,171}  and 𝑅2 = {102,106,112,116,118}  is allocated to 

boarding location 3 in Case 3; and the combination of 𝑅1 = {107,117,170,171} , 𝑅2 =

{102,106,112,116,118} and {103,115} ⊆ 𝑅3 is allocated to boarding location 3 in Case 4. 

5.3 Travel demand sensitivity analysis 

For the BRCP closely related to daily life, only considering the current situation or one single 

transportation mode is insufficient for making decisions. For example, the development of a new 

metro line will certainly cause several influences on the travel demand for people taking buses. 

Certain destinations may have no passengers due to a new metro line connection. Thus, we conduct 

14 cases to determine how the optimal solution changes with the travel demand. In each case, we 

select 10 out of 144 destinations to let their travel demands become 0.  

We set the capacity limitations for the three boarding locations to be 50 in the 14 cases and 

report the optimal solutions in Table 7. From the table, two different solutions are obtained in the 

14 cases. Solution No. 1 is exactly the same as that for the situation when no travel demands of 

destinations are set to be 0 (i.e., Solution No. 1 in Table 6c). A total of 12 cases have the same 

optimal as Solution No. 1. The other optimal solution is slightly different from Solution No. 1. 

These results demonstrate the robustness of the bus route allocation solutions. 
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Table 6. Bus route allocation results for three boarding locations. 

Case Capacity 
Boarding 

location 

Assigned bus routes 
Used capacity # Destinations 

Sum of 

destinations* 

MISOCP  

objective 𝑅1 𝑅2 𝑅3 

Table 6a. Allocation results for three boarding locations with the same capacity limitation. 

1 

55 1 107/117/170/171  103/115 25.38 62 

147 2519.73 55 2  102/106/112/116/118  51.50 41 

55 3   101/104/109/111/113/182 47.43 44 

2 

50 1 107/117/170/171 112 103/115 37.38 71 

155 2539.31 50 2  102/106/116/118  39.50 40 

50 3   101/104/109/111/113/182 47.43 44 

3 

45 1 107/170/171 112 103/109/113/115 42.91 89 

163 2551.95 45 2  102/106/116/118  39.50 40 

45 3 117  101/104/111/182 41.89 34 

Table 6b. Allocation results for three boarding locations with different capacity limitations. 

1 

40 1 107/117/170/171  103/115 25.38 62 

147 2519.73 50 2   101/104/109/111/113/182 47.43 44 

60 3  102/106/112/116/118  51.50 41 

2 

30 1 107/117/170/171  103/115 25.38 62 

147 2519.73 50 2   101/104/109/111/113/182 47.43 44 

70 3  102/106/112/116/118  51.50 41 

3 

20 1     103/115 8.57 25 

147 2519.73 50 2   101/104/109/111/113/182 47.43 44 

80 3 107/117/170/171 102/106/112/116/118  68.30 78 

4 

10 1       0.00 0 

147 2519.73 50 2    101/104/109/111/113/182 47.43 44 

90 3 107/117/170/171 102/106/112/116/118 103/115 76.87 103 

Table 6c. Optimal solutions for three boarding locations with the same capacity limitation of 50. 

1 

50 1 107/117/170/171 112  25.38 46 

155 2539.31 50 2  102/106/116/118 103/115 51.50 65 

50 3   101/104/109/111/113/182 47.43 44 

2 

50 1 107/117/170/171 112 103/115 37.38 71 

155 2539.31 50 2  102/106/116/118  39.50 40 

50 3   101/104/109/111/113/182 47.43 44 

Note: *Here, the destinations may not be unique.
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Table 7. Allocation results for three boarding locations with the same capacity limitation 50 

Solution 

No. 
Capacity 

Board

-ing 

loca-

tion 

Assigned bus routes 
Repeat 

count 𝑅1 𝑅2 𝑅3 

1 

50 1 107/117/170/171 112 103/115 

12 
50 2  102/106/116/118  

50 3   
101/104/109/111/113/

182 

2 

50 1 107/117/170/171  102/106/118  

2 
50 2  112/116 103/115 

50 3   
101/104/109/111/113/

182 

Subsequently, we decrease the capacity limitation for all the three boarding locations to 45. 

The results are shown in Table 8. From the table, four different solutions appear in the 14 cases. 

Solution No. 1, which is repeated 9 times, is the same as the original solution when no travel 

demands of destinations are set to 0. The other solutions have some changes compared with 

those in Table 7, where the capacity limitation is set to 50. The changes in the solutions in 

Table 8 are more intensive than those in Table 7, which are automatically analyzed because the 

capacity is smaller than the previous cases. Therefore, the government should balance the trade-

off in reserving larger capacities for boarding locations to increase the robustness of the bus 

route assignment decisions or reserve small capacities that require small land spaces. 

Table 8. Allocation results for three boarding locations with the same capacity limitation 45 

Solution 

No. 
Capacity 

Board

-ing 

loca-

tion 

Assigned bus routes 
Repeat 

count 𝑅1 𝑅2 𝑅3 

1 

45 1  102/106/116/118  

9 45 2 117  101/104/111/182 

45 3 107/170/171 112 103/109/113/115 

2 

45 1  102/106/116/118  

1 45 2   101/104/111/115/182 

45 3 107/117/170/171 112 103/109/113 

3 

45 1 107/117/170/171 102/106/118  

3 45 2   101/104/111/182 

45 3  112/116 103/109/113/115 

4 

45 1  102/106/116/118  

1 45 2  112 101/104/182 

45 3 107/117/170/171  103/109/111/113/115 

5.4 Comparison with a heuristic algorithm 

To test the effectiveness of the proposed MISOCP model, we propose a heuristic algorithm 
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based on the structure of the problem and compare the qualities of the obtained solutions by 

the model and the heuristic. The principle of the heuristic is described as follows.  

As previously analyzed, the increase in the waiting time of passengers is caused by the 

separation of overlapping bus route set. For one destination, separating bus routes that include 

this destination into different boarding locations wastes the bus frequency of this destination, 

thereby increasing the waiting time of passengers toward this destination. If the travel demand 

of this destination is large, then the objective value (total waiting time) is substantially more 

likely to increase. Therefore, we define a parameter 𝜁𝑠 for each destination 𝑠 ∈ S, as  

 𝜁𝑠 = ∑ 𝑓𝑟𝑟∈𝑅 𝛿𝑟𝑠𝑞𝑠. (25) 

Then, we rank 𝜁𝑠 from largest to smallest to prioritize the destination with high bus frequency 

and travel demand. In the heuristic, we initially take destination 𝑠 with the largest 𝜁𝑠 as the 

active destination. The routes that include the active destination (i.e., routes 𝑟 with 𝛿𝑟𝑠 = 1) 

are defined as the active bus route set, which is the set of the bus routes that are currently 

allocated. We allocate all the bus routes in the active bus route set to one boarding location. 

The second issue is determining a boarding location for route allocation in the active bus 

route set. We define the boarding location used for allocation as the active boarding location. 

For the first allocation, we can take the boarding location with the largest capacity as the active 

boarding location for allocation. However, the active bus route set contains several bus routes 

that are already allocated when we address previous destinations during the allocation. 

Moreover, these allocated bus routes may be allocated to different boarding locations in 

advance. Under such situation, we should determine the most related boarding location as the 

active boarding location for allocating the rest of unallocated bus routes in this active bus route 

set. The most related boarding location is set to be the boarding location with the highest 

frequency toward the active destination, which is the total frequency of the already allocated 

bus routes in this active bus route set. 

The third issue is that each boarding location has a limited capacity. Thus, for each 

allocation, we should compare the total bus frequency of all the unallocated bus routes in the 

active bus route set with the available capacity of the active boarding location. If the capacity 

is sufficient, then we allocate all the unallocated bus routes in the active bus route set to this 

active boarding location. However, if the capacity is insufficient, then we mark this active 

destination and do not allocate routes for this active destination. Thereafter, we take the next 

destination with a small 𝜁𝑠 as the active destination. 

Two situations may occur based on the above rules. The first situation is that all bus routes 
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can be allocated before going through all the destinations 𝑠 from the largest value of 𝜁𝑠 to the 

smallest value of 𝜁𝑠 , and the algorithm is terminated when all the bus routes are already 

allocated. The second situation is that bus routes are still unallocated after we go through all 

the destinations 𝑠 from the largest value of 𝜁𝑠 to the smallest value of 𝜁𝑠. The reason for this 

situation is that the capacity for the active boarding location is insufficient to allocate all the 

unallocated bus routes in the active bus route set to only one boarding location. In this situation, 

all the marked destinations are re-evaluated from the largest value of 𝜁𝑠 to the smallest value 

of 𝜁𝑠 but the allocation strategy is changed. We allocate each unallocated bus route individually 

to the most related boarding location, to the second, and the third most related boarding 

locations rather than allocating all the unallocated bus routes in the active bus route set to only 

one boarding location until we determine a cluster with a sufficient capacity.  

Table 9. Comparison of results between the MISOCP model and the heuristic 

Case 
Boarding 

location 
Capacity 

Sum of 

destinations* 

MISOCP  

objective 

Heuristic 

objective 

Relative 

gap# 

1 

1 45 

163 2551.95 2658.03 4.16% 2 45 

3 45 

2 

1 50 

155 2539.31 2587.24 1.85% 2 50 

3 50 

3 

1 55 

147 2519.73 2531.30 0.46% 2 55 

3 55 

4 

1 60 

144 2514.73 2514.73 0.00% 2 60 

3 60 

5 

1 40 

147 2519.73 2519.73 0.00% 2 50 

3 60 

6 

1 30 

147 2519.73 2519.73 0.00% 2 50 

3 70 

7 

1 20 

147 2519.73 2519.73 0.00% 2 50 

3 80 

8 

1 10 

147 2519.73 2519.73 0.00% 2 50 

3 90 

Note: *: Here, the destinations may not be unique. 

#: Relative gap = (Heuristic objective – MISOCP objective)/MISOCP objective. 

We apply the heuristic to eight cases with different boarding location capacities and 

compare the results with those of the MISOCP model, as shown in Table 9. For each test, the 
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CPU time of applying the heuristic is less than five minutes and similar with the CPU time of 

solving the MISOCP model. Given that the CPU time is short enough for practical applications, 

the exact one is not reported. However, the heuristic cannot guarantee optimal solutions. The 

relative gap is larger when the sum of destinations is larger, and the relative gap is 0 in some 

cases when the sum of destinations is small (e.g., from Cases 4 to 8). These results demonstrate 

that the MISOCP model is especially effective when the spaces of boarding locations are 

limited, and the boarding locations do not have sufficient capacities. 

6 Computational Experiments  

In this section, we test Model M3 on more challenging instances, in which the configuration 

of the bus station is increased to more boarding locations 𝑤 ∈ W with more overlapping bus 

routes 𝑟 ∈ R and destinations 𝑠 ∈ S. Different overlapping scenarios are illustrated as (a), (b), 

(c) and (d) in Figure 3. We explain Scenario (d) first which is the simplest one, i.e., each circle 

represents a set of bus routes, bus routes in the same set may overlap each other, while bus 

routes in different sets cannot overlap each other. Scenario (a) is more complicated, indicating 

that three sets of bus routes are independent with each other, while each of them may overlap 

to another set of bus routes (i.e., the circle in the middle). For Scenario (b), neighboring circles 

have intersection parts, indicating neighboring sets of bus routes may overlap with each other. 

Scenario (c) is the most complicated one with many intersection parts as shown in the darker 

areas among circles indicating the overlap. Note that Scenario (a)–(d) in Figure 3 corresponds 

to (a)–(d) in Table 10, which identifies the computation results for each scenario. In reality, the 

configuration of the network is not as complex as cases in Table 10, but we still aim at a deeper 

understanding of the BRCP. Besides, passenger demands are in [25 + 50 ∑ 𝛿𝑟𝑠𝑟∈R , 100 +

50 ∑ 𝛿𝑟𝑠𝑟∈R ] for 𝑠 ∈ S, considering that the common destinations (i.e., visited by more than 

one bus route) have more travel demands. Referring to the capacity of each cluster in all tests, 

∑ 𝑐𝑤𝑤∈W − ∑ 𝑓𝑟𝑟∈R < min{𝑐𝑤|𝑤 ∈ W}  should be guaranteed to ensure that all boarding 

locations are used and that the numbers of boarding locations reported in Table 10 are 

meaningful. Detailed capacity information of all tests is reported in Table 13 in the Appendix.  

For each scenario, different cases are considered corresponding to different configurations 

of the bus route network. For instance, in Case 1 of Table 10, a total of 20 bus routes and 300 

destinations are considered, with 4 boarding locations of the focused bus station, and each bus 

route visits more than 10 destinations in the downstream; whereas in Case 2, each bus route 

has more than 15 destinations, indicating bus routes in Case 2 are more likely to overlap with 



30 

 

each other. All the cases are tested with the maximum CPU time limit of 900 seconds, to 

understand the complexity of solving the MISOCP (i.e., Model M3) in each configuration. 

Results of cases in each scenario are reported in the lower part of Table 10, e.g., the optimality 

gap of Case 2 in Scenario (a) is 0.83%. Detailed results are reported in Table 11, consisting of 

the best integer result, the best bound (i.e., corresponding to the fractional solution), and the 

optimality gap between them calculated by CPLEX with a time limitation of 900 seconds. The 

CPU time of each test is also reported for tests solved to optimality within 900 seconds. For 

the BRCP, a trivial lower bound exists where every destination 𝑠 ∈ S gets all the available bus 

route frequencies and can be formulated as ∑ (𝑞𝑠𝑠∈S /(∑ 𝑓𝑟𝛿𝑟𝑠𝑟∈R )). We also report the trivial 

lower bounds of all tests, from which the trivial gaps can be calculated, as shown in the last 

two columns of Table 11. 

 

Figure 3. Overlapping scenarios. 

Table 10. Computation results of the MISOCP model in different configurations. 

Case 1 2 3 4 5 6 7 8 

 

# Bus routes 20 20 20 20 25 25 30 20 

 

# Boarding locations 4 4 5 5 4 4 4 5 

 

# Destinations 300 300 300 300 300 200 200 200 

 

# Destinations/route >10 >15 >10 >12 >10 >10 >10 >10 Average 

 (a)  0.00% 0.83% 0.53% 0.87% 0.00% 6.20% 5.51% 0.00% 1.74% 

 (b)  0.00% 0.00% 0.54% 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 

 (c)  0.00% 0.85% 1.22% 1.96% 1.57% 6.59% 5.67% 5.02% 2.86% 

(d)  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Average 0.00% 0.42% 0.57% 0.71% 0.39% 3.20% 2.80% 1.25% 
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Table 11. Computational results, trivial bounds and gaps. 

Scenario - Case 
Best 

Integer 

Best 

Bound 

Optimality 

Gap * 

CPU 

Time 

Trivial 

Bound 

Trivial 

Gap 

(a)-1 4312.76  4312.76  0.00%   37  4256.39  1.31% 

(a)-2 4318.74  4282.72  0.83% 900  4137.85  4.19% 

(a)-3 4597.53  4573.25  0.53% 900  4488.41  2.37% 

(a)-4 4172.76  4136.26  0.87% 900  4066.46  2.55% 

(a)-5 4907.92  4907.92  0.00% 583  4820.37  1.78% 

(a)-6 2550.88  2392.63  6.20% 900  2339.94  8.27% 

(a)-7 2798.20  2644.00  5.51% 900  2577.73  7.88% 

(a)-8 2883.02  2883.02  0.00% 605  2813.40  2.42% 

(b)-1 4510.90  4510.90  0.00%  40  4452.50  1.29% 

(b)-2 4799.67  4799.67  0.00% 243  4646.17  3.20% 

(b)-3 4448.69  4424.64  0.54% 900  4350.35  2.21% 

(b)-4 4487.10  4487.10  0.00% 484  4412.27  1.67% 

(b)-5 4827.87  4827.87  0.00%   42  4773.64  1.12% 

(b)-6 2830.15  2830.15  0.00% 679  2732.07  3.47% 

(b)-7 3165.19  3165.19  0.00% 800  3066.13  3.13% 

(b)-8 2723.63  2723.63  0.00% 898  2646.58  2.83% 

(c)-1 4615.26  4615.26  0.00% 116  4532.19  1.80% 

(c)-2 4542.50  4503.85  0.85% 900  4375.57  3.67% 

(c)-3 4293.12  4240.69  1.22% 900  4157.50  3.16% 

(c)-4 4256.21  4172.95  1.96% 900  4089.94  3.91% 

(c)-5 4541.37  4470.01  1.57% 900  4376.14  3.64% 

(c)-6 2884.81  2694.68  6.59% 900  2603.36  9.76% 

(c)-7 2983.52  2814.30  5.67% 900  2747.68  7.90% 

(c)-8 2668.92  2535.05  5.02% 900  2462.56  7.73% 

(d)-1 4756.99  4756.99  0.00%    6  4739.11  0.38% 

(d)-2 4550.33  4550.33  0.00%  24  4496.85  1.18% 

(d)-3 4425.59  4425.59  0.00%  12  4404.94  0.47% 

(d)-4 4247.74  4247.74  0.00%  48  4206.87  0.96% 

(d)-5 4433.70  4433.70  0.00%    5  4428.92  0.11% 

(d)-6 3027.86  3027.86  0.00%  15  3008.85  0.63% 

(d)-7 3178.77  3178.77  0.00%    2  3176.94  0.06% 

(d)-8 2628.75  2628.75  0.00%  15  2591.80  1.41% 

Note: *: Optimality Gap = (Best Integer – Best Bound) / Best Integer. 

#: Trivial Gap = (Best Integer – Trivial Bound) / Best Integer. 

As reported in Table 10, Model M3 shows its efficiency even for dealing with large-size 

instances. When reaching the CPU time limitation (i.e., 15 minutes) for termination, the largest 

optimality gap is only 6.59%, as shown in Case 6 of Scenario (c). Generally, smaller optimality 
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gap indicates the instance is less time-consuming to be solved. Another main advantage of 

Model M3 is that increasing the number of boarding locations does not contribute much to the 

complexity of the BRCP, as the optimality gaps of Case 3 and 4 are just a bit larger than those 

of Case 1 and 2. 

Referring to different performances of scenarios, the optimality gap depends on the 

overlapping complexity of each scenario, indicated by Figure 3. As shown Table 10, Scenario 

(c) is most difficult to be solved with the average optimality gap 2.86%, followed by (a) and 

(b), whose optimality gaps are 1.74% and 0.07%, respectively, while Scenario (d) is solved to 

optimality. It is noticeable that overlapping degree can also be increased by decreasing the 

number of total destinations with the other parameters unchanged; that is why the average 

optimality gap of Case 6 is larger than that of Case 5 (i.e., 3.20% and 0.39%). Similarly, the 

optimality gap of Case 8 is larger than that of Case 3 (i.e., 1.25% and 0.57%). Besides, 

increasing the number of destinations visited by each route increases the overlapping degree 

directly, with the same numbers of total destinations and routes, i.e., comparing Case 1 with 2, 

or Case 3 with 4. However, the impact of increasing the number of bus routes on the complexity 

of the BRCP is not obvious, as shown by comparisons between Case 1 and 5, or between Case 

6 and 7.  

Table 12. Computation results of Model M5 in different configurations. 

Case  1 2 3 4 5 6 

#Bus routes 20 20 25 25 30 35 

# Boarding locations 4 5 5 6 5 6 

# Destinations 300 300 300 300 400 500 

# Destinations/route >15 >15 >15 >15 >20 >25 

Optimality gap 2.48% 4.89% 9.60% 14.36% 13.97% 23.80% 

Overall, the optimality gap (as well as the computation time) of the BRCP is highly 

dependent on the overlapping degree of bus networks. Referring to other factors, i.e., the 

number of bus routes, destinations, and boarding locations, these issues jointly affect the 

computation time, and the influence highly depends on specific topologies (e.g., topology (a) 

to (d) in Figure 3) of bus route networks.  

In Table 12, we test Model M5, the extension model described in Section 4, which can 
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solve the BRCP considering that the arrival rate of buses follows any random distributions. 

The overlapping scenarios in all cases of Table 12 are according to Scenario (a) of Figure 3, 

and passenger demands are in [25 + 50 ∑ 𝛿𝑟𝑠𝑟∈R , 100 + 50 ∑ 𝛿𝑟𝑠𝑟∈R ]  for destination 𝑠 ∈ S. 

Still, Model M5 is tested for different configurations of networks, consisting of different 

numbers of total bus routes, total destinations, boarding locations, and destinations visited by 

each route, as shown in the upper part of Table 12. The results are reported in the last row of 

Table 12, in which all the cases are tested for 900 seconds. Results show that Model M5 can 

also deal with large size instances in reasonable times and can be utilized in practice if the 

historic data is sufficient for measuring passenger’s waiting time. When facing insufficient 

information for the actual relationship between bus frequencies and passenger waiting times of 

boarding locations with different capacities, the MISOCP (i.e., Model M3) is required.  

7 Conclusion 

The bus route clustering problem (BRCP) is proposed in this study, addressing the problem of 

assigning bus routes to boarding locations so as to minimize passenger waiting time. The BRCP 

is proven to be NP-hard by showing that if it can be solved in polynomial time, then the 

maximum clique problem, which is a well-known NP-hard problem, can also be solved in 

polynomial time. The BRCP is formulated as a mixed-integer second-order cone program 

(MISOCP) that can be solved by off-the-shelf solvers. The MISOCP is applied to a major bus 

station in Hong Kong that has 17 bus routes and 3 boarding locations. The problem size can 

represent the realistic case, showing that the model is effective in dealing with a real bus route 

network. The BRCP tackles a highly utilized network with overlapping bus routes and assigns 

bus routes with common destinations into one boarding location to maximize the bus 

frequencies of each boarding location and further minimize passenger waiting time. The 

MISOCP model is demonstrated to be more effective than a greedy heuristic when the capacity 

of boarding locations is insufficient. The appropriate boarding location allocation avoids long 

waiting time of passengers and traffic congestion in a significant geographic location with 

heavy traffic loads and limited land spaces. Larger-size instances with different overlapping 

scenarios are tested to draw deeper analyses of the BRCP. Results show that the computation 

time of the MISOCP is highly dependent on the overlapping degree of bus networks, while 

other factors (i.e., the number of bus routes, destinations, and boarding locations) jointly affect 

the computation time. More importantly, the influence is instance-specific and highly depends 

on the specific overlapping scenario of bus route networks. An extension model is also 
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proposed which can be utilized in realistic when sufficient historical data is provided for 

passengers’ waiting times.  

The BRCP is practically important to face a highly utilized network where bus routes are 

overlapping, with determinations on allocating which bus route to which boarding location, 

concerning limited capacity of each boarding location of the focused bus station. In this work, 

we try to distribute different bus routes in such a way that each downstream stop can be served 

by one boarding location if possible. Then, a passenger can access a connecting line with less 

waiting time, since the passenger has a chance to board all the bus routes heading to the 

destination. This study may inspire future extensions of the BRCP. For instance, it can be 

extended to bus rapid transit (BRT) system, e.g., TransMilenio in Bogotá, Colombia, which 

includes multiple boarding platforms with gates inside each station, and bus services are 

assigned to these gates. In TransMilenio, multiple boarding locations of each station expand its 

capacity to that only heavy rail systems had (Wright and Hook, 2007). More issues can be 

considered for BRT system, such as different types of bus services (i.e., normal or express) that 

may be assigned to different boarding locations of the BRT station (Peña et al., 2013); besides, 

the saturation level of passengers can also be concerned to reduce crowding levels and improve 

service qualities in future study. 
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Appendix. 

Table 13. Boarding location capacities (corresponding to results in Table 10). 

Scenario - Case 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 

(a)-1 57 45 49 33 - 

(a)-2 37 49 56 49 - 

(a)-3 30 32 37 47 31 

(a)-4 35 37 35 47 40 

(a)-5 52 61 43 60 - 

(a)-6 67 68 68 56 - 

(a)-7 65 60 67 67 - 

(a)-8 44 31 49 32 31 

(b)-1 41 57 30 50 - 

(b)-2 35 36 48 47 - 

(b)-3 45 30 33 41 35 

(b)-4 42 36 33 38 38 

(b)-5 61 53 41 46 - 

(b)-6 50 44 61 69 - 

(b)-7 50 69 67 41 - 

(b)-8 42 33 30 30 52 

(c)-1 35 59 31 53 - 

(c)-2 61 40 48 39 - 

(c)-3 43 42 38 34 39 

(c)-4 41 45 31 31 47 

(c)-5 43 61 63 45 - 

(c)-6 64 32 50 64 - 

(c)-7 68 65 60 66 - 

(c)-8 40 34 46 39 35 

(d)-1 30 53 43 42 - 

(d)-2 48 33 32 59 - 

(d)-3 46 31 41 37 31 

(d)-4 32 38 32 42 39 

(d)-5 64 62 46 51 - 

(d)-6 64 38 53 61 - 

(d)-7 52 50 68 68 - 

(d)-8 39 44 36 45 45 

 




