This is the Pre-Published Version.
This is the peer reviewed version of the following article: Chen, R., Yuan, J., Ng, C. T., & Cheng, T. C. E. (2019). Single-machine scheduling with deadlines to
minimize the total weighted late work. Naval Research Logistics, 66(7), 582-595, which has been published in final form at https://doi.org/10.1002/nav.21869.
This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not
be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable
legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and
any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley
Online Library must be prohibited.

Single-machine scheduling with deadlines to minimize
the total weighted late work

Rubing Chen!, Jinjiang Yuan'!*, C.T. Ng?, T.C.E. Cheng?

1School of Mathematics and Statistics, Zhengzhou University,
Zhengzhou, Henan 450001, People’s Republic of China
2Logistics Research Centre, Department of Logistics and Maritime Studies,

The Hong Kong Polytechnic University, Hong Kong, People’s Republic of China

Abstract: We consider scheduling a set of jobs with deadlines to minimize the total
weighted late work on a single machine, where the late work of a job is the amount of
processing of the job that is scheduled after its due date and before its deadline. This is
the first study on scheduling with the late work criterion under the deadline restriction.
In this paper, we show that (i) the problem is unary N P-hard even if all the jobs have
a unit weight, (ii) the problem is binary N P-hard and admits a pseudo-polynomial-time
algorithm and a fully polynomial-time approximation scheme if all the jobs have a com-
mon due date, and (iii) some special cases of the problem are polynomially solvable.

Key words: due dates; deadlines; late work; N P-hardness; approximation algorithm

1 Introduction

Background: The scheduling problem with the late work criterion under the deadline
restriction may arise in agricultural production. For instance, there are different fields
that need to be harvested by a single harvester. Each crop can be regarded as a job and
the total amount of each crop planted is regarded as its processing time. Due to different
requirements from different buyers, any part of the crop not gathered by a given date,
which depends on the type, can no longer be sold. This date can be regarded as the due

*Corresponding author. Email address: yuanjj@zzu.edu.cn

date for a kind of crop. Moreover, each kind of crop has its own final harvest date, which
can be regarded as its deadline. Minimizing the total late work in this example corresponds
to minimizing the quantity of the crop that has not been sold but has been harvested
before its final harvest date. The example described above shows that scheduling in the
setting of the late work criterion under the deadline restriction has applications in practice

and is worth studying.

Motivated by applications in the field of information processing, Blazewicz (1984)
introduced the scheduling model to minimize the total weighted late work. Other appli-
cations of the model can be found in manufacturing (Sterna, 2006; 2007) and agriculture
(Alminana et al., 2010). While there has been plentiful research on scheduling to mini-
mize the total weighted late work in the literature, no work has considered the case where
the jobs have deadlines. The constraint of job deadlines is important for scheduling re-
search and practice. Applications of job deadlines can be found in energy efficient packet
transmission (Zafer and Modiano, 2009; Shan Feng et al., 2014), workflow scheduling
(Abrishami and Naghibzadeh, 2012; Abrishami et al., 2013), and integrated production
and distribution scheduling of perishable products (Moons et al., 2017). To the best of
our knowledge, the scheduling problem with the late work criterion under the deadline
restriction has not been discussed in the literature.

Problem Formulation: Let J = {Ji, Js,...,J,} be a set of jobs to be processed on a
single machine. Each job J; has an integer processing time p; > 0, a weight w; > 0, a
due date d; > 0, and a deadline dj > max{p;,d;}. A feasible schedule is a schedule that
processes the jobs of J on the single machine subject to deadline constraints. Given a
feasible schedule o, J,(;) denotes the j-th job in 0. Let Cj(o) be the completion time of
job J; in 0. Then the deadline constraints require that C;j(0) < d;. The late work of job
J; in schedule o, denoted by Y; (o), is the amount of processing of job J; that is scheduled
after its due date d; in o. Since preemption is not allowed, we have

07 if Cj<0) S dja
Yi(o) = 4 Ci(0) —d;, if d; < Cj(0) < min{d; + p;, d;},
Pj, if dj —|—p] <Cj<0’) SJJ

If Yj(o) =0, job J; is called early. If 0 < Yj(o) < p;, job J; is called partially early. If
Y;(o) = p;, job J; is called late. The objective is to find a feasible schedule o such that
the total weighted late work, denoted by Z?:l w;Y;(0), is minimized. Using the three-
field notation for describing scheduling problems introduced by Graham et al. (1979),
we denote the scheduling problem under study by 1]d;| > w;Y;. Clearly, we only need
to consider the schedules in which the n jobs are processed consecutively from time 0 to

>y pj without idle times.

Feasibility Checking: Under the deadline constraints, not every instance is feasible.
Clearly, an instance with a job set J is feasible (subject to the deadline constraints) if
and only if the feasibility problem 1|d;|— on the instance with a job set J has a feasible
schedule. Jackson (1955) showed that the EDD (earliest due date first) rule solves problem
1|| Linax optimally. Then the problem 1|d;|— on the instance with a job set 7 can be solved
by the following way: Generate the schedule oy in which the jobs in J are scheduled in
the nondecreasing order of their deadlines, and then check whether o is feasible subject
to the deadlines. Consequently, the feasibility checking process of problem de\— could
be done in O(nlogn) time.

For each scheduling problem studied in this paper, the O(n log n)-time complexity used
in the feasibility checking is dominated by the time complexity for solving this problem.
Henceforth, we assume that a feasible schedule always exists when we design an algorithm
for solving problem 1|d;| > w;Y;.

Literature Review: For problem 1||) Y], Potts and Van Wassenhove (1992a) showed
that it is binary N P-hard, and provided a pseudo-polynomial dynamic programming
solution algorithm that runs in O(nUB) time, where UB is an upper bound on the mini-
mum total late work. They also presented an O(nlogn) time algorithm to solve problem
1lp; = p|>_Y;. Moreover, for problem 1|d; = d|) Y}, since the value of the total late
work equals max{) p; —d, 0} in any schedule, any schedule is optimal and the problem is
solved in O(n) time. Potts and Van Wassenhove (1992b) presented (1+ 3)-approximation
algorithms (1 < k < n) with time and space requirements of O(n**1) and O(n), respec-
tively, and two fully polynomial approximation schemes for problem 1|| > Y;. Lin and
Hsu (2005) provided a branch-and-bound algorithm for problem 1|r;| > Y}, and presented
O(nlogn) time algorithms to solve problems 1|r;,d; = d|>_Y; and 1|r;, pmtn| > Y.

For problem 1|| > w;Yj}, its binary N P-hardness follows from Potts and Van Wassen-
hove (1992a). Kovalyov et al. (1994) provided a dynamic programming solution algo-
rithm and applied the rounding technique to design a fully polynomial-time approx-
imation scheme (FPTAS) for problem 1||) w;Y;. Hariri et al. (1995) presented a
pseudo-polynomial dynamic programming solution algorithm for problem 1|| > w,Y; that
runs in O(n?3Y p;) time. They also presented an O(n) time algorithm to solve prob-
lem 1]d; = d| Y- w;Y; and an O(n?®) time algorithm to solve problem 1|p; = p| Y w;Y;.
Leung et al. (1994) provided an O(nlogn + kn) time solution algorithm for problem
L|r;, pmtn| > w,Y;, where k is the number of distinct weights.

In the parallel-machine setting, Blazewicz and Finke (1987) reduced problems P|r;, pmtn|) w;Y;

and Q|r;, pmtn| Y w,;Y; to the minimum cost flow problems, respectively. The correspond-
ing networks contain only two groups of vertices, corresponding to the jobs and time inter-
vals. They provided an O(n"logn) time algorithm to solve problem P|r;, pmtn| > w;Y;
and an O(m?n"logmn) time algorithm to solve problem Q|r;, pmtn| > w;Y;, where m is
the number of machines. By using the same reduction in Orlin (1993) and a more efficient
algorithm for solving the minimum cost flow problem, Leung (2004) showed that prob-
lems P|r;,pmtn| > w;Y; and Q|r;, pmtn| Y w;Y; can be solved in O(n%log®n) time and
O(m?*n*log mn) time, respectively, and problems P|r;, pmtn|>_Y; and Q|r;, pmtn| .Y
can be solved in O(n?log® n) time and O(m?n? log mn) time, respectively. Xu et al. (2015)
first applied meta-heuristic algorithms to treat problem P|d; = d|) w;Y;, in which the
jobs have a common due date. Sterna (2011) provided a comprehensive survey of research
on the late work scheduling.

There is also extensive research on scheduling with the late work criterion in other ma-
chine environments. Kethley and Alidaee (2002) considered the single-machine scheduling
to minimize the modified total weighted late work. The modified weighted late work of
J; is 0 if C; < dj, w;(Cy — d;) if d;j < C; < dj, and w;(d; — d;) otherwise. They pro-
vided some heuristic algorithms and conducted computational experiments to assess their
performance. Ren et al. (2009) showed that scheduling on an unbounded parallel batch
machine to minimize the total late work is binary N P-hard. Ren et al. (2013) showed
that scheduling in an assembling manufacturing system where several suppliers provide
component parts to a manufacturer to minimize the total late work is unary N P-hard.
Wu et al. (2016) studied single-machine scheduling to minimize the total late work with a
position-based learning effect. They provided a branch-and-bound algorithm to solve the
problem and three genetic algorithms to obtain near-optimal solutions. Chen et al. (2016)
considered both offline and online versions of scheduling on parallel identical machines to
minimize the total late work with a common due date. Wang et al. (2017) studied the two-
agent problem 1| ZY]-(A) LB < U They presented two pseudo-polynomial dynamic
programming solution algorithms for small-scale instances and a branch-and-bound algo-
rithm for medium-to large-scale instances. Zhang and Wang (2017) and Zhang and Yuan
(2019) studied the two-agent problem 1|| ijY}(A) : fégi < U and presented pseudo-
polynomial-time solution algorithms. Zhang and Yuan (2019) also showed that problem
1|d§-A) =dY| Y Yj(A) . CSB). < U is binary N P-hard and presented an On), p§A)) time

solution algorithm.

Scheduling with job deadlines is also an active topic in scheduling research. Problem
1|d;] Y C; is solvable in O(nlogn) time by Smith’s deadline rule in Smith (1956). Lenstra
et al. (1977) showed that problem 1|d;| > w;C} is unary NP-hard. A number of branch
and bound algorithms can be found in the literature for this problem, such as Potts and

Van Wassenhove (1983), Posner (1985), Wenrner (1993) and Pan (2003). For problem
1|d;| Tinax, Koulamas and Kyparisis (2001) presented an O(nlogn) time algorithm. They
also showed that problem 1|(d;, d;)| > T} is solvable in O(n* " p;) or O(n® max p;) time,
where “(dj,d;)” means that if d; < d; then d; < d;. Yuan (2017) showed that problem
1|d;| Y U; is unary NP-harness. Recently, Chen and Yuan (2018a) showed that prob-
lem 1|d;| Y T; is unary NP-hard. When the release times and preemption are taken
into consideration, Du and Leung (1993) and Wan et al. (2015) showed that problem
1|r;,d;, pmtn| > C; is NP-hard. He et al. (2014) presented an O(n?) time algorithm for
a special case of problem 1|r;,d;, pmtn| > C;, where release times and processing times
are agreeable. Recently, Chen and Yuan (2018b) showed that problem 1|r;, d;, pmtn| Y C}
is unary N P-hard.

For problem P|r;,d;, pmtn|—, Horn (1974) showed that this feasibility problem can
be converted to a network flow problem which can be solved in O(n?) time. Labetoulle
et al. (1984) showed that problem P|r;, d;, pmtn| Ly is solvable in O(n® min{n?, logn +
10g Pmax }) time, where py.y is the maximum processing time. For problem Q|r;, d;, pmtn|—
Federgruen and Groenevelt (1986) showed that this feasibility problem can be solvable
as a maximum flow problem in O(tn?) time, where ¢ is the number of different machine
speeds. They also showed that problem Q|r;, d;, pmtn|Lpy.x is solvable in O(tn?(logn +
10g Pmax + log s1)) time, where ppax is the maximum processing time, ¢ is the number of
different machine speeds, and s; is the largest machine speed. Mokotoff (2001) provided
a comprehensive survey of research on the parallel-machine scheduling.

Our Contributions: The main contributions of this paper are as follows:

In Section 2 we show that problem 1|d; = d, d;| Y w;Y; is binary N P-hard. Then we
develop a dynamic programming algorithm that runs in O(n?d) time and an FPTAS that
runs O(n® /) time for problem 1|d; = d,d;| > w,Y;.

In Section 3 we show that problem 1|d;| Y. Y; is unary N P-hard. Our proof imitates
the unary N P-harness proof for problem 1|d;| > U; in Yuan (2017).

In Section 4 we consider two special cases of problem 1|d;| > w;Y; in which the jobs
either have a common due date and a unit weight or a common processing time, and show

that the two problems are solvable in O(nlogn) time and O(n?) time, respectively.

Finally, in Section 5 we conclude the paper and suggest topics for further research.

2 Problem 1|d; =d,d;| > w,Y;

In this section we first show that problem 1|d; = d, d;| 3" w;Y; is binary N P-hard. Then
we present an O(n?d) time algorithm and an FPTAS that runs in O(n®/e€) time for this
problem. Since there is no existing method for designing approximation algorithms with
good performance for N P-hard scheduling problems with deadlines in the literature, our
FPTAS may provide a basic foundation for future research in this direction.

2.1 NP-hardness proof

We show the binary N P-hardness of problem 1|d; = d,d;| Y w;Y; by a reduction from
the binary N P-complete Partition problem (Garey and Johnson (1979)).

Partition: Given a set of t+1 positive integers x1, o, . .., x;, X such that Z§:1 x; = 2X,
does there exist a partition (Iy, [3) of the index set {1,2,...,¢} such that > ., z; =
Yoo xj = X7

j€lz]

Theorem 2.1. Problem 1|d; = d,d;| Y w;Y; is binary N P-hard.

Proof. For a given instance (x1, za, ..., x, X) of Partition, we define a scheduling instance
of problem 1|d; = d,d;| >~ w;Y; in the following way.

The scheduling instance has a total of n = ¢+ 1 jobs of two types: a restriction job Jy
and t normal jobs J;, j € {1,2,...,t}.

The processing times, weights, due dates, and deadlines of the n jobs are displayed in
Table 1.

Table 1: The scheduling instance

Job | Processing time | Weight Due date | Deadline
JO p():X ’wo:l dOZX CZ():QX
Ji |\p=u; wj=X+1|dj=X |dj=3X

Let the threshold value for Y w;Y; be @ = X? + 2X. The decision asks if there is a
feasible schedule 7 for the constructed scheduling instance such that) w;Y;(7m) < Q.

Clearly, the above construction can be performed in polynomial time. We show in the
following that the instance (x1,zs,...,z;, X) is a YES instance of Partition if and only if
there is a feasible schedule 7 for the constructed instance of problem 1|d; = d, d;| > w;Y;
such that > w;Y;(m) < Q.

Assume that (x1, 9, ..., 7, X) is a YES instance of Partition. Then {1,2,...,t} can
be partitioned into two subsets [; and I such that } ., z; = X for each i € {1,2}.
Set /1 ={J; :j € 1} and Jo = {J; : j € I}. Then we construct a schedule 7 of the
n =t + 1 jobs such that they are scheduled in the order: J; < Jy < Js.

Note that >, 7 pj = Xjep, @y = X and 32, o7 pj = > jer, @y = X. From the
structure of 7, the maximum completion time of the jobs of J; is ZJjejl p; = X, the
completion time of Jy is D sen it o= 2X, and the maximum completion time of
the jobs of J5 is > seq i+ po + > LenPi = 3X. From the definitions of deadlines,
all the jobs meet their deadlines in 7, so 7 is a feasible schedule. Note that all the jobs
have a common due date X. From the definition of late work, Y;(7) = 0 for J; € 7,
Yo(m) = po = X, and Yj(7) = p; = z; for J; € Jo. Then we have Y w;Y;(7) = woYo(m) +
DoenwiVi(m) =X+ (X + 1) 0 =X+(X+1)X = X?+2X = Q. Tt follows
that 7 is a feasible schedule for the constructed instance of problem 1|d; = d, d;| > w;Y;
such that > w;Y;(m) < Q.

Conversely, assume that 7 is a feasible schedule for the constructed instance of problem
1|d; = d,d;| 3" w;Y; such that 3 w;Y;(7) < Q. Then we have the following statement.
Statement 1. The completion time of Jy in 7 is Co(m) = 2X.

Proof of Statement 1. From the feasibility of 7 and dy = 2X, we have Cy(7) < dy = 2X.

Suppose to the contrary that Co(m) < 2X — 1. Since Z;ZO p; = DPo + Zj.zl z; = 3X,
the length of the normal jobs scheduled after Jy is no less than X + 1. Note that pyp = X
and all the jobs have a common due date X = py < Cy(m). Then the normal jobs
scheduled after .Jy are all late. Since w; = X + 1 for each normal job J;, we have
Yo w;Yi(m) > Z;Zl w;Y(m) > (X +1)(X+1) = X?+2X +1 > Q, a contradiction. This
proves Statement 1.

Since pp = X and Jj = 3X for each normal job J;, from Statement 1, the ¢ normal
jobs are exactly scheduled in the time intervals [0, X] and [2X,3X], respectively. Set
L ={j:1<j<t,Cim) <Cy(m)}and I, ={j : 1 < j <t,Cj(m) > Cy(m)}. Then we
have > i @ =3 5cn Pi < X, D e, ¥ = Djer, Pi < X, and (11, Iy) forms a partition of
{1,2,...,t}. From the fact that >, @;4+> ;o x; =2X,wehave } ., x; =3) x; =
X. It follows that (I3, [5) is a YES instance of Partition. The result follows. O

2.2 A dynamic programming algorithm

From Theorem 2.1, problem 1|d; = d, d;| Y w;Y; is binary N P-hard. We now present a
pseudo-polynomial algorithm to solve this problem. Then both results allow us to classify

problem 1|d; = d,d;| > w;Y; as N P-hard in the ordinary sense.

Our idea for designing the pseudo-polynomial algorithm is similar to the methods
proposed for some scheduling problems in the literature such as problem 1|| > Y; in Potts
and Van Wassenhove (1992a) and problem F2|d; = d| > w;Y; in Blazewicz et al. (2005).
It should be noticed that, in these methods, the critical job or the completion time of the
critical job is enumerated, and the best solution is chosen from all the feasible solutions.

Let TP = Z;’L:I pj. If TP < d, we can schedule all the jobs prior to d such that all
the jobs are early. Thus, we assume that T'P > d.

In a feasible schedule o, the unique job J; with S;(0) < d < S;(0) +p; < d; is called a
critical job, where S;(o) is the starting time of J; in 0. Clearly, there is only one critical

job in any feasible schedule and if J; is a critical job, then we have d — p; < Sj(0) <
min{d, d; — p;}.

Next, we define a restricted problem of problem 1|d; = d, d;| 3 w;Y}, where the critical
job J(© is determined.

Problem P(J©): For a job J© € J, we define P(J)) as a restricted problem of
problem 1|d; = d,d;| > w;Y; to process the jobs of 7, subject to the deadlines on the
single machine without idle times, such that J(© is the critical job.

Note that for each feasible schedule for problem P(J()), the jobs scheduled before
the critical job J(© are all early and the jobs scheduled after the critical job J(© are all
late. Obviously, the early jobs scheduled before the critical job J(© can be scheduled in
an arbitrary order, but the late jobs scheduled after the critical job J(© must satisfy their
deadlines. Thus, to solve problem P(J(?)), we re-number the jobs of 7 \ {J(®} such that
TIN\N{JO}Yy ={J1, Jo,...,Jun1yand dy < dy < --- < d,_1. Moreover, for a job J; and a
time point 7, we use Y;(7) to denote the late work of job J; when it starts at time 7 and
T+p; < Jj. Then we have

0, 1f7—+pj§d7
Y;(1) = T+p—d, if7<d<7+0pj, (1)
Dj, if 7>d.

By the job-shifting argument, we can obtain the following lemma.

Lemma 2.1. For problem P(J)), there exists an optimal schedule possessing the follow-
1mg properties:

(i) the jobs scheduled before J\© are processed consecutively with no idle time from time

0 in an arbitrary order;

(ii) the jobs scheduled after J\© are scheduled in their index order.

In an optimal schedule 7* for problem P(.J(9)) possessing the properties in Lemma, 2.1,
the starting time S (7*) of job J(in 7* must satisfy S (7*) < d < S (7*)+pl@ < dl).
Set 7 € {0,1,...,d},j€{1,2,...,n—1}and 7} = TP—(ZZ;;pk—T). Based on Lemma
2.1, we provide a dynamic programming algorithm as follows.

We define f]@ (1) to be minimum value of the total weighted processing times of the
jobs scheduled in the interval [7}, T'P] in a schedule for jobs J;, Jji1,. .., Jy—1, which has
the following properties:

(i) each job in {J;, Jj11, ..., Ju—1} is either scheduled in the interval [0, 7] or scheduled in
the interval [77, T'P];

(ii) the jobs in the interval [0, 7] are scheduled consecutively in an arbitrary order;

(iii) the jobs in the interval [r], T'P] are scheduled consecutively in their index order,
subject to their deadlines.

Note that job J; is scheduled in either the interval [0, 7] or the interval [}, T'P] as the
first job. In the former case, we have f}c) (1) = f;fr)l(T — p;); in the latter case, we have
f;c) (1) = fﬁ)l (7) +w;p;, provided that 77 +p; < d;. To guarantee that the recursion runs
correctly, we introduce a dummy job J, with p, = w, = 0, d, = d, and d = 400, and
force it to complete at time 0. Then we have fi?(0) = 0 and f{”(r) = 400 for 7 # 0.

Consequently, we have the following dynamic programming (DP) for calculating f](c)<7'>.

Algorithm DP: For calculating f;c) (1),j€{1,2,...,n—1} and 7 € {0,1,...,d}.

The initial condition: f{”(0) =0 and f{”(7) = +oc for 7 # 0.

The recursive function: For j € {1,2,...,n— 1} and 7 € {0,1,...,d}, we have
£7() = min{ (7 = py), S0 (7) 4wy + 60,7},

where 6(j,7;) = 0 if 7} + p; < d;, and §(j, ;) = +oo if 7} +p; > d;.

Algorithm DP runs in O(nd) time and yields all the values fl(c) (1) for T € {0,1,...,d}.
Note that J© is the unique critical job in every feasible schedule for problem P(J©). If
7 is the starting time of J, then 7 < d < 7 + p© < d©, implying that the late work of
J©is YO(7) = 7 + pl© — d. By Lemma 2.1, we derive the following result.

Lemma 2.2. The optimal value of problem P(J©) is given by

min{w(C)Y(C)(T) + fl(c)<7') r<d<T +p(c) < J(C)}.

The value 7 in Lemma 2.2 has at most O(d) choices, which is dominated by Algorithm
DP. Thus, problem P(.J() is solvable in O(nd) time. Since problem 1|d; = d,d;| > w;Y;
can be solved by enumerating J(© € 7, solving problem P(J(®)) for each J(© and picking
the best solution, we obtain the following result.

Theorem 2.2. Problem 1|d; = d,d;| Y w;Y; is solvable in O(n?d) time.

To better understand our pseudo-polynomial algorithm, we provide the whole process
for solving problem 1|d; = d, d;| > w;Y; in the following algorithm.

Algorithm DP’: For problem 1|d; = d, d;| Y w;Y;.
Step 1: For each job J© € 7, do the following:
— Define J(©) to be the critical job and create an instance of problem P(.J().
~ Invoke Algorithm DP for problem P(J©) and obtain the values {f{”(7) : 7 €

{0,1,...,d}}.
— Compute WY@ := min{w@Y©O(r) + f{9(7) : 7 < d < 7+ p© < d}, which is the
optimal value of problem P(J()).

Step 2: Enumerate all the jobs J(© € J and compute the value min ;). 7 WY©, which
is the optimal value of problem 1|d; = d, d;| Y w;Y;.

2.3 An FPTAS for problem 1|d; = d,d;| > w,;Y;

Recall that TP =) e Pi- If TP < d, then every schedule is optimal. Thus, we assume
in the sequel that T'P > d, which guarantees that 2?21 w;Y;(0) > 0 for every feasible
schedule o.

In Section 2.2 we used the auxiliary problem P(.J()) to obtain a pseudo-polynomial-
time algorithm for problem 1|d; = d, d;| 3_ w;Y;. However, we have no idea on designing
an FPTAS for problem 1|d; = d,d;| > w;Y; based on Algorithm DP directly. In fact,
in problem P(J©), the restriction S () < d < S9(g) + p@ < d© for a feasible
schedule o hinders the design of an FPTAS for problem 1|d; = d,d;| > w;Y;. So we
adopt a roundabout approach in this section to design an FPTAS for the problem. In
the following, we first consider an artificial scheduling problem, denoted as P(J(®, .J()),
for each pair of jobs (J©, J()) € 7, in which the above restriction for J in a feasible
schedule o is relaxed to S (o) < d and another job J® is introduced to restrict the jobs
scheduled after J(©).

Problem P(J©,J): For a pair of jobs (J©, J©®)) € J, we define P(J, J©) as the

10

scheduling problem to process the jobs of 7, subject to the deadlines on the single machine
without idle times, such that

(i) in a feasible schedule, J© must start no later than time d,

(ii) in a feasible schedule, J(© must be scheduled after J(©) and w(®p®) is the maximum

value of w;p; among all the jobs J; scheduled after J),
(iii) the objective value of a feasible schedule o is F(¢9)(g) = > -1 Zj(o), where
~ 79(g) = w@Y (),
~ Zj(0) = 0 if J; is scheduled before J© in o, and
~ Zj(0) = w;p; if J; is scheduled after J(© in o, and

(iv) the goal of problem P(J, .J()) is to find a feasible schedule o such that F(¢)(g) =
>_j—1 Zj(0) is as small as possible. We use F"*(c, e) to denote the optimal value of problem
P(J), J©). In the case of infeasibility, we define F*(c,e) = +oo0.

We next present a useful lemma.

Lemma 2.3. Let o be a feasible schedule for problem P(J(C),J(e)). Then o is also a
feasible schedule for problem 1|d; = d,d;| > w;Y;. Moreover, we have

w@p© < Z Z;i(0) < (n— 1)w©p© (2)
3T €T\{J)}

and
n

> wYi(0) <3 Z(0). (3)

j=1

Proof. Since o is a feasible schedule for problem P(.J(®, .J(©) each job meets its deadline
in 0. Hence, o is also a feasible schedule for problem 1|d; = d, d;| > w;Y;.

The relations (2) follow from the fact that w(©)p©) = max{Z;(0) : J; € J \ {J9}}
and J© € 7\ {J©}.

The relation (3) follows from the observation that Z;(c) > w;Y;(o) forall J; € J. O

To solve problem P(J © J (©)), we perform a preprocessing procedure for instance 7.

Preprocessing: Define
T = {0 e T\{TO} cwip; > wp©)}

and
T8 = € T\AIO} : wip; < wOp}.

11

Let m = |73°“|. Re-number the jobs of J3“? such that J\°9 = {Ji, Ja, ..., Jn} and
dy>dy > > dy,

Sorting the jobs in nondecreasing order of their weighted processing times, we see
that the two sets J.° and J3°” can be obtained in O(nlogn) time. Moreover, the
sorted sequence d; > dy > --- > d,, can be obtained in O(nlogn) time. Thus, the
preprocessing procedure can be performed in O(nlogn) time, which is dominated by the
time complexity of the following algorithms.

Note that J© € 7% 719 0 79 = 0, and J = {JO} U F°? U JL). For any
subset J' C 7, let p(J’) be the total processing time of the jobs of J’. In any feasible
schedule, the jobs of jl(c’e) must be processed before J© and J® must be processed
after J(©. Thus, if p(jl(c’e)) > d, then problem P(J, J()) is infeasible. Suppose in the
following that p(jl(c’e)) < d. Without loss of generality, we only consider the schedules in
which the jobs of J\“® occupy the interval [0, p("))

Sets of States: For each j =1,2,...,m, we use Q§-C’e) to denote the set of all the states
(7(e®), (&) associated with the pair of jobs (J(©), J()) such that each state (7(¢¢), f(¢)) €
Qgc’e) corresponds to a schedule for the jobs of {.J1, Js, ..., J;} with the following proper-
ties:

(i) the jobs of {J1, Jo, . .., J;} occupy the two intervals [p(7“?), 7] and [T;(C’e), TP,
where p(J;") < 79 < d and 7 = TP = (e + (") = 7)),

(ii) the jobs in the interval [p(jl(c’e)), 7(¢¢)] are scheduled consecutively in an arbitrary
order and the jobs in the interval [T;(C’e), T P| are scheduled consecutively in their reversed
index order, subject to their deadlines,

(iii) J© must be scheduled in the interval [T;(C’e), T P] completely, and

(iv) f(€) is the sum of the values w;p; of the jobs scheduled in the interval [T]/-(C’e), TP|.
Note that in a feasible schedule for scheduling the jobs Ji, J, ..., J;, job J; is scheduled
either in the interval [p(jl(c’e)), 7(e€)], subject to the restriction J; # J© or in the interval
(7“9 p(J)] as the first job, subject to the deadline d;. For a state (T](i’i), fj(f"f)) €

¥)

QE.C_’el), we have (7(¢9)] fle9)) = (T;i’i) + pj, f](ii)) in the former case and (7(%¢), f(ee)) =

(T;i’f), f;f’? + w;p;) in the latter case. If J; = J© then only the latter happens. Note

that if 7(4® is the starting time of J(©) then the late work of J© is Y (7(¢€)) as defined
in (1). Next, we provide the following dynamic programming algorithm to solve problem
P(JC), Je).

Algorithm DP(J(© J©): For problem P(J©, J)).

Step 1: Initially, set Q) = {(p(7“?),0)}.

12

Step 2: For j =1,2,...,m, do the following:

Generating Qg.c’e): For every state (7(%¢), f(¢€)) ¢ Qgcfl), do the following to generate

the next state set Qg-c’e):

(2.1) Put (7%¢) + p;, f9) in Qgc’e) if 749 +p; < dand J; # J©,

(2.2) Put (7059, £ 4 w;p;) in QU if 749 4 p; < d,

(2.3) If there are two states (7, f') and (7, f”) in Q;C’e) such that f' < f”, then delete
the state (7, f”) from Qg-c’e). This procedure is repeated until no two states in Qg»c’e) have
a common T value.

Note that if Qg.c’e) = () after the procedure Generating Qgc’e) for some 7, then problem
P(J), JE) is infeasible.

Step 3: Calculate the optimal value of problem P(J(©), J©)) by

F(Cve) — min {w(c)Y(C) (7—(076)) + f(cve) : T(Cve) +p(c) S CZ(C)}
(T(c’e),f(c’e))Eng?e)

c,e)

Then generate the schedule o(“® corresponding to F(“¢) by backtracking. In the case
where F(¢¢) = 400, problem P(J®,.J()) is infeasible and we just set o(>¢) = ().

Step 4: Output the optimal value F(“¢) and the optimal schedule (¢,

Clearly, when J and J() are given and problem P(J(), J(©) is feasible, Algorithm
DP(J©, J®) solves problem P(J, J©). Since each Qg»c’e) has at most O(d) states,
Algorithm DP(J©, J®) runs in O(nd) time. We need not consider this time complexity
because Algorithm DP(J(), J)) is just an intermediate step for our FPTAS.

In the following we design an FPTAS for problem P(.J(), J()) based on Algorithm
DP(J©, J®)). We embed the feasibility checking in the algorithm.

Given an arbitrary constant e > 0, define v := (@} and p = M We
partition the interval [0, (n — 1)w®p(®)] into v subintervals
]y:[(y_l):u7ylu]7y:1727"'7lj7 (4)

of equal lengths p. Then we present the following approximation algorithm for problem
P(JE), Je).
Algorithm A““: For problem P(J©, J©).
Step 1: Initially, set O = {(p(7“?),0)}.
Step 2: For j =1,2,...,m, do the following:
Generating Qgc’e): For every state (7(%€), f(¢€)) ¢ Q) do the following to generate

J=1
the next state set Q§-C’e):

13

2.1) Put (7(® + pj, (€)Y in Q(C) if 7o) —|—p- <d and J; Je)
j
(2.2) Put (79, £ 4+ w;p;) che if 7, —|—p]§d
2.3) If the current Q“? is not empty, then for every y € {1,2,...,v} with
j

(e fer}+#0,

we define (7,7, f3°°)) as the state in {(7, f) € Q;Qe) . f € I} such that 7, is as small
as possible.

(2.4) Reset Q09 = (7, (i) 1<y <, {(r f) e Q) fe 1} # 0}
Step 3: Calculate the approximation value of problem P(J©, J(©) by

Fleo) — min {w@FEO 4 p@ _ gy 4 fe) e Lo < GOy
(T(c,e)Vf(c,e))eﬂgzve)

Then generate the schedule o)

corresponding to £ by backtracking. In the case
where F{“? = 00, problem P(J), J©) is infeasible, so we set ot = 0.

(c.e)

Step 4: Output the approximation value F. (ce),

and the approximation schedule o

Since each Qgc’e) in Algorithm A"® has at most v = [@1 states, we have the

following lemma.

Lemma 2.4. Algorithm A? runs in O(nv) = O(n3/e) time.

Lemma 2.5. Let (J©,J©)) be a pair of jobs of J such that problem P(J©,J©) is
feasible. Then, for each j € {0,1,...,m} and for each state (1(>°), f(¢€)) € Qg-c’e), Algo-
rithm A generates at least one state (F(©9), f(e)) € Qgc’e) such that 7(¢¢) < 7(©¢) and
Feo <) 1

Proof. We prove the lemma by induction on j. From Algorithm DP(J(, J)) and Algo-
rithm A we have Q" = Q. Hence, the lemma holds for j = 0.

Suppose in the following that the lemma holds up to j — 1. Let (7(%¢) f(¢€) be a
state in Qgc’e). Then Algorithm DP(J(©), J®) introduces this state into Q) when job

J; is added to some feasible state for jobs Ji,...,J;—;. This means that there is a state
(; 1af(ce) 1) such that either (Tee), f(ce):((ce)+p]’f](6§)) or (7(@0), flee)) =
(Ti 1 af(ce + w]p]) Since (Tj e Jc‘i) € Qjcel, from the induction hypothesis, there

exists some state (7, f) € Q ") such that
F <7 and f < £ + (G- D (5)
We distinguish the following two cases.

14

Case 1: (79, fle9) = (7. (e)—l—pj,f(1) Since (7, f) € Q 1 and 7 < 7') from (5),

J
we have 7 + p; < 7'() +p; = 7% < d. Consequently, the state (7 + p],f) enters

Qgce in Step (2.1) of Algorlthm A% in iteration j. Assume that f € I, for some

y=1,2,...,v. Then, at the end of Step (2.4) of Algorithm A in iteration j, there is a
state (7(¢ o f(c’e)) € Qgc’e) such that 7(49 < 7 4 p; and f(&9, f € I,. Recall from (4) that
Iy =(y = Dy yp)-

Now, from (5), we have

70 < 7 4 p; <o) 4 py = 7

and
Fer< Fon< 5 4G =Dt p= 19 + .
Then (7€), f (¢)) is a required state in Q§C’e)
Case 2: (7(¢), f) = (7}°0, [}°0 +w;p;). Since (7, f) € Q) and 7 < 79 = rle0) <

J—
b wehave 7 = TP— (S et L) =) < TP (S, et) =160 = 779

Then 7 < d and 7} + p; < Tj{(c’e) +p; < d;. Consequently, the state (7, f 4+ w;p;) enters

Qgc’e) in Step (2.2) of Algorithm A% in iteration j. Assume that f -+ w;p; € I, for some

y=1,2,...,v. Then, at the end of Step (2.4) of Algorithm A9 in iteration j, there is
a state (e) | fleo)) e Q(Ce) such that 79 < 7 and f(°, f 4 w,p; € I,.

Now, from (5), we have

and ~
Fe < fFrwp+p

< Y+ G = D wgpy + 60, 7) 4+ p
= [0 +wip; + ju
= flo) 4 jp.

It follows that (7(49), f(¢©)) is a required state in nge).

From the above discussion, the result follows from the principle of induction. O

Recall that F*(c, e) is the optimal value of problem P(J(), J©)).

Lemma 2.6. Assume that J© and J© are a pair of jobs of J such that problem
P(J), J©) is feasible. Then, for an arbitrary constant € > 0, Algorithm Ale®) outputs a

feasible schedule o. = ol with the function value FL such that FL*9 < (14€)F*(c,e).

15

Proof. Let o* be the optimal schedule for problem P(J©, .J()) that is obtained by Algo-
rithm DP(J©, J©). Then o* is associated with a state (7<), £} in Q9 Tt follows
that

760 |0 < o (6)

and
F(e,) = wY O (00) . fleo), (7

From Lemma 2.5, there exists a state (7, f) in Q& such that
7 < rlee) (8)

and

F<) +mu < £+ (n—1)p. 9)
From (6) and (8), we have 7+ p{® < 7(¢¢) 4 p(©) < d(©. This means that there is a feasible
schedule, denoted by 7, for problem P(.J(®, J(©)) such that > iy Zi(m) = wOY O (7) 4 f.
Since Algorithm A? outputs the feasible schedule o, = ¢! for problem P(JC), Je)

)

with the objective value F.“?, we have

Fe) < @y ©(7) 4 . (10)

Note that the relation 7 < 7(>¢) in (8) implies that Y©(7) < Y(©(7(¢€)). Thus, from
(2), (7), (9), and (10), we have

Fe9 < w@y©F) 4 f
< wOYO(reo) 4 F
< WOYO (D) 4 £ 4 (n—)
— w(c)y(c) (T(c,e)) + f(c,e) 4 (n . 1)(n—1)1ﬁ(8>p(e)
= P00 + BRI (e) 4 o
< F*(e,e) + ew®@pl® < F¥(c,e) + eF*(c,e)
= (1+¢e)F*(c,e),

as required. O

Recall that TP = ZJ]EJ pj. For each job J© € J, let 7(® be the schedule of J in
which J© is the last job. If TP — p(c) <dand TP < J(C), then 7(© is a feasible schedule
for problem P(J(®). The objective value of 7(¢), denoted F(n(®), is

F(n¥) = w9 (TP - d).

16

Alternatively, if either TP — p(® > d or TP > d'©, then 7(% is not a feasible schedule for
problem P(J(®)). In this case, we define

F(r9) = +o0.

Now we present an FPTAS for problem 1|d; = d, d;| Y w;Y; by using Algorithm Ale®)
as a subroutine.

Algorithm A.: For problem 1|d; = d, d;| Y w,Y;.
Input: A problem instance with a set of jobs J and an constant ¢ > 0.

Step 1: For each job J© € 7, set 7 as an arbitrary schedule of J in which J© is the
last job. If TP —p® < d and TP < d¥, then set F(7(9)) = w9 (TP — d). Otherwise, set
F(r9) = 4c0.

Step 2: For each pair of jobs (J©, J®)) € 7, run Algorithm A to obtain the approx-

imation value £ “° and the approximation schedule o{“® for problem P(JC), Je).
Step 3: Calculate
3 min{ F (7)) : J© € T},
F, = min ~
min{FE(C’e) cJ©O JE e T}
and determine the corresponding schedule o, as follows:
~If F, = F(7(9) for some J© € 7, then set o, = 7(®);

—If F. = F“9 for some J©,J© € 7, and F. < min{F(7©) : J© € 7}, then set
Oc = Je(c’e).
Step 4: Calculate F,. = > " w;Yj(0.).
Output: The approximation value F, and the approximation schedule o, for problem
ld; = d, dj| 3 w;Y;.

Lemma 2.7. F, < F’e.

Proof. If F, = F(x(9)) for some J© € J, then o, = 7). In this case, F, = Y wiYj(oe) =
30w, Y,(r) = F(x©) = F.

Suppose in the following that £, < min{F(x(©) : J© € J}. Then F, = F\°” and o, =
o' for some J©, J© € J. Then o, is a feasible schedule for problem P(J), JE)) such
that 37 | Zj(o.) = F.. From Lemma 2.3, we have F. = Y wiYlod) <370 Zij(oo) =
F.. This proves the lemma. O

17

Theorem 2.3. For problem 1|d; = d,d;| > w,;Y;, Algorithm A, is a (1+€)-approximation
algorithm of running time O(n’/e).

Proof. The time complexity of Algorithm A, is determined by Step 2, in which we invoke
Algorithm A9 for each pair of jobs (J©),J®)) € J. From Lemma 2.4, for each given
pair (J©,J©), Algorithm AL runs in O(n3/€) time. Since we have a total of O(n?)
choices for (J(©), J), Step 2 of Algorithm A, runs in O(n®/¢) time.

Now let 7* be an optimal schedule for problem 1|d; = d,d;| > w;Y;. Let J) be the
critical job in 7*. To complete the proof, it suffices to show that

If J(¢") is the last job in 7*, from Lemma 2.7, we have Do wiYy(mt) =30 w;Y;(m(€)) =
F(x(€)) > F. > F., as required in (11).

Suppose in the following that J() is not the last job in 7*. Let J©*) be a job with the
largest weighted processing time scheduled after J) in 7*. Then 7* is also an optimal
schedule for problem P(J) J()) so Yo wiY(m*) =00 Zi(n*) = F*(c*, e*). From
Lemmas 2.6 and 2.7, we have F, < F. < F%) < (14+€)F*(c*, e*) = (1+¢) >y w;Yi(m),
as required in (11). O

3 Problem 1|d;|}_Y;

In this section, we show the unary N P-hardness of problem 1|d;| Y Y; by a reduction from
the 3-Partition problem, which is known to be unary N P-complete (see, e.g., Garey and
Johnson, 1979). Our proof imitates the unary N P-harness proof for problem 1|d;| 3" U;
in Yuan (2017).

3-Partition: Given a set of 3t + 1 positive integers x1, s, ..., 3, X such that Ej’tzl Tj =
tX and X/4 < x; < X/2 for each j with 1 < j < 3t, does there exist a partition
(f1, Iz, ..., I;) of the index set {1,2,...,3t} such that [[;| =3 and 3., x; = X for each
1 with 1 <4 <7

Without loss of generality, we assume that ¢ > 2 and the 3t positive integers in the
instance of 3-Partition are sorted such that x; < z9 < --- < x3 in the sequel. Given an

18

instance (z1, s, ..., T3, X) of 3-Partition, we define

AQ - 3t3X,
Ay = 33(Ay+ X)), (12)
H = 3t(A+tAy+tX)+ 1.

Then we have A; < 125X and H < (3t + 1)A;. An instance of the scheduling problem

1|d;| Y. Y;, called scheduling instance, can be constructed as follows.

There are totally n = 3t? + 1 jobs of two types: a restriction job Jy and 3t* normal
jobs Jij, i € {1,2,...,t} and j € {1,2,...,3t}. For each i with 1 < ¢ < ¢, we set
JW ={J;;:1<j<3t}, and for each j with 1 < j < 3t, weset J; = {J;; : 1 <i < t}.
Then {J;;} = J9NJ, fori e {1,2,...,t} and j € {1,2,...,3t}. The processing times,
due dates, and deadlines of the n jobs are displayed in Table 2.

Table 2: The scheduling instance

Job | Processing time Due date Deadline
Jo | po=H do=H+ 1} S p(TD) | do = do
Jiyj Pij = A1+ iAo + il‘j di,j =](Al +tAy + tX) di,j =H+ % E;};ll p(j(k)) + ZZ:l p(j(k))

Note that
max{d;;} < H (13)
/L?]

and the total processing time of the jobs of J® is given by

p(TY) = 3tA; 4 3tiA, + tiX, for each i € {1,2,...,t}. (14)

The threshold value for the total late work is given by

3(t+1) t41 t—1¢ .

The decision asks if there is a feasible schedule 7 for the constructed scheduling instance
such that . Yj(7) < Q, ie., >0, Zj’tzl Yii(m) + Yo(m) < Q. For convenience, we call
such a schedule o a desired schedule in the sequel.

In the constructed scheduling instance, there are at most 9¢> + 4 numbers and the
largest one is dy; = H + Y1 p(TD) < (3t + 1D)A; +t(3t + 1A, < 712 - 12t5X = 843X,
which is a polynomial in ¢ and X. Thus, the instance construction can be performed in

polynomial time in unary encoding.

19

From the definition of A; and Ay, we have

3tt—1)(t+1 tt—1(t+1 3t3 3 3t3
and , .
-1 1 ‘
AQ—WX>37§3X—%X:%X>O.

From the above two inequalities, together with the definition of (), we have
Q< (3t =3t+1)A,; (15)

and
O < (3t — 3)(tA, + LD

Az) + As. (16)
The following two lemma reveals some important properties of a desired schedule.

Lemma 3.1. Let w be a desired schedule. Then Yo(m) = 0 and exactly 3t normal jobs are
scheduled before Jy in .

Proof. Given the feasibility of = and by the relation dy = dy, J, must be early in 7.
Thus, Yy(m) = 0. Note that each normal job has a processing time greater than A; and
LS p(TD) = 3tA, + HEUA, ¢ D ¥ (3t 1 1)A,.

If more than 3¢ normal jobs are scheduled before Jy in 7, then Cy(7) > H+(3t+1)A; >
H+1 Z;le(j(i)) = dp, a contradiction.

If fewer than 3¢ normal jobs are scheduled before Jy in 7, then at least 3t — 3t + 1
normal jobs are scheduled after Jy. From (13) and the relation py = H, all the normal

jobs scheduled after Jy are late in w. Thus, . Y;(7) > (3t* — 3t + 1)A;. From (15), we
conclude that > Y;(7m) > @, a contradiction again.

Now the lemma follows from the above discussion. O

Lemma 3.2. Let 7 be a desired schedule. Then each J@ with 1 < i <t contains ezxactly

three early jobs in .

Proof. For each i € {1,2,...,t}, we use V& = V@(r) to denote the set of jobs of J@
that are early in m. From Lemma 3.1, we have

W(1)| + |V(2)| N yv(t)\ = 3t. (17)

In the following, we will show that |[V@| = 3 for each i € {1,2,...,t}.

20

Note that J, meets its deadline dy in 7 and all the jobs of VO UV U ... UV® are
scheduled before job Jy in 7. Since py = H and dy = H + 3tA; + WAQ + t(t—;rl)X, we

have 3t(t+1 tt+1
- -
(t41), Ht+D)

2 2
For each i € {1,2,...,t — 1}, all the jobs of {J,} UV UVA U...uV® and J® U
JED Y. u T are completed by the common deadline of the ¢ normal jobs of VAGR)
in 7, subject to the deadlines. This means that H + p(V) + p(VP) + ... + p(VD) +
p(TO) +p(TE) 4o 4 p(TD) < H 4 3550, (T W) + Xjiyy p(T ™). Then we
have p(V V) + p(V@) + -+ 4+ p(VD) <157 p(J®). From (14), we have

32(12—1— 1) At i —2|— 1)

pOVW) +p(VP) + - 4 p(VY) < BtAL +

X. (18)

pVD) 4 p(VP) 4o 4 p(VD) < i, + X, i=1,2,...,t—1. (19)

From (18) and (19) and by using the same discussion in Yuan (2017), we have that
VO] 4 [VED| ... | VE+HD| = 3(t — 1) for every index i with 0 <4 < ¢ — 1. This further
implies that |[V®| = 3 for each i € {1,2,...,t}, i.e., each 7 has exactly three early jobs
in 7, 1 <14 <t. The lemma follows. O]

We show in the following that (x,z,..., 23, X) is a YES instance of 3-Partition if
and only if there is a desired schedule 7 for the scheduling instance.

The “if” part proof: Assume that (z1,x9,..., 23, X) is a YES instance of 3-Partition.
Then {1,2,...,3t} can be partitioned into ¢ subsets I, I, ..., I;, each of size three, such
that 3., x; = X for each i € {1,2,...,t}. We define a schedule 7 of the n = 3t* + 1

jobs in the following way:

— For each j € {1,2,...,3t}, let i(j) be the unique index in {1,2,...,t} so that
J € Ligy.

—Set V = {Jia)1, Ji2),2, - - - > Ji(at) 3¢} -

— The n = 3t? + 1 jobs are scheduled in the following order in 7:

Jiya < Jyga < =< Jigna < Jo < TO\NY < JED\Y <. < FOA\ Y,

From the definition of schedule 7, we have [VNJW| = |I;| = 3 for eachi € {1,2,...,t}.
Let V& = yn J(i), 1 <4 < t. From the definition of p;; and the definition of
(I1, I, ..., I;), we have

p(VD) = 3A, + 3iA, +iX = ;p(j(z)) for each 1 =1,2,...,t. (20)

The completion time of Jy in 7 is Co(7) = Y1, p(VD) +po = H + 1370 p(TD) = d,
so Jy is early in .

21

For each i € {1,2,...,t}, all the normal jobs of 7 have a common deadline, denoted
by

1 i—1 t
=H+-> p(T™)+) p(T™). (21)
k=1 k=i

By the structure of 7, the maximum completion time of the jobs of J () with 1 <4 <t

is po + p(V()) +p(V) + -+ pVY) 4+ p(TW) + p(TED) + o+ p(T0) = H +

1 Zk Lp(TW) 4+ 300 p(TW) = d. Thus, all the normal jobs meet their deadlines in
. It follows that 7 is a feasible schedule.

Note that each normal job has a processing time less than A; + tAs; + tX. Then the
completion time of J;(;) ; is less than j(A; +tAy+1B) = d;(;);. So the first 3t normal jobs
in 7 are early, i.e., Yj;)(m) = 0, 1 < j < 3t. From (13) and the fact that py = H, the
normal jobs scheduled after J, are all late, so their late work is given by their processing
times. Moreover, since Jy is early in m, we have Yy(7) = 0. Thus, from (14) and (20), we

Zz 123 1 Yij(m) + Yo(m) = ZZ—lp(j(i) \V)
= Y (e(ITD) = p(VD) =3 H(p(TD)
- Q.

It follows that 7 is a desired schedule.

have

The “only if” part proof: Assume that there exist desired schedules for the scheduling
instance. Let 7 be a desired schedule such that [{j € {1,2,...,3t} : Jr) € J;}| is as
large as possible. Then we have the following statement.

Statement 2. For each j € {1,2,...,3t}, we have J(;) € J;.

Proof of Statement 2. Otherwise, there is an index j € {1,2,...,3t} such that J.;) € J;
and Jrp) € Ty 1 <E<j— 1

Suppose first that Jr;) € J1 U Jo U---U Jj—;. Note that each normal job has a
processing time larger than A;. Then Cr¢;) > jAq, and so, Yz > jA — (§ — 1)(A +
tAy +tX) > Ay. From (13) and the fact that po = H, the 3t* — 3t normal jobs scheduled
after Jy are late. From Lemma 3.2, there are exactly 3t — 3 normal jobs of each J®
scheduled after .J. Moreover, each normal job in J® has a processing time larger than
A +iAy, 1 < i < t. Thus, the total late work of these 3t?> — 3t normal jobs is larger
than (3t — 3) >0 (A1 +iAy) = (3t — 3)(tA; + t(t;nAg). Then we have) Yj(m) >
(3t — 3)(tA; + MAQ) + A,. From (16), we have) Y;(m) > @, a contradiction. Hence,
we must have Jrj) € Jj41 U Jj42 U -- U Js. This further implies that j < 3t — 1.

Assume in the following that J.y = J;; for some j' € {j + 1,5 +2,---,3t} and
i€ {1,2,---,t}. Then Jy; = Jiy < Jij in 7. Since j < j', we have p;; < p;;» and

22

d;; < d; . Let 7' be the schedule obtained from 7 by swapping the two jobs J; ; and J, ;.
Since p; j < p; v, and J; j and J; ; have a common deadline, 7’ is still a feasible schedule

in which

Cij(n") < Ciy(m),
Cig (') = Cij(m), (22)
Ow(k) (7‘(") S Oﬂ(k) (71'), fOI“ Jﬂ(k) ¢ {Ji,j/, Ji,j}.

Note that each normal job has a processing time less than Ay +tAy+tX. Then C; j(7’) <
Ci (1) < §(Ay +tAy +tB) = d;; < d; j». This implies that

Y, /(m) =0 and Y;;(n") = 0. (23)
From the fact that d; ; < d; 7 and from the relation C; j(7') = C; ;(7) in (22), we have
Yij (') < Yij(m). (24)
From the third relation in (22), we further have
Yo (7)) < Yoy () for oy & {Jiy, Jis}- (25)

Combining (23), (24), and (25), we conclude that > Y;(n') < > Y;(7) < @. Thus,
n' is also a desired schedule. But then [{k € {1,2,...,3t} : Jouw € Ti}| < {k €
{1,2,...,3t} : Jr) € Ti}|. This contradicts the choice of 7. Statement 2 follows.

For each j € {1,2,...,3t}, we use V;(7) to denote the set of jobs of J; that are early

in 7. From Lemma 3.1, we have
Vi(m)] + Va(m)| 4 - + [Vay ()| = 3t. (26)
From Statement 2, we have
Vi(m) = {Jxj} for j=1,2,...,3t. (27)

For each i € {1,2,...,t}, we use V() to denote the set of jobs of 7 that are early in
. Then from Lemma 3.2, we have

VO ()| = 3. (28)
Now define

L={j: 77 e VO(m)}and X, = ¥ a0y, i = 1,2, 1.

23

From (27) and (28), we have |I;| = 3 for each ¢ with 1 <i <t and ([y, [5,..., I;) forms
a partition of {1,2,...,3t}. This implies that

X1+ Xo+ -+ X =tX. (29)
Moreover, we have

p(V(i)(W)) =3A1+ 3 +iX;, i =1,2,... .t (30)

Since 7 is a desired schedule, from the discussion in Lemma 3.2, the inequality (19)
still holds for 7. Combining (19) and (30), we have

Xi+2Xo4 - +iX; < X +2X +---+iX foreach i =1,2,...,t. (31)
From (29) and (31), and by using the same deduction as in Yuan (2017), we obtain
X, =X foreachi=1,2,...,t. (32)

It follows that (1, I3, ..., I;) is a partition of {1,2, ..., 3t} such that |[;| = 3and), z; =
X fori=1,2,...,t. Consequently, the instance (x1,xs,...,x3, X) is a YES instance of
3-Partition.

From the above discussion, we conclude the following theorem.

Theorem 3.1. Problem 1|d;| " Y; is unary N P-hard.

4 Polynomially solvable cases

In this section we consider two special cases of problem 1|d;| Y w;Y;, namely (i) the jobs
have a common due date and a unit weight, and (ii) the jobs have a common processing
time. We provide polynomial-time algorithms to solve the two special cases.

4.1 Problem 1ld; =d,d;|>Y;

For problem 1|d; = d,d;| Y. Y}, it is observed that every feasible schedule is optimal. As
discussed in the Feasibility Checking part in Section 1, problem 1|d; = d,d;| Y. Y; can
be solved by the following procedure, which uses the idea in Jackson (1955) for solving
problem 1||Lyax.

Deadline-EDD: Generate a schedule in which the n jobs are sequenced in nondecreasing
order of their deadlines.

Note that Deadline-EDD runs in O(nlogn) time. Thus, we have

24

Theorem 4.1. Problem 1|d; = d, d;| Y. Y; is solvable in O(nlogn) time by the procedure
Deadline-EDD.

4.2 Problem 1|p; = p,d;| > w;Y;

Hariri et al. (1995) showed that problem 1|p; = p| > w;Y; is solvable in O(n?®) time. For
problem 1[p; = p, cfj\ > w;Y;, due to the existence of deadlines, we make some adjustments
of the approach presented by Hariri et al. (1995) as follows.

We define the cost ¢;; of scheduling job J; in the i-th position, 4,5 € {1,2,...,n}, by
setting

0, if ip < d;,
cij = § wymin{p;,ip — d;}, if d; <ip < dj,
400, otherwise.
Moreover, we introduce indicator variables z;; with 4,j € {1,2,...,n} such that

1, if job J; is scheduled in the i-th position,
T =
! 0, otherwise.

Then problem 1|p; = p,d;| > w;Y; is equivalent to the following n x n linear assignment
problem with costs ¢;;, 1,7 € {1,2,...,n}.

min >, D0 ¢
Yo =1, for all j € {1,...,n},
> Ty =1, foralli € {1,...,n},

xi; > 0, forall 4,5 € {1,...,n}.

(33)

From Kuhn (2005), the n x n linear assignment problem in (33) is solvable in O(n?)
time. Thus, we have the following result.

Theorem 4.2. Problem 1|p; = p, d;| > w;Y; is solvable in O(n?®) time.

5 Conclusions

In this paper we address the scheduling problem with deadlines to minimize the total
weighted late work on a single machine. We show the binary N P-hardness of prob-
lem 1|d; = d,d;| > w;Y; and unary N P-hardness of problem 1|d;| Y Y;. For problem

25

1|d; = d,d;| >~ w;Y;, we also develop a pseudo-polynomial dynamic programming solution
algorithm that runs in O(n?d) time and a fully polynomial-time approximation scheme
(FPTAS). We present an O(nlogn) time algorithm to solve problem 1|d; = d,d;|>Y;
and an O(n®)-time algorithm to solve problem 1|p; = p,d;| > w;Y;.

It should be noted that when preemption is allowed, the problems are tractable even
in the parallel-machine environment with dynamic jobs. Note that in a feasible pre-
emptive schedule o, the late work Y;(o) of job J; is defined to be the total processing
time of the parts of job J; that are scheduled after its due date d;. By incorporating
job deadlines into the study of Leung (2004), without introducing new techniques, one
can show that problems P|r;, d;, pmtn| > Y;, P|r;,d;, pmtn| " w;Y;, Q|r;, d;, pmtn| > Yj,
and Q|r;,d;, pmtn| Y w,;Y; are solvable in O(n®logn), O(n*logn), O(m?n®logmn), and
O(m?n*logmn) times, respectively, using the network flow technique, where m is the
number of machines.

For further research, we suggest the following topics:

— Designing effective approximation algorithms for problem 1|d;| Y w,Y;. Especially,
a PTAS is expected for problem 1|d;| " Y.

— Designing more efficient polynomial-time algorithms for problems 1|r;, d;, pmtn| > Y;
and 1|r;, d;, pmtn| Y w;Y;.
— Research on scheduling with the late work criterion under the deadline constraint

should be extended to other scheduling settings such as shop scheduling, multi-agent

scheduling, batch scheduling, and so on.

Acknowledgments

The authors would like to thank the Editor, the Associate Editor and two anonymous
referees for their constructive comments and helpful suggestions. This research was sup-
ported in part by NSFC under grant numbers 11671368 and 11771406.

References

Abrishami, S., & Naghibzadeh, M. (2012). Deadline-constrained workflow scheduling in
software as a service cloud. Scientia Iranica, 19, 680-689.

Abrishami, S., Naghibzadeh, M., & Epema, D.H. (2013). Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds. Future Generation

26

Computer Systems, 29, 158-169.

Alminana, M., Escudero, L.F., Landete, M., Monge, J.F., Rabasa, A., & Sanchez-
Soriano, J. (2010). WISCHE: A DSS for water irrigation scheduling. Omega, 38,
492-500.

Blazewicz, J. (1984). Scheduling preemptible tasks on parallel processors with informa-
tion loss. TSI-Technique et Science Informatiques, 3, 415-420.

Blazewicz, J., & Finke, G. (1987). Minimizing mean weighted execution time loss on

identical and uniform processors. Information Processing Letters, 24, 259-263.

Blazewicz, J., Pesch, E., Sterna, M., & Werner, F. (2005). The two-machine flow-shop
problem with weighted late work criterion and common due date. European Journal
of Operational Research, 165, 408-415.

Chen, X., Sterna, M., Han, X., & Blazewicz, J. (2016). Scheduling on parallel identical
machines with late work criterion: offline and online cases. Journal of Scheduling,
19, 729-736.

Chen, R.B., & Yuan, J.J. (2018a). Unary NP-hardness of single-machine scheduling to

minimize the total tardiness with deadlines. In submission.

Chen, R.B., & Yuan, J.J. (2018b). Unary NP-hardness of preemptive scheduling to

minimize total completion time with release times and deadlines. In submission.

Du, J.Z., & Leung, J.Y.T. (1993). Minimizing mean flow time with release time and
deadline constraints. Journal of Algorithms, 14, 45-68.

Federgruen, A., & Groenevelt, H. (1986). Preemptive scheduling of uniform machines
by ordinary network flow techniques. Management Science, 32, 341-349.

Garey, M.R., & Johnson, D.S. (1979). Computers and Intractability: A guide to the
theory of NP-completeness. San Francisco: Freeman.

Graham, R.L., Lawler, E.L., Lenstra, J.K., & Rinnooy Kan, A.H.G. (1979). Opti-
mization and approximation in deterministic sequencing and scheduling: A survey.
Annals of Discrete Mathematics, 5, 287-326.

Hariri, A.M.A., Potts, C.N., & Van Wassenhove, L..N. (1995). Single machine scheduling
to minimize total weighted late work. ORSA Journal on Computing, 7, 232-242.

27

Horn, W.A. (1974). Some simple scheduling algorithms. Naval Research Logistics Quar-
terly, 21, 177-185.

He, C., Lin, H., Lin, Y.X., & Dou, J.M. (2014). Minimizing total completion time for
preemptive scheduling with release dates and deadline constraints. Foundations of
Computing and Decision Sciences, 39, 17-26.

Jackson, J.R. (1955). Scheduling a production line to minimize maximum tardiness.
Technical report, University of California, Los Angeles.

Kethley, R.B., & Alidaee, B. (2002). Single machine scheduling to minimize total
weighted late work: a comparison of scheduling rules and search algorithms. Com-
puters & Industrial Engineering, 43, 509-528.

Koulamas, C., & Kyparisis, G.J. (2001). Single machine scheduling with release times,
deadlines and tardiness objectives. European Journal of Operational Research, 133,
447-453.

Kovalyov, M., Potts, C.N., & Van Wassenhove, L.N. (1994). A fully polynomial ap-
proximation scheme for scheduling a single machine to minimize total weighted late
work. Mathematics of Operations Research, 19, 86-93.

Kuhn, H.-W. (2005). The Hungarian method for the assignment problem. Naval Research
Logistics, 52, 7-21.

Labetoulle, J., Lawler, E.L., Lenstra, J.K., & Rinnooy Kan, A.H.G. (1984). Preemptive
scheduling of uniform machines subject to release dates. In Progress in combinato-
rial optimization, Academic Press, pp. 245-261.

Lenstra, J.K., Kan, Rinnooy, A.H.G., & Brucker, P. (1977). Complexity of machine
scheduling problems. Annals of Discrete Mathematics, 1, 343-362.

Leung, J.Y.T., Vincent, K.M., & Wei, W.D. (1994). Minimizing the weighted number
of tardy task units. Discrete Applied Mathematics, 51, 307-316.

Leung, J.Y.T. (2004). Minimizing total weighted error for imprecise computation tasks
and related problems. In: Leung, J. Y. T., editor. Handbook of Scheduling: Algo-
rithms, Models, and Performance Analysis. Boca Raton: CRC Press; p. 34.1-16.

Lin, B.M., & Hsu, S.W. (2005). Minimizing total late work on a single machine with re-
lease and due dates. In STAM conference on computational science and engineering,

Orlando.

28

Mokotoff, E. (2001). Parallel machine scheduling problems: A survey. Asia-Pacific
Journal of Operational Research, 18, 193-242.

Moons, S., Ramaekers, K., Caris, A., & Arda, Y. (2017). Integrating production schedul-
ing and vehicle routing decisions at the operational decision level: a review and
discussion. Computers & Industrial Engineering, 104, 224-245.

Orlin, J.B. (1993). A faster strongly polynomial minimum cost flow algorithm. Opera-
tions Research, 41, 338-350.

Pan, Y.P. (2003). An improved branch and bound algorithm for single machine schedul-
ing with deadlines to minimize total weighted completion time. Operations Research
Letters, 31, 492-496

Posner, M.E. (1985). Minimizing weighted completion times with deadlines. Operations
Research, 33, 562-574.

Potts, C.N., & Van Wassenhove, L.N. (1983). An algorithm for single machine sequenc-
ing with deadlines to minimize total weighted completion time. European Journal
of Operational Research, 12, 379-387.

Potts, C.N., & Van Wassenhove, L.N. (1992a). Single machine scheduling to minimize
total late work. Operations Research, 40, 586-595.

Potts, C.N., & Van Wassenhove, L.N. (1992b). Approximation algorithms for scheduling
a single machine to minimize total late work. Operations Research Letters, 11, 261-
266.

Ren, J.F., Zhang, Y.Z., & Sun, G. (2009). The NP-hardness of minimizing the total
late work on an unbounded batch machine. Asia-Pacific Journal of Operational
Research, 26, 351-363.

Ren, J.F., Du, D.L., & Xu, D.C. (2013). The complexity of two supply chain scheduling
problems. Information Processing Letters, 113, 609-612.

Shan, F., Luo, J.Z., & Shen, X.J. (2014). Optimal energy efficient packet scheduling
with arbitrary individual deadline guarantee. Computer Networks, 75, 351-366.

Smith, W.E. (1956). Various optimizers for single-stage production. Naval Research
Logistics Quarterly, 3, 59-66.

29

Sterna, M. (2006). Late work minimization in a small manufacturing system. Technical
Report, RA-02/06. Poznan: Institute of Computing Science, Poznan University of
Technology.

Sterna, M. (2007). Late work minimization in a small flexible manufacturing system.

Computers & Industrial Engineering, 52, 210-228.

Sterna, M. (2011). A survey of scheduling problems with late work criteria. Omega, 39,
120-129.

Wan, L., Yuan, J.J., & Geng, Z.C. (2015). A note on the preemptive scheduling to
minimize total completion time with release time and deadline constraints. Journal
of Scheduling, 18, 315-323.

Wang, D.J., Kang, C.C., Shiau, Y.R., Wu, C.C., & Hsu, P.H. (2017). A two-agent
single-machine scheduling problem with late work criteria. Soft Computing, 21,
2015-2033.

Werner, F. (1993). A branch and bound algorithm for minimizing weighted completion
times with deadlines. Optimization, 28, 187-199.

Wu, C.C., Yin, Y.Q., Wu, W.H., Chen, H.M., & Cheng, S.R. (2016). Using a branch-
and-bound and a genetic algorithm for a single-machine total late work scheduling
problem. Soft Computing, 20, 1329-1339.

Xu, Z.Z., Zou, Y.X., & Kong, X.J. (2015). Meta-heuristic algorithms for parallel identical
machines scheduling problem with weighted late work criterion and common due
date. Springer Plus, 4, 782.

Yuan, J.J. (2017). Unary NP-hardness of minimizing the number of tardy jobs with
deadlines. Journal of Scheduling, 20, 211-218.

Zafer, M.A., & Modiano, E. (2009). A calculus approach to energy-efficient data trans-
mission with quality-of-service constraints. IEEE/ACM Transactions on Networking

(TON), 17, 898-911.

Zhang, X.G., & Wang, Y. (2017). Two-agent scheduling problems on a single-machine
to minimize the total weighted late work. Journal of Combinatorial Optimization,
33, 945-955.

Zhang, Y., & Yuan, J.J. (2019). A note on a two-agent scheduling problem related to
the total weighted late work. Journal of Combinatorial Optimization, 37, 989-999.

30

