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Abstract: We consider scheduling a set of jobs with deadlines to minimize the total

weighted late work on a single machine, where the late work of a job is the amount of

processing of the job that is scheduled after its due date and before its deadline. This is

the first study on scheduling with the late work criterion under the deadline restriction.

In this paper, we show that (i) the problem is unary NP -hard even if all the jobs have

a unit weight, (ii) the problem is binary NP -hard and admits a pseudo-polynomial-time

algorithm and a fully polynomial-time approximation scheme if all the jobs have a com-

mon due date, and (iii) some special cases of the problem are polynomially solvable.
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1 Introduction

Background: The scheduling problem with the late work criterion under the deadline

restriction may arise in agricultural production. For instance, there are different fields

that need to be harvested by a single harvester. Each crop can be regarded as a job and

the total amount of each crop planted is regarded as its processing time. Due to different

requirements from different buyers, any part of the crop not gathered by a given date,

which depends on the type, can no longer be sold. This date can be regarded as the due

∗Corresponding author. Email address: yuanjj@zzu.edu.cn

1

This is the Pre-Published Version.
This is the peer reviewed version of the following article: Chen, R., Yuan, J., Ng, C. T., & Cheng, T. C. E. (2019). Single‐machine scheduling with deadlines  to 
minimize the total weighted late work. Naval Research Logistics, 66(7), 582-595, which has been published in final form at https://doi.org/10.1002/nav.21869. 
This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not 
be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable 
legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and 
any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley 
Online Library must be prohibited.



date for a kind of crop. Moreover, each kind of crop has its own final harvest date, which

can be regarded as its deadline. Minimizing the total late work in this example corresponds

to minimizing the quantity of the crop that has not been sold but has been harvested

before its final harvest date. The example described above shows that scheduling in the

setting of the late work criterion under the deadline restriction has applications in practice

and is worth studying.

Motivated by applications in the field of information processing, Blazewicz (1984)

introduced the scheduling model to minimize the total weighted late work. Other appli-

cations of the model can be found in manufacturing (Sterna, 2006; 2007) and agriculture

(Alminana et al., 2010). While there has been plentiful research on scheduling to mini-

mize the total weighted late work in the literature, no work has considered the case where

the jobs have deadlines. The constraint of job deadlines is important for scheduling re-

search and practice. Applications of job deadlines can be found in energy efficient packet

transmission (Zafer and Modiano, 2009; Shan Feng et al., 2014), workflow scheduling

(Abrishami and Naghibzadeh, 2012; Abrishami et al., 2013), and integrated production

and distribution scheduling of perishable products (Moons et al., 2017). To the best of

our knowledge, the scheduling problem with the late work criterion under the deadline

restriction has not been discussed in the literature.

Problem Formulation: Let J = {J1, J2, . . . , Jn} be a set of jobs to be processed on a

single machine. Each job Jj has an integer processing time pj > 0, a weight wj ≥ 0, a

due date dj ≥ 0, and a deadline d̄j ≥ max{pj, dj}. A feasible schedule is a schedule that

processes the jobs of J on the single machine subject to deadline constraints. Given a

feasible schedule σ, Jσ(j) denotes the j-th job in σ. Let Cj(σ) be the completion time of

job Jj in σ. Then the deadline constraints require that Cj(σ) ≤ d̄j. The late work of job

Jj in schedule σ, denoted by Yj(σ), is the amount of processing of job Jj that is scheduled

after its due date dj in σ. Since preemption is not allowed, we have

Yj(σ) =


0, if Cj(σ) ≤ dj,

Cj(σ)− dj, if dj < Cj(σ) ≤ min{dj + pj, d̄j},
pj, if dj + pj < Cj(σ) ≤ d̄j.

If Yj(σ) = 0, job Jj is called early. If 0 < Yj(σ) < pj, job Jj is called partially early. If

Yj(σ) = pj, job Jj is called late. The objective is to find a feasible schedule σ such that

the total weighted late work, denoted by
∑n

j=1 wjYj(σ), is minimized. Using the three-

field notation for describing scheduling problems introduced by Graham et al. (1979),

we denote the scheduling problem under study by 1|d̄j|
∑
wjYj. Clearly, we only need

to consider the schedules in which the n jobs are processed consecutively from time 0 to

2



∑n
j=1 pj without idle times.

Feasibility Checking: Under the deadline constraints, not every instance is feasible.

Clearly, an instance with a job set J is feasible (subject to the deadline constraints) if

and only if the feasibility problem 1|d̄j|− on the instance with a job set J has a feasible

schedule. Jackson (1955) showed that the EDD (earliest due date first) rule solves problem

1||Lmax optimally. Then the problem 1|d̄j|− on the instance with a job set J can be solved

by the following way: Generate the schedule σ0 in which the jobs in J are scheduled in

the nondecreasing order of their deadlines, and then check whether σ0 is feasible subject

to the deadlines. Consequently, the feasibility checking process of problem 1|d̄j|− could

be done in O(n log n) time.

For each scheduling problem studied in this paper, the O(n log n)-time complexity used

in the feasibility checking is dominated by the time complexity for solving this problem.

Henceforth, we assume that a feasible schedule always exists when we design an algorithm

for solving problem 1|d̄j|
∑
wjYj.

Literature Review: For problem 1||
∑
Yj, Potts and Van Wassenhove (1992a) showed

that it is binary NP -hard, and provided a pseudo-polynomial dynamic programming

solution algorithm that runs in O(nUB) time, where UB is an upper bound on the mini-

mum total late work. They also presented an O(n log n) time algorithm to solve problem

1|pj = p|
∑
Yj. Moreover, for problem 1|dj = d|

∑
Yj, since the value of the total late

work equals max{
∑
pj−d, 0} in any schedule, any schedule is optimal and the problem is

solved in O(n) time. Potts and Van Wassenhove (1992b) presented (1+ 1
k
)-approximation

algorithms (1 ≤ k ≤ n) with time and space requirements of O(n(k+1)) and O(n), respec-

tively, and two fully polynomial approximation schemes for problem 1||
∑
Yj. Lin and

Hsu (2005) provided a branch-and-bound algorithm for problem 1|rj|
∑
Yj, and presented

O(n log n) time algorithms to solve problems 1|rj, dj = d|
∑
Yj and 1|rj, pmtn|

∑
Yj.

For problem 1||
∑
wjYj, its binary NP -hardness follows from Potts and Van Wassen-

hove (1992a). Kovalyov et al. (1994) provided a dynamic programming solution algo-

rithm and applied the rounding technique to design a fully polynomial-time approx-

imation scheme (FPTAS) for problem 1||
∑
wjYj. Hariri et al. (1995) presented a

pseudo-polynomial dynamic programming solution algorithm for problem 1||
∑
wjYj that

runs in O(n2
∑
pj) time. They also presented an O(n) time algorithm to solve prob-

lem 1|dj = d|
∑
wjYj and an O(n3) time algorithm to solve problem 1|pj = p|

∑
wjYj.

Leung et al. (1994) provided an O(n log n + kn) time solution algorithm for problem

1|rj, pmtn|
∑
wjYj, where k is the number of distinct weights.

In the parallel-machine setting, Blazewicz and Finke (1987) reduced problems P |rj, pmtn|
∑
wjYj
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andQ|rj, pmtn|
∑
wjYj to the minimum cost flow problems, respectively. The correspond-

ing networks contain only two groups of vertices, corresponding to the jobs and time inter-

vals. They provided an O(n7 log n) time algorithm to solve problem P |rj, pmtn|
∑
wjYj

and an O(m3n7 logmn) time algorithm to solve problem Q|rj, pmtn|
∑
wjYj, where m is

the number of machines. By using the same reduction in Orlin (1993) and a more efficient

algorithm for solving the minimum cost flow problem, Leung (2004) showed that prob-

lems P |rj, pmtn|
∑
wjYj and Q|rj, pmtn|

∑
wjYj can be solved in O(n2 log3 n) time and

O(m2n4 logmn) time, respectively, and problems P |rj, pmtn|
∑
Yj and Q|rj, pmtn|

∑
Yj

can be solved in O(n2 log2 n) time and O(m2n3 logmn) time, respectively. Xu et al. (2015)

first applied meta-heuristic algorithms to treat problem P |dj = d|
∑
wjYj, in which the

jobs have a common due date. Sterna (2011) provided a comprehensive survey of research

on the late work scheduling.

There is also extensive research on scheduling with the late work criterion in other ma-

chine environments. Kethley and Alidaee (2002) considered the single-machine scheduling

to minimize the modified total weighted late work. The modified weighted late work of

Jj is 0 if Cj ≤ dj, wj(Cj − dj) if dj < Cj ≤ d̄j, and wj(d̄j − dj) otherwise. They pro-

vided some heuristic algorithms and conducted computational experiments to assess their

performance. Ren et al. (2009) showed that scheduling on an unbounded parallel batch

machine to minimize the total late work is binary NP -hard. Ren et al. (2013) showed

that scheduling in an assembling manufacturing system where several suppliers provide

component parts to a manufacturer to minimize the total late work is unary NP -hard.

Wu et al. (2016) studied single-machine scheduling to minimize the total late work with a

position-based learning effect. They provided a branch-and-bound algorithm to solve the

problem and three genetic algorithms to obtain near-optimal solutions. Chen et al. (2016)

considered both offline and online versions of scheduling on parallel identical machines to

minimize the total late work with a common due date. Wang et al. (2017) studied the two-

agent problem 1||
∑
Y

(A)
j : L

(B)
max ≤ U . They presented two pseudo-polynomial dynamic

programming solution algorithms for small-scale instances and a branch-and-bound algo-

rithm for medium-to large-scale instances. Zhang and Wang (2017) and Zhang and Yuan

(2019) studied the two-agent problem 1||
∑
wjY

(A)
j : f

(B)
max ≤ U and presented pseudo-

polynomial-time solution algorithms. Zhang and Yuan (2019) also showed that problem

1|d(A)
j = d(A)|

∑
Y

(A)
j : C

(B)
max ≤ U is binary NP -hard and presented an O(n

∑
p

(A)
j ) time

solution algorithm.

Scheduling with job deadlines is also an active topic in scheduling research. Problem

1|d̄j|
∑
Cj is solvable in O(n log n) time by Smith’s deadline rule in Smith (1956). Lenstra

et al. (1977) showed that problem 1|d̄j|
∑
wjCj is unary NP -hard. A number of branch

and bound algorithms can be found in the literature for this problem, such as Potts and
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Van Wassenhove (1983), Posner (1985), Wenrner (1993) and Pan (2003). For problem

1|d̄j|Tmax, Koulamas and Kyparisis (2001) presented an O(n log n) time algorithm. They

also showed that problem 1|(dj, d̄j)|
∑
Tj is solvable in O(n4

∑
pj) or O(n5 max pj) time,

where “(dj, d̄j)” means that if di ≤ dj then d̄i ≤ d̄j. Yuan (2017) showed that problem

1|d̄j|
∑
Uj is unary NP-harness. Recently, Chen and Yuan (2018a) showed that prob-

lem 1|d̄j|
∑
Tj is unary NP -hard. When the release times and preemption are taken

into consideration, Du and Leung (1993) and Wan et al. (2015) showed that problem

1|rj, d̄j, pmtn|
∑
Cj is NP -hard. He et al. (2014) presented an O(n2) time algorithm for

a special case of problem 1|rj, d̄j, pmtn|
∑
Cj, where release times and processing times

are agreeable. Recently, Chen and Yuan (2018b) showed that problem 1|rj, d̄j, pmtn|
∑
Cj

is unary NP -hard.

For problem P |rj, d̄j, pmtn|−, Horn (1974) showed that this feasibility problem can

be converted to a network flow problem which can be solved in O(n3) time. Labetoulle

et al. (1984) showed that problem P |rj, d̄j, pmtn|Lmax is solvable in O(n3 min{n2, log n+

log pmax}) time, where pmax is the maximum processing time. For problemQ|rj, d̄j, pmtn|−,

Federgruen and Groenevelt (1986) showed that this feasibility problem can be solvable

as a maximum flow problem in O(tn3) time, where t is the number of different machine

speeds. They also showed that problem Q|rj, d̄j, pmtn|Lmax is solvable in O(tn3(log n +

log pmax + log s1)) time, where pmax is the maximum processing time, t is the number of

different machine speeds, and s1 is the largest machine speed. Mokotoff (2001) provided

a comprehensive survey of research on the parallel-machine scheduling.

Our Contributions: The main contributions of this paper are as follows:

In Section 2 we show that problem 1|dj = d, d̄j|
∑
wjYj is binary NP -hard. Then we

develop a dynamic programming algorithm that runs in O(n2d) time and an FPTAS that

runs O(n5/ε) time for problem 1|dj = d, d̄j|
∑
wjYj.

In Section 3 we show that problem 1|d̄j|
∑
Yj is unary NP -hard. Our proof imitates

the unary NP -harness proof for problem 1|d̄j|
∑
Uj in Yuan (2017).

In Section 4 we consider two special cases of problem 1|d̄j|
∑
wjYj in which the jobs

either have a common due date and a unit weight or a common processing time, and show

that the two problems are solvable in O(n log n) time and O(n3) time, respectively.

Finally, in Section 5 we conclude the paper and suggest topics for further research.
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2 Problem 1|dj = d, d̄j|
∑
wjYj

In this section we first show that problem 1|dj = d, d̄j|
∑
wjYj is binary NP -hard. Then

we present an O(n2d) time algorithm and an FPTAS that runs in O(n5/ε) time for this

problem. Since there is no existing method for designing approximation algorithms with

good performance for NP -hard scheduling problems with deadlines in the literature, our

FPTAS may provide a basic foundation for future research in this direction.

2.1 NP -hardness proof

We show the binary NP -hardness of problem 1|dj = d, d̄j|
∑
wjYj by a reduction from

the binary NP -complete Partition problem (Garey and Johnson (1979)).

Partition: Given a set of t+1 positive integers x1, x2, . . . , xt, X such that
∑t

j=1 xj = 2X,

does there exist a partition (I1, I2) of the index set {1, 2, . . . , t} such that
∑

j∈I1 xj =∑
j∈I2 xj = X?

Theorem 2.1. Problem 1|dj = d, d̄j|
∑
wjYj is binary NP -hard.

Proof. For a given instance (x1, x2, . . . , xt, X) of Partition, we define a scheduling instance

of problem 1|dj = d, d̄j|
∑
wjYj in the following way.

The scheduling instance has a total of n = t+ 1 jobs of two types: a restriction job J0

and t normal jobs Jj, j ∈ {1, 2, . . . , t}.

The processing times, weights, due dates, and deadlines of the n jobs are displayed in

Table 1.

Table 1: The scheduling instance

Job Processing time Weight Due date Deadline

J0 p0 = X w0 = 1 d0 = X d̄0 = 2X

Jj pj = xj wj = X + 1 dj = X d̄j = 3X

Let the threshold value for
∑
wjYj be Q = X2 + 2X. The decision asks if there is a

feasible schedule π for the constructed scheduling instance such that
∑
wjYj(π) ≤ Q.

Clearly, the above construction can be performed in polynomial time. We show in the

following that the instance (x1, x2, . . . , xt, X) is a YES instance of Partition if and only if

there is a feasible schedule π for the constructed instance of problem 1|dj = d, d̄j|
∑
wjYj

such that
∑
wjYj(π) ≤ Q.
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Assume that (x1, x2, . . . , xt, X) is a YES instance of Partition. Then {1, 2, . . . , t} can

be partitioned into two subsets I1 and I2 such that
∑

j∈Ii xj = X for each i ∈ {1, 2}.
Set J1 = {Jj : j ∈ I1} and J2 = {Jj : j ∈ I2}. Then we construct a schedule π of the

n = t+ 1 jobs such that they are scheduled in the order: J1 ≺ J0 ≺ J2.

Note that
∑

Jj∈J1 pj =
∑

j∈I1 xj = X and
∑

Jj∈J2 pj =
∑

j∈I2 xj = X. From the

structure of π, the maximum completion time of the jobs of J1 is
∑

Jj∈J1 pj = X, the

completion time of J0 is
∑

Jj∈J1 pj + p0 = 2X, and the maximum completion time of

the jobs of J2 is
∑

Jj∈J1 pj + p0 +
∑

Jj∈J2 pj = 3X. From the definitions of deadlines,

all the jobs meet their deadlines in π, so π is a feasible schedule. Note that all the jobs

have a common due date X. From the definition of late work, Yj(π) = 0 for Jj ∈ J1,

Y0(π) = p0 = X, and Yj(π) = pj = xj for Jj ∈ J2. Then we have
∑
wjYj(π) = w0Y0(π) +∑

Jj∈J2 wjYj(π) = X + (X + 1)
∑

j∈I2 xj = X + (X + 1)X = X2 + 2X = Q. It follows

that π is a feasible schedule for the constructed instance of problem 1|dj = d, d̄j|
∑
wjYj

such that
∑
wjYj(π) ≤ Q.

Conversely, assume that π is a feasible schedule for the constructed instance of problem

1|dj = d, d̄j|
∑
wjYj such that

∑
wjYj(π) ≤ Q. Then we have the following statement.

Statement 1. The completion time of J0 in π is C0(π) = 2X.

Proof of Statement 1. From the feasibility of π and d̄0 = 2X, we have C0(π) ≤ d̄0 = 2X.

Suppose to the contrary that C0(π) ≤ 2X − 1. Since
∑t

j=0 pj = p0 +
∑t

j=1 xj = 3X,

the length of the normal jobs scheduled after J0 is no less than X + 1. Note that p0 = X

and all the jobs have a common due date X = p0 ≤ C0(π). Then the normal jobs

scheduled after J0 are all late. Since wj = X + 1 for each normal job Jj, we have∑
wjYj(π) ≥

∑t
j=1 wjYj(π) ≥ (X + 1)(X + 1) = X2 + 2X + 1 > Q, a contradiction. This

proves Statement 1.

Since p0 = X and d̄j = 3X for each normal job Jj, from Statement 1, the t normal

jobs are exactly scheduled in the time intervals [0, X] and [2X, 3X], respectively. Set

I1 = {j : 1 ≤ j ≤ t, Cj(π) < C0(π)} and I2 = {j : 1 ≤ j ≤ t, Cj(π) > C0(π)}. Then we

have
∑

j∈I1 xj =
∑

j∈I1 pj ≤ X,
∑

j∈I2 xj =
∑

j∈I2 pj ≤ X, and (I1, I2) forms a partition of

{1, 2, . . . , t}. From the fact that
∑

j∈I1 xj+
∑

j∈I2 xj = 2X, we have
∑

j∈I1 xj =
∑

j∈I2 xj =

X. It follows that (I1, I2) is a YES instance of Partition. The result follows.

2.2 A dynamic programming algorithm

From Theorem 2.1, problem 1|dj = d, d̄j|
∑
wjYj is binary NP -hard. We now present a

pseudo-polynomial algorithm to solve this problem. Then both results allow us to classify
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problem 1|dj = d, d̄j|
∑
wjYj as NP -hard in the ordinary sense.

Our idea for designing the pseudo-polynomial algorithm is similar to the methods

proposed for some scheduling problems in the literature such as problem 1||
∑
Yj in Potts

and Van Wassenhove (1992a) and problem F2|dj = d|
∑
wjYj in Blazewicz et al. (2005).

It should be noticed that, in these methods, the critical job or the completion time of the

critical job is enumerated, and the best solution is chosen from all the feasible solutions.

Let TP =
∑n

j=1 pj. If TP ≤ d, we can schedule all the jobs prior to d such that all

the jobs are early. Thus, we assume that TP > d.

In a feasible schedule σ, the unique job Jj with Sj(σ) ≤ d < Sj(σ)+pj ≤ d̄j is called a

critical job, where Sj(σ) is the starting time of Jj in σ. Clearly, there is only one critical

job in any feasible schedule and if Jj is a critical job, then we have d − pj < Sj(σ) ≤
min{d, d̄j − pj}.

Next, we define a restricted problem of problem 1|dj = d, d̄j|
∑
wjYj, where the critical

job J (c) is determined.

Problem P(J (c)): For a job J (c) ∈ J , we define P(J (c)) as a restricted problem of

problem 1|dj = d, d̄j|
∑
wjYj to process the jobs of J , subject to the deadlines on the

single machine without idle times, such that J (c) is the critical job.

Note that for each feasible schedule for problem P(J (c)), the jobs scheduled before

the critical job J (c) are all early and the jobs scheduled after the critical job J (c) are all

late. Obviously, the early jobs scheduled before the critical job J (c) can be scheduled in

an arbitrary order, but the late jobs scheduled after the critical job J (c) must satisfy their

deadlines. Thus, to solve problem P(J (c)), we re-number the jobs of J \ {J (c)} such that

J \ {J (c)} = {J1, J2, . . . , Jn−1} and d̄1 ≤ d̄2 ≤ · · · ≤ d̄n−1. Moreover, for a job Jj and a

time point τ , we use Yj(τ) to denote the late work of job Jj when it starts at time τ and

τ + pj ≤ d̄j. Then we have

Yj(τ) =


0, if τ + pj ≤ d,

τ + pj − d, if τ ≤ d < τ + pj,

pj, if τ > d.

(1)

By the job-shifting argument, we can obtain the following lemma.

Lemma 2.1. For problem P(J (c)), there exists an optimal schedule possessing the follow-

ing properties:

(i) the jobs scheduled before J (c) are processed consecutively with no idle time from time
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0 in an arbitrary order;

(ii) the jobs scheduled after J (c) are scheduled in their index order.

In an optimal schedule π∗ for problem P(J (c)) possessing the properties in Lemma 2.1,

the starting time S(c)(π∗) of job J (c) in π∗ must satisfy S(c)(π∗) ≤ d < S(c)(π∗)+p(c) ≤ d̄(c).

Set τ ∈ {0, 1, . . . , d}, j ∈ {1, 2, . . . , n−1} and τ ′j = TP −(
∑n−1

k=j pk−τ). Based on Lemma

2.1, we provide a dynamic programming algorithm as follows.

We define f
(c)
j (τ) to be minimum value of the total weighted processing times of the

jobs scheduled in the interval [τ ′j, TP ] in a schedule for jobs Jj, Jj+1, . . . , Jn−1, which has

the following properties:

(i) each job in {Jj, Jj+1, . . . , Jn−1} is either scheduled in the interval [0, τ ] or scheduled in

the interval [τ ′j, TP ];

(ii) the jobs in the interval [0, τ ] are scheduled consecutively in an arbitrary order;

(iii) the jobs in the interval [τ ′j, TP ] are scheduled consecutively in their index order,

subject to their deadlines.

Note that job Jj is scheduled in either the interval [0, τ ] or the interval [τ ′j, TP ] as the

first job. In the former case, we have f
(c)
j (τ) = f

(c)
j+1(τ − pj); in the latter case, we have

f
(c)
j (τ) = f

(c)
j+1(τ) +wjpj, provided that τ ′j +pj ≤ d̄j. To guarantee that the recursion runs

correctly, we introduce a dummy job Jn with pn = wn = 0, dn = d, and d̄ = +∞, and

force it to complete at time 0. Then we have f
(c)
n (0) = 0 and f

(c)
n (τ) = +∞ for τ 6= 0.

Consequently, we have the following dynamic programming (DP) for calculating f
(c)
j (τ).

Algorithm DP: For calculating f
(c)
j (τ), j ∈ {1, 2, . . . , n− 1} and τ ∈ {0, 1, . . . , d}.

The initial condition: f
(c)
n (0) = 0 and f

(c)
n (τ) = +∞ for τ 6= 0.

The recursive function: For j ∈ {1, 2, . . . , n− 1} and τ ∈ {0, 1, . . . , d}, we have

f
(c)
j (τ) = min{f (c)

j+1(τ − pj), f (c)
j+1(τ) + wjpj + δ(j, τ ′j)},

where δ(j, τ ′j) = 0 if τ ′j + pj ≤ d̄j, and δ(j, τ ′j) = +∞ if τ ′j + pj > d̄j.

Algorithm DP runs in O(nd) time and yields all the values f
(c)
1 (τ) for τ ∈ {0, 1, . . . , d}.

Note that J (c) is the unique critical job in every feasible schedule for problem P(J (c)). If

τ is the starting time of J (c), then τ ≤ d < τ + p(c) ≤ d̄(c), implying that the late work of

J (c) is Y (c)(τ) = τ + p(c) − d. By Lemma 2.1, we derive the following result.

Lemma 2.2. The optimal value of problem P(J (c)) is given by

min{w(c)Y (c)(τ) + f
(c)
1 (τ) : τ ≤ d < τ + p(c) ≤ d̄(c)}.

9



The value τ in Lemma 2.2 has at most O(d) choices, which is dominated by Algorithm

DP. Thus, problem P(J (c)) is solvable in O(nd) time. Since problem 1|dj = d, d̄j|
∑
wjYj

can be solved by enumerating J (c) ∈ J , solving problem P(J (c)) for each J (c) and picking

the best solution, we obtain the following result.

Theorem 2.2. Problem 1|dj = d, d̄j|
∑
wjYj is solvable in O(n2d) time.

To better understand our pseudo-polynomial algorithm, we provide the whole process

for solving problem 1|dj = d, d̄j|
∑
wjYj in the following algorithm.

Algorithm DP′: For problem 1|dj = d, d̄j|
∑
wjYj.

Step 1: For each job J (c) ∈ J , do the following:

– Define J (c) to be the critical job and create an instance of problem P(J (c)).

– Invoke Algorithm DP for problem P(J (c)) and obtain the values {f (c)
1 (τ) : τ ∈

{0, 1, . . . , d}}.

– Compute WY (c) := min{w(c)Y (c)(τ) + f
(c)
1 (τ) : τ ≤ d < τ + p(c) ≤ d̄(c)}, which is the

optimal value of problem P(J (c)).

Step 2: Enumerate all the jobs J (c) ∈ J and compute the value minJ(c)∈J WY (c), which

is the optimal value of problem 1|dj = d, d̄j|
∑
wjYj.

2.3 An FPTAS for problem 1|dj = d, d̄j|
∑
wjYj

Recall that TP =
∑

Jj∈J pj. If TP ≤ d, then every schedule is optimal. Thus, we assume

in the sequel that TP > d, which guarantees that
∑n

j=1 wjYj(σ) > 0 for every feasible

schedule σ.

In Section 2.2 we used the auxiliary problem P(J (c)) to obtain a pseudo-polynomial-

time algorithm for problem 1|dj = d, d̄j|
∑
wjYj. However, we have no idea on designing

an FPTAS for problem 1|dj = d, d̄j|
∑
wjYj based on Algorithm DP directly. In fact,

in problem P(J (c)), the restriction S(c)(σ) ≤ d < S(c)(σ) + p(c) ≤ d̄(c) for a feasible

schedule σ hinders the design of an FPTAS for problem 1|dj = d, d̄j|
∑
wjYj. So we

adopt a roundabout approach in this section to design an FPTAS for the problem. In

the following, we first consider an artificial scheduling problem, denoted as P(J (c), J (e)),

for each pair of jobs (J (c), J (e)) ∈ J , in which the above restriction for J (c) in a feasible

schedule σ is relaxed to S(c)(σ) ≤ d and another job J (e) is introduced to restrict the jobs

scheduled after J (c).

Problem P(J (c), J (e)): For a pair of jobs (J (c), J (e)) ∈ J , we define P(J (c), J (e)) as the

10



scheduling problem to process the jobs of J , subject to the deadlines on the single machine

without idle times, such that

(i) in a feasible schedule, J (c) must start no later than time d,

(ii) in a feasible schedule, J (e) must be scheduled after J (c) and w(e)p(e) is the maximum

value of wjpj among all the jobs Jj scheduled after J (c),

(iii) the objective value of a feasible schedule σ is F (c,e)(σ) =
∑n

j=1 Zj(σ), where

– Z(c)(σ) = w(c)Y (c)(σ),

– Zj(σ) = 0 if Jj is scheduled before J (c) in σ, and

– Zj(σ) = wjpj if Jj is scheduled after J (c) in σ, and

(iv) the goal of problem P(J (c), J (e)) is to find a feasible schedule σ such that F (c,e)(σ) =∑n
j=1 Zj(σ) is as small as possible. We use F ∗(c, e) to denote the optimal value of problem

P(J (c), J (e)). In the case of infeasibility, we define F ∗(c, e) = +∞.

We next present a useful lemma.

Lemma 2.3. Let σ be a feasible schedule for problem P(J (c), J (e)). Then σ is also a

feasible schedule for problem 1|dj = d, d̄j|
∑
wjYj. Moreover, we have

w(e)p(e) ≤
∑

j:Jj∈J\{J(c)}

Zj(σ) ≤ (n− 1)w(e)p(e) (2)

and
n∑
j=1

wjYj(σ) ≤
n∑
j=1

Zj(σ). (3)

Proof. Since σ is a feasible schedule for problem P(J (c), J (e)), each job meets its deadline

in σ. Hence, σ is also a feasible schedule for problem 1|dj = d, d̄j|
∑
wjYj.

The relations (2) follow from the fact that w(e)p(e) = max{Zj(σ) : Jj ∈ J \ {J (c)}}
and J (e) ∈ J \ {J (c)}.

The relation (3) follows from the observation that Zj(σ) ≥ wjYj(σ) for all Jj ∈ J .

To solve problem P(J (c), J (e)), we perform a preprocessing procedure for instance J .

Preprocessing: Define

J (c,e)
1 = {Ji ∈ J \ {J (c)} : wipi > w(e)p(e)}

and

J (c,e)
2 = {Ji ∈ J \ {J (c)} : wipi ≤ w(e)p(e)}.

11



Let m = |J (c,e)
2 |. Re-number the jobs of J (c,e)

2 such that J (c,e)
2 = {J1, J2, . . . , Jm} and

d̄1 ≥ d̄2 ≥ · · · ≥ d̄m.

Sorting the jobs in nondecreasing order of their weighted processing times, we see

that the two sets J (c,e)
1 and J (c,e)

2 can be obtained in O(n log n) time. Moreover, the

sorted sequence d̄1 ≥ d̄2 ≥ · · · ≥ d̄m can be obtained in O(n log n) time. Thus, the

preprocessing procedure can be performed in O(n log n) time, which is dominated by the

time complexity of the following algorithms.

Note that J (e) ∈ J (c,e)
2 , J (c,e)

1 ∩ J (c,e)
2 = ∅, and J = {J (c)} ∪ J (c,e)

1 ∪ J (c,e)
2 . For any

subset J ′ ⊆ J , let p(J ′) be the total processing time of the jobs of J ′. In any feasible

schedule, the jobs of J (c,e)
1 must be processed before J (c) and J (e) must be processed

after J (c). Thus, if p(J (c,e)
1 ) > d, then problem P(J (c), J (e)) is infeasible. Suppose in the

following that p(J (c,e)
1 ) ≤ d. Without loss of generality, we only consider the schedules in

which the jobs of J (c,e)
1 occupy the interval [0, p(J (c,e)

1 )].

Sets of States: For each j = 1, 2, . . . ,m, we use Ω
(c,e)
j to denote the set of all the states

(τ (c,e), f (c,e)) associated with the pair of jobs (J (c), J (e)) such that each state (τ (c,e), f (c,e)) ∈
Ω

(c,e)
j corresponds to a schedule for the jobs of {J1, J2, . . . , Jj} with the following proper-

ties:

(i) the jobs of {J1, J2, . . . , Jj} occupy the two intervals [p(J (c,e)
1 ), τ (c,e)] and [τ

′(c,e)
j , TP ],

where p(J (c,e)
1 ) ≤ τ (c,e) ≤ d and τ

′(c,e)
j = TP − (

∑j
k=1 pk + p(J (c,e)

1 )− τ (c,e)),

(ii) the jobs in the interval [p(J (c,e)
1 ), τ (c,e)] are scheduled consecutively in an arbitrary

order and the jobs in the interval [τ
′(c,e)
j , TP ] are scheduled consecutively in their reversed

index order, subject to their deadlines,

(iii) J (e) must be scheduled in the interval [τ
′(c,e)
j , TP ] completely, and

(iv) f (c,e) is the sum of the values wipi of the jobs scheduled in the interval [τ
′(c,e)
j , TP ].

Note that in a feasible schedule for scheduling the jobs J1, J2, . . . , Jj, job Jj is scheduled

either in the interval [p(J (c,e)
1 ), τ (c,e)], subject to the restriction Jj 6= J (e), or in the interval

[τ
′(c,e)
j , p(J )] as the first job, subject to the deadline d̄j. For a state (τ

(c,e)
j−1 , f

(c,e)
j−1 ) ∈

Ω
(c,e)
j−1 , we have (τ (c,e), f (c,e)) = (τ

(c,e)
j−1 + pj, f

(c,e)
j−1 ) in the former case and (τ (c,e), f (c,e)) =

(τ
(c,e)
j−1 , f

(c,e)
j−1 + wjpj) in the latter case. If Jj = J (e), then only the latter happens. Note

that if τ (c,e) is the starting time of J (c), then the late work of J (c) is Y (c)(τ (c,e)), as defined

in (1). Next, we provide the following dynamic programming algorithm to solve problem

P(J (c), J (e)).

Algorithm DP (J (c), J (e)): For problem P(J (c), J (e)).

Step 1: Initially, set Ω
(c,e)
0 = {(p(J (c,e)

1 ), 0)}.
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Step 2: For j = 1, 2, . . . ,m, do the following:

Generating Ω
(c,e)
j : For every state (τ (c,e), f (c,e)) ∈ Ω

(c,e)
j−1 , do the following to generate

the next state set Ω
(c,e)
j :

(2.1) Put (τ (c,e) + pj, f
(c,e)) in Ω

(c,e)
j if τ (c,e) + pj ≤ d and Jj 6= J (e),

(2.2) Put (τ (c,e), f (c,e) + wjpj) in Ω
(c,e)
j if τ

′(c,e)
j + pj ≤ d̄j,

(2.3) If there are two states (τ, f ′) and (τ, f ′′) in Ω
(c,e)
j such that f ′ ≤ f ′′, then delete

the state (τ, f ′′) from Ω
(c,e)
j . This procedure is repeated until no two states in Ω

(c,e)
j have

a common τ value.

Note that if Ω
(c,e)
j = ∅ after the procedure Generating Ω

(c,e)
j for some j, then problem

P(J (c), J (e)) is infeasible.

Step 3: Calculate the optimal value of problem P(J (c), J (e)) by

F (c,e) = min
(τ (c,e),f (c,e))∈Ω

(c,e)
m

{w(c)Y (c)(τ (c,e)) + f (c,e) : τ (c,e) + p(c) ≤ d̄(c)}.

Then generate the schedule σ(c,e) corresponding to F (c,e) by backtracking. In the case

where F (c,e) = +∞, problem P(J (c), J (e)) is infeasible and we just set σ(c,e) = ∅.

Step 4: Output the optimal value F (c,e) and the optimal schedule σ(c,e).

Clearly, when J (c) and J (e) are given and problem P(J (c), J (e)) is feasible, Algorithm

DP (J (c), J (e)) solves problem P(J (c), J (e)). Since each Ω
(c,e)
j has at most O(d) states,

Algorithm DP (J (c), J (e)) runs in O(nd) time. We need not consider this time complexity

because Algorithm DP (J (c), J (e)) is just an intermediate step for our FPTAS.

In the following we design an FPTAS for problem P(J (c), J (e)) based on Algorithm

DP (J (c), J (e)). We embed the feasibility checking in the algorithm.

Given an arbitrary constant ε > 0, define ν := d (n−1)2

ε
e and µ := (n−1)w(e)p(e)

ν
. We

partition the interval [0, (n− 1)w(e)p(e)] into ν subintervals

Iy = [(y − 1)µ, yµ], y = 1, 2, . . . , ν, (4)

of equal lengths µ. Then we present the following approximation algorithm for problem

P(J (c), J (e)).

Algorithm A
(c,e)
ε : For problem P(J (c), J (e)).

Step 1: Initially, set Ω̃
(c,e)
0 = {(p(J (c,e)

1 ), 0)}.

Step 2: For j = 1, 2, . . . ,m, do the following:

Generating Ω̃
(c,e)
j : For every state (τ (c,e), f (c,e)) ∈ Ω̃

(c,e)
j−1 , do the following to generate

the next state set Ω̃
(c,e)
j :
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(2.1) Put (τ (c,e) + pj, f
(c,e)) in Ω̃

(c)
j if τ (c,e) + pj ≤ d and Jj 6= J (e);

(2.2) Put (τ (c,e), f (c,e) + wjpj) in Ω̃
(c,e)
j if τ

′(c,e)
j + pj ≤ d̄j.

(2.3) If the current Ω̃
(c,e)
j is not empty, then for every y ∈ {1, 2, . . . , ν} with

{(τ, f) ∈ Ω̃
(c,e)
j : f ∈ Iy} 6= ∅,

we define (τ
(c,e)
y , f

(c,e)
y ) as the state in {(τ, f) ∈ Ω̃

(c,e)
j : f ∈ Iy} such that τ

(c,e)
y is as small

as possible.

(2.4) Reset Ω̃
(c,e)
j = {(τ (c,e)

y , f
(c,e)
y ) : 1 ≤ y ≤ ν, {(τ, f) ∈ Ω̃

(c,e)
j : f ∈ Iy} 6= ∅}.

Step 3: Calculate the approximation value of problem P(J (c), J (e)) by

F̃ (c,e)
ε = min

(τ (c,e),f (c,e))∈Ω̃
(c,e)
m

{w(c)(τ (c,e) + p(c) − d) + f (c,e) : τ (c,e) + p(c) ≤ d̄(c)}.

Then generate the schedule σ
(c,e)
ε corresponding to F̃

(c,e)
ε by backtracking. In the case

where F̃
(c,e)
ε = +∞, problem P(J (c), J (e)) is infeasible, so we set σ

(c,e)
ε = ∅.

Step 4: Output the approximation value F̃
(c,e)
ε and the approximation schedule σ

(c,e)
ε .

Since each Ω̃
(c,e)
j in Algorithm A

(c,e)
ε has at most ν = d (n−1)2

ε
e states, we have the

following lemma.

Lemma 2.4. Algorithm A
(c,e)
ε runs in O(nν) = O(n3/ε) time.

Lemma 2.5. Let (J (c), J (e)) be a pair of jobs of J such that problem P(J (c), J (e)) is

feasible. Then, for each j ∈ {0, 1, . . . ,m} and for each state (τ (c,e), f (c,e)) ∈ Ω
(c,e)
j , Algo-

rithm A
(c,e)
ε generates at least one state (τ̃ (c,e), f̃ (c,e)) ∈ Ω̃

(c,e)
j such that τ̃ (c,e) ≤ τ (c,e) and

f̃ (c,e) ≤ f (c,e) + jµ.

Proof. We prove the lemma by induction on j. From Algorithm DP (J (c), J (e)) and Algo-

rithm A
(c,e)
ε , we have Ω

(c,e)
0 = Ω̃

(c,e)
0 . Hence, the lemma holds for j = 0.

Suppose in the following that the lemma holds up to j − 1. Let (τ (c,e), f (c,e)) be a

state in Ω
(c,e)
j . Then Algorithm DP (J (c), J (e)) introduces this state into Ω

(c,e)
j when job

Jj is added to some feasible state for jobs J1, . . . , Jj−1. This means that there is a state

(τ
(c,e)
j−1 , f

(c,e)
j−1 ) ∈ Ω

(c,e)
j−1 such that either (τ (c,e), f (c,e)) = (τ

(c,e)
j−1 + pj, f

(c,e)
j−1 ) or (τ (c,e), f (c,e)) =

(τ
(c,e)
j−1 , f

(c,e)
j−1 + wjpj). Since (τ

(c,e)
j−1 , f

(c,e)
j−1 ) ∈ Ω

(c,e)
j−1 , from the induction hypothesis, there

exists some state (τ̃ , f̃) ∈ Ω̃
(c,e)
j−1 such that

τ̃ ≤ τ
(c,e)
j−1 and f̃ ≤ f

(c,e)
j−1 + (j − 1)µ. (5)

We distinguish the following two cases.
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Case 1: (τ (c,e), f (c,e)) = (τ
(c,e)
j−1 + pj, f

(c,e)
j−1 ). Since (τ̃ , f̃) ∈ Ω̃

(c,e)
j−1 and τ̃ ≤ τ

(c,e)
j−1 from (5),

we have τ̃ + pj ≤ τ
(c,e)
j−1 + pj = τ (c,e) ≤ d. Consequently, the state (τ̃ + pj, f̃) enters

Ω̃
(c,e)
j in Step (2.1) of Algorithm A

(c,e)
ε in iteration j. Assume that f̃ ∈ Iy for some

y = 1, 2, . . . , ν. Then, at the end of Step (2.4) of Algorithm A
(c,e)
ε in iteration j, there is a

state (τ̃ (c,e), f̃ (c,e)) ∈ Ω̃
(c,e)
j such that τ̃ (c,e) ≤ τ̃ + pj and f̃ (c,e), f̃ ∈ Iy. Recall from (4) that

Iy = [(y − 1)µ, yµ).

Now, from (5), we have

τ̃ (c,e) ≤ τ̃ + pj ≤ τ
(c,e)
j−1 + pj = τ (c,e)

and

f̃ (c,e) ≤ f̃ + µ ≤ f
(c,e)
j−1 + (j − 1)µ+ µ = f (c,e) + jµ.

Then (τ̃ (c,e), f̃ (c,e)) is a required state in Ω̃
(c,e)
j .

Case 2: (τ (c,e), f (c,e)) = (τ
(c,e)
j−1 , f

(c,e)
j−1 +wjpj). Since (τ̃ , f̃) ∈ Ω̃

(c,e)
j−1 and τ̃ ≤ τ

(c,e)
j−1 = τ (c,e) ≤

d, we have τ̃ ′j = TP−(
∑j

k=1 pk+p(J (c,e)
1 )−τ̃) ≤ TP−(

∑j
k=1 pk+p(J (c,e)

1 )−τ (c,e)) = τ
′(c,e)
j .

Then τ̃ ≤ d and τ̃ ′j + pj ≤ τ
′(c,e)
j + pj ≤ d̄j. Consequently, the state (τ̃ , f̃ + wjpj) enters

Ω̃
(c,e)
j in Step (2.2) of Algorithm A

(c,e)
ε in iteration j. Assume that f̃ +wjpj ∈ Iy for some

y = 1, 2, . . . , ν. Then, at the end of Step (2.4) of Algorithm A
(c,e)
ε in iteration j, there is

a state (τ̃ (c,e), f̃ (c,e)) ∈ Ω̃
(c,e)
j such that τ̃ (c,e) ≤ τ̃ and f̃ (c,e), f̃ + wjpj ∈ Ix.

Now, from (5), we have

τ̃ (c,e) ≤ τ̃ ≤ τ
(c,e)
j−1 = τ (c,e)

and
f̃ (c,e) ≤ f̃ + wjpj + µ

≤ f
(c,e)
j−1 + (j − 1)µ+ wjpj + δ(j, τ̃ ′) + µ

= f
(c,e)
j−1 + wjpj + jµ

= f (c,e) + jµ.

It follows that (τ̃ (c,e), f̃ (c,e)) is a required state in Ω̃
(c,e)
j .

From the above discussion, the result follows from the principle of induction.

Recall that F ∗(c, e) is the optimal value of problem P(J (c), J (e)).

Lemma 2.6. Assume that J (c) and J (e) are a pair of jobs of J such that problem

P(J (c), J (e)) is feasible. Then, for an arbitrary constant ε > 0, Algorithm A
(c,e)
ε outputs a

feasible schedule σε = σ
(c,e)
ε with the function value F̃

(c,e)
ε such that F̃

(c,e)
ε ≤ (1+ε)F ∗(c, e).

15



Proof. Let σ∗ be the optimal schedule for problem P(J (c), J (e)) that is obtained by Algo-

rithm DP (J (c), J (e)). Then σ∗ is associated with a state (τ (c,e), f (c,e)) in Ω
(c,e)
m . It follows

that

τ (c,e) + p(c) ≤ d̄(c) (6)

and

F ∗(c, e) = w(c)Y (c)(τ (c,e)) + f (c,e). (7)

From Lemma 2.5, there exists a state (τ̃ , f̃) in Ω̃
(c,e)
m such that

τ̃ ≤ τ (c,e) (8)

and

f̃ ≤ f (c,e) +mµ ≤ f (c,e) + (n− 1)µ. (9)

From (6) and (8), we have τ̃ +p(c) ≤ τ (c,e) +p(c) ≤ d̄(c). This means that there is a feasible

schedule, denoted by π, for problem P(J (c), J (e)) such that
∑n

j=1 Zj(π) = w(c)Y (c)(τ̃) + f̃ .

Since Algorithm A
(c,e)
ε outputs the feasible schedule σε = σ

(c,e)
ε for problem P(J (c), J (e))

with the objective value F̃
(c,e)
ε , we have

F̃ (c,e)
ε ≤ w(c)Y (c)(τ̃) + f̃ . (10)

Note that the relation τ̃ ≤ τ (c,e) in (8) implies that Y (c)(τ̃) ≤ Y (c)(τ (c,e)). Thus, from

(2), (7), (9), and (10), we have

F̃
(c,e)
ε ≤ w(c)Y (c)(τ̃) + f̃

≤ w(c)Y (c)(τ (c,e)) + f̃

≤ w(c)Y (c)(τ (c,e)) + f (c,e) + (n− 1)µ

= w(c)Y (c)(τ (c,e)) + f (c,e) + (n− 1) (n−1)w(e)p(e)

ν

= F ∗(c, e) + (n−1)2w(e)p(e)

ν
= F ∗(c, e) + (n−1)2w(e)p(e)

d (n−1)2

ε
e

≤ F ∗(c, e) + εw(e)p(e) ≤ F ∗(c, e) + εF ∗(c, e)

= (1 + ε)F ∗(c, e),

as required.

Recall that TP =
∑

Jj∈J pj. For each job J (c) ∈ J , let π(c) be the schedule of J in

which J (c) is the last job. If TP − p(c) ≤ d and TP ≤ d̄(c), then π(c) is a feasible schedule

for problem P(J (c)). The objective value of π(c), denoted F (π(c)), is

F (π(c)) = w(c)(TP − d).
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Alternatively, if either TP − p(c) > d or TP > d̄(c), then π(c) is not a feasible schedule for

problem P(J (c)). In this case, we define

F (π(c)) = +∞.

Now we present an FPTAS for problem 1|dj = d, d̄j|
∑
wjYj by using Algorithm A

(c,e)
ε

as a subroutine.

Algorithm Aε: For problem 1|dj = d, d̄j|
∑
wjYj.

Input: A problem instance with a set of jobs J and an constant ε > 0.

Step 1: For each job J (c) ∈ J , set π(c) as an arbitrary schedule of J in which J (c) is the

last job. If TP − p(c) ≤ d and TP ≤ d̄(c), then set F (π(c)) = w(c)(TP − d). Otherwise, set

F (π(c)) = +∞.

Step 2: For each pair of jobs (J (c), J (e)) ∈ J , run Algorithm A
(c,e)
ε to obtain the approx-

imation value F̃
(c,e)
ε and the approximation schedule σ

(c,e)
ε for problem P(J (c), J (e)).

Step 3: Calculate

F̃ε = min

{
min{F (π(c)) : J (c) ∈ J },

min{F̃ (c,e)
ε : J (c), J (e) ∈ J }

and determine the corresponding schedule σε as follows:

– If F̃ε = F (π(c)) for some J (c) ∈ J , then set σε = π(c);

– If F̃ε = F̃
(c,e)
ε for some J (c), J (e) ∈ J , and F̃ε < min{F (π(c)) : J (c) ∈ J }, then set

σε = σ
(c,e)
ε .

Step 4: Calculate Fε =
∑n

j=1wjYj(σε).

Output: The approximation value Fε and the approximation schedule σε for problem

1|dj = d, d̄j|
∑
wjYj.

Lemma 2.7. Fε ≤ F̃ε.

Proof. If F̃ε = F (π(c)) for some J (c) ∈ J , then σε = π(c). In this case, Fε =
∑n

j=1 wjYj(σε) =∑n
j=1wjYj(π

(c)) = F (π(c)) = F̃ε.

Suppose in the following that F̃ε < min{F (π(c)) : J (c) ∈ J }. Then F̃ε = F̃
(c,e)
ε and σε =

σ
(c,e)
ε for some J (c), J (e) ∈ J . Then σε is a feasible schedule for problem P(J (c), J (e)) such

that
∑n

j=1 Zj(σε) = F̃ε. From Lemma 2.3, we have Fε =
∑n

j=1wjYj(σε) ≤
∑n

j=1 Zj(σε) =

F̃ε. This proves the lemma.
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Theorem 2.3. For problem 1|dj = d, d̄j|
∑
wjYj, Algorithm Aε is a (1+ε)-approximation

algorithm of running time O(n5/ε).

Proof. The time complexity of Algorithm Aε is determined by Step 2, in which we invoke

Algorithm A
(c,e)
ε for each pair of jobs (J (c), J (e)) ∈ J . From Lemma 2.4, for each given

pair (J (c), J (e)), Algorithm A
(c,e)
ε runs in O(n3/ε) time. Since we have a total of O(n2)

choices for (J (c), J (e)), Step 2 of Algorithm Aε runs in O(n5/ε) time.

Now let π∗ be an optimal schedule for problem 1|dj = d, d̄j|
∑
wjYj. Let J (c∗) be the

critical job in π∗. To complete the proof, it suffices to show that

Fε ≤ (1 + ε)
n∑
j=1

wjYj(π
∗). (11)

If J (c∗) is the last job in π∗, from Lemma 2.7, we have
∑n

j=1wjYj(π
∗) =

∑n
j=1 wjYj(π

(c∗)) =

F (π(c∗)) ≥ F̃ε ≥ Fε, as required in (11).

Suppose in the following that J (c∗) is not the last job in π∗. Let J (e∗) be a job with the

largest weighted processing time scheduled after J (c∗) in π∗. Then π∗ is also an optimal

schedule for problem P(J (c∗), J (e∗)), so
∑n

j=1wjYj(π
∗) =

∑n
j=1 Zj(π

∗) = F ∗(c∗, e∗). From

Lemmas 2.6 and 2.7, we have Fε ≤ F̃ε ≤ F̃
(c,e)
ε ≤ (1+ε)F ∗(c∗, e∗) = (1+ε)

∑n
j=1wjYj(π

∗),

as required in (11).

3 Problem 1|d̄j|
∑
Yj

In this section, we show the unary NP -hardness of problem 1|d̄j|
∑
Yj by a reduction from

the 3-Partition problem, which is known to be unary NP -complete (see, e.g., Garey and

Johnson, 1979). Our proof imitates the unary NP -harness proof for problem 1|d̄j|
∑
Uj

in Yuan (2017).

3-Partition: Given a set of 3t+1 positive integers x1, x2, . . . , x3t, X such that
∑3t

j=1 xj =

tX and X/4 < xj < X/2 for each j with 1 ≤ j ≤ 3t, does there exist a partition

(I1, I2, . . . , It) of the index set {1, 2, . . . , 3t} such that |Ii| = 3 and
∑

j∈Ii xj = X for each

i with 1 ≤ i ≤ t?

Without loss of generality, we assume that t ≥ 2 and the 3t positive integers in the

instance of 3-Partition are sorted such that x1 ≤ x2 ≤ · · · ≤ x3t in the sequel. Given an
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instance (x1, x2, . . . , x3t, X) of 3-Partition, we define
∆2 = 3t3X,

∆1 = 3t3(∆2 +X),

H = 3t(∆1 + t∆2 + tX) + 1.

(12)

Then we have ∆1 < 12t6X and H < (3t + 1)∆1. An instance of the scheduling problem

1|d̄j|
∑
Yj, called scheduling instance, can be constructed as follows.

There are totally n = 3t2 + 1 jobs of two types: a restriction job J0 and 3t2 normal

jobs Ji,j, i ∈ {1, 2, . . . , t} and j ∈ {1, 2, . . . , 3t}. For each i with 1 ≤ i ≤ t, we set

J (i) = {Ji,j : 1 ≤ j ≤ 3t}, and for each j with 1 ≤ j ≤ 3t, we set Jj = {Ji,j : 1 ≤ i ≤ t}.
Then {Ji,j} = J (i) ∩ Jj for i ∈ {1, 2, . . . , t} and j ∈ {1, 2, . . . , 3t}. The processing times,

due dates, and deadlines of the n jobs are displayed in Table 2.

Table 2: The scheduling instance

Job Processing time Due date Deadline

J0 p0 = H d0 = H + 1
t

∑t
i=1 p(J (i)) d̄0 = d0

Ji,j pi,j = ∆1 + i∆2 + ixj di,j = j(∆1 + t∆2 + tX) d̄i,j = H + 1
t

∑i−1
k=1 p(J (k)) +

∑t
k=i p(J (k))

Note that

max
i,j
{di,j} < H (13)

and the total processing time of the jobs of J (i) is given by

p(J (i)) = 3t∆1 + 3ti∆2 + tiX, for each i ∈ {1, 2, . . . , t}. (14)

The threshold value for the total late work is given by

Q = t(t− 1)(3∆1 +
3(t+ 1)

2
∆2 +

t+ 1

2
X) =

t− 1

t

t∑
i=1

p(J (i)).

The decision asks if there is a feasible schedule π for the constructed scheduling instance

such that
∑
Yj(π) ≤ Q, i.e.,

∑t
i=1

∑3t
j=1 Yi,j(π) + Y0(π) ≤ Q. For convenience, we call

such a schedule σ a desired schedule in the sequel.

In the constructed scheduling instance, there are at most 9t2 + 4 numbers and the

largest one is d̄1,t = H +
∑t

i=1 p(J (i)) < (3t+ 1)∆1 + t(3t+ 1)∆1 < 7t2 · 12t6X = 84t8X,

which is a polynomial in t and X. Thus, the instance construction can be performed in

polynomial time in unary encoding.
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From the definition of ∆1 and ∆2, we have

∆1−
3t(t− 1)(t+ 1)

2
∆2−

t(t− 1)(t+ 1)

2
X > 3t3(∆2+X)−3t3

2
∆2−

t3

2
X >

3t3

2
(∆2+X) > 0,

and

∆2 −
t(t− 1)(t+ 1)

2
X > 3t3X − t3

2
X =

5t3

2
X > 0.

From the above two inequalities, together with the definition of Q, we have

Q < (3t2 − 3t+ 1)∆1 (15)

and

Q < (3t− 3)(t∆1 +
t(t+ 1)

2
∆2) + ∆2. (16)

The following two lemma reveals some important properties of a desired schedule.

Lemma 3.1. Let π be a desired schedule. Then Y0(π) = 0 and exactly 3t normal jobs are

scheduled before J0 in π.

Proof. Given the feasibility of π and by the relation d0 = d̄0, J0 must be early in π.

Thus, Y0(π) = 0. Note that each normal job has a processing time greater than ∆1 and
1
t

∑t
i=1 p(J (i)) = 3t∆1 + 3t(t+1)

2
∆2 + t(t+1)

2
X < (3t+ 1)∆1.

If more than 3t normal jobs are scheduled before J0 in π, then C0(π) > H+(3t+1)∆1 >

H + 1
t

∑t
j=1 p(J (i)) = d̄0, a contradiction.

If fewer than 3t normal jobs are scheduled before J0 in π, then at least 3t2 − 3t + 1

normal jobs are scheduled after J0. From (13) and the relation p0 = H, all the normal

jobs scheduled after J0 are late in π. Thus,
∑
Yj(π) > (3t2 − 3t + 1)∆1. From (15), we

conclude that
∑
Yj(π) > Q, a contradiction again.

Now the lemma follows from the above discussion.

Lemma 3.2. Let π be a desired schedule. Then each J (i) with 1 ≤ i ≤ t contains exactly

three early jobs in π.

Proof. For each i ∈ {1, 2, . . . , t}, we use V(i) = V(i)(π) to denote the set of jobs of J (i)

that are early in π. From Lemma 3.1, we have

|V(1)|+ |V(2)|+ · · ·+ |V(t)| = 3t. (17)

In the following, we will show that |V(i)| = 3 for each i ∈ {1, 2, . . . , t}.
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Note that J0 meets its deadline d̄0 in π and all the jobs of V(1) ∪ V(2) ∪ · · · ∪ V(t) are

scheduled before job J0 in π. Since p0 = H and d̄0 = H + 3t∆1 + 3t(t+1)
2

∆2 + t(t+1)
2
X, we

have

p(V(1)) + p(V(2)) + · · ·+ p(V(t)) ≤ 3t∆1 +
3t(t+ 1)

2
∆2 +

t(t+ 1)

2
X. (18)

For each i ∈ {1, 2, . . . , t − 1}, all the jobs of {J0} ∪ V(1) ∪ V(2) ∪ · · · ∪ V(i) and J (t) ∪
J (t−1)∪ · · · ∪J (i+1) are completed by the common deadline of the t normal jobs of J (i+1)

in π, subject to the deadlines. This means that H + p(V(1)) + p(V(2)) + · · · + p(V(i)) +

p(J (t)) + p(J (t−1)) + · · · + p(J (i+1)) ≤ H + 1
t

∑i
k=1 p(J (k)) +

∑t
k=i+1 p(J (k)). Then we

have p(V(1)) + p(V(2)) + · · ·+ p(V(i)) ≤ 1
t

∑i
k=1 p(J (k)). From (14), we have

p(V(1))+p(V(2))+ · · ·+p(V(i)) ≤ 3i∆1 +
3i(i+ 1)

2
∆2 +

i(i+ 1)

2
X, i = 1, 2, . . . , t−1. (19)

From (18) and (19) and by using the same discussion in Yuan (2017), we have that

|V(t)|+ |V(t−1)|+ · · ·+ |V(i+1)| = 3(t− i) for every index i with 0 ≤ i ≤ t− 1. This further

implies that |V(i)| = 3 for each i ∈ {1, 2, . . . , t}, i.e., each J (i) has exactly three early jobs

in π, 1 ≤ i ≤ t. The lemma follows.

We show in the following that (x1, x2, . . . , x3t, X) is a YES instance of 3-Partition if

and only if there is a desired schedule π for the scheduling instance.

The “if” part proof: Assume that (x1, x2, . . . , x3t, X) is a YES instance of 3-Partition.

Then {1, 2, . . . , 3t} can be partitioned into t subsets I1, I2, . . . , It, each of size three, such

that
∑

j∈Ii xj = X for each i ∈ {1, 2, . . . , t}. We define a schedule π of the n = 3t2 + 1

jobs in the following way:

– For each j ∈ {1, 2, . . . , 3t}, let i(j) be the unique index in {1, 2, . . . , t} so that

j ∈ Ii(j).

– Set V = {Ji(1),1, Ji(2),2, . . . , Ji(3t),3t}.

– The n = 3t2 + 1 jobs are scheduled in the following order in π:

Ji(1),1 ≺ Ji(2),2 ≺ · · · ≺ Ji(3t),3t ≺ J0 ≺ J (t) \ V ≺ J (t−1) \ V ≺ · · · ≺ J (1) \ V .

From the definition of schedule π, we have |V∩J (i)| = |Ii| = 3 for each i ∈ {1, 2, . . . , t}.
Let V(i) = V ∩ J (i), 1 ≤ i ≤ t. From the definition of pi,j and the definition of

(I1, I2, . . . , It), we have

p(V(i)) = 3∆1 + 3i∆2 + iX =
1

t
p(J (i)) for each i = 1, 2, . . . , t. (20)

The completion time of J0 in π is C0(π) =
∑t

i=1 p(V(i)) + p0 = H + 1
t

∑t
i=1 p(J (i)) = d0,

so J0 is early in π.
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For each i ∈ {1, 2, . . . , t}, all the normal jobs of J (i) have a common deadline, denoted

by

d̄(i) = H +
1

t

i−1∑
k=1

p(J (k)) +
t∑
k=i

p(J (k)). (21)

By the structure of π, the maximum completion time of the jobs of J (i) with 1 ≤ i ≤ t

is p0 + p(V(1)) + p(V(2)) + · · · + p(V(i−1)) + p(J (t)) + p(J (t−1)) + · · · + p(J (i)) = H +
1
t

∑i−1
k=1 p(J (k)) +

∑t
k=i p(J (k)) = d̄(i). Thus, all the normal jobs meet their deadlines in

π. It follows that π is a feasible schedule.

Note that each normal job has a processing time less than ∆1 + t∆2 + tX. Then the

completion time of Ji(j),j is less than j(∆1 + t∆2 + tB) = di(j),j. So the first 3t normal jobs

in π are early, i.e., Yi(j),j(π) = 0, 1 ≤ j ≤ 3t. From (13) and the fact that p0 = H, the

normal jobs scheduled after J0 are all late, so their late work is given by their processing

times. Moreover, since J0 is early in π, we have Y0(π) = 0. Thus, from (14) and (20), we

have ∑t
i=1

∑3t
j=1 Yi,j(π) + Y0(π) =

∑t
i=1 p(J (i) \ V)

=
∑t

i=1(p(J (i))− p(V(i))) =
∑t

i=1
t−1
t

(p(J (i))

= Q.

It follows that π is a desired schedule.

The “only if” part proof: Assume that there exist desired schedules for the scheduling

instance. Let π be a desired schedule such that |{j ∈ {1, 2, . . . , 3t} : Jπ(j) ∈ Jj}| is as

large as possible. Then we have the following statement.

Statement 2. For each j ∈ {1, 2, . . . , 3t}, we have Jπ(j) ∈ Jj.

Proof of Statement 2. Otherwise, there is an index j ∈ {1, 2, . . . , 3t} such that Jπ(j) 6∈ Jj
and Jπ(k) ∈ Jk, 1 ≤ k ≤ j − 1.

Suppose first that Jπ(j) ∈ J1 ∪ J2 ∪ · · · ∪ Jj−1. Note that each normal job has a

processing time larger than ∆1. Then Cπ(j) > j∆1, and so, Yπ(j) > j∆1 − (j − 1)(∆1 +

t∆2 + tX) > ∆2. From (13) and the fact that p0 = H, the 3t2− 3t normal jobs scheduled

after J0 are late. From Lemma 3.2, there are exactly 3t − 3 normal jobs of each J (i)

scheduled after J0. Moreover, each normal job in J (i) has a processing time larger than

∆1 + i∆2, 1 ≤ i ≤ t. Thus, the total late work of these 3t2 − 3t normal jobs is larger

than (3t − 3)
∑t

i=1(∆1 + i∆2) = (3t − 3)(t∆1 + t(t+1)
2

∆2). Then we have
∑
Yj(π) >

(3t− 3)(t∆1 + t(t+1)
2

∆2) + ∆2. From (16), we have
∑
Yj(π) > Q, a contradiction. Hence,

we must have Jπ(j) ∈ Jj+1 ∪ Jj+2 ∪ · · · ∪ J3t. This further implies that j ≤ 3t− 1.

Assume in the following that Jπ(j) = Ji,j′ for some j′ ∈ {j + 1, j + 2, · · · , 3t} and

i ∈ {1, 2, · · · , t}. Then Jπ(j) = Ji,j′ ≺ Ji,j in π. Since j < j′, we have pi,j ≤ pi,j′ and
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di,j < di,j′ . Let π′ be the schedule obtained from π by swapping the two jobs Ji,j′ and Ji,j.

Since pi,j ≤ pi,j′ , and Ji,j′ and Ji,j have a common deadline, π′ is still a feasible schedule

in which 
Ci,j(π

′) ≤ Ci,j′(π),

Ci,j′(π
′) = Ci,j(π),

Cπ(k)(π
′) ≤ Cπ(k)(π), for Jπ(k) /∈ {Ji,j′ , Ji,j}.

(22)

Note that each normal job has a processing time less than ∆1 +t∆2 +tX. Then Ci,j(π
′) ≤

Ci,j′(π) < j(∆1 + t∆2 + tB) = di,j < di,j′ . This implies that

Yi,j′(π) = 0 and Yi,j(π
′) = 0. (23)

From the fact that di,j < di,j′ and from the relation Ci,j′(π
′) = Ci,j(π) in (22), we have

Yi,j′(π
′) ≤ Yi,j(π). (24)

From the third relation in (22), we further have

Yπ(k)(π
′) ≤ Yπ(k)(π) for Jπ(k) /∈ {Ji,j′ , Ji,j}. (25)

Combining (23), (24), and (25), we conclude that
∑
Yj(π

′) ≤
∑
Yj(π) ≤ Q. Thus,

π′ is also a desired schedule. But then |{k ∈ {1, 2, . . . , 3t} : Jπ′(k) ∈ Jk}| < |{k ∈
{1, 2, . . . , 3t} : Jπ(k) ∈ Jk}|. This contradicts the choice of π. Statement 2 follows.

For each j ∈ {1, 2, . . . , 3t}, we use Vj(π) to denote the set of jobs of Jj that are early

in π. From Lemma 3.1, we have

|V1(π)|+ |V2(π)|+ · · ·+ |V3t(π)| = 3t. (26)

From Statement 2, we have

Vj(π) = {Jπ(j)} for j = 1, 2, . . . , 3t. (27)

For each i ∈ {1, 2, . . . , t}, we use V(i)(π) to denote the set of jobs of J (i) that are early in

π. Then from Lemma 3.2, we have

|V(i)(π)| = 3. (28)

Now define

Ii = {j : J
(i)
j ∈ V(i)(π)} and Xi =

∑
j∈Ii xj, i = 1, 2, . . . , t.
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From (27) and (28), we have |Ii| = 3 for each i with 1 ≤ i ≤ t, and (I1, I2, . . . , It) forms

a partition of {1, 2, . . . , 3t}. This implies that

X1 +X2 + · · ·+Xt = tX. (29)

Moreover, we have

p(V(i)(π)) = 3∆1 + 3i∆2 + iXi, i = 1, 2, . . . , t. (30)

Since π is a desired schedule, from the discussion in Lemma 3.2, the inequality (19)

still holds for π. Combining (19) and (30), we have

X1 + 2X2 + · · ·+ iXi ≤ X + 2X + · · ·+ iX for each i = 1, 2, . . . , t. (31)

From (29) and (31), and by using the same deduction as in Yuan (2017), we obtain

Xi = X for each i = 1, 2, . . . , t. (32)

It follows that (I1, I2, . . . , It) is a partition of {1, 2, . . . , 3t} such that |Ii| = 3 and
∑

j∈Ii xj =

X for i = 1, 2, . . . , t. Consequently, the instance (x1, x2, . . . , x3t, X) is a YES instance of

3-Partition.

From the above discussion, we conclude the following theorem.

Theorem 3.1. Problem 1|d̄j|
∑
Yj is unary NP -hard.

4 Polynomially solvable cases

In this section we consider two special cases of problem 1|d̄j|
∑
wjYj, namely (i) the jobs

have a common due date and a unit weight, and (ii) the jobs have a common processing

time. We provide polynomial-time algorithms to solve the two special cases.

4.1 Problem 1|dj = d, d̄j|
∑
Yj

For problem 1|dj = d, d̄j|
∑
Yj, it is observed that every feasible schedule is optimal. As

discussed in the Feasibility Checking part in Section 1, problem 1|dj = d, d̄j|
∑
Yj can

be solved by the following procedure, which uses the idea in Jackson (1955) for solving

problem 1||Lmax.

Deadline-EDD: Generate a schedule in which the n jobs are sequenced in nondecreasing

order of their deadlines.

Note that Deadline-EDD runs in O(n log n) time. Thus, we have
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Theorem 4.1. Problem 1|dj = d, d̄j|
∑
Yj is solvable in O(n log n) time by the procedure

Deadline-EDD.

4.2 Problem 1|pj = p, d̄j|
∑
wjYj

Hariri et al. (1995) showed that problem 1|pj = p|
∑
wjYj is solvable in O(n3) time. For

problem 1|pj = p, d̄j|
∑
wjYj, due to the existence of deadlines, we make some adjustments

of the approach presented by Hariri et al. (1995) as follows.

We define the cost cij of scheduling job Jj in the i-th position, i, j ∈ {1, 2, . . . , n}, by

setting

cij =


0, if ip ≤ dj,

wj min{pj, ip− dj}, if dj < ip ≤ d̄j,

+∞, otherwise.

Moreover, we introduce indicator variables xij with i, j ∈ {1, 2, . . . , n} such that

xij =

1, if job Jj is scheduled in the i-th position,

0, otherwise.

Then problem 1|pj = p, d̄j|
∑
wjYj is equivalent to the following n× n linear assignment

problem with costs cij, i, j ∈ {1, 2, ..., n}.

min
∑n

i=1

∑n
j=1 cijxij∑n

i=1 xij = 1, for all j ∈ {1, . . . , n},∑n
j=1 xij = 1, for all i ∈ {1, . . . , n},

xij ≥ 0, for all i, j ∈ {1, . . . , n}.

(33)

From Kuhn (2005), the n × n linear assignment problem in (33) is solvable in O(n3)

time. Thus, we have the following result.

Theorem 4.2. Problem 1|pj = p, d̄j|
∑
wjYj is solvable in O(n3) time.

5 Conclusions

In this paper we address the scheduling problem with deadlines to minimize the total

weighted late work on a single machine. We show the binary NP -hardness of prob-

lem 1|dj = d, d̄j|
∑
wjYj and unary NP -hardness of problem 1|d̄j|

∑
Yj. For problem
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1|dj = d, d̄j|
∑
wjYj, we also develop a pseudo-polynomial dynamic programming solution

algorithm that runs in O(n2d) time and a fully polynomial-time approximation scheme

(FPTAS). We present an O(n log n) time algorithm to solve problem 1|dj = d, d̄j|
∑
Yj

and an O(n3)-time algorithm to solve problem 1|pj = p, d̄j|
∑
wjYj.

It should be noted that when preemption is allowed, the problems are tractable even

in the parallel-machine environment with dynamic jobs. Note that in a feasible pre-

emptive schedule σ, the late work Yj(σ) of job Jj is defined to be the total processing

time of the parts of job Jj that are scheduled after its due date dj. By incorporating

job deadlines into the study of Leung (2004), without introducing new techniques, one

can show that problems P |rj, d̄j, pmtn|
∑
Yj, P |rj, d̄j, pmtn|

∑
wjYj, Q|rj, d̄j, pmtn|

∑
Yj,

and Q|rj, d̄j, pmtn|
∑
wjYj are solvable in O(n3 log n), O(n4 log n), O(m2n3 logmn), and

O(m2n4 logmn) times, respectively, using the network flow technique, where m is the

number of machines.

For further research, we suggest the following topics:

– Designing effective approximation algorithms for problem 1|d̄j|
∑
wjYj. Especially,

a PTAS is expected for problem 1|d̄j|
∑
Yj.

– Designing more efficient polynomial-time algorithms for problems 1|rj, d̄j, pmtn|
∑
Yj

and 1|rj, d̄j, pmtn|
∑
wjYj.

– Research on scheduling with the late work criterion under the deadline constraint

should be extended to other scheduling settings such as shop scheduling, multi-agent

scheduling, batch scheduling, and so on.
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