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Abstract 

The l1 regularization technique has been developed for damage detection by utilizing the 

sparsity feature of structural damage. However, the sensitivity matrix in the damage 

identification exhibits a strong correlation structure, which does not suffice the independency 

criteria of the l1 regularization technique. This study employs the elastic net method to solve 

the problem by combining the l1 and l2 regularization techniques. Moreover, the proposed 

method enables the grouped structural damage being identified simultaneously, whereas the l1 

regularization cannot. A numerical cantilever beam and an experimental three-story frame are 

utilized to demonstrate the effectiveness of the proposed method. The results showed that the 

proposed method is able to accurately locate and quantify the single and multiple damages, 

even when the number of measurement data is much less than the number of elements. In 

particular, the present elastic net technique can detect the grouped damaged elements 

accurately, whilst the l1 regularization method cannot. 
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1. Introduction 

Vibration-based structural damage identification has received much attention over the last 

decades. Numerous methods have been developed using structural vibration characteristics 

[1-3]. Doebling et al. [4] and Sohn et al. [5] present a comprehensive review of 

vibration-based damage detection methods before 1996 and between 1996 and 2001, 

respectively. Recently, a number of advanced methods based on signal processing techniques 

[6-8] and machine learning [9-11] have been proposed. Moreover, researchers have 

developed various techniques to consider the uncertainties and temperature effects for reliable 

damage detection [12, 13]. Several literature surveys review the new development of damage 

identification for civil engineering structures [14-16].  

 

Structural damage identification is essentially an inverse problem and is typically ill-posed. 

Moreover, as the number of available vibration measurements is usually less than that of 

structural elements, such identification is an underdetermined problem in mathematics. Most 

previous vibration-based damage detection methods employ the Tikhonov regularization (or 

l2 regularization) to deal with these problems [17, 18]. The l2 regularization has a closed-form 

solution and tractable methods for choosing the regularization parameter, and thus is efficient 

and convenient for implementation [19, 20]. However, the main drawback of the l2 

regularization is that it tends to produce over-smooth solutions [21]. Consequently, the 

identified damage is distributed to many structural elements. This is not consistent with the 

practical situation that damage usually occurs in a few sections or members only especially at 

the early stage. 

 

Structural damage possesses sparsity compared with all elements of the entire structure, 

which is an important prior information that can be exploited for more accurate damage 

identification. According to the sparse recovery theory, the l1 regularization technique can not 

only deal with underdetermined problems, but also favor sparsity in the solutions [21]. In this 
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regard, some researchers (including the authors) used the l1 regularization technique for 

damage detection [22-27]. Although the l1 regularization technique has achieved excellent 

performance in many applications, it has some limitations. For example, the l1 regularization 

technique is essentially designed for selecting individual variables. If there is a group of 

highly correlated variables, it typically only selects a single variable from the group that is the 

most correlated with the residual [28]. Moreover, the sensing matrix of l1-regularized 

problems should suffice certain independency criteria to ensure the exact recovery of the 

unknown vector [21]. For the sensitivity-based damage identification, the sensitivity matrix 

serves as the sensing matrix while the columns are almost linearly dependent. Once the 

independence criteria are not satisfied, the solution may become unstable and suboptimal [29, 

30]. 

 

Some researchers compared the performances of l1 and l2 regularization techniques and found 

that neither of them uniformly dominates the other [31, 32]. Xu et al. [33] pointed out that 

sparsity and algorithmic stability contradict with each other, i.e., a sparse algorithm cannot be 

stable and vice versa. In particular, the l1 regularization technique cannot be stable, while the 

l2 regularization technique has strong stability property and is therefore not sparse. Given that 

sparsity and stability are both desirable properties, an appropriate algorithm should be 

designed to achieve a trade-off between these two properties. To this end, Zou and Hastie [34] 

proposed a new regularization method, i.e., the elastic net, which combines the l1 and l2 

regularization techniques to get the best of both worlds.  

 

The elastic net is able to enforce sparsity in the solution as the l1 regularization technique 

does, while enjoying a similar stable behavior of the l2 regularization. Moreover, the elastic 

net encourages the grouping effect that grouped variables are able to be selected together. 

Consequently, compared with the l1 regularization, the elastic net enables the structure of 

interest to be modeled with a larger number of elements such that the local damage is directly 

modeled and quantified. For the l1-regularized problem, the ratio of the number of unknown 
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parameters to that of the measurements may significantly affect the accuracy and 

convergence of the results [21]. The elastic net has been verified to be more effective when 

the number of unknowns is much larger than that of measurements, in comparison to the l1 

regularization technique [34].  

 

The previous vibration-based damage detection methods either utilize l2 regularization or l1 

regularization only. This study takes advantage of the strengths of both regularization 

techniques via the elastic net algorithm, which is introduced to structural damage 

identification for the first time. An iterative damage detection technique is proposed through 

incorporating the elastic net method into the sensitivity-based model updating. The proposed 

method improves the condition of the sensitivity matrix and thus resolves the instability and 

divergence problems in damage identification. Numerical and experimental studies 

demonstrate the effectiveness and superiorities of the proposed method.  

 

2. Elastic Net Algorithm 

Consider a linear model 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝜺𝜺 (1) 

where 𝒚𝒚 ∈ 𝑅𝑅𝑀𝑀  is the available measurements, 𝑿𝑿 ∈ 𝑅𝑅𝑁𝑁  is the unknown vector to be 

reconstructed, 𝑿𝑿 ∈ 𝑅𝑅𝑀𝑀×𝑁𝑁 (𝑀𝑀 < 𝑁𝑁) is referred to as the sensing matrix, and 𝜺𝜺 is the error 

associated with the measurement noise. The unknown vector 𝑿𝑿  could be obtained by 

minimizing the following least-squares loss function 

𝑿𝑿�𝐿𝐿𝐿𝐿 = arg min
𝑿𝑿�

 ‖𝑿𝑿𝑿𝑿 − 𝒚𝒚‖22 (2) 

 

In order to obtain a unique and reasonable solution to this underdetermined problem, a 

regularization term is introduced to the objective function as 

𝑿𝑿�𝐿𝐿𝑝𝑝 = arg min
𝑿𝑿�

 ‖𝑿𝑿𝑿𝑿 − 𝒚𝒚‖22 + 𝛽𝛽‖𝑿𝑿‖𝑝𝑝
𝑝𝑝 (3) 
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where 𝛽𝛽  is the regularization parameter and ‖∙‖𝑝𝑝 (𝑝𝑝 ≥ 0)  is the p-norm. The l1 

regularization (𝑝𝑝 = 1) and l2 regularization (𝑝𝑝 = 2) take the following forms, respectively, 

as  

𝑿𝑿�𝐿𝐿1 = arg min
𝑿𝑿�

 ‖𝑿𝑿𝑿𝑿 − 𝒚𝒚‖22 + 𝛽𝛽1‖𝑿𝑿‖1 (4) 

𝑿𝑿�𝐿𝐿2 = arg min
𝑿𝑿�

 ‖𝑿𝑿𝑿𝑿 − 𝒚𝒚‖22 + 𝛽𝛽2‖𝑿𝑿‖22 (5) 

where 𝛽𝛽1,𝛽𝛽2 > 0. The elastic net method combines the l1 and l2 regularization techniques as 

follows  

𝑿𝑿�𝐸𝐸𝑁𝑁 = arg min
𝑿𝑿�

 ‖𝑿𝑿𝑿𝑿 − 𝒚𝒚‖22 + 𝛽𝛽1‖𝑿𝑿‖1 + 𝛽𝛽2 ‖𝑿𝑿‖22 (6) 

where 𝛽𝛽1‖𝑿𝑿‖1 + 𝛽𝛽2 ‖𝑿𝑿‖22  is referred to as the elastic net penalty, which is a convex 

combination of the l1 and l2 regularization terms and thus has the characteristics of both l1 and 

l2 regularization techniques. When 1 < 𝑝𝑝 < 2 in Equation (3), although the corresponding 

regularization techniques have many similarities with the elastic net, they cannot produce 

sparse solutions. It has been proved mathematically that among all regularization techniques 

with 𝑝𝑝 ≥ 1, only the l1 regularization favors sparsity in the solution [35]. 

 

The elastic net problem in Equation (6) can be transformed into an equivalent l1 

regularization problem on augmented data [34], and thus can promote sparsity in the solution 

similar to the l1 regularization technique. Moreover, the elastic net method fixes the problem 

of the l1 regularization in terms of grouped variables. As shown in Equations (4)-(6), the 

elastic net and l2 regularization penalties are strictly convex, while the l1 regularization 

penalty is convex but not strictly. Strictly convex penalty functions guarantee the grouping 

effect that they have the ability of identifying grouped variables simultaneously. Details of 

the proof can be found in Reference [34].  

 

If the sensing matrix 𝑿𝑿 is assumed to be orthogonal, i.e., 𝑿𝑿𝑇𝑇𝑿𝑿 = 𝑰𝑰, the solutions of the l1 

and l2 regularizations and elastic net can be expressed as follows [34]  
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𝑿𝑿�𝐿𝐿1,𝑖𝑖 = ��𝑿𝑿�𝐿𝐿𝐿𝐿,𝑖𝑖� −
𝛽𝛽1
2
�
+
∙ sgn�𝑿𝑿�𝐿𝐿𝐿𝐿,𝑖𝑖� (7) 

𝑿𝑿�𝐿𝐿2 =
1

1 + 𝛽𝛽2
𝑿𝑿�𝐿𝐿𝐿𝐿 (8) 

𝑿𝑿�𝐸𝐸𝑁𝑁,𝑖𝑖 =
1

1 + 𝛽𝛽2
∙ ��𝑿𝑿�𝐿𝐿𝐿𝐿,𝑖𝑖� −

𝛽𝛽1
2
�
+
∙ sgn�𝑿𝑿�𝐿𝐿𝐿𝐿,𝑖𝑖� (9) 

where the subscript i denotes the ith item, and (∙)+ denotes the positive part of the respective 

argument. According to Equations (7)-(9), the elastic net can be viewed as a two-step 

procedure, i.e., a direct shrinkage from the l2 regularization followed by a soft thresholding 

due to the l1 regularization. Consequently, the elastic net incurs a double shrinkage, and thus 

introduces an extra bias compared with the pure l1 or l2 regularization technique. To this end, a 

scaling transformation is conducted to undo shrinkage in order to improve the prediction 

accuracy of the elastic net. Let 𝑿𝑿𝐸𝐸𝑁𝑁∗ = (1 + 𝛽𝛽2)𝑿𝑿𝐸𝐸𝑁𝑁, then the corrected elastic net estimates 

are given by [34] 

𝑿𝑿�𝐸𝐸𝑁𝑁∗ = arg min
𝑿𝑿�

𝑿𝑿𝑇𝑇 �
𝑿𝑿𝑇𝑇𝑿𝑿 + 𝛽𝛽2𝑰𝑰

1 + 𝛽𝛽2
�𝑿𝑿 − 2𝒚𝒚𝑇𝑇 𝑿𝑿𝑿𝑿 + 𝛽𝛽1‖𝑿𝑿‖1 (10) 

The objective function for the l1 regularization in Equation (4) can be rewritten as  

𝑿𝑿�𝐿𝐿1 = arg min
𝑿𝑿�

𝑿𝑿𝑇𝑇(𝑿𝑿𝑇𝑇𝑿𝑿)𝑿𝑿 − 2𝒚𝒚𝑇𝑇 𝑿𝑿𝑿𝑿 + 𝛽𝛽1‖𝑿𝑿‖1 (11) 

Comparing Equations (10) and (11), the key difference between the elastic net and l1 

regularizations lies in the added term 𝛽𝛽2𝑰𝑰. Through adding a small value on the diagonal 

items of 𝑿𝑿𝑇𝑇𝑿𝑿, the condition number of 𝑿𝑿𝑇𝑇𝑿𝑿 can be reduced significantly. According to the 

sparse recovery theory, the more well-conditioned the Gram matrix (i.e., 𝑿𝑿𝑇𝑇𝑿𝑿) is, the better 

the l1 regularization recovers the unknown sparse vector [21]. Therefore, the elastic net can 

be regarded as a stabilized version of the l1 regularization technique.  

 

In summary, the elastic net algorithm works as well as the l1 regularization technique in terms 

of enforcing sparsity in the solution, and fixes the problems of stability and grouping.  

 



8 
 

3. Damage Identification using the Elastic Net Algorithm 

3.1 Sensitivity-based model updating 

The stiffness matrix of a structure can be modeled as follows 

𝑲𝑲 = �𝛼𝛼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑲𝑲𝑖𝑖 (12) 

where 𝑲𝑲𝑖𝑖 is the ith element stiffness matrix, 𝛼𝛼𝑖𝑖 is the associated stiffness parameter, and n is 

the number of elements in the finite element (FE) model. Existing damage detection methods 

usually assume that only the element stiffness parameter reduces to 𝛼𝛼�𝑖𝑖 when damage occurs, 

and the mass and damping remain unchanged. The stiffness reduction factor (SRF) is then 

defined as [22]  

𝑝𝑝𝑖𝑖 =
𝛼𝛼�𝑖𝑖 − 𝛼𝛼𝑖𝑖
𝛼𝛼𝑖𝑖

 (13) 

The SRF is chosen as the damage parameter in this study, which indicates both damage 

location and damage severity. 

 

Sensitivity-based model updating is to find changes in structural model parameters through 

minimizing the discrepancy between analytical and measured structural properties [36]. 

According to the Taylor series expansion, the relationship between the damage parameters 𝒑𝒑 

and change in the modal parameters ∆𝑹𝑹 can be linearly expressed as [37] 

𝐒𝐒 ∙ 𝒑𝒑 = ∆𝑹𝑹 = 𝑹𝑹𝐸𝐸 − 𝑹𝑹0 (14) 

where 𝑹𝑹𝐸𝐸 and 𝑹𝑹0 are the measured and initial analytical modal parameters, respectively, 

and 𝐒𝐒 is the sensitivity matrix of the modal parameters with respect to the damage parameters.  

 

In this study, natural frequencies and mode shapes are utilized for damage detection. 

Therefore, the modal parameters and sensitivity matrix consist of two parts as 

𝑹𝑹 = �
𝑹𝑹λ
𝑹𝑹𝜙𝜙

� (15) 

𝐒𝐒 = �
𝐒𝐒λ
𝐒𝐒𝜙𝜙
� (16) 
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where 𝛌𝛌  and 𝝓𝝓  are eigenvalues and mode shapes, respectively. 𝑹𝑹λ  and 𝐒𝐒λ  can be 

expressed as 

𝑹𝑹λ = [λ1, λ2,⋯ , λ𝑚𝑚]𝑇𝑇 (17) 

𝐒𝐒λ = �𝐒𝐒λ1 , 𝐒𝐒λ2 ,⋯ , 𝐒𝐒λ𝑚𝑚�
𝑇𝑇
 (18a) 

𝐒𝐒λ𝑖𝑖 =
𝜕𝜕𝜆𝜆𝑖𝑖
𝜕𝜕𝒑𝒑

= �
𝜕𝜕𝜆𝜆𝑖𝑖
𝜕𝜕𝑝𝑝1

,
𝜕𝜕𝜆𝜆𝑖𝑖
𝜕𝜕𝑝𝑝2

,⋯ ,
𝜕𝜕𝜆𝜆𝑖𝑖
𝜕𝜕𝑝𝑝𝑛𝑛

� (18b) 

where 𝜆𝜆𝑖𝑖 is the ith eigenvalue and m is the number of measured modes. 𝑹𝑹𝜙𝜙 and 𝐒𝐒𝜙𝜙 can be 

expressed as 

𝑹𝑹𝜙𝜙 = �𝑹𝑹𝝓𝝓1 ,𝑹𝑹𝝓𝝓2 ,⋯ ,𝑹𝑹𝝓𝝓𝑚𝑚�
𝑇𝑇
 (19a) 

𝑹𝑹𝝓𝝓𝑖𝑖 = �𝜙𝜙1,𝑖𝑖,𝜙𝜙2,𝑖𝑖,⋯ ,𝜙𝜙𝑛𝑛𝑝𝑝,𝑖𝑖�
𝑇𝑇
 (19b) 

𝐒𝐒𝝓𝝓 = �𝐒𝐒𝝓𝝓1 , 𝐒𝐒𝝓𝝓2 ,⋯ , 𝐒𝐒𝝓𝝓𝑚𝑚�
𝑇𝑇
 (20a) 

𝐒𝐒𝝓𝝓𝑖𝑖 =
𝜕𝜕𝝓𝝓𝑖𝑖

𝜕𝜕𝒑𝒑
=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝜙𝜙1,𝑖𝑖

𝜕𝜕𝑝𝑝1
𝜕𝜕𝜙𝜙1,𝑖𝑖

𝜕𝜕𝑝𝑝2
⋯

𝜕𝜕𝜙𝜙1,𝑖𝑖

𝜕𝜕𝑝𝑝𝑛𝑛
𝜕𝜕𝜙𝜙2,𝑖𝑖

𝜕𝜕𝑝𝑝1
𝜕𝜕𝜙𝜙2,𝑖𝑖

𝜕𝜕𝑝𝑝2
⋯

𝜕𝜕𝜙𝜙2,𝑖𝑖

𝜕𝜕𝑝𝑝𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝜕𝜕𝜙𝜙𝑛𝑛𝑝𝑝,𝑖𝑖

𝜕𝜕𝑝𝑝1
𝜕𝜕𝜙𝜙𝑛𝑛𝑝𝑝,𝑖𝑖

𝜕𝜕𝑝𝑝2
⋯

𝜕𝜕𝜙𝜙𝑛𝑛𝑝𝑝,𝑖𝑖

𝜕𝜕𝑝𝑝𝑛𝑛 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (20b) 

where 𝜙𝜙𝑗𝑗,𝑖𝑖 is the ith mode shape at the jth point and np is the number of measurement points. 

𝐒𝐒 can be calculated either from the global FE model [38] or using the substructuring approach 

[39]. According to Equations (16), (18) and (20), adjacent elements cause similar changes in 

structural modal parameters, and thus the adjacent columns of 𝐒𝐒 are linearly dependent. 

Therefore, 𝐒𝐒 is ill-conditioned with a large condition number. As introduced in Section 2, the 

elastic net method is able to improve the condition of the sensitivity matrix through including 

the l2 regularization term, and is thus well suitable for the sensitivity-based model updating.  

 

3.2 Iterative damage identification via the elastic net 

Since the relationship between the modal parameters 𝑹𝑹  and damage parameters 𝒑𝒑  is 

nonlinear, the Gauss-Newton method is employed to calculate the damage parameters 
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through an iterative procedure. For the kth iteration model updating,  

𝐒𝐒𝑘𝑘−1 ∙ ∆𝒑𝒑𝑘𝑘 = ∆𝑹𝑹𝑘𝑘−1 (21) 

where  

𝐒𝐒𝑘𝑘−1 = 𝐒𝐒��∆𝒑𝒑𝑖𝑖
𝑘𝑘−1

𝑖𝑖=1

� =
𝜕𝜕𝑹𝑹�∑ ∆𝒑𝒑𝑖𝑖𝑘𝑘−1

𝑖𝑖=1 �
𝜕𝜕𝒑𝒑

 (22) 

∆𝑹𝑹𝑘𝑘−1 = 𝑹𝑹𝐸𝐸 − 𝑹𝑹��∆𝒑𝒑𝑖𝑖
𝑘𝑘−1

𝑖𝑖=1

� (23) 

The superscript (𝑘𝑘 − 1) denotes the results calculated from the (𝑘𝑘 − 1)th iteration. The 

iteration is terminated upon the following convergence criterion is met  

‖∆𝒑𝒑𝑘𝑘‖2
�∑ ∆𝒑𝒑𝑖𝑖𝑘𝑘

𝑖𝑖=1 �
2

≤ 𝑇𝑇𝑇𝑇𝑇𝑇 (24) 

The damage parameters after kth iterations are thus obtained as  

𝒑𝒑𝑘𝑘 = �∆𝒑𝒑𝑖𝑖
𝑘𝑘

𝑖𝑖=1

 (25) 

 

According to Equations (1), (10) and (21), the damage parameters at the kth iteration ∆𝒑𝒑𝑘𝑘 

can be calculated by solving the below optimization problem using the elastic net algorithm  

∆𝒑𝒑�𝑘𝑘 = arg min
∆𝒑𝒑�𝑘𝑘

(∆𝒑𝒑𝑘𝑘)𝑇𝑇 �
(𝐒𝐒𝑘𝑘−1)𝑇𝑇𝐒𝐒𝑘𝑘−1 + 𝛽𝛽2𝑰𝑰

1 + 𝛽𝛽2
� ∆𝒑𝒑𝑘𝑘 − 2(∆𝑹𝑹𝑘𝑘−1)𝑇𝑇 𝐒𝐒𝑘𝑘−1∆𝒑𝒑𝑘𝑘 + 𝛽𝛽1‖∆𝒑𝒑𝑘𝑘‖1 (26) 

Two regularization parameters, 𝛽𝛽1 and 𝛽𝛽2, need to be determined in the elastic net. They 

control the contributions of l1 regularization and l2 regularization to the overall optimization 

problem. Zuo and Hastie [34] determined the two regularization parameters through the cross 

validation (CV) on a two-dimensional surface. A small grid of values for 𝛽𝛽2  is first 

formulated, i.e. (0, 0.01, 0.1, 1, 10,100). For each 𝛽𝛽2, 𝛽𝛽1 is then determined using the CV 

method. Finally, 𝛽𝛽2 is selected as the one with the smallest residual of the CV function.  

 

As shown in Equation (26), for a small 𝛽𝛽2, the ill-conditioned problem of the sensitivity 

matrix cannot be solved effectively. By contrast, a large 𝛽𝛽2 will place a high penalty on the 
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l2 regularization term, leading to an over-smooth solution. Zuo and Hastie [34] showed that 

the optimization result was sensitive to 𝛽𝛽1 rather than 𝛽𝛽2 as only a coarse grid of values for 

𝛽𝛽2 was required. In this regard, 𝛽𝛽2 is fixed as 0.01 in this study in order to reduce the 

computation burden, and 𝛽𝛽1 is determined by examining the residual and solution norms 

[40]. The following numerical and experimental studies show that satisfactory damage 

identification results can be obtained when 𝛽𝛽2 = 0.01 for different damage scenarios (DSs).  

 

The proposed damage identification procedure is summarized below: 

1. Initialize 𝜶𝜶0, 𝐒𝐒0, and ∆𝑹𝑹0. 

2. At the (𝑘𝑘 − 1)th iteration,  

Calculate ∆𝒑𝒑𝑘𝑘−1 using Equation (26); 

Update 𝐒𝐒𝑘𝑘−1 and ∆𝑹𝑹𝑘𝑘−1 using Equations (22) and (23). 

3. Repeat step 2 for the kth iteration until the following convergence criterion is met  

‖∆𝒑𝒑𝑘𝑘‖2
�∑ ∆𝒑𝒑𝑖𝑖𝑘𝑘

𝑖𝑖=1 �
2

≤ 𝑇𝑇𝑇𝑇𝑇𝑇 

 

4. A Numerical Example 

4.1 Model description 

A cantilever beam (Figure 1) is first utilized as a preliminary numerical study. The total length 

of the beam is 1.0 m, and the cross-section area is 5.0×49.6 mm2. The mass density and 

Young’s modulus are 7.67×103 kg/m3  and 2.0×1011 N/m2 , respectively. The beam is 

modeled with 100 equal Euler–Bernoulli beam elements (i.e., n = 100), each 10 mm long. 

The damage is simulated by the reduction of the bending stiffness with the mass remaining 

unchanged. To examine the grouping effect of the proposed method, elements 1 and 2 close 

to the clamped end are damaged by 50%, that is, SRF(1) = SRF(2) = −0.5 and all other 
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SRF = 0.  

 

 

Figure 1 Geometric configuration of the beam structure (Unit: mm) 

 

4.2 Damage detection 

The mode shapes at 10 points are assumed to be available in the undamaged and damaged 

states, which are chosen every 100 mm (Figure 1). The natural frequencies and modal 

assurance criterion (MAC) of the undamaged and damaged structures are compared in Table 1. 

The simulated damage only causes a small change in MAC, while relatively large changes in 

natural frequencies. To investigate the effect of measurement noise on the damage detection 

accuracy, two different levels of noise will be introduced into the modal parameters in the 

damaged state. For noise level 1, normal distributed random noises with zero mean and 

standard deviation of 1% and 5% of the real data are respectively added to the frequencies 

and mode shapes. For noise level 2, the standard deviation of the frequencies and mode 

shapes increases to 2% and 10% of the real data, respectively. 

 

Table 1 Modal data of the beam model in the undamaged and damaged states 

Mode 

no. 
Undamaged 

 Damaged 

No noise Noise level 1 Noise level 2 

100×10=1000 

5.0 

49
.6

 

Clamped Measurement points (10 in total) 
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Freq. (Hz) Freq. (Hz) MAC Freq. (Hz) MAC Freq. (Hz) MAC 

1  3.53   3.40 (–3.69) 1.000   3.41 (–3.68) 1.000   3.46 (–2.03) 1.000 

2  21.92  21.22 (–3.17) 0.999  21.03 (–4.06) 0.998  21.27 (–2.95) 0.995 

3  61.23 59.46 (–2.88) 0.997 59.47 (–2.87) 0.998  59.93 (–2.11) 0.995 

4 118.40 115.24 (–2.67) 0.995 117.98 (–0.36) 0.996 117.28 (–0.95) 0.993 

5 195.34 191.02 (–2.21) 0.993 192.75 (–1.32) 0.992 191.71 (–1.86) 0.988 

6 294.77 288.89 (–1.99) 0.992 289.83 (–1.68) 0.992 292.08 (–0.91) 0.989 

Average       (–2.77) 0.996       (–2.33) 0.996        (–1.80) 0.993 

Note: Values in parentheses are the frequency change ratios (%) between the damaged and undamaged states.  

 

4.2.1 Using noise-free modal data  

The first six natural frequencies and the associated mode shapes without noise are first used 

for damage identification. The initial stiffness parameters are set at their nominal values 

𝒑𝒑0 = {0, … ,0}𝑇𝑇, indicating that no damage is present. The convergence criterion for the 

iteration process is set as Tol = 0.001. The regularization parameter is determined as 𝛽𝛽1 =

0.02.  

 

In each iteration, the damage parameters are obtained by minimizing Equation (26). The 

condition number of the initial Gram matrix is as large as cond(𝑺𝑺𝑇𝑇𝑺𝑺) = 2.24×1020. Through 

including the l2 regularization term, the condition number of the Gram matrix is reduced 

significantly as cond(𝑺𝑺𝑇𝑇𝑺𝑺 + 𝛽𝛽2𝑰𝑰) = 24.85. Consequently, the ill-conditioned problem of the 

sensitivity-based damage detection is resolved, and a stable solution could be obtained. The 

iterative identification process converges after 3 iterations only, as shown in Figure 2. In the 

first iteration, damaged elements 1 and 2 are identified, and no false identification occurs. 

However, the identified damage severities differ much from the true values. As the iteration 

proceeds, the identified damage parameters tend to approach the actual values, and the two 

adjacent damaged elements are located and quantified accurately.  
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(a) Iteration No. 1 (b) Iteration No. 2 

 

 

(c) Iteration No. 3  

Figure 2 Damage identification results during the iterative process (no noise) 

 

The l1 regularization technique [22] is also employed here for comparison purpose. The 

following objective function is minimized for damage identification in each iteration  

∆𝒑𝒑�𝑘𝑘 = arg min
∆𝒑𝒑�𝑘𝑘

 ‖𝐒𝐒𝑘𝑘−1∆𝒑𝒑𝑘𝑘 − ∆𝑹𝑹𝑘𝑘−1‖22 + 𝛽𝛽1‖∆𝒑𝒑𝑘𝑘‖1 (28) 

The regularization parameter is determined as 𝛽𝛽1 = 0.07 based on the residual and solution 

norms [40]. The identification results are shown in Figure 3. The damaged element 1 is 

correctly identified but element 2 is not. This indicates that only one of the grouped damages 

but not all can be detected.  
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Figure 3 Damage identification result with the l1 regularization technique (no noise) 

 

4.2.2 Using modal data of noise level 1 

For noise level 1, the noisy modal data are used for damage detection, and Equation (26) is 

similarly solved. The regularization parameters are the same as those using noise‐free modal 

data. The damage parameters during the iteration process are shown in Figure 4. After four 

iterations, the actually damaged elements are correctly detected, although the SRF of element 

2 has a small error. The damage identification result using the l1 regularization technique is 

shown in Figure 5. Similar to the above result, the l1 regularization method can only identify 

one of the two damaged elements. 

 

  
(a) Iteration No. 1 (b) Iteration No. 2 
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(c) Iteration No. 3 (d) Iteration No. 4 

Figure 4 Damage identification results during the iterative process (noise level 1) 

 

 
Figure 5 Damage identification result with the l1 regularization technique (noise level 1) 

 

4.2.3 Using modal data of noise level 2 

In the case of noise level 2, the regularization parameters are the same as those using noise‐

free modal data. The damage identification process converges after 6 iterations, and only the 

results in the first and last iterations are displayed in Figure 6 for brevity. The two adjacent 

damaged elements are identified accurately. As shown in Figure 7, the l1 regularization 

technique can only detect one of the grouped damages. 
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(a) Iteration No. 1 (b) Iteration No. 6 

Figure 6 Damage identification results during the iterative process (noise level 2) 

 

 
Figure 7 Damage identification result with the l1 regularization technique (noise level 2) 

 

The identification error and computation time of the elastic net technique are compared with 

those using the l1 regularization technique in Table 2. The identification error is defined as  

𝛿𝛿 = �‖𝒑𝒑 − 𝒑𝒑�‖𝟐𝟐𝟐𝟐

𝑛𝑛
 (29) 

where 𝒑𝒑� denotes the actual damage parameters. In both damage detection methods, the 

corresponding objective functions (26) and (28) are minimized using Optimization Toolbox 

in MATLAB [41], in which the active-set method is employed. The calculations are carried 

out on a PC with Intel Core i7 3.60 GHz CPU and 16 GB RAM.  
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The computation time of the elastic net technique is slightly longer than that of the l1 

regularization, while the damage identification error of the former is much smaller than the 

latter. For both techniques, more iterations are required for convergence when using the noisy 

modal data. The elastic net method is able to identify the grouped damage correctly even at a 

high noise level.  

 

The above numerical results show that the elastic net method is effective in locating and 

quantifying grouped structural damage, whilst the l1 regularization technique can only 

identify one damaged element from the group. Moreover, the proposed method has good 

robustness to noise. 

 

Table 2 Comparison of damage detection results of the cantilever beam 

Algorithm 
Iteration 

No. 
Identification 

error 
Time 

consumption 

Noise-free 
Elastic net 3 0.63% 17.74 sec 

L1 regularization 3 5.02% 14.00 sec 

Noise level 1 
Elastic net 4 2.61% 21.65 sec 

L1 regularization 4 5.11% 16.62 sec 

Noise level 2 
Elastic net 6 2.18% 32.67 sec 

L1 regularization 6 5.08% 27.99 sec 

 

5. An Experimental Example 

5.1 Model descriptions 

The experimental example is a three-story steel frame that was presented in Hou et al. [22]. 

The geometric dimensions of the frame are shown in Figure 8. The beams and columns have 

the same cross-section dimension as 75.0×5.0 mm2. The mass density and Young’s modulus 



19 
 

of the frame are 7.92×103 kg/m3 and 2.0×1011 N/m2, respectively.  

 

The frame was excited with an instrumented hammer with a rubber tip. The direction and 

location of the excitation point are shown in Figure 8. Bruel & Kjaer accelerometers with a 

magnetic base were firmly mounted on the frame to measure the acceleration responses. The 

signals were conditioned and amplified through a Bruel & Kjaer 2962 amplifier, then 

collected by the Kyowa EDX-100A data acquisition system. The instruments are shown in 

Figure 9. 

 

Figure 8 Overview of the frame structure (Unit: mm) 
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(a) Signal amplifier (Bruel & Kjaer 2962) (b) Data acquisition box (EDX-100A) 

 

(c) Hammer (SINOCERA LC-04A) 

Figure 9. Experiment instrumentation 

 

The sampling frequency of the test was 2000 Hz since the frequency range of interest is 

0~100 Hz. In order to obtain the complete mode shapes of the whole frame, the measurement 

points were chosen every 100 mm. Due to the high axial stiffness, the horizontal responses of 

the points on the beam are identical. Therefore, 39 measurement points as illustrated in 

Figure 8 were selected. For the measurement points on the beam and columns, the horizontal 

and vertical accelerations were measured, respectively. Since only nine accelerometers were 

available (Figure 10), five set-ups were tested, in which additional masses with the same 

weight as the accelerometers were employed as the dummy sensors. In each set-up, the 

structure was impacted eight times for the purpose of averaging, and each impact lasted for 30 

seconds. The frequency response function of each measurement point was then calculated. 

Afterwards, the accelerometers roved along the frame and swapped with the dummy sensors 
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to keep the mass of the frame unchanged. The hammer’s impacting location and direction 

remained unchanged for different set-up. Finally the measured frequency response functions 

of all 39 measurement points were combined, and the complete mode shapes of the frame 

were calculated using the rational fraction polynomial method [42]. 

 

 
Figure 10 Layout of accelerometers and added mass 

 

Two saw cuts were sequentially introduced into the frame model, corresponding to two DSs 

(Figure 8). Cuts 1 and 2 are located at the bottom of the column and the beam-column joint, 

respectively. The saw cuts have the same length b = 20 mm and depth d = 22.5 mm, and thus 

the moment of inertia of the cut sections are reduced by 60%. The modal testing was 

conducted on the intact frame and then repeated for two damage states. The first eight 

frequencies and mode shapes, as listed in Table 3, were extracted and used for damage 

detection. The measured frequencies and mode shapes of the frame in the undamaged state 

are illustrated in Figure 11. 

Additional mass 
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Table 3 The measured modal data of the frame in the undamaged and damaged states 

Mode 
no. 

Undamaged DS1 DS2 
Freq. (Hz) Freq. (Hz) MAC Freq. (Hz) MAC 

1   4.23   4.13 (−2.31) 92.02   4.08 (−3.53) 95.78 
2  14.03  13.75 (−1.96) 99.02  13.45 (−4.11) 97.49 
3  25.45  25.14 (−1.19) 98.87  25.13 (−1.23) 99.01 
4  44.81  44.70 (−0.23) 94.74  44.69 (−0.27) 97.59 
5  58.12  57.39 (−1.24) 92.45  57.28 (−1.44) 91.46 
6  68.36  67.34 (−1.49) 93.01  66.11 (−3.29) 88.14 
7  72.27  72.06 (−0.28) 96.30  71.42 (−1.18) 85.80 
8  91.73  89.14 (−2.83) 86.79  88.51 (−3.52) 76.38 

Average       (−1.44) 94.15       (−2.32) 91.46 

Note: Values in parentheses are the frequency change ratios (%) between the damaged and undamaged states. 

 

   
Mode 1 (4.23 Hz) Mode 2 (14.03 Hz) Mode 3 (25.45 Hz) 

   

Mode 4 (44.81 Hz) Mode 5 (58.12 Hz) Mode 6 (68.36 Hz) 
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Mode 7 (72.27 Hz) Mode 8 (91.73 Hz)  

Figure 11 The measured mode shapes of the frame in the undamaged state 

 

5.2 FE modeling of the frame 

Two FE modeling schemes are employed in this study to investigate the effectiveness of the 

proposed damage identification algorithm. In the first scheme, the frame is divided into 225 

elements, each 20 mm long. Cuts 1 and 2 are located at elements 1 and 176, respectively. As 

the length of one element is identical to that of each cut, the damage severity equals to the 

reduction in the moment of inertia of the cut section, that is, SRF(1) = SRF(176) = −60%.  

 

To examine the effectiveness of the proposed method in identifying grouped variables, the 

frame is also modeled with 450 elements (each 10 mm long) in the second FE modeling 

scheme, in which each cut corresponds to two damaged elements since the length of each cut 

is double that of one element. Table 4 lists the damage locations and severities of the two DSs 

in both schemes. The FE models have two and four damaged elements, which are extremely 

sparse compared to the total 225 and 450 elements, respectively. 

 

The initial FE model is updated using the experimental data in the undamaged state to reduce 

the influence of modeling errors of the initial FE model. No regularization is employed in this 

step. The updated FE model can represent the structure more accurately, as its modal 
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properties match the measured ones of the structure, which will be used for damage detection 

in the next section.  

 

Table 4 Damage locations and severities for the two DSs 

FE model DS1 DS2 

Scheme 1 (n = 225) SRF(1) = −60% SRF(1)  = −60% 
  SRF(176) = −60% 

Scheme 2 (n = 450) SRF(1) = −60% SRF(1)  = −60% 
 SRF(2) = −60% SRF(2)  = −60% 
  SRF(351) = −60% 
  SRF(352) = −60% 

 

5.3 Damage detection 

The first eight natural frequencies and the associated mode shapes are used for damage 

identification. As the numerical example, the initial damage parameters 𝒑𝒑0 = {0, … ,0}𝑇𝑇 and 

the convergence criterion is Tol = 0.001. 

 

5.3.1 Damage detection using FE modeling scheme 1 

When the first FE modeling scheme is used, there are 312 measurement data and 225 

unknown SRF values to be identified, which is an over-determined problem. The 

regularization parameters for DS1 and DS2 are determined as 𝛽𝛽1 = 0.3 and 𝛽𝛽1 = 0.2, 

respectively. Following the iterative procedures summarized in Section 3, the damage 

parameters in the two DSs are obtained and displayed in Figures 12 and 13. In order to 

display the results more clearly, enlarged figures corresponding to the damaged area are also 

provided. For DS1, the damage parameters converge after two iterations only. The damage 

location and severity are identified accurately and no false identification occurs. For DS2, the 

process converges after 7 iterations, and only the results in the first and last iterations are 

shown for brevity. The two damaged elements are accurately detected. 
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(a) Iteration No. 1 

  
(b) Iteration No. 2 

Figure 12 Damage identification results during the iterative process for DS1 

 

 

  
(a) Iteration No. 1 
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(b) Iteration No. 7 

Figure 13 Damage identification results during the iterative process for DS2 

 

The damage identification results with the l1 regularization technique are shown in Figure 14. 

For DS1, the damaged element is detected with a good accuracy. For DS2, the two damage 

locations are identified correctly and no false identification occurs. However, the SRF of 

Element 176 has a large error.  

 

  
(a) DS1 
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(b) DS2 

Figure 14 Damage identification results with the l1 regularization technique 

 

5.3.2 Damage detection using FE modeling scheme 2 

When FE modeling scheme 2 is used, it has 450 unknown SRF values to be identified 

whereas there are 312 measurement data, which is an underdetermined problem. The 

regularization parameters for DS1 and DS2 are determined as 𝛽𝛽1 = 0.1 and 𝛽𝛽1 = 0.15, 

respectively. The identification results for DS1 and DS2 are shown in Figure 15. For DS1, the 

results converge and the two adjacent damaged elements are accurately detected after two 

iterations. In DS2, two groups of elements (1, 2, 351 and 352) were damaged. The 

convergence is achieved after four iterations, and all four damaged elements are accurately 

detected upon convergence, although the SRF of Element 3 has a small error.  
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(a) DS1 

 

  
(b) DS2 

Figure 15 Damage identification results using the second FE modeling scheme 

 

The damage identification results with the l1 regularization technique are shown in Figure 16. 

For DS1, only one of the two damaged elements can be detected. In DS2, only the first 2 

damaged elements in Cut 1 can be identified accurately.  
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(a) DS1 

 

  
(b) DS2 

Figure 16 Damage identification results using the second FE modeling scheme with the l1 

regularization technique  

 

The damage detection results with the l1 regularization and the proposed methods are 

compared in Table 5. In both DSs, the two methods consumed similar computation time, 

while the proposed elastic net method is able to obtain more accurate identification results 

than the l1 regularization technique. 
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Table 5 Comparison of damage detection results using elastic net and l1 regularization 
technique 

 Algorithms Elastic net L1 regularization 

DS1 
Identification error 1.13% 2.88% 

Time consumption 9.46 min 8.66 min 

DS2 
Identification error 1.93% 3.81% 
Time consumption 8.67 min 9.50 min 

 

The example demonstrates that the developed method is able to identify grouped structural 

damage, whereas the l1 regularization cannot. Consequently, with the proposed damage 

detection method, the length of the element in the FE model can be shorter, and thus finer 

damaged elements can be detected 

 

6. Conclusions and Discussions 

A sparse damage identification method has been proposed in this study using natural 

frequencies and mode shapes. The nonlinear sensitivity-based model updating is linearized 

through an iterative procedure. The elastic net method is employed to identify the sparse 

damage, which exploits the advantages of both l1 and l2 regularization techniques. The 

proposed method is able to enforce sparsity in the solution as the l1 regularization technique 

does. Through including the l2 regularization term, the condition of the sensitivity matrix and 

thus the robustness and stability of the method are improved. Moreover, the proposed method 

enables the grouped structural damage being identified simultaneously.  

 

Numerical and experimental examples verify that the proposed sparse damage detection 

technique can identify single and multiple damages accurately. The examples also 

demonstrate that the elastic net method is able to successfully detect grouped structural 

damage, even when the number of measurement data is much less than the number of 
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elements, which is advantageous over the l1 regularization technique. Therefore, the structure 

of interest can be modeled with a larger number of elements using the proposed method, such 

that smaller local damage can be directly modeled and quantified.   
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