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Abstract 

Structural damage identification has received considerable attention during the past decades. 

Although several reviews have been presented, some new developments have emerged in this 

area, particularly machine learning and artificial intelligence techniques. This article reviews 

the progress in the area of vibration-based damage identification methods over the past 10 

years. These methods are classified in terms of different damage indices and 

analytical/numerical techniques used with discussions of their advantages and disadvantages. 

The challenges and future research for vibration-based damage identification are summarised. 

This review aims to help researchers and practitioners in effectively implementing existing 

damage detection algorithms and developing more reliable and practical methods for civil 

engineering structures in the future.  
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1. Introduction 

Civil engineering structures are exposed to natural and manmade hazards, which may cause 

structural damage or even collapse. An unpredicted structural failure can be catastrophic not 

only in terms of life and economic losses but also in terms of the subsequent societal impacts. 

Therefore, structural damage detection is important, especially in the early damage state, to 

avoid sudden failures and improve the safety and reliability of structures.  

 

Structural damage identification has been widely explored over the past decades. Rytter [1] 

classified damage identification into four levels: determination of damage existence, 

determination of damage location, quantification of damage severity, and finally prediction of 

the remaining service life of structures, which are referred to as Levels 1 to 4, respectively. 

Most current studies focus on the first three levels [2]. 

 

Structural damage detection methods can be divided into two categories, namely, 

nondestructive testing (NDT) and vibration-based methods. The former are local methods that 

cannot easily detect damage located inside structures (e.g. cracks in concrete and/or corrosion 

of steel bars) or damage enclosed by non-structural components (e.g. decorations of 

buildings). By contrast, vibration-based damage identification methods examine changes in 

structural global vibration characteristics and are thus regarded as global methods and have 

attracted considerable attention during the past decades. In this regard, only vibration-based 

damage detection methods are reviewed in this paper.  

 

Early vibration-based damage detection methods were reviewed and summarised in several 

literatures. For example, Doebling et al. [2] and Sohn et al. [3] comprehensively reviewed 

vibration-based damage detection methods and their applications to various types of 

structures before 1996 and between 1996 and 2001, respectively. Salawu [4] reviewed 

damage identification methods using natural frequency changes. Carden and Fanning [5] 

focused on publications between 1996 and 2003. Fan and Qiao [6] compared several damage 

detection methods. Hakim and Razak [7] and Chen et al. [8] reviewed the applications of 
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artificial neural networks (ANNs) and Hilbert–Huang transform (HHT) for damage 

identification over the last 20 years, respectively.  

 

A recent literature survey was conducted by Kong et al. [9], who discussed the prediction of 

the remaining life of structures and related decision making. Cao et al. [10] provided an 

overall survey of damping-based damage detection methods. Huang et al. [11] presented a 

complete review on the recent development of Bayesian inference for structural damage 

detection and assessment. Weng et al. [12] reviewed dynamic substructuring methods for 

damage identification of large-scale structures. In terms of the massive collected data, Gordan 

et al. [13] intensively reviewed the applications of data mining techniques in damage 

identification and structural health monitoring (SHM) that have been conducted since 2000. 

Bao et al. [14] reviewed advancements in data science and engineering in SHM. An et al. [15] 

summarised damage identification methods for bridge structures between 2011 and 2017. 

 

The fast development in information technology, particularly sensing technology, signal 

processing techniques, machine learning (ML) and artificial intelligence (AI) technologies, 

advances vibration-based damage identification methods over the past decade. In addition, 

damage identification under operational and environmental conditions, output-only 

identification, statistical damage detection, real-time identification for on-line SHM, and 

optimal sensor placement (OSP), etc., are also important issues. A number of techniques have 

been developed to deal with these problems.  

 

This work aims to review the latest vibration-based damage detection methods between 2010 

and 2019. Although hundreds of papers are published every year, only representative papers 

are reviewed in Section 2 because of the length limit. The challenges and future trends of the 

vibration-based damage identification methods are discussed in Section 3, followed by 

Conclusions.  

 

In Section 2, damage identification methods are classified according to the damage index used 

and analytical techniques. First, methods using various modal parameters are reviewed in 
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Subsection 2.1. Different signal processing based damage identification methods are reviewed 

in Subsection 2.2. Subsection 2.3 discussed finite element model updating methods,  

including conventional model updating, substrcuturing methods, regularisation techniques, 

and sparse recovery techniques. The optimisation algorithms such as genetric algorithm (GA) 

and ANN are reviewed in Subsection 2.4. Subsection 2.5 introduces the statistical time series 

methods based on AR models and their variants. Subsequently, the cutting-edge ML methods 

are comprehensively reviewed in Subsection 2.6, which includes supervised, unsupervised 

and semi-supervised learning. Subsection 2.7 introduces the probabilistic damage 

identification approaches, particularly the Bayesian methods. Subsection 2.8 addresses 

damage identification under varying environmental conditions. The methods are divided into 

two categories, depending on whether the environmental variables are measured or not. 

Subsection 2.9 reviews existing algorithms with consideration of nonlinear structural 

behaviours, and Subsection 2.10 introduces the newly developed drive-by damage 

identification methods. In Subsection 2.11, some techniques that are excluded from the 

abovementioned categories are introduced, such as RSM and OSP. Finally, Subsection 2.12 

focuses on the papers that compared different damage identification methods. 

 

2. Vibration-Based Damage Identification Methods 

Vibration-based damage detection methods have been first developed and applied in 

aerospace and mechanical engineering; the civil engineering community has studied the 

vibration-based damage detection of bridge structures since the early 1980s [16]. The basic 

idea of vibration-based damage detection methods is that structural damage may induce 

changes in vibration characteristics, such as frequencies and mode shapes [2].  

 

Vibration-based damage detection methods can be categorised into three domains based on 

vibration parameters: time domain, frequency domain and time–frequency domain methods. 

In time domain methods, time–history responses are used. In frequency domain methods, 

modal parameters are utilised. Time–frequency domain methods are based on time–frequency 



8 
 

analytical tools. In terms of algorithms used, damage detection methods can be classified into 

nonmodel-based or data-driven and model-based methods. 

 

The performance of damage detection largely relies on the choice of damage sensitive 

features. Therefore, vibration-based damage detection methods involving different damage 

indices are first introduced. 

 

2.1 Modal parameter-based methods 

With the development of modal analysis technology, the majority of vibration-based methods 

fall into frequency domains. Modal parameters, such as natural frequencies, mode shapes and 

their variants, have been commonly used. However, the use of natural frequencies only as 

damage indices is no longer popular in recent years because they are insensitive to local 

damage and the number of available frequencies is limited, generally less than 10.  

 

2.1.1 Mode shapes 

Yoon et al. [17] applied their previously proposed global fitting method [18] to identify 

damage in 2D plate-like structures by using the mode shape data only from a damaged 

structure. In comparison with the gapped smoothing method, which locally fits mode shape 

curvature (MSC), global fitting involves the use of a generic mode shape form to globally fit 

mode shapes, thus eliminating the smearing effects and reducing false detection. Zhang et al. 

[19] approximately extracted mode shapes from the acceleration responses of a passing 

vehicle with sinusoidal tapping force. Damage location was then determined on the basis of 

the difference between damaged and intact mode shape squares. Although baseline 

information is necessary, the proposed approach does not require many preinstalled sensors 

and solving eigenvector or singular value problems. Feng and Feng [20] extracted a first-order 

mode shape from the vehicle-induced displacement response, which was utilised as a damage 

index to determine damage location and quantitatively monitor the damage progression of 

bridges.  
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2.1.2 Natural frequencies and mode shapes 

Some researchers combined natural frequencies and mode shapes for damage detection. Sun 

et al. [21] used a normalised uniform load surface curvature, which was estimated from modal 

flexibility, to locate damage for beam-like structures. The proposed method performed better 

in identifying single and multiple damage locations than the uniform load surface curvature 

and MSC methods. However, this method was only applicable to beam-like structures 

following Bernoulli–Euler beam theory. Zhao and Zhang [22] utilised the changes of in 

natural frequencies and mode shapes for damage localisation and quantification. The modal 

assurance criterion (MAC) was used to analyse the sensitivity of mode shapes between 

different orders, and mode shapes with high sensitivities to damage were employed to 

calculate the damage index. 

 

Radzieński et al. [23] compared six widely used damage detection methods based on modal 

parameters, including MSC, coordinate MAC, strain energy damage index, gapped smoothing 

method, fractal dimension (FD) and wavelet transformation (WT). However, only the 

generalised FD and WT damage indicators were able to accurately locate damage position 

accurately in the presence of measurement noise. In this regard, the authors proposed a new 

damage indicator based on the change in natural frequencies and any one mode shape 

(measured or modelled). Capecchi et al. [24] integrated combined natural frequencies, mode 

shapes and MSCs for damage identification in a parabolic arch.  

 

Single crack identification using modal parameters has been intensively studied. However, 

relatively few studies have addressed multi crack identification problems. Caddemi and Caliò 

[25] derived a closed form expression of the exact dynamic stiffness matrix of a multi-cracked 

Euler–Bernoulli beam based on their previous work [26] and then extended it to frame 

structures. The natural frequencies and mode shapes of undamaged and damaged frames were 

calculated on the basis of the Wittrick–Williams algorithm and further used for damage 

identification. Later, Khiem and Tran [27] derived a simplified closed- form expression of the 

vibration modes of multiple cracked beams. The shifts of natural frequencies and mode 
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shapes were explicitly expressed in terms of crack locations and magnitudes. An iterative 

procedure was developed to determine not only the position and severity of cracks but also 

their quantity. Khiem and Toan [28] proposed an explicit expression of natural frequencies in 

terms of crack positions and sizes for multiple cracked beams; their proposed method differed 

from the earlier one by including nonlinear terms with respect to the crack magnitude. The 

non-uniqueness problem in damage detection under a symmetrical boundary condition was 

overcame by incorporating nonlinear terms. 

 

2.1.3 Damping 

In comparison with natural frequencies and mode shapes, damping has been less commonly 

used for damage identification because of the complexity of its measurement and mechanism. 

Frizzarin et al. [29] used the nonlinear damping identified from ambient vibration responses 

to locate damage in concrete structures without any reference to an undamaged baseline. 

Mustafa et al. [30] proposed an energy-based damping evaluation method for damage 

localisation. Ay et al. [31] estimated the damage-induced changes in the overall damping 

behaviour of a free-vibration dynamic system within a statistical framework.  

 

The damping model used for damping estimation is critical for damping-based methods [10]. 

Most studies have adopted a Rayleigh damping model because of its mathematical simplicity. 

However, classical Rayleigh damping may be an inappropriate assumption for most civil 

structures [32]. In this regard, Liu et al. [33] proposed a technique to identify damage to 

non-classically damped shear buildings. A novel modal identification technique was 

developed to identify complex modal parameters from vibration measurements under 

harmonic excitations. The locations and magnitudes of damage with respect to stiffness 

reduction and damping defect were then simultaneously identified through the 

sensitivity-based model updating.  

 

Damage identification methods based on modal parameters possess the merit of direct 

physical interpretation. However, modal identification is susceptible to measurement noise, 
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especially for damage-sensitive high modes. This process may produce some unavoidable 

errors and render the damage identification results unreliable. In this regard, some researchers 

directly utilised the measured data, such as frequency response function (FRF), for damage 

identification. 

 

2.1.4 FRFs and their variants 

In contrast to modal data, FRFs are calculated over the entire frequency range and can provide 

more information about damage. Limongelli [34] proposed a damage detection method by 

using the difference between the FRF and its spline interpolation. The method was later 

successfully applied to frame structures under seismic excitation [35] and a single-span 

reinforced concrete bridge [36]. 

 

An operational deflection shape (ODS) is usually defined as the deflection of a structure at a 

particular frequency [37]. On the basis of their previous work, Zhang et al. [38] used an ODS 

curvature to locate damage. The ODS curvature of an undamaged structure was approximated 

by a smooth line under the assumption that an intact structure was homogeneous and uniform 

to avoid the requirement of a baseline. Damage location was identified by comparing ODS 

curvatures before and after damage.  

 

The major problem of FRF-based damage detection methods lies in the choice of the optimum 

frequency range for analysis. Moreover, the FRF requires the measurement of excitation 

forces and structural responses simultaneously.  

 

As a substitute of the FRF, transmissibility is defined as the relationship between two sets of 

responses and independent of input excitations. Another motivation of using transmissibility 

for damage detection relies on the fact that Tthe transmissibility is a local quantity that and 

suggests is of high sensitivity to damage [39].  
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Maia et al. [39] utilised the correlations of acceleration response transmissibilities to detect 

and quantify structural damage. The transmissibility damage indicator was found more 

sensitive than FRFs in terms of damage detection and quantification. Li et al. [40] 

reconstructed the auto-spectral density functions by using power spectral density (PSD) 

transmissibility. Damage identification was then conducted by minimising the difference 

between the measured and reconstructed PSD functions. Kong et al. [41] used the 

transmissibility of vehicle responses in a vehicle-bridge coupled system to detect bridge 

damage.  

 

The aforementioned damage detection methods can be classified as damage index methods 

and are summarized in Table 1. In the subsequent subsection, different signal processing 

techniques for damage detection are reviewed.  

 

Table 1. Modal parameter-based damage identification methods 

Features Authors 
Damage 

identification 
level 

Applications Remarks 

Mode shapes Yoon et al. [17] 1-3 Experimental 1D beam 
and 2D plate 

M 

 Zhang et al. [19] 1 and 2 Experimental 
plywood/plate 

B 

 Feng and Feng [20] 1 and 2* Numerical simply 
supported bridge 

Output 
only 

Frequencies and 
mode shapes 

Sun et al. [21] 1 and 2 Numerical beam-like 
structures 

B 

 Zhao and Zhang [22] 1-3 Numerical planar truss 
beam 

B, M 

 Radzieński et al. [23] 1 and 2 Experimental beam-like 
structures 

B 

 Capecchi et al. [24] 1-3 Experimental parabolic 
arch 

M 

 Caddemi and Caliò 
[25] 

1-3 Numerical frame  B, M 

 Khiem and Tran [27] 1-3 Numerical beam-like 
structures 

M 
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Damping Frizzarin et al. [29] 1 and 2 Experimental RC bridge Output 
only 

 Mustafa et al. [30] 1 and 2 Steel truss bridge 
(viscous damping) 

M 

 Ay et al. [31] 1-3 Experimental steel 
bridge (viscous 
damping) 

B 

 Liu et al. [33] 1-3 Numerical shear 
building (non-classically 
damping) 

M 

FRFs and their 
variants 

Limongelli [34] 1 and 2 I40 bridge B 

 Limongelli [35] 1 and 2 Numerical frame under 
seismic excitation 

B 

 Dilena et al. [36] 1 and 2* RC bridge B 

 Zhang et al. [38] 1 and 2 Experimental plywood 
beam and plate 

Output 
only 

 Maia et al. [39] 1-3 Experimental steel beam B 

 Li et al. [40] 1-3 Experimental steel plane 
frame 

M 

 Kong et al. [41] 1 and 2 Numerical simply 
supported beam 

M 

Note: * ― Quantitatively indicate the relative severity of damage; 
     B ― Baseline information is required; 
     M ― Analytical model is required. 

 

2.2 Signal processing-based methods  

In order to improve damage sensitivity, dynamic responses should be further processed to 

extract hidden information. In this regard, a number of signal processing techniques, such as 

WT, HHT and FD, have been developed and applied for structural damage detection. 

 

Yang and Nagarajaiah [42] combined independent component analysis with WT for 

output-only damage identification. Structural vibration responses were transformed into a 

wavelet domain and then fed as mixtures into a blind source separation model, which was 
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examined through independent component analysis. Consequently, the damage information 

hidden in wavelet-domain signals was clearly revealed by a sharp spike.  

 

B-spline wavelets have been widely applied to signal processing since its introduction by 

Chui and Wang [43]. Katunin [44] derived the analytical formulation of high-order (e.g. 

fifth-, sixth- and seventh-order) B-spline wavelets, in addition to the first four B-spline 

wavelets. The discrete WT with the sixth-order B-spline wavelets was then  

 

 

applied to identify damage to in composite beams by evaluating the singularities of detailed 

coefficients. In another study, Katunin [45] applied the sixth-order B-spline wavelets to detect 

damage to composite plates. Numerical and experimental results showed that high-order 

B-spline wavelets could improve the sensitivity and accuracy of damage detection and 

localisation.  

 

Identification of multiple damage is more challenging than the identification of single 

damage. Cao et al. [46, 47] applied WT to a curvature mode shape to alleviate noise effect. A 

Teager energy operator was then implemented to intensify the local singularities of the signal. 

With this proposed technique, slight and multiple cracks in beams could be detected even 

under high-noise conditions. Recently, Shahsavari et al. [48] presented a statistical procedure 

to detect low levels of multiple damage in beams. Continuous WT was first applied to the first 

mode shape. A damage indicator was then extracted from the wavelet coefficients through 

PCA. Once damage was detected, a likelihood ratio test was further conducted to determine 

the likely location.  

 

HHT [49] is a time–frequency analytical technique that is able to process nonlinear and 

nonstationary signals. Dong et al. [50] used a vector auto-regressive (AR) moving average 

(ARMA) model, unlike conventional HHT, to represent intrinsic mode functions (IMFs) 

obtained from the empirical mode decomposition (EMD) of vibration signals. A damage 

index was defined on the basis of vector ARMA coefficients, which indicated the occurrence 

Formatted: Line spacing:  1.5 lines
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and relative severity of damage. Bao et al. [51] developed a multistage output-only 

identification scheme based on an improved HHT, which was able to provide Levels 1–3 

damage identification. The improved HHT could decompose structural response data under 

ambient excitations and possessesed better robustness to noise compared with the traditional 

HHT. Han et al. [52] used HHT for modal identification and damage detection. Modal 

parameters were identified through HHT in combination with other techniques, such as 

random decrement (RD), natural excitation and stochastic subspace identification.  

 

Aied et al. [53] applied ensemble EMD to the acceleration responses of a bridge to a moving 

load to detect a sudden stiffness change. Experimental results revealed that changes in the 

stiffness were successfully identified even in the presence of rough profiles, high vehicle 

speeds and noisy signals.  

 

The FD introduced by Mandelbrot [54] is an effective indicator to characterise irregularities in 

nonlinear systems. In comparison with WT that needs high -spatial resolution in 

measurements, FD-based methods only require a small number of measured points; as such, 

they are convenient and effective for online data processing and structural damage detection 

over the past 10 years. 

 

Li et al. [55] expressed the difference in the angles of sliding windows between two 

successive points of a displacement mode shape in FD, and then utilised the change in angle 

for damage localisation. A damage quantification index was developed on the basis of the 

relationship between the angle and modal strain energy (MSE). Bai et al. [56] extended the 

previous FD-based methods to a higher mode shape, which was transformed into a new mode 

shape through affine transformation. The newly generated mode shape preserved the original 

damage information and eliminated the local extrema that may cause false damage 

identification. The developed method was then successfully applied to detect damage in beam 

and plate structures [57]. 
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An intrinsic deficiency of the FD analysis is its susceptibility to measurement noise. To 

address this problem, Bai et al. [58, 59] applied WT to decompose a mode shape into scale 

mode shapes before the FD analysis. Damage information and noise were thus separated 

because they had different scale characteristics.  

 

The aforementioned studies applied the FD analysis to mode shapes. An and Ou [60] directly 

analysed acceleration data through FD to locate damage in order to avoid modal identification 

errors. FDs were computed at each measured node. The curvature difference in FDs before 

and after damage indicated damage location. The proposed method exhibited a high 

robustness to noise and was still feasible even if the noise level was up to 15%. Li et al. [61] 

combined the time–frequency analysis and FD to identify seismic damage for shear-type 

building structures by using the acceleration data only. WT was applied to determine the 

time–frequency feature, whose FD was then calculated using a box-counting method. 

Damage-induced nonlinearity was localised by comparing FDs in different stories. 

 

A bridge and moving loads on it is a nonstationary dynamic system. The interaction between 

the loads and structure is closely related to the actual safety condition of the bridge and thus 

has been analysed used for damage identification. Hester and González [62] applied WT to 

the acceleration response of a bridge to a moving vehicle. The wavelet energy content was 

employed as a damage indicator, which was calculated on the basis of a range of scales rather 

than a given scale, to improve the sensitivity of the wavelet coefficient to damage. Roveri and 

Carcaterra [63] used the HHT to identify damage in bridge structures under a travelling load. 

A single point response was measured and processed through HHT, and the peak of the first 

instantaneous frequency indicated the damage location. Kunwar et al. [64] adopted HHT to 

locate damage in a bridge model under transient vibration loads. The relative amplitude of a 

marginal Hilbert spectrum was used to identify damage location, and the joint time–frequency 

distribution referred to damage evolution.  

 

Signal processing-based methods are typically nonparametric and only require experimental 

data from a damaged structure. Although these methods are efficient for practical applications 
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without resorting to a baseline model, they are mostly limited to Level 2 damage 

identification, that is, damage location. This is because the quantitative relation between the 

signal and damage severity cannot be established. The following table compares and 

summarizes the signal processing-based methods that have been reviewed in this subsection.  

 

Table 2. Signal processing-based methods 

Authors Methods/Features 
Damage 

identification 
level 

Applications Remarks 

Yang and 
Nagarajaiah [42] 

WT+BSS/ 
approximated and 
detailed components 

1, 2, and damage 
instant 

Real seismic-excited 
building 

Output only 

Katunin [44] WT using fifth-order 
B-spline wavelet/ detail 
coefficients 

1 and 2 Experimental beams Output only, 
on-line 

Katunin [45] WT using sixth-order 
B-spline wavelet/ detail 
coefficients 

1, 2 and shape Experimental plates Output only, 
on-line 

Cao et al. [46, 47] WT+Teager energy 
operator/ curvature 
mode shape 

1 and 2* Experimental beams Output only 

Shahsavari et al. 
[48] 

WT+PCA/ WT 
coefficients 

1 and 2 Experimental beams Output only 

Dong et al. [50] EMD+ARMA/ ARMA 
coefficients 

1* Benchmark structures Output only 

Bao et al. [51] HHT/ instantaneous 
phase and frequency, 
Hilbert marginal 
spectrum 

1, 2*, and damage 
instant 

Experimental 
three-storey frame  

Output only, 
on-line 

Han et al. [52] HHT/ instantaneous 
frequency and energy, 
Hilbert marginal 
spectrum 

1 and 2* Experimental 12-story 
reinforced concrete 
frame model 

B 

Aied et al. [53] EMD/IMF1 Damage instant 
and duration 

Numerical 3D VBI 
model 

Output only 

Li et al. [55] FD/FD-based indices 1-3 Experimental beam  B 

Bai et al. [56] FD+affine 
transformation/ FD 
trajectory 

1 and 2* Experimental beam Output only 



18 
 

Bai et al. [57] FD+affine 
transformation/ FD 
trajectory 

1 and 2 Experimental plate Output only 

Bai et al. [58] FD+WT/ scale FD 
trajectory 

1 and 2* Experimental beam Output only 

Bai et al. [59] FD+WT/ scale FD 
trajectory 

Location of 
delamination 

Experimental composite 
plate 

Output only 

An and Ou [60] FD/waveform FD 1 and 2 Experimental beam B 

Li et al. [61] FD+WT/FDs 1 and 2 Numerical building Output only 

Hester and 
González [62] 

WT/ wavelet energy 1 and 2* Numerical bridge beam  Output only 

Roveri and 
Carcaterra [63] 

HHT/ first 
instantaneous frequency 

1 and 2 Numerical bridge beam Output only 

Kunwar et al. 
[64] 

HHT/ marginal Hilbert 
spectrum 

1 and 2* Experimental bridge B 

Note: * ― Quantitatively indicate the relative severity of damage 
VBI ― vehicle–bridge interaction 

     B ― Baseline information is required; 
     M ― Analytical model is required. 
 

2.3 Finite element model updating methods 

Model updating methods modify model property matrices, such as mass, stiffness and 

damping matrices, to ensure that the analytical predictions of the updated model resemble 

experimental data as closely as possible [65]. When undamaged and damaged measurement 

data are available, changes in structural parameters can be utilised to detect the presence of 

damage, identify damage location and quantify damage extent (Levels 1–3 damage 

identification).  

 

2.3.1 Conventional model updating 

Early model updating methods are one-step approaches that directly reconstruct the stiffness 

and mass matrices of an analytical model to reproduce the measured modal data [66, 67]. The 

main drawback of these methods is that the updated mass and stiffness matrices have minor 

physical meaning, that is, they cannot be related to the changes in the parameters of the 
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original model. Nowadays, model updating methods are iterative approaches that repeatedly 

modify the physical parameters of a finite element (FE) model. This approach directly 

changes matrices and adjusts the physical parameters at an elemental or substructural level. 

System stiffness and mass matrices are assembled from all elements in a discrete FE model. 

Therefore, (1) the matrix properties of symmetry, sparseness and positive definiteness are 

guaranteed; (2) structural connectivity is preserved; and (3) changes in the updated global 

matrices are represented by changes in the updated parameters [68].  

 

Model updating methods in mathematics are regarded as an optimisation problem that 

minimises the difference between the measured and predicted responses or referred to as an 

error function. Similar to data-based methods, measurement data can be FRFs [69], natural 

frequencies and mode shapes [70], time histories [71, 72], dynamic strain responses [73-77] 

or a combination of static and modal test data [78].  

 

2.3.2 Substructuring techniques 

Substructuring techniques have been developed and employed efficiently in the structural 

analysis of large-scale structures since the 1960s [79]. In these techniques, a global structure 

is divided into small manageable substructures, each of which is analysed independently to 

obtain its designated solution. These solutions are then assembled to recover the solutions of 

the global structure by imposing constraints at the interfaces. The component mode synthesis 

(CMS) method is a popular substructuring technique and. It can be classified as the free 

interface, fixed interface and hybrid methods, according to the interface condition of the 

substructures. Yu et al. [80] proposed a free interface CMS method and applied it to the 

element-by-element model updating of large-scale structures. Later, Wang et al. [81] 

improved the free interface CMS method for model updating, in which the residual flexibility 

attachment matrix was constructed without inverting the stiffness matrix. Liu et al. [82] used 

the CMS method developed in [83] to update the FE model of a scaled arch bridge model. 

Papadimitriou and Papadioti [84] proposed a fixed interface CMS method and applied it to 
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damage detection of a highway bridge, in which each substructure had one unknown 

parameter for updating.  

 

Weng et al. [85, 86] proposed an iterative substructuring method for FE model updating on 

the basis of Kron’s substructuring concept [87]. During model updating, each substructure 

was independently handled. When a structure was damaged in a local area, some specific 

substructures were re-analysed and assembled with other unchanged substructures to recover 

the solutions of the global structure without repeatedly analysing the global structural 

properties. Later, Weng et al. [88] developed the an inverse substructuring method in an 

inverse manner., where In their study, the substructural flexibility was extracted from the 

experimental modal data of the global structure and then used as a reference for updating the 

substructural FE model. Eigenvalues and eigenvectors decomposed from substructural 

flexibility were employed as damage indicators [89]. Substructural properties were more 

sensitive to damage than the global ones because damage typically occurred in a local area.  

 

Yuen and Huang [90] developed an improved Bayesian substructure identification approach 

based on their previous work [91]. The improvement was made by modelling the boundary 

force as filtered white noise, which imposed extra constraints and thus enhanced the 

identifiability of the inverse problem.  

 

2.3.3 Regularisation techniques 

FE model updating is an inverse problem and typically ill conditioned. Moreover, the number 

of available measurements is usually less than that of unknown parameters, resulting in an 

underdetermined problem. To solve the problems, the regularisation technique has been 

developed in the model updating by including an additional item in the error function, usually 

a 2-norm item, which leads to a convex error function. This technique is also referred to as 

Tikhonov regularisation or l2 regularisation.  
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Wang and Yang [92] presented a modified Tikhonov regularization in model updating. Since 

the structural system contains modelling errors and measurement noise, the identified results 

may diverge after several iterations. In this regard, they imposed limits on the identified 

parameters based on their physical meanings to circumvent the divergence problem. Li and 

Law [93] proposed an adaptive Tikhonov regularisation, which forced the stiffness reduction 

factors of intact elements close to zeros in each iteration. Comparative studies showed that the 

proposed approach had an obvious advantage over the traditional Tikhonov regularisation, 

especially when measurements contained large considerable noise. Zhu et al. [94] developed a 

sensitivity-based model updating approach with the Tikhonov regularisation in a state- space 

domain without the need for input measurements. Damage was identified by minimising the 

difference between the measured and reconstructed responses based on transmissibility. 
 
The regularisation parameter plays a critical role in all regularisation problems, which 

controls the trade-off between the data fidelity and solution sparsity, and thus may exert a 

crucial effect on solutions. In general, it is an unknown a priori and problem dependent. A 

number of methods, including discrepancy principle [95, 96], ordinary and generalised cross 

validations [97], min–max rules [98] and L-curve criterion [99], have been developed to 

determine the optimal regularisation parameter for inverse problems in mathematics.  

 

In structural damage identification, the optimal regularisation parameter of l2 regularisation is 

typically determined using the L-curve criterion [92-94, 100]. This criterion utilised a 

parametric plot of the solution norm versus the residual norm, and the corner of the curve is 

regarded as a good choice of the regularisation parameter, which simultaneously satisfies a 

small solution norm and a small residual norm [99]. Another widely used technique is 

generalised cross-validation [101]. In this technique, the regularisation parameter is calculated 

by minimising the overall prediction error based on the leave-one-out rule without any 

knowledge of the noise variance [97,102].  

 

The Tikhonov regularisation is convenient for implementation, and it has received wide 

applications in structural damage detection. However, it tends to produce over smooth 
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solutions, that is, the damage identification results are distributed to many structural elements, 

which are inconsistent with practical situations. 

 

2.3.4 Exploiting structural damage sparsity 

Structural damage often occurs at several locations only, especially at the early stage, which is 

sparser than the large total number of elements in the entire structure. Structural damage 

sparsity is regarded as essential prior information that can be utilised for more accurate 

damage identification. The preliminary use of the sparsity for damage detection can date back 

to earlier years in the 1990s, where sparsity prior information is exploited by the minimum 

rank model updating method [103-105].  

 

In this connection, structural damage identification can be treated as a sparse recovery 

problem. Sparse recovery theory, particularly compressive sensing (CS), has recently 

attracted considerable interest in a wide range of applications [106-108]. The basic idea 

manifests that an unknown sparse vector can still be accurately recovered when the number of 

measurements is smaller than the size of the entire vector, provided that the sensing matrix 

satisfies certain incoherence properties [106]. However, this theory has been introduced to 

structural damage detection since the 2010s. One possible reason is most CS deals with linear 

problems where damage detection is generally a nonlinear one. 

 

Sparse recovery theory adopts the lp (0 ≤ p ≤ 1) regularisation instead of the l2 regularisation 

[109], that is, a p-norm item is added to the error function. For a small item of a vector, the 

p-norm retains a relatively larger weight than the 2-norm. Therefore, a small item 

significantly contributes to the error function and tends to be penalised by being pushed to 

zero, resulting in a sparse solution [110]. Chen et al. [111] and Chartrand [112] demonstrated 

that lp (0 ≤ p < 1) regularisation can provide a sparser solution by using less fewer 

measurement data than l1 regularisation. In addition, the lp regularisation is robust to noise. 

However, for 0 ≤ 𝑝𝑝 < 1, the corresponding nonconvex optimisation problem is NP- hard. 

Solving this NP-hard problem requires a combinatory search and is thus computationally 
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infeasible for large-scale problems. Moreover, a globally optimal solution cannot be obtained 

for a nonconvex optimisation problem [113]. For these reasons, the l1 regularisation is more 

widely used than the lp regularisation (0 ≤ p < 1) counterpart.  

 

Bao et al. [114] first introduced the CS technology to structural damage detection. Hernandez 

[115] expanded the sensitivity-based model updating by using l1 norm minimisation. 

Following a similar idea, Zhou et al. [116] developed an l1 regularisation approach by using 

the first few frequency data. The proposed technique outperformed the conventional l2 

regularisation through numerical and experimental studies. The effects of the measurement 

number, damage severity, number of damage and noise level on the damage detection results 

were numerically investigated. Zhang and Xu [117] compared the Tikhonov regularisation 

with sparse regularisation by using time history data. The reweighted l1-norm regularisation 

technique was adopted to enhance sparsity in the solution. This comparison showed that the 

proposed sparse regularisation exhibited certain superiority to the Tikhonov regularisation in 

terms of the identification accuracy and computational efficiency. Hou et al. [118] further 

extended this technique by using frequencies and mode shapes. Wu and Zhou [119] 

developed a l1-regularised one-step model updating approach in which the measured modal 

data before and after damage was compared directly. In this manner, model updating at an 

undamaged stage was unnecessary. 

 

Zhang et al. [120] combined the extended Kalman filter (EKF) and l1 regularisation for 

damage identification by using free vibration responses. The original unconstrained 

optimisation problem was transformed into an optimisation problem with the l1-norm 

constraint, and a pseudo-measurement technique was utilised to enforce the constraint into 

each recursive step of EKF. Recently, Huang et al. [121] proposed an improved EKF method 

based on the lp regularisation. A novel L-surface approach was used to determine an 

appropriate p. Numerical and experimental examples showed that the proposed improved 

EKF method was superior to EKF with Tikhonov and l1 regularisation methods in terms of 

identification accuracy and required measurement quantities. 
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Zhou et al. [122] presented an iteratively reweighted l1 regularisation algorithm, which closely 

resembled the l0 regularisation. The nonconvex l0 regularisation problem was solved by 

transforming it into a series of weighted l1 regularisation problems. An experimental example 

demonstrated that the proposed algorithm was able to provide sparser damage identification 

results with higher accuracy than the l1 regularisation.  

 

Chen et al. [123] employed a weighted strategy and trace the least absolute shrinkage and 

selection operator (Lasso) for FE model updating by using modal parameters. Different 

weight coefficients were used to balance information from frequencies and mode shapes. The 

trace Lasso improved the accuracy and stability of the l1 regularisation, especially when 

unknown variables were highly correlated. The ant lion technique was employed to solve the 

optimisation problem. Later, Chen and Yu [124] combined the optimiser with an improved 

Nelder–Mead algorithm to improve the local searching ability. A comparison study indicated 

that the proposed algorithm was more robust and accurate than the ant lion optimiser and 

required more computational time.  

 

Wang and Lu [125] proposed a new error function that was decoupled from the damage 

parameters. The new error function, including an l1 regularisation term, was solved using an 

alternativeng minimisation approach without a sensitivity analysis. Ding et al. [126] proposed 

a novel error function based on sparse regularisation and Bayesian inference by considering 

the uncertainty effect and a limited number of measurements. A new heuristic algorithm, 

namely, the Jaya algorithm, was employed for the optimisation. Comparison results showed 

that the proposed error function yielded more reliable and accurate identification results than 

those with either sparse regularisation or Bayesian inference alone.  

 
Numerous methods have been developed to select the regularisation parameter for l2 

regularisation, whereas few methods have been devised for lp regularisation (0 ≤ p ≤ 1) [109]. 

This gap is due to the fact that the former has a closed-form solution, whereas the latter does 

not. In SHM and damage identification, an appropriate regularisation parameter of an 

l1-regularised problem is typically selected on the basis of experience. Mascarenas et al. [127] 
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heuristically selected the regularisation parameter as a unit. Yang and Nagarajaiah [128] set 

the regularisation parameter as 0.01 in CS-based modal identification. Yang and Nagarajaiah 

[129] calculated the regularisation parameter by using 𝛽𝛽 = 1/√𝑁𝑁, where N is the number of 

the time history sampling points corresponding to the dimension of an unknown vector. 

Zhang and Xu [117] used the reweighted l1 regularisation technique to determine the 

regularisation parameter. Yao et al. [130] showed that the plot of the residual term versus the 

regularisation term on a linear scale resembled an “L” shape. Afterwards, they selected the 

regularisation parameter corresponding to the corner of the L curve. 

 

More recently, Hou et al. [131] developed two strategies to select the regularisation parameter 

of the l1 regularisation problem. The first method utilized the residual and solution norms of 

the optimisation problem and ensured that they are both small. The other selection criterion 

was based on the discrepancy principle, which required that the variance of the discrepancy 

between the calculated and measured responses was close to the variance of the measurement 

noise. A range of the regularisation parameter, rather than one single value, could be 

determined using these two strategies. Wang and Lu [125] selected the optimal regularisation 

parameter based on the threshold setting method, which was closely related to two threshold 

parameters determined through numerical studies. 

 

In l1-regularised damage detection, the sensitivity matrix serves as the sensing matrix and is 

directly related to sensor locations. Sensor placement is a typical combinatorial problem, and 

the global optimum is difficult to obtain using conventional techniques. In this regard, Hou et 

al. [132] developed a GA-based OSP technique such that the columns of the resulting 

sensitivity matrix have maximum independence. Although the optimal sensor location is 

generally damage-dependent, the proposed technique worked on the sensitivity matrix in the 

undamaged state and did not need the prior knowledge of damage location and severity.  

 

Although the use of FE model updating for damage detection has been greatly significantly 

developed, these methods have some limitations. For example, the performance of these 

methods largely depends on the accuracy of the analytical FE model. In terms of optimising a 



26 
 

large-scale and complex structure, constructing a well-conditioned sensitivity matrix is 

difficult, and the computational load is heavy. The FE model updating methods reviewed in 

this subsection have been summarised in the following table. 

 

Table 3. Finite element model updating methods 

Method Feature Application Authors 

Conventional model 
updating 

   

 
FRFs Numerical six-bay truss Sipple and Sanaye 

[69] 

 
Frequencies and 
mode shapes 

Experimental full-scale RC 
building slice  

Moaveni et al. [70] 

 
Accelerations Experimental quarter-scale 

RC bridge  
Jafarkhani and Masri 
[71] 

 
Accelerations Experimental steel frame Li et al. [72] 

 
Dynamic strain  Experimental steel frame Li et al. [73-77] 

 

Static strains, 
displacements, 
slopes, frequencies 
and mode shapes 

Benchmark bridge model Sanayei et al. [78] 

Substructuring techniques    

Free interface CMS Frequencies and 
mode shapes 

Numerical frame Yu et al. [80] 

Free interface CMS Frequencies and 
mode shapes 

Numerical wing structure 
and bolted plate 

Wang et al. [81] 

Free interface CMS Frequencies and 
mode shapes 

Experimental arch bridge 
model 

Liu et al. [82] 

Fixed interface CMS Frequencies and 
mode shapes 

Numerical highway bridge Papadimitriou and 
Papadioti [84] 

Kron’s substructuring 
method 

Frequencies and 
mode shapes 

Numerical frame Weng et al. [86] 

Inverse substructure 
method 

Frequencies and 
mode shapes 

Experimental steel frame 
and numerical tower 

Weng et al. [89] 

Bayesian substructure 
method 

Accelerations Numerical shear building Yuen and Huang [90] 

Formatted: Left
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Regularisation techniques    

Tikhonov regularisation Accelerations Numerical 3D frame Wang and Yang [92] 

Adaptive Tikhonov 
regularisation 

Accelerations Numerical plane truss Li and Law [93] 

Tikhonov regularisation Accelerations Experimental steel beam Zhu et al. [94] 

L1 regularisation Frequencies and 
mode shapes 

Numerical truss structure Bao et al. [114] 

L1 regularisation Frequencies Numerical beam and plate Hernandez [115] 

L1 regularisation Frequencies Experimental steel beam Zhou et al. [116] 

Reweighted l1 
regularisation 

Accelerations Experimental steel beam Zhang and Xu [117] 

L1 regularisation Frequencies and 
mode shapes 

Experimental steel frame Hou et al. [118] 

L1 regularisation Frequencies Experimental steel beam Wu and Zhou [119] 

L1 regularisation Frequencies Experimental beam and 
frame 

Zhang et al. [120] 

Lp regularisation Accelerations Experimental steel shear 
building 

Huang et al. [121] 

Iteratively reweighted l1 
regularisation  

Frequencies and 
mode shapes 

Experimental 3D steel 
frame 

Zhou et al. [122] 

Trace Lasso Frequencies and 
mode shapes 

Experimental steel beam Chen et al. [123] 

Weighted trace Lasso Frequencies and 
mode shapes 

Experimental steel beam Chen and Yu [124] 

L1 regularisation Frequencies and 
mode shapes 

Experimental steel beam Wang and Lu [125] 

L1 regularisation Frequencies and 
mode shapes 

Experimental RC bridge  Ding et al. [126] 

Note: The methods listed in the table all achieve Levels 1–3 damage identification. 

 

2.4 Optimisation algorithms 

Optimisation algorithms have been employed by many researchers for damage detection and 

can be regarded as an effective alternative to the sensitivity-based FE model updating 

technique in solving inverse problems. Traditional optimisation methods are usually 

gradient-based and require a good initial value, thereby limiting their potential applications. 

Formatted Table

Formatted Table

Formatted Table

Formatted Table
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With the development of computational intelligence, a number of optimisation algorithms, 

such as GA, ANN, particle swarm optimization (PSO) and artificial bee colony (ABC), have 

been proposed. These algorithms do not rely on specific formulas for optimisation and thus 

avoid the aforementioned shortcomings. Moreover, these algorithms are effective in dealing 

with uncertainties and insufficient information, which are typical problems in structural 

damage detection. ANN is an important ML technique and will be detailed in Subsection 2.6. 

 

GA, which was developed in the 1970s [133], is based on the concept of natural selection and 

has been utilised for damage detection since the 1990s. The main critical problem of GAs is 

the large heavy computational effort load due to the high dimension of the search space.  

 

Meruane and Heylen [134] implemented a hybrid real-coded GA to locate and quantify 

structural damage by using five different parameters, namely, frequency, modal displacement, 

MAC, MSE and modal flexibility. In comparison with conventional optimisation methods, the 

proposed approach could reach a more precise solution. Ghodrati Amiri et al. [135] compared 

a pattern search and GA for damage identification in plates. The numerical study indicated 

that the GA provided better results than the pattern search in some cases. 

 

Guo and Li [136] combined the evidence theory and PSO for multiple damage identification. 

First, an information fusion method was applied to detect damage sites by integrating the 

damage localisation information from MSE and natural frequencies. An improved PSO was 

then used to determine the damage extent.  Chen and Yu [137] combined the PSO algorithm 

and an improved Nelder–Mead method to maximise the likelihood function in Bayesian 

inference constructed using natural frequencies and mode shapes. The identification results 

obtained by searching the local area around the optimum solution found by PSO were more 

stable and accurate than those obtained by the PSO-based algorithm.  

 

Ding et al. [138] presented a modified ABC algorithm to optimise the objective function by 

using modal parameters. Two modifications were introduced to improve the convergencyt 

rate and local search ability of the ABC algorithm. The numerical study revealed that the 
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damage identification results of the proposed algorithm were more accurate than those of 

other evolutionary algorithms, such as GA and PSO. Later, they applied the modified ABC 

algorithm to identify cracks in beams by using natural frequencies only [139]. 

 

The aforementioned optimisation methods are compared and summarized in Table 4. 
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Table 4. Optimisation methods 

Method Strengths Limitations Features 
Damage 

identification 
level 

Applications Authors 

GA A global optimizer Heavy computation     

Real-coded GA   Frequencies, mode 
shapes and variants 

1-3 Experimental 3D truss Meruane and Heylen 
[134] 

Binary-coded 
GA 

  Frequencies and mode 
shapes 

1-3 Numerical plate  Ghodrati Amiri et al. 
[135] 

PSO Efficient, a few function 
evaluations, a few 
parameters to adjust 

Difficult to control the 
balance between 
exploration and exploitation 

    

Mutation PSO   Frequencies and MSE 1-3 Numerical truss  Guo and Li [136] 

Hybird PSO   Frequencies and mode 
shapes 

1-3 Phase I IASC-ASCE 
benchmark problem 

Chen and Yu [137] 

ABC Simple structure, high 
flexibility, good 
robustness 

Improper exploitation for 
complicated problems, slow 
convergence rate 

    

Modified ABC   Frequencies and mode 
shapes 

1-3 Numerical beam and plate Ding et al. [138] 

Improved ABC   Frequencies 1-3 Experimental steel beam  Ding et al. [139] 
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2.5 Statistical time series methods 

Time series-based methods typically fit time series models to the measured time history data 

and then extract features sensitive to variations caused by damage and insensitive to 

operational and environmental variations. AR models and their variants, such as 

autoregressive with exogenous input (ARX) and ARMA models, are commonly used to 

extract damage-sensitive features based on residual errors or AR model parameters [140]. 

These methods inherently account for uncertainties and do not depend on the physical models. 

As such, they are more suitable for automated SHM systems than model updating methods. 

Statistical time series methods mainly consist of three components: (i) random excitation 

and/or response signals, (ii) statistical time series model building and (iii) statistical decision 

making for damage diagnosis. 

 

Mahalanobis squared distance (MSD) is a statistical measure for outlier detection and has 

received wide applications because of its simplicity and computational efficiency. Mosavi et 

al. [141] located damage to continuous structures under ambient vibrations by using vector 

AR models and MSDs. Statistical evaluations were performed on extracted damage features 

for each individual sensor location. A sensor with a large significant variation was identified 

as the one closest to the damage location. However, a dense array of accelerometers was 

required to identify the accurate damage location. Chang and Kim [142] performed 

multivariate AR analysis and extracted frequencies, mode shapes and damping ratios as 

damage-sensitive features. The outlier analysis was then conducted on the basis of MSD. A 

field experimental study on a simply supported steel truss bridge showed that the inclusion of 

additional parameters in the outlier analysis might lead to more sensitive features.  

 

Although the MSD-based method possesses several distinguishing advantages, it requires 

multivariate normal training data from the undamaged structure. Previous studies achieved an 

approximation of multinormal data by increasing the observation-to-variable ratio [143, 144]. 

However, the number of measurements is limited in many practical applications. To this end, 

Nguyen et al. [145] proposed a data generation scheme based on Monte Carlo simulation. 
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Simulation data was added as input parameters to compensate for the data shortage. Thus, the 

computational stability and reliability of MSD-based damage identification were improved. 

 

Gul and Catbas [146] constructed ARX models by using the free acceleration responses of a 

structure and developed two different approaches to extract damage-sensitive features. In the 

first approach, the B-term coefficients of the ARX models were directly used, and numerical 

results showed that this approach was effective for simple and noise-free models. In the 

second approach, the ARX model fit ratios were selected as the damage feature to consider 

the noise effect and model complexity. The difference between fit ratios indicated the relative 

change in damage severity, although direct quantification was not achieved. Numerical and 

experimental results showed that the second approach performed successfully under different 

damage scenarios for complex models and test specimens. Later, they extended this method to 

the ambient vibration case, in which RD was applied to obtain pseudo-free vibration data 

from ambient vibration time histories [147]. 

 

Yao and Pakzad [148] proposed two new damage features: one was based on the Ljung–Box 

statistic of the AR model residual and the other on the Cosh spectral distance of the AR model 

spectrum. The results of Ljung–Box statistic were more accurate than those of the existing 

algorithms based on the AR model residual variance and coefficient distance. The Cosh 

spectral distance was less sensitive to changes in excitation sources. Lakshmi et al. [140] 

conducted a singular spectral analysis to enhance the sensitivity of the damage features 

derived from the auto-regressive moving average with an exogenous input (ARMAX) model. 

Shahidi et al. [149] investigated the performance of four damage features derived from single- 

and multivariate regression models in detecting the timing and location of the structural 

damage. Sequential normalised likelihood ratio test and two-sample control statistics were 

adopted to detect the change in two families of damage features. 

 

A critical problem for efficiently employing the AR models for feature extraction is the 

determination of an appropriate model order. Traditionally, the optimal model order was 

selected in an ad hoc manner. In this regard, Figueiredo et al. [150] presented four techniques 
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based on the Akaike information criterion, partial autocorrelation function, root mean square 

error and singular value decomposition (SVD) to determine the appropriate model order. An 

appropriate range of the model order, rather than a unique value, could be determined using 

the four proposed techniques. A comparative study was carried out to investigate the 

influence of the model order on damage detection results.  

 

Although the aforementioned methods are successful in identifying the presence and location 

of damage, they provide limited information about damage severity. Therefore, they belong to 

Levels 1− 2 damage identification.  

 

Kalman filtering is a useful technique for time series analysis and state estimation and has 

received wide applications in signal processing and econometrics. Lei et al. [151] used an 

extended Kalman estimator to sequentially identify structural parameters and unknown 

excitation sequentially. The proposed algorithm was extended to damage identification of 

large-scale structures based on the substructural approach. The inter-connection effect 

between adjacent substructures was estimated without the measurements of the substructure 

interface degrees of freedom (DOFs). This feature was a major advantage over previous 

substructural identification approaches, which require all the responses at the substructure 

interfaces DOFs.  

 

In a traditional EKF approach, unknown structural parameters were incorporated into an 

extended state vector. When a large number of unknown parameters and extended state 

vectors are identified simultaneously, a divergence problem may arise. In this regard, Lei et 

al. [152] proposed a two-step Kalman filter approach. The structural state vector was first 

recursively estimated using the traditional Kalman filter technique with the assumed structural 

parameters, which were then estimated given the state vector. The proposed algorithm 

reduced the number of estimated parameters in each step, and thus improved estimation 

convergence. They [153] adopted the approach to detect damage of frame structures in which 

a beam-column joint was modelled as in Weng et al. [154]. 
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The aforementioned statistical time series methods are compared and summarized in Table 5. 

Table 5. Statistical time series methods 

 Authors Methods Features Damage 
identification 

level 

Applications Remarks 

Output only Mosavi et 
al. [141] 

MSD AR 
coefficients 

1 and 2 Experimental 
steel beam 

Require 
multivariate 
normal 
training data 

 Chang and 
Kim [141] 

MSD Frequencies 
and mode 
shapes 

1 and 2 Steel truss 
bridge 

Require 
multivariate 
normal 
training data 

 Nguyen et 
al. [145] 

MSD, Monte 
Carlo 
simulation 

AR vectors 1 and 2 Benchmark 
building 

Compensate 
for data 
shortage and 
multivariate 
normal data 
condition 

 Gul and 
Catbas 
[146] 

ARX ARX 
coefficients, 
ARX model 
fit ratios 

1 and 2* Experimental 
steel grid 
structure 

Free 
acceleration 
responses 

 Gul and 
Catbas 
[147] 

RD ARX model 
fit ratios 

1 and 2* Experimental 
steel grid 
structure 

Ambient 
acceleration 
responses 

 Yao and 
Pakzad 
[148] 

Ljung–Box 
statistic/Cosh 
spectral 
distance 

AR model 
residual, AR 
model 
spectrum 

1 and 2 Experimental 
truss and 
bridge slab 

Insensitive to 
changes in 
excitation 
sources 

 Lakshmi et 
al. [140] 

Singular 
Spectrum 
Analysis 

ARMAX 
models 

1 and 2 Benchmark 
bookshelf 
structure and 
experimental 
RC beam 

Forced 
acceleration 
responses 

 Shahidi et 
al. [149] 

Control chart Coefficients 
of 
single-variate 
regression, 
collinear 
regression, 
ARX and AR 

1, 2, and 
damage 
instant 

Experimental 
scaled steel 
frame 

Require 
multivariate 
normal 
training data 
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Figueiredo 
et al. [150] 

Akaike 
information 
criterion and 
SVD 

AR residual 
errors and 
model 
parameters 

1 
Experimental 
aluminum 
frame 

Determine 
optimal AR 
model order 

Input-output Lei et al. 
[151] 

EKF Accelerations 1-3 Numerical 
study on 
Phase I 
IASC-ASCE 
benchmark 
problem, 
beam, and 
truss structure 

Use limited 
input 
measurements 

 Lei et al. 
[152] 

Two-step 
Kalman filter 

Accelerations 1-3 Numerical 
study on 
Phase I 
IASC-ASCE 
benchmark 
problem and a 
30-story shear 
building; 
Experimental 
frame 

Reduce the 
number of 
estimated 
parameters  

 Lei et al. 
[153] 

Two-step 
Kalman filter 

Accelerations 1-3 Experimental 
steel frame 
with joint 
damage 

Reduce the 
number of 
estimated 
parameters  

Note: * ― Quantitatively indicate the relative severity of damage 

 

2.6 ML methods 

Structural damage identification can be treated as a pattern recognition problem, which is 

divided into three parts: (1) data acquisition, (2) feature extraction and (3) feature 

classification [16]. Feature extraction aims to fit either a data-driven or a physics-based model 

to the measured structural response data by using statistical or signal processing techniques. 

The parameters of these models or model residuals are then selected as damage sensitive 

features. Finally, with the selected features, the classification algorithm is utilised to 

determine the presence, location and severity of damage.  
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In recent years, a number of ML classifiers have been utilised and developed for structural 

damage identification [155]. These ML algorithms can be broadly divided into supervised, 

unsupervised and semi-supervised learning modes.   

 

2.6.1 Supervised learning 

Most ML algorithms are based on a supervised learning manner, which requires features of 

both undamaged and damaged states of the structure with their labels to establish a statistical 

model during the training process [156]. Three commonly used classification methods, i.e., 

ANN, SVM and RF, will be reviewed in this subsection, and their strengths and limitations 

are provided in Table 6.  

 

Table 6. Supervised learning methods 

Method Strengths Limitations 

ANN Self-learning, flexible  
Suitable for complex and 
nonlinear problem 

Computational expensive 
Prone to overfitting 
  

SVM Effective for high dimension data 
Fault-tolerance 
Prone to global optimal solution 

Computational expensive in large dataset 
Perform Ppoor performance for noisy 
datasets with overlapping classes 
Binary classification algorithm 
Tricky selection of kernel function 

  

 
RF Accurate and stable 

Computational efficient 
Can extract variable importance 
Able to reduce variance 

Sensitive to noise and outliers 
Not easy to interpret 
Need to tune hyperparameters 
 

 

The ANN technique is a widely used ML algorithm, which has been introduced to civil 

engineering since the 1980s [157]. ANNs have drawn considerable attention in SHM and 

damage identification due to their ability of pattern recognition and error tolerance in 

establishing a nonlinear relationship between the inputs and outputs. For structural damage 

identification, the ANN is used to establish a model representing the relationship between 

features extracted from structural vibration data and structural model parameters through a 
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training process. This trained ANN model is then capable of identifying damage from 

measurement data [158]. The learning algorithm of ANNs can either be supervised or 

unsupervised, whilst most of them are supervised, especially in damage detection 

applications. 

 

Jiang et al. [159] proposed a two-stage approach by combining fuzzy NNs and data fusion 

techniques. In this approach, structural modal parameters were fed into fuzzy NNs as inputs. 

The data fusion technique was applied to the outputs from different fuzzy NNs, and a 

consistent and reliable damage assessment result was obtained. Dackermann et al. [160] 

identified the member connectivity and mass changes in a frame structure using ANNs. In 

their study, individual networks were first trained with FRF data at different measurement 

locations. The outcomes of each network were then fused through a network ensemble to 

generate final damage conditions. The proposed network ensemble technique was superior to 

the approach that simply added the FRF data to train the ANN. Xu et al. [161] constructed 

NNs to locate and quantify joint damage by directly using dynamic displacement responses 

and excitation information.  

 

Hakim and Razak [162] trained an ANN with natural frequencies and utilised it to quantify 

damage severity in a steel girder bridge model. Moreover, Hakim and Razak [163] compared 

an ANN with an adaptive neuro-fuzzy inference system by using the same experimental 

model. The latter incorporated ANNs and FL systems in a single framework and had benefits 

of both techniques. Experimental results showed that the damage identification results of the 

proposed framework were more accurate than those of the ANN.  

 

However, a considerable amount of computational effort is required in the ANN techniques, 

especially when large DOFs are involved. Therefore, the ANN-based damage identification is 

generally applicable to small structures with a limited number of DOFs. To this end, Bakhary 

et al. [158] used a multi-stage ANN method with a substructure technique to detect the 

damage location and extent. The full structure was divided into substructures, and each 

substructure was independently analysed to progressively identify damage progressively. In 
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this manner, the size of the ANN models was reduced, and the computational effort was 

saved. 

 

PCA is a statistical technique for dimension reduction and feature extraction. This method 

reduces a large set of correlated variables to a low dimension through orthogonal 

transformation whilst retaining the most relevant information. PCA has been extensively 

applied to measured structural vibration responses for reduced-order modelling, modal 

analysis and parameter identification. Worden et al. [164] first applied the PCA in structural 

damage detection. Some researchers [160, 165-167] applied PCA to reduce the dimension of 

the FRF data and then utilised the ANN to train the FRF data for damage detection.  

 

To improve damage identification accuracy, Bandara et al. [167] investigated the number of 

hidden layers and the number of neurons per hidden layer to formulate an optimal architecture 

of ANN with minimum training and testing errors.  

 

Recently, with the improvement of computing capacity and network architecture, deep 

learning algorithms evolved from the ANN, e.g., convolutional NNs (CNNs), have been 

developed rapidly [168]. Abdeljaber et al. [169] proposed adaptive 1D CNNs, which fused 

feature extraction and classification blocks into a single and compact learning body. 

Consequently, these NNs could directly learn from the acceleration data measured under 

known random excitations. Since modal identification was not required, it could be 

implemented near-real-time and suitable for online SHM. Duan et al. [170] used a CNN 

technique to detect damage in bridge hangers, in which the Fourier amplitude spectra of the 

acceleration responses were used as the input. Bao et al. [171] transformed the time series 

signals into image data. The randomly selected and manually labelled image data were then 

used to train the deep NNs via the greedy layer-wise training technique and automatically 

detect anomalies of a cable-stayed bridge.  

 

Support vector machine (SVM) is a supervised learning model that aims to separate two 

classes of data. It is trained to estimate the boundary between two classes by maximizing the 
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margin and minimizing the misclassification [172]. SVM is becoming increasingly popular 

these years for damage identification because of its superior ability to solve nonlinear, 

high-dimensional and small sample problems [173]. In comparison with conventional NNs, 

SVM overcomes the problems of local minimisation and inadequate statistical capabilities 

[174]. 

 

Kourehli [175] used the first two incomplete mode shapes and natural frequencies as input 

data to train the SVM. In this approach, a radical basis function (RBF) was chosen as a kernel 

function. The parameters of the kernel function were determined on the basis of the coupled 

simulated annealing and standard simplex method. Liu and Jiao [176] used GA to optimise 

the SVM parameters with the similar input data and kernel function to detect damage of 

bridges. Numerical studies on a simply supported bridge have demonstrated the feasibility 

and superiority of the GA-SVM algorithm to RBF networks and back propagation NNs 

(BPNNs) optimised by GA. 

 

Ghiasi et al. [174] introduced the thin plate spline Littlewood–Paley wavelet kernel function 

to improve the learning ability of SVM. In this approach, feature vectors, as the input of the 

SVM, were extracted from the acceleration responses through the wavelet packet 

decomposition. A social harmony search algorithm was used to determine the parameters of 

the SVM. In comparison with the SVM based on other combinational and conventional 

kernels, the proposed kernel achieved an enhanced performance for multiple damage 

identification. 

 

Gui et al. [177] compared SVM on the basis of three optimisation algorithms, namely, grid 

search, PSO and GA, to optimise the penalty parameters and parameters of the RBF kernel 

parameters. Two types of features, namely, the parameters of the AR model and the residual 

errors of the statistical parameters, were extracted from the time series data. The 

optimisation-based methods significantly improved the sensitivity, accuracy and effectiveness 

of the conventional SVM. Using the residual errors achieved a significantly higher accuracy 

than using the AR type. 



40 
 

 

Random forest (RF) is an ensemble classifier that consists of a large number of decision trees 

[178]. The model prediction is obtained through combining the predictors of each individual 

tree by majority voting. Zhou et al. [179] proposed a damage detection method by RFs and 

data fusion. In this method, the wavelet packet decomposition was applied to decompose 

acceleration signals into energy features, which were fused into new energy features through 

data fusion. The obtained features were then inputted into RFs to classify structural damage. 

Experimental results showed that the accuracy and stability of the proposed method was were 

higher than those of RF alone, SVM alone and SVM and data fusion. 

 

The supervised ML techniques require data from undamaged and damaged structures for 

training purposes. However, data associated with various damage scenarios may be 

unavailable in practical structures. Most studies have generated training samples from 

laboratory testing or through numerical FE simulations. Therefore, the efficiency of the 

supervised learning approaches depends on the model accuracy. For this reason, the 

development of unsupervised algorithms is of particular interest. 

 

2.6.2 Unsupervised learning 

An unsupervised learning algorithm only requires data from the intact state of a structure for 

training, which belongs to the outlier or novelty detection category. A model is trained by 

machine learning algorithms based on the data in the undamaged state. The trained model is 

then used to evaluate the structural condition when new measurement data are available. If the 

difference between the measured data and those predicted from the model exceeds a 

threshold, the structure is regarded as a deviation from its normal condition and is probably 

damaged.  

 

Santos et al. [180] combined two statistical learning methods for online early-damage 

detection. Multi-layer perceptron NNs were used for the statistical modelling of the structural 

responses. The unsupervised K-means clustering algorithm was employed to classify the 
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neural networks’ estimation errors. These methods were sequentially applied in successive 

time windows to realize continuous on-line damage identification.  

 

Neves et al. [181] developed a model-free ANN-based approach for damage detection of 

bridge structures. ANNs were trained with an unsupervised learning approach using 

accelerations collected on the healthy bridge. The prediction errors of each network were then 

statistically characterized by a Gaussian process to determine a damage detection threshold. 

Consequently, the structural condition, namely healthy or damaged, was determined by 

comparing damage indices with the selected threshold.  

 

Rafiei and Adeli [182] used an unsupervised restricted Boltzmann machine to extract features 

from the frequency domain of the ambient vibration signals. A structural health index was 

established for each substructure in terms of a PDF, which measured the similarity between 

the ambient vibrations of the current state of the structure and those of the healthy one. The 

larger the difference, the higher the likelihood of damage. 

 

Cha and Wang [183] revised the original density peaks-based fast clustering algorithm to an 

unsupervised machine learning method to detect and locate structural damage. An intact 

statistical model was built by using the training points from each sensor in the intact state of 

the structure. The sensor location corresponding to the novelty point was identified as the 

location where damage occurred.  

 

Avci and Abdeljaber [184] proposed an unsupervised damage detection algorithm based on 

self-organizing maps, which is a class of ANNs. In their algorithm, self-organizing maps were 

used to extract the damage indices from the random acceleration responses of the monitored 

structure. The summation of the indices indicated the overall condition of the structure, and 

the value of which could be used to evaluate the damage severity.  
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Although unsupervised learning approaches are preferred for practical damage detection, most 

of them are limited to novelty detection, i.e., Level 1 damage identification, and fail to give 

additional information in terms of the location and severity of damage.   

 

2.6.3 Semi-supervised learning 

In practice, the acquisition of fully labelled data for training is infeasible, whilst a small 

number of labelled data may be available. In such situations, semi-supervised learning can be 

of great practical value, which falls between unsupervised and supervised learning, using both 

labelled and unlabelled data for training classifiers. Many researchers have found that using 

unlabelled data in conjunction with a small amount of labelled data may considerably 

improve the accuracy of ML algorithms [155]. Rather than pure novelty detection, 

semi-supervised learning approaches are able to locate and quantify structural damage. 

However, the applications of semi-supervised ML algorithms for damage identification are 

very limited in the literature.   

 

Chen et al. [185] combined multi-resolution classification with semi-supervised learning for 

damage detection of bridge structures. The features were extracted from localised 

time-frequency sub-bands. The adaptive graph filter classifier was used to classify unlabelled 

data given previously labelled signals. A weighting algorithm was developed to combine 

information from both labelled and unlabelled signals to make a global decision. Furthermore, 

in addition to unlabelled data, the adaptive graph filtering was able to handle mislabelled as 

well as unseen signals. 

 

Lai and Nagarajaiah [186] developed a semi-supervised algorithm to detect and characterize 

linear/nonlinear structural damage. The baseline (undamaged) model was established using a 

sparse identification method based on supervised learning with input-output time history data. 

Damage was considered as a variation of the restoring force, and thus the damaged system 

was transformed into an equivalent linear system subjected to external disturbance forces and 

pseudo-forces. Consequently, the nonlinearity (including presence, type, and extent of 
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damage) was represented by the pseudo-forces and discovered in an unsupervised way 

without the creation of various damage scenarios.  

 

Rogers et al. [187] used Dirichlet process clustering models for online damage detection 

based on features from in the high dimensional frequency domain. The algorithm learned 

clusters of data online without a training phase, and then assigned labels to new clusters in a 

semi-supervised manner. The model with already known states of the structure was 

continually updated as more data were added. As time progressed, the method learned more 

states and the robustness of the method increased.   

 

In recent years, ML algorithms are growing rapidly and have received considerable attention 

in damage identification. However, there are still some challenges and difficulties requiring 

further research. The training dataset is extremely important for the performance of ML 

algorithms. Consequently, data selection, data cleaning, data compression, data fusion, data 

normalization, and data labelling are inevitable to establish the appropriate datasets. The 

processes are time consuming and labour intensive. Moreover, for structural damage 

detection, the lack of enough training samples may lead to over-fitting problems, e.g. over- 

extraction of irrelevant features such as measurement noise [188]. The generalisation ability is 

another critical problem for ML algorithms. A well trained and validated model may only 

perform well for a specified type of structures and a certain particular pattern of damage. The 

following table compares and summarizes the ML methods that have been reviewed in this 

subsection.  

 

Table 7. ML methods 

Authors Methods Inputs Damage 
identificatio

n level 

Applications Remarks 

Supervised learning     

Jiang et al. 
[159] 

Fuzzy NN+data 
fusion 

Frequencies 
and mode 
shapes 

1-3 Numerical 
shear-type 
building 

 

Formatted Table
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Dackermann et 
al. [160] 

ANN+PCA+NN 
ensembles 

FRF 1, 2 Experimental 
frame 

Joint damage 
and mass 
changes 

Xu et al. [161] NNs Dynamic 
displacement  

1-3 Experimental 
steel frame 

 

Hakim and 
Razak [162] 

ANNs Frequencies 1 and 3 Numerical steel 
girder bridge  

 

Hakim and 
Razak [163] 

Fuzzy NN Frequencies 1 and 3 Experimental 
steel girder bridge  

 

Bakhary et al. 
[158] 

ANN+substructrue 
technique 

Frequencies 
and mode 
shapes 

1-3 Numerical RC 
slab and frame  

 

Li et al. [165] ANN+PCA+NN 
ensembles 

FRF 1-3 Experimental 
steel beam 

 

Samali et al. 
[166] 

ANN+PCA FRF 1-3 Experimental 
steel frame 

Notch-Type 
damage 

Bandara et al. 
[167] 

ANN +PCA FRF 1-3 Numerical framed 
structure 

Optimal 
architecture of 
ANN 

Abdeljaber et 
al. [169] 

1D CNNs Acceleration 
under known 
random 
excitations 

1 and 2 Experimental 
steel frame of a 
grandstand 
simulator 

On-line, joint 
damage 

Duan et al. 
[170] 

CNNs Fourier 
amplitude 
spectra of 
wind-induced 
acceleration  

1-3 Numerical tied 
arch bridge  

Automatic 

Bao et al. [171] DNNs Image vectors 
converted 
from 
acceleration  

1 Long-span 
cable-stayed 
bridge  

Automatic, 
real-time 

Kourehli [175] SVM Frequencies 
and mode 
shapes 

1-3 Numerical beam, 
plane frame, and 
spring-mass 
system 

RBF kernel 
function 

Liu and Jiao 
[176] 

SVM Mode shape 
ratio and 
frequency rate 

1-3 Numerical simply 
supported bridge  

RBF kernel 
function 

Ghiasi et al. 
[174] 

SVM Wavelet 
energy 
spectrum 

1 and 2 Numerical Phase 
I IASC-ASCE 
benchmark 
problem and a 
120-bar dome 

Thin plate 
spline 
Littlewood–
Paley wavelet 
kernel function 
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truss 

Gui et al. [177] SVM AR 
coefficients 
and residual 
errors of the 
statistical 
parameters 

1 and 2 Experimental 
benchmark frame  

RBF kernel 
function 

Zhou et al. 
[179] 

RF+data fusion Energy 
features from 
acceleration  

Damage 
type and 
location 

Numerical steel 
benchmark frame 
and experimental 
steel shear frame  

 

Unsupervised learning      

Santos et al. 
[180] 

NNs+K-means 
clustering 

Time-series 
displacements 
and rotations 

1 Experimental 
cable-stayed 
bridge 

On-line 

Neves et al. 
[181] 

ANNs Accelerations 
from a 
passing 
vehicle 

1 Numerical 
railway bridge  

 

Rafiei and 
Adeli [182] 

Deep Boltzmann 
machine 

Frequency 
domain of the 
ambient 
vibration 
signals 

1 Experimental RC 
building  

 

Cha and Wang 
[183] 

Density peaks-based 
fast clustering 

Crest factor 
and 
T-continues 
WT extracted 

1 Experimental 
steel structure 

 

Avci and 
Abdeljaber 
[184] 
 

Self-organizing maps Random 
acceleration 
responses 

1 Phase II 
IASC-ASCE 
benchmark 
problem 

 

Semi-supervised learning     

Chen et al. 
[185] 

Multi-resolution 
classification+label 
propagation+ 
Adaptive Graph 
Filter 

Localised 
time-frequency 
sub-bands 
 

1 Experimental 
bridge-vehicle 
dynamic system 
 

 

Lai and 
Nagarajaiah 
[186] 

Sparse identification 
+ pseudo-force 

Velocity, 
acceleration 
and 
displacement 

1-3 Experimental 
steel frame, 
benchmark frame, 
a base-isolated 

Linear/ 
nonlinear-type 
damage 
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building 

Rogers et al. 
[187] 

Dirichlet process 
clustering 

FRF and 
frequencies 

1 Benchmark 
building, Z24 
bridge 

 

 

2.7 Bayesian methods 

Civil structures are generally subjected to significant measurement noise and modelling 

errors, which may lead to incorrect damage identification [189, 190]. For example, the 

existence of measurement noise may mask subtle structural changes caused by damage. 

Consequently, deterministic methods may fail once they are applied to practical civil 

structures. In this regard, many researchers proposed probabilistic damage identification 

approaches [191]. Amongst these methods, Bayesian inference has attracted considerable 

attention since the 1990s, which explicitly quantifies the posterior probability of uncertainties 

based on observations and prior information [192, 193]. Apart from addressing uncertainties, 

Bayesian methods also provide an efficient way to deal with the ill-posed inverse problem by 

specifying probability distributions over uncertain parameters; this approach is equivalent to 

introducing a regularisation term to the optimisation problem [194]. 

 

Figueiredo et al. [195] developed a Bayesian pattern recognition approach based on a 

Markov-chain Monte Carlo method. The Bayesian approach was employed to cluster 

structural responses into a reduced number of global state conditions by using a finite mixture 

of Gaussian distributions. Outlier detection was then conducted on the basis of MSD. The 

applicability of the proposed approach was demonstrated using the data sets from the Z-24 

Bridge.  

 

Arangio and Beck [196] used the Bayesian NN for bridge integrity assessment under ambient 

vibrations. In this method, an optimal network architecture was determined on the basis of 

Bayesian model class selection. An automatic relevance determination (ARD) method was 

applied to measure the relative importance of different inputs in NNs and separate relevant 
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variables from redundant ones. Comparison studies indicated that the accuracy of the optimal 

network model in damage localisation and quantification was better than that of a 

heuristic-based model. Later, Arangio and Bontempi [197] applied a Bayesian NN to the 

Tianjin Yonghe Cable-Stayed Bridge and detected cracks at the external portions of both 

spans and damage at two piers. In this rare case, the accelerations of the deck before and after 

damage were employed. 

 

Lam et al. [198] detected damage to a railway ballast by using modal parameters within a 

Bayesian framework. In their study, the ballast under a concrete sleeper was uniformly 

divided into a number of regions with similar stiffness. The number of divided regions was 

determined on the basis of the Bayesian model class selection method. The posterior 

probability density function (PDF) of the ballast stiffness in different regions was 

approximated by a multivariable Gaussian distribution. 

 

Behmanesh and Moaveni [199] implemented a Bayesian FE model updating to identify 

damage to a full-scale structure. Damage was simulated by adding concrete blocks onto a 

bridge deck. The adaptive Metropolis–Hastings algorithm was used to sample the posterior 

distribution of the updating parameters. Behmanesh et al. [200] investigated the effects of the 

subset of modes used on the performance of Bayesian FE model updating. The optimal subset 

of modes in the model updating process was determined using Bayesian model class 

selection. Damage identification was then conducted for different weight factors, and the final 

estimation was obtained by averaging all the results via the Bayesian model averaging 

technique.  

 

Yin et al. [201] developed a probabilistic damage identification method for bolt connections 

by using incomplete modal parameters. They combined a system mode-based method [202] 

and a dynamic model reduction method [203] to avoid using the complete mode shapes. The 

joint posterior PDF of the model and modal parameters was approximated via Gaussian 

distribution.  
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In recent years, Sparse Bayesian Learning (SBL), as a supervised learning framework 

[204-206], has received great attention as a means of deriving sparse solutions in the context 

of regression and classification [207-209]. The SBL has some similarities to sparse recovery 

theory that uses lp (0 ≤ p ≤ 1) regularisation technique. The prior distribution in SBL can 

induce sparsity in inferred parameters, which functions as the regularisation term in sparse 

recovery. In SBL, a parameterised prior, that is, the ARD prior, is adopted instead of a fixed 

prior to incorporate a preference for sparse parameters. An individual hyperparameter is 

assigned to each unknown parameter, resulting in sparse solutions [204, 206].  

 

SBL has several significant advantages over the deterministic sparse recovery, for example, 

the l1 or l0 regularisation techniques and orthogonal matching pursuit. The SBL closely 

resembles the l0 regularisation, which typically results in a sparser solution with higher 

accuracy than the l1 regularisation. In SBL, the global minimum is achieved at the maximally 

sparse solution, which is a desirable property of l0 regularisation [205]. When the sensing 

matrix does not satisfy the incoherence criteria, the performance of most existing CS 

algorithms will degrade, whilst the SBL still retains the excellent ability for sparse recovery 

[210]. The SBL technique is more general and more flexible than the sparse recovery theory. 

The latter using the regularisation techniques disregards the relative uncertainties between 

different variables and requires estimation of the regularisation parameter. However, the 

hyper-parameters in SBL possess a clear physical meaning that represents the precision of the 

uncertainties. The hyper-parameters can be updated automatically, thereby avoiding the tricky 

selection of the regularisation parameter in sparse recovery.  

 

Although the Bayesian probabilistic approach has been introduced and applied to structural 

damage identification for nearly two decades, SBL has not been utilised and explored for 

structural damage detection until recently. One main reason is that the modal data are a 

nonlinear function of the structural damage parameters. Consequently, the integral in the 

evidence of the Bayesian equation cannot be calculated directly. Analytical and numerical 

approaches have been developed to tackle this difficulty. The former includes hierarchical 
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modelling and asymptotic techniques (e.g. Laplace’s approximation), whilst the latter 

includes expectation–maximization (EM) technique and sampling techniques.  

 

Bayesian hierarchical modelling is a model written in a hierarchical form, which is 

particularly useful in dealing with complex and nonlinear problems. Huang and Beck [211] 

developed a hierarchical SBL method by expanding the nonlinear eigenvalue problem as 

multiple linear regression functions. The simulated damage was successfully detected with 

improved accuracy compared with the Bayesian updating method in Yuen et al. [202]. Later, 

Huang et al. [212] improved the SBL algorithm by eliminating two approximations in the 

theoretical formulation. The efficiency of the improved algorithm was higher and its 

performance was better than that of the previous SBL method for a real structure with a 

significant modelling error.  

 

Multi-task learning is a useful tool to exploit data redundancy between different groups of 

measurements. To improve the reliability of damage localisation, Huang et al. [213] used a 

multi-task SBL to fuse the respective strengths of two FD-based damage indices. The linear 

regression models were employed to model the relationship between a damage localisation 

vector and two damage indices, which were then incorporated in the likelihood function. 

Huang et al. [214] simultaneously utilised multiple groups of measurements and proposed two 

hierarchical Bayesian models for multi-task SBL. In these models, an ARD prior was 

assigned across multiple tasks to characterise the shared sparseness profile. Unlike the 

previous multi-task SBL algorithm [209], the prediction error precision parameters were 

marginalised from hierarchical models to improve the learning robustness and characterise the 

posterior uncertainty.  

 

Hou et al. [216] proposed an EM-based SBL method for damage detection. An iterative EM 

technique was employed to tackle a nonlinear eigenvalue problem without performing 

asymptotic approximation or stochastic simulation. Wang et al. [217] extended SBL via 

Laplace approximation, in which a complicated integral in the evidence was approximated as 
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a Gaussian PDF. Consequently, damage parameters and hyper-parameters were derived in an 

analytical form and iteratively solved without sampling. 

 

On the basis of a similar hierarchical SBL model, Huang et al. [218] proposed two Gibbs 

sampling (GS) algorithms to sample the posterior PDF of uncertain parameters and provide a 

full treatment of the posterior uncertainty. Laplace’s approximation was used to estimate 

hyper-parameters. Later, they [219] developed a full GS method to characterise the posterior 

uncertainty of hyper-parameters. The proposed partial and full GS algorithms were applied to 

the IASC-ASCE Phase II benchmark problem. The full GS algorithm was verified to be more 

reliable than the partial one for real experimental studies.  

 

Table 8 compares and summarizes the Bayesian methods that have been reviewed in this 

subsection. 

 

Table 8. Bayesian methods 

Authors Methods Features 
Bayesian 
inference 

Damage 
detection 

level 
Application 

Figueiredo et al. [195] MSD  Natural 
Ffrequencies 

MCMC 1 Z-24 Bridge 

Arangio and Beck 
[196] 

NN+ARD Acceleration 
under ambient 
excitation 

Laplace’s 
approximation 

1-3 Numerical 
long-span 
suspension bridge 

Arangio and 
Bontempi [197] 

NN+ARD Acceleration 
under ambient 
excitation 

Laplace’s 
approximation 

1 Benchmark 
cable-stayed 
bridge 

Lam et al. [198] Bayesian model 
class selection 

Frequencies and 
mode shapes 

Laplace’s 
approximation 

1-3 Experimental 
ballasted track 

Behmanesh and 
Moaveni [199] 

 Frequencies and 
mode shapes 

Metropolis– 
Hastings 
algorithm 

1-3 Numerical 
footbridge 

Behmanesh et al. 
[200] 

Bayesian model 
class selection and 
Bayesian model 
averaging  

Frequencies and 
mode shapes 

MCMC 1-3 Numerical steel 
frame 

Formatted Table
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Yin et al. [201]  Frequencies and 
mode shapes 

Laplace’s 
approximation 

1-3 Experimental 
bolted frame 

Huang and Beck [211] SBL Frequencies and 
mode shapes 

Hierarchical 
modelling+ 
Laplace’s 
approximation 

1-3 Numerical 
shear-building, 
Phase II 
IASC-ASCE 
benchmark 
problem 

Huang et al. [212] SBL Frequencies and 
mode shapes 

Hierarchical 
modelling+ 
Laplace’s 
approximation 

1-3 Phase II 
IASC-ASCE 
benchmark 
problem 

Huang et al. [213] Multi-task SBL FD-based 
damage indices  

Bayesian linear 
regression 

1, 2 Experimental steel 
beam, a real 
cable-stayed 
bridge 

Huang et al. [215] Multi-task SBL Frequencies and 
mode shapes 

Hierarchical 
modelling+ 
Laplace’s 
approximation 

1-3 Phase II 
IASC-ASCE 
problem  

Hou et al. [216] SBL Frequencies and 
mode shapes 

EM 1-3 Experimental 
cantilever beam 

Wang et al. [217] SBL Frequencies and 
mode shapes 

Laplace’s 
approximation 

1-3 Experimental steel 
frame 

Huang et al. [218] SBL Frequencies and 
mode shapes 

Hierarchical 
modelling+ 
partial GS+ 
Laplace’s 
approximation 

1-3 Phase II 
IASC-ASCE 
benchmark 
problem 

Huang et al. [219] SBL Frequencies and 
mode shapes 

Hierarchical 
modelling+ full 
GS 

1-3 Phase II 
IASC-ASCE 
benchmark 
problem 

 

2.8 Varying temperature conditions 

Structural responses vary under the changing operational and environmental conditions, 

particularly temperature. Temperature variations influence Young’s modulus of most 

construction materials [220] and boundary conditions [221-223]. Thus, such variations cause 

changes in structural dynamic properties [224, 225]. Xia et al. [224] quantified the effect of 
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temperature on variations in frequencies, mode shapes and damping through a series of 

experiments on a continuous concrete slab for nearly 2 years. Some studies have found that 

changes in structural responses due to temperature variations could be more significant than 

those due to a medium degree of structural damage [4] or under normal operational loads 

[226]. Consequently, if the temperature effects are not fully understood, then false structural 

condition identification may occur. Some techniques [227-229] have been developed to 

reduce the effects of temperature on damage detection or to detect damage under different 

temperature conditions. 

 

The approaches that consider the effects of temperature on damage identification can be 

divided into two categories depending on whether or not environmental variables are 

measured.  

 

2.8.1 Using temperature measurement 

When temperature data are available, the correlation between temperature variables and 

damage features can be established, and the effects of temperature can be removed from 

damage features.  

 

Deng et al. [230] developed a six-order polynomial regression model to describe the 

correlations of frequency–temperature and displacement–temperature by using long-term 

monitoring data. They then classified the measured changes in the structural responses caused 

by damage and environmental variations by using a control chart. Bao et al. [231] investigated 

the relation between modal properties and temperature and applied the Dempster–Shafer data 

fusion technique [232] to identify damage under varying temperature conditions. The 

accuracy of damage identification results was increased by incorporating temperature 

variations. Magalhaes et al. [233] studied the time evolution of the modal parameters of an 

arch bridge for 2 years. The regression analysis complemented with PCA was conducted to 

eliminate the effects of environmental and operational factors on natural frequencies. The 

existence of damage was then successfully detected using the control chart. 
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In practice, correlations between temperature and damage features are complicated and may 

not be well established through regression analysis. In this regard, Zhou et al. [225, 234] 

proposed a BPNN-based approach to eliminate the effects of temperature. A total of 770 h 

monitoring data of natural frequencies and temperatures obtained from the Ting Kau Bridge 

in Hong Kong and their FE model was used to train and test a BPNN model. Case studies 

indicated that the approach could detect the occurrence of damage when the change in 

damage-induced frequency was as small as 1%. Considering the high-computational load of 

the BPNN, Jin et al. [235] presented NN trained with EKF to detect damage to a highway 

bridge under severe temperature changes. The correlation analysis between natural 

frequencies and temperature was conducted on the basis of 1-year monitoring data. The 

convergence of the proposed method was faster and its results were more accurate than those 

of traditional BPNN. Numerical results also showed that the proposed method was superior to 

the multi-linear regression approach.  

 

Methods using temperature data have some practical issues. For example, damage features 

should be extracted under a wide range of temperature condition. The shortage of temperature 

data may affect the accuracy of structural damage detection.  

 

2.8.2 Without temperature measurement 

A number of methods have been developed to alleviate the need for a direct measurement of 

temperature variations by using the measured response data only under varying environmental 

conditions. In these methods, temperature variations are treated as embedded variables. These 

methods are typically based on the assumption that variations in structural vibration 

characteristics due to damage behave differently from those due to varying temperature 

conditions [227]. In this case, ML algorithms and statistical pattern recognition techniques are 

typically used to derive a robust damage index for outlier analysis. 
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Kullaa [236] proposed an approach to distinguish three sources of variability, namely, 

environmental or operational effects, sensor faults and structural damage. Structural damage 

was global, and sensor faults were local. Accordingly, sensor fault and structural damage 

were distinguished through sensor isolation. Measurement data under different environmental 

or operational conditions were included in the training data to consider environmental or 

operational effects. Damage or sensor fault localisation was detected on the basis of the 

maximum likelihood ratio. 

 

Shokrani et al. [237] presented a PCA-based approach for damage localisation under varying 

environmental conditions. During the training stage, the MSC data matrix was formulated 

across a representative operational period and the statistical characteristics of the operational 

variations on a curvature were then extracted via PCA transformation. The residual of MSC 

matrices between inspected and baseline structural states was used as the damage index based 

on a hypothesis test. Numerical studies indicated that the proposed method was effective in 

the case of linear or weakly nonlinear situation. Kostić et al. [238] integrated a 

sensor-clustering-based time-series analysis method with ANNs to compensate for the effects 

of temperature. A sensor-clustering-based ARX method was applied to the free vibration 

acceleration data to calculate the damage features. Multilayer ANNs were then trained using 

the obtained damage features resulting from different temperature scenarios. Differences 

between the damage features from the time series and ANN analyses were used for damage 

detection. Numerical results demonstrated that the proposed method could successfully 

determine the existence, location and relative severity of damage under varying temperature 

conditions. Fallahian et al. [239] combined couple sparse coding and deep NNs to assess 

damage by considering uncertainties, such as noise and temperature. The simulated FRF data 

was first generated from a numerical model, and PCA was applied to decrease the dimension 

of FRF data and extract the features. The couple sparse coding and deep NN were then 

individually trained. The outputs were combined by with the weight majority voting method 

to make a better decision about the healthy state of the structure. 
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Liang et al. [240] proposed a novel frequency-based technique to eliminate the interference of 

varying environmental conditions. The non-stationary frequencies sensitive to environmental 

variation were transformed to a stationary sequence by using the co-integration algorithm. 

The co-integration residual was then employed as the damage feature, which would display an 

obvious noticeable jump once damage occurred. Erazo et al. [241] used a Kalman filter to 

decouple structural damage from temperature variations. According to the properties of the 

filtering residual, the residual spectral density was approximately constant under global 

changes caused by environmental variations and greatly significantly affected by local 

changes caused by structural damage. Therefore, damage location and severity were defined 

on the basis of the spectral moments of the residual spectral density.  

 

Most previous studies have assumed that environmental effects are linear or piecewise linear 

[242]. However, the relationship between damage features and unknown environmental 

factors may be nonlinear in practice. Nonlinear analysis can be conducted in several ways, 

including auto-associative NN (AANN), kernel PCA (KPCA) and principal curves.  

 

KPCA is a nonlinear PCA. It non-linearly maps the input variables into a high-dimensional 

linear space through incorporating the kernel functions, where normal PCA can be conducted 

[243]. Hsu and Loh [244] conducted KPCA by using AANN instead of SVM to locate and 

quantify structural damage. The element stiffness identified from natural frequencies and 

mode shapes was used as features to conduct nonlinear PCA. Nguyen et al. [245] successfully 

applied KPCA to identify damage to a bridge by considering temperature and soil variations. 

A global nonlinear model that described the relationship of damage-sensitive features with 

variations in environmental conditions was developed using Gaussian KPCA.  

 

KPCA requires the specification of two parameters, namely, the kernel width and the number 

of extracted principle components, which may have a profound effect on the algorithm 

performance. Reynders et al. [242] proposed an improved KPCA to consider the nonlinear 

environmental and operational effects, in which these two parameters were automatically 
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determined. Experimental results showed that the proposed method successfully identified 

damage to a three-span pre-stressed concrete bridge, whereas linear PCA could not. 

 

In the algorithms of the second category (e.g. environmental variables are not measured), all 

sources of environmental variability should be efficiently characterised by the training data 

sets. Otherwise, these algorithms may be unreliable when they are applied to new data 

corresponding to the environmental conditions excluded in the training phase. In addition, if 

changes in the structural dynamic characteristics due to damage are analogous to those due to 

varying environmental conditions, then the effectiveness of these algorithms cannot be 

guaranteed. In this circumstance, the first-category algorithms are suggested.  

 

The aforementioned approaches considering the effects of temperature are summarized in 

Table 9.  

 

Table 9. Damage identification methods considering the effect of temperature 

Authors Methods Features Relation 
Damage 
detection 

level 
Applications 

Using the measurement of temperature 

Deng et al. 
[230] 

Control chart, 
online 

Frequencies 
and 
displacement 

Six-order 
polynomial 
regression 
model 

1 Numerical 
suspension 
bridge 

Bao et al. [232] Dempster–Shafer 
data fusion 

Frequencies 
and mode 
shapes 

Linear 
regression 
model 

1 and 2 Experimental 
steel frame 

Magalhaes et 
al. [234] 

Control chart, 
online 

Frequencies Linear 
regression 
model 

1 Numerical 
concrete arch 
bridge 

Zhou et al. 
[225] 

AANN Frequencies BPNN 
correlation 
model  

1 Numerical 
cable-stayed 
bridge 

Jin et al. [236] NN+EKF Frequencies - 1 Numerical 
composite bridge 

Without direct measurement of temperature 
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Kullaa [237] Likelihood ratio 
test+ control chart 

Accelerations  1 Experimental 
bridge  

Shokrani et al. 
[238] 

PCA MSC  1 and 2 Numerical 
spring–mass 
chain and 
bridge  

Kostic et al. 
[239] 

ARX+ANN Accelerations  1 and 2* Numerical 
footbridge  

Fallahian et al. 
[240] 

PCA+ deep NN+ 
couple sparse 
coding 

FRF  1-3 I-40 bridge 

Liang et al. 
[241] 

Co-integration 
algorithm 

Frequencies  1 Real steel truss 
bridge 

Erazo et al. 
[242] 

Kalman filter+ 
Bayesian 
whiteness test 

PSD residual  1-3 Numerical 
bridge  

Hsu and Loh 
[245] 

KPCA+AANN Frequencies, 
mode shapes 

 1-3 Numerical 
bridge  

Nguyen et al. 
[246] 

KPCA Frequencies  1 Real bridge  

Reynders et al. 
[245] 

Improved KPCA Frequencies  1 Z-24 bridge 

Note: *: Quantitatively indicate the relative severity of damage 

 

2.9 Nonlinear methods 

Most existing vibration-based damage identification methods assume that a structure behaves 

linearly before and after damage. However, in practice, structures may behave nonlinearly in 

the undamaged state because of complex joints and interfaces [246]. In these situations, fitting 

a linear model to the data measured from an intrinsically nonlinear structural system results in 

the biased estimation of parameters. This circumstance may result in false damage 

identification. Therefore, structural nonlinearity should be appropriately considered for 

accurate and reliable damage identification.  

 

The breathing crack or delamination is a typical type of damage that likely may induces 

nonlinearity to a structure [247]. The Volterra series may be an effective method in of 

describing nonlinear behaviours. As a generalization of the linear convolution, the Volterra 

Commented [XY1]: I moved this column from the left so 
that they refer to damage detection level.  
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series can separate a system response into linear and nonlinear components [248]. Chatterjee 

[249] analysed the nonlinear response of a cantilever beam with a breathing crack by using 

the Volterra series. They also developed a nonlinear dynamic model by utilising high-order 

FRFs and estimated crack severity based on the first and second harmonic amplitudes. 

Andreaus and Baragatti [250] exploited the nonlinear features of harmonic forced vibration 

and determined the crack location and depth by analysing sub- and super-harmonic 

components in the Fourier spectra and phase portrait distortions. Later, the proposed method 

was experimentally verified using a steel cantilever beam [251]. Peng et al. [252] applied a 

nonlinear ARMAX to establish a nonlinear ARX model, from which nonlinear output FRFs 

and an associated index were determined. Structural damage was then identified by 

comparing the nonlinear output FRF indices of the inspected structure before and after 

damage.  

 

Another common type of nonlinearity in structural systems is the yielding of steel members 

during an earthquake [246]. Chanpheng et al. [253] proposed a nonlinear feature, that is, the 

degree of nonlinearity, for damage detection due to earthquakes. The degree of nonlinearity 

was calculated from the data of the ground motion and structural vibration based on the 

Hilbert transform, which indicated whether damage occurred. Wang et al. [254] proposed an 

analytical mode decomposition method in combination with the Hilbert transform for 

structural nonlinearity quantification and damage detection during earthquakes. The measured 

structural responses were decomposed into IMFs by using the proposed decomposition 

method, and the instantaneous frequencies were extracted using the Hilbert transform. The 

instantaneous frequency was integrated over time duration to eliminate the effects due to 

nonlinearity. On this basis, the degree of nonlinearity index was defined to represent damage 

severity.  

 

Since many structures behave nonlinearly even in an undamaged state, previous linear 

methods may not be suitable to handle these initially nonlinear systems. Bornn et al. [255] 

applied an AR-SVM approach to time-series data for detecting damage to an initially 

nonlinear system, which was experimentally simulated with a column being suspended from 
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the top floor and a bumper being placed on the second floor. Shiki et al. [256] used a discrete 

Volterra model to represent the behaviour of a magneto-elastic beam with nonlinearity even 

in a reference state. Input and output data were utilised to estimate the Volterra kernels. The 

prediction error of the model, together with hypothesis testing, was used to detect damage to 

the system during the linear and nonlinear regime of motion. Experimental studies showed 

that the nonlinear index could detect structural changes in both regimes of motion, while the 

linear one failed during the nonlinear regime.  

 

Villani et al. [257] presented a stochastic version of the Volterra series to describe the 

nonlinear behaviour to consider uncertainties. The presence of damage was detected on the 

basis of the MSD. Numerical results showed that the performance of the present method was 

better than that of linear analysis and could detect small cracks even in the presence of 

uncertainties. 

 

Recently, nonlinear FE model updating has been developed to identify structural nonlinear 

parameters. Ebrahimian et al. [258] and Ebrahimian et al. [259] used an EKF and a batch of 

Bayesian approaches, respectively, to estimate time-invariant parameters of the nonlinear FE 

models of frame-type structures by using input excitation and dynamic response of a structure 

during earthquake events. 

 

However, input excitations to a structure are difficult to be measured accurately in practice. In 

this regard, Ebrahimian et al. [260] proposed an output-only nonlinear FE model updating 

method by using the measured time history responses during an earthquake event. The 

proposed methodology simultaneously estimated the unknown FE model parameters and 

input excitations based on a sequential maximum likelihood estimation approach and a 

sequential maximum a posteriori estimation approach, respectively. Astroza et al. [261] used 

an unscented Kalman filter to solve the nonlinear state-space equation and circumvent the 

computation of FE response sensitivities with respect to model parameters and input 

excitations. 
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Although a number of methods have been developed for nonlinear damage identification, a 

general model that can characterise the nonlinear behaviour of a structure is still challenging 

to construct. For example, when high levels of excitation are applied, structural responses 

may exhibit high-order nonlinearities that are inaccurately approximated using a small 

number of terms in the Volterra expansion. Nonlinear analysis is computationally intensive 

and time consuming. Consequently, a nonlinear FE model updating approach is difficult to be 

applied to practical structures that contain large DOFs. The substructuring approach may be 

integrated to solve the challenge. The following table compares and summarises the nonlinear 

methods that have been reviewed in this subsection.  

 

Table 10. Nonlinear methods 

Authors Methods Features 
Damage type and 

identification level 
Applications 

Chatterjee 
[249] 

Volterra series First and second 
response harmonic 
amplitudes 

Presence and size of 
breathing crack of 
cantilever beam under 
harmonic excitation 

Numerical 
spring-mass-damper 
system 

Andreaus and 
Baragatti [250] 

- Phase portrait 
distortions, sub- and 
super-harmonic 
components and 
curved shape of the 
modal line 

Location and depth of 
breathing crack of 
cantilever beam under 
harmonic excitation 

Numerical cantilever 
beam  

Andreaus and 
Baragatti [251] 

- Phase portrait 
distortions and sub- 
and super-harmonic 
components 

Presence and size of 
breathing crack of 
cantilever beam under 
harmonic excitation 

Experimental steel 
cantilever beam 

Peng et al. 
[252] 

Nonlinear 
ARMAX 

FRFs Presence and degree of 
structural nonlinearity 

Experimental 
aluminium plates 

Chanpheng et 
al. [253] 

 FRFs Degree of nonlinearity 
for large civil 
structures due to 
earthquake 

Simulation data  

Wang et al. 
[254] 

Analytical mode 
decomposition+ 
Hilbert transform 

Instantaneous 
frequency 

Nonlinearity 
quantification under 
earthquake  

Experimental building  

Bornn et al. 
[255] 

AR-SVM Residual error of 
AR-SVM model 

Presence of damage 
for initially nonlinear 

Experimental 
aluminum plates and 
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systems columns connected 
with bolted joints 

Shiki et al. 
[256] 

Discrete-time 
Volterra series 

Prediction error of 
Volterra model 

Presence of damage 
for initially nonlinear 
systems 

Experimental 
aluminum beam 

Villani et al. 
[257] 

Stochastic Volterra 
series+ MSD 

Volterra kernels 
coefficients and 
contribution 

Presence of damage 
for initially nonlinear 
systems 

Experimental 
aluminum beam 

Ebrahimian et 
al. [258] 

EKF Input-output time 
histories data under 
earthquake 
excitation 

Levels 1-3  Numerical steel 
bridge column and 2D 
moment resisting steel 
frame 

Ebrahimian et 
al. [259] 

Batch Bayesian 
approach 

Input-output time 
histories data under 
earthquake 
excitation 

Levels 1-3  Numerical steel 
bridge column and 2D 
moment resisting steel 
frame 

Ebrahimian et 
al. [260] 

Bayesian inference Output acceleration 
under earthquake 
excitation  

Levels 1-3  Numerical 3D RC 
building 

Astroza et al. 
[261] 

Unscented Kalman 
filter 

Output acceleration 
under earthquake 
excitation 

Levels 1-3  Numerical 3D RC 
frame  

 

2.10 Other methods 

In addition to the methods introduced earlier, some other damage identification techniques are 

reviewed here.  

 

Drive-by (or indirect) damage identification methods have been proposed for bridge 

structures more than a decade. These methods extract the dynamic properties of the bridge, 

such as natural frequencies, from the measured responses of a passing vehicle instrumented 

with sensors [262, 263]. As a vehicle passing over a bridge, there is dynamic interaction 

between them, and the moving vehicle can be considered as both exciter and receiver due to 

the bridge-vehicle interaction [264]. The major advantage of the drive-by approach is that it 

only uses sensors installed on the vehicle only and thus minimises the effect on the normal 

traffic of the bridge. It is more economical, efficient, and mobile compared with conventional 
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methods. In addition, the vehicle passing over the bridge as a “moving sensor” can provide 

greater higher spatial information resolution than fixed sensors [264]. 

 

Siringoringo and Fujino [265] estimated the first natural frequency of the a bridge through 

using spectral analysis of the vehicle response  by setting the driving velocity constant and 

employing the prior knowledge of vehicle frequency. Field experiment demonstrated that the 

first frequency of the bridge was identified with reasonable accuracy under moderateas the 

driving velocity was below 30 km/h. However, one problem with this approach is that the 

vehicle frequency usually appears as a dominant peak in the spectrum, making it difficult 

tothe identification of y the bridge frequency challenging. To In this endconnection, Yang et 

al. [266] combined two filters, i.e., the band-pass filter and singular spectrum analysis, to 

filter out the vehicle frequency from the spectrum and thus enhance the visibility of bridge 

frequencies. Zhang et al. [267] approximately extracted structural mode shape squares from 

the acceleration of a passing vehicle with tapping devices. However, acceptable damage 

identification accuracy was achieved only for the vehicle speed as low as 2 m/s. Oshima et al. 

[268] estimated bridge mode shapes from the dynamic responses of moving vehicles through 

a four-step process based on SVD. Numerical The numerical study showed that damage could 

be detected accurately for vehicle speeds varying from 5 tom/s– 15 m/s. Nguyen and Tran 

[269] applied the WT to the displacement response of a moving vehicle with low speed to 

determine the existence and location of cracks for beam-like structures. Obrien et al. [270] 

used EMD to decompose the response measured in a passing vehicle into three components. 

The damage location was detected using the IMFs corresponding to the pseudo-frequency 

component.  

 

The vehicle speeds for the aforementioned methods are all lower than the highway speed 

range, which thus may require temporary bridge and/or lane closures [264]. More recently, Iin 

2004, traffic speed deflectometer (TSD) has beenwas developed as a device for pavement 

deflection measurements at speeds of up to 80 km/h. OBrien and Keenahan [271] used a TSD 

vehicle containing two displacement sensors for damage detection for short-medium span 

bridges. The time-shifted difference in the apparent profile derived from the displacement 
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data was employed as the damage indicator. Keenahan and Obrien [272] employed a TSD 

vehicle containing five displacement sensors. The time-shifted curvature derived from the 

displacements was selected as the damage indicator. Numerical studies showed that the 

proposed method was more robust to noise than the algorithm proposed in OBrien and 

Keenahan [271]. 

 

Although the drive-by damage detection methods possess some distinct advantages over the 

conventional direct methods, they are primarily limited to Levels 1 and 2 damage 

identification. Moreover, most of these methods require the vehicles’ speeds to be slow, 

which may cause traffic congestion and disruption. Some researchers used the TSD devices to 

address this problem, while the high cost of the equipment hinders their practical wide 

applications.  

 

Response surface methodology (RSM), which is a combination of mathematical and statistical 

techniques, can provide an approximate mathematical model mapping the input parameters of 

a physical system to its output responses [273]. Linear or second-order polynomial models are 

typically employed as the fundamental structures of RS models to describe a studied system. 

In comparison with conventional FE model updating methods, RSM is a good alternative to 

solve inverse problems without using a sensitivity matrix. This method also requires low 

modelling and updating efforts. 

 

Fang and Perera [274] used D-optimal designs to establish RS models for screening out 

non-significant updating parameters, which required few samples for the desired RS 

modelling. Damage was identified by minimising the discrepancy between reference-state RS 

and experimental models.  

 

Kim et al. [275] combined global vibration-based and local impedance-based approaches to 

distinguish two typical damage types, namely, girder damage and tender damage, for 

pre-stressed concrete girder bridges. First, damage occurrence was detected on the basis of 

changes in frequency responses. Electromechanical impedance was then used to monitor 
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whether tendon damage occurred. The location and extent of damage were estimated using 

natural frequencies or mode shapes based on damage type.  

 

Yang et al. [276] proposed a 1D generalised local entropy method to detect cracks in beam 

structures. Yang et al. [277] further developed 2D generalised local entropy combined with 

statistical analysis and AI to identify damage in plate-like structures. They then evaluated the 

damage severities at the identified locations by using the ABC algorithm with the objective 

function defined by the combination of natural frequencies. 

 

Considering the sparsity of structural damage, some researchers developed CS-based damage 

identification methods. Yang and Nagarajaiah [129] combined blind feature extraction and 

sparse representation classification to locate and quantify structural damage. They extracted 

the modal features of structures by using the unsupervised complexity pursuit algorithm and 

expressed the test modal feature as a linear combination of the bases of the overcomplete 

reference feature dictionary. The resulting highly underdetermined linear system was 

correctly solved via the l1 minimisation by exploiting the sparsity nature. Wang and Hao [278] 

proposed a CS-based pattern classification algorithm by constructing the feature matrix based 

on the sparse representation of numerically simulated time domain data. The existence, 

location and extent of damage were then determined sequentially by solving the l1 

optimisation problem.  

 

The number of available sensors is always limited in practice due to the economic and 

technological considerations. Given a total number of sensors, the selection of sensor 

locations isshould be determined  necessary such that the measured data contain useful 

features of the structure as much as possible. Consequently structural damage can be detected 

accurately. Although a number of OSP techniques have been developed for decades, most of 

these techniques are devoted to modal identification. OSP methods for damage identification 

are still far from the end.  
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Zhou et al. [279] introduced a sensor placement index in terms of the ratio of two parameters, 

namely, the contribution of the measurement points to the Fisher information matrix and the 

damage sensitivity to the measurement noise. Li et al. [280] proposed a two-phase OSP 

scheme based on the Fisher information matrix. The first phase was to find out the sensor 

locations that reconstructed accurate responses. In the second phase, the optimal sensor 

locations were determined based on the sensitivity analysis with respect to the elemental 

stiffness parameter. Lin et al. [281] employed two objective functions for multi-type sensor 

placement based on the simultaneous optimization of the response covariance sensitivity and 

the response independence. Later, they [282] applied the multi-type OSP method for damage 

detection in a nine-bay 3D frame structure.  

 

The aforementioned sensitivity-based OSP methods calculate the sensitivity analysis with 

respect to the model parameters of each structural element, which are not applicable for 

large-scale structures. Guo et al. [283] developed an information-entropy-based OSP method 

targeting damage detection of large-scale bridges subject to ship collision. The sensor 

configuration was optimized by a multi-objective optimization algorithm, which 

simultaneously minimized the information entropy index for each possible ship-bridge 

collision scenario. The proposed method was applicable in practice to determine the OSP 

prior to field testing. Beygzadeh et al. [284] proposed an improved GA algorithm for OSP in 

space structures damage detection. A numerical study showed that the proposed algorithm 

performed better than the GA in terms of convergence speed and damage detection accuracy.  

 

2.11 Comparative studies 

Over the past 10 years, some researchers have compared existing vibration-based damage 

detection methods in terms of different aspects. Different techniques may behave differently 

on different types of structures. Comparative studies may give insight on the performance, 

applicability and feasibility of each technique. 
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Kopsaftopoulos and Fassois [263] experimentally compared several statistical time series 

methods via application to a lightweight aluminium truss structure. They assessed two 

nonparametric methods (i.e. PSD- and FRF-based methods) and four parametric methods (e.g. 

a model parameter, a residual variance, a residual likelihood function and a residual 

uncorrelatedness-based method). All the methods were effective for various damage 

scenarios, but the accuracy of parametric methods was higher than that of nonparametric 

methods. 

 

Talebinejad et al. [264] evaluated four mode shape-based techniques to identify damage to 

long-span cable-stayed bridges by using simulated acceleration data. These methods included 

an enhanced coordinate MAC, a damage index, MSC, and modal flexibility methods. The 

performance of the damage index and MSC was better than that of the two other methods. 

When measurement noise was considered, only high-intensity damage could be detected 

using the damage index and MSC, and none of them could identify multiple damage to the 

deck.  

 

Saeed et al. [265] compared the performance of single and multiple ANNs and multiple 

adaptive neuro-fuzzy inference systems in detecting the location and length of a crack in 

curvilinear beams. Natural frequencies and FRFs were employed as inputs, and PCA was 

conducted to reduce the size of FRF data. Multiple ANN models produced the lowest average 

prediction errors. Multiple adaptive neuro-fuzzy inference systems were less sensitive to noise 

than other classifier models. 

 

Dessi and Camerlengo [266] compared nine damage identification methods based on natural 

frequencies, MSCs and MSE. The selected techniques were divided into two categories: one 

required baseline data, whilst the other did not need any reference to the undamaged state. 

Their performances were evaluated on the basis of the same test of a simply supported Euler–

Bernoulli beam. They found that a damage index performed well in identifying the damage 

location may be not so accurate in estimating the damage severity and vice versa. The 
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position of damage along the beam affected the accuracy of damage identification for all 

methods.  

 

Figueiredo et al. [267] comparatively studied four ML algorithms, including AANN, factor 

analysis, MSD and SVD, for damage detection under operational and environmental 

variabilities. These algorithms relied only on the measured time-series responses and did not 

require a direct measurement of parameters related to operational and environmental 

variations. An MSD-based method was proven to be an optimal algorithm in terms of 

classification performance and computational complexity. Santos et al. [268] presented four 

kernel-based algorithms, i.e. one-class SVM, support vector data description, KPCA and 

greedy KPCA. They compared the performance of these algorithms by using a benchmark 

three-story frame structure. Experimental results showed that the proposed kernel-based 

algorithms had an optimal performance, especially when a nonlinear temperature–stiffness 

relationship was present. 

 

3. Challenges and Future Research  

Numerous vibration-based damage detection methods have been developed over the past 

decades. However, their applications in practical civil engineering structures are still 

immature. Some challenging issues deserve further research to achieve accurate and practical 

damage identification.  

(1) Although some researchers comparatively studied different damage identification 

methods, no general consensus has been achieved regarding which type of data is a good 

damage indicator and which identification method is most effective. ASCE organized a 

benchmark study on damage identification of a lab frame 20 years ago [269, 270]. 

Benchmark studies on real structures are necessary. 

(2) For civil engineering structures, nonlinearity often exists and may be induced by 

connections or the presence of damage. However, few existing algorithms consider 

nonlinear structural behaviour in the reference and damaged states. Nonlinear damage 

identification methods are preferable. Given the heavy computation load, nonlinear 
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analysis can be combined with substructuring methods to reduce computational effort and 

improve efficiency when it is applied to large-scale structures. 

(3) Structural damage detection inevitably entails uncertainties, such as measurement noise 

and modelling errors, due to inaccurate physical parameters, non-ideal boundary 

conditions and structural nonlinear properties. The existence of uncertainties may cause 

large variations in structural vibration characteristics, which may lead to incorrect 

damage identification. Therefore, statistical damage identification methods that 

appropriately consider these uncertainties should be continually developed. Moreover, 

noise quantification and elimination need to be explored further.  

(4) Operational and environmental variations, particularly temperature, cause changes in 

structural vibration properties. Many field studies have found that varying temperatures 

may cause more significant changes in the structural vibration properties than those due 

to damage. Although researchers have proposed various techniques to consider the effects 

of temperature on damage detection, no consensus and generally effective methods have 

been developed. 

(5) Although vibration-based damage identification methods have been successfully applied 

to mechanical and aerospace structures, the applications of these methods to practical 

civil structures are far from maturity due to the complexity and uniqueness of civil 

structures. Civil engineering structures are typically different because of the variability in 

the materials and construction processes, the uniqueness of the soil conditions, and 

environmental conditions. Consequently, it is difficult to extend a well-established 

method to other structures. 

(6) In practice, a large volume of data is generated from an SHM system. The present data 

processing and damage identification are manually conducted by practitioners, thereby 

causing inefficiency or ineffectiveness or false identification results. Automatic data 

processing and condition assessment are lacking. Rapid developing big data and AI 

techniques may be a direction to achieve this purpose. Many interesting studies in the 

topic are underway.  

(7) In recent years, ML methods have received considerable attention for structural damage 

identification. However, most of the studies use laboratory or numerical data for training 
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as real data corresponding toin damaged structures are very rare. Damage identification 

problems have poor data conditions when they are casted into a supervised learning 

framework. The introduction of semi-supervised and unsupervised algorithms is expected 

in the future.  

(8) Structural damage detection is essentially a multidiscipline area, involving sensor 

technology, data processing, mathematics, and structural analysis. A successful damage 

identification method needs the close collaboration among different disciplines. 

 

4. Conclusions 

The vibration-based damage detection methods between 2010 and 2019 have been reviewed. 

The applicability and effectiveness of different available techniques depend on damage type, 

structural configuration and available data. However, a universal methodology that can 

identify all damage types of different structures has yet to be developed. In addition, few 

existing algorithms can predict the remaining service life of structures, which is regarded as 

Level 4 structural damage detection. 

 

In summary, there is a pressing need to develop more accurate and reliable damage 

identification methods for practical civil engineering structures by using vibration 

measurement data. The prognosis of damage to a monitored structure also requires extensive 

investigations. 
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