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Abstract 
 
Existing research that forecasts market penetration of installed connected and autonomous vehicle (AV) 
technologies is often confused with the traffic composition in roadway networks. Users may override AV mode 
due to arrival time pressure, facility constraint (e.g., “I will have to make a U-turn a mile away if I do not cross 
the solid double-yellow lines here”), drug and alcohol influence, pleasure, envy (e.g., “why the front car can 
surpass that slow truck but I can’t?”), insufficient law enforcement, driving culture, media and public sentiment, 
etc. Therefore, the installation and the usage of AV technologies should not be instantaneously assumed 
ignorable in planning and policy studies. This paper is dedicated to clarifying this confusion by demonstrating 
that ignoring the difference between the installation and the usage of AV technologies might lead to systematic 
bias in evaluating policy and investment decisions. Through a system dynamics (SD) model, the complex 
interactions of relevant factors are captured so that the mixed traffic condition influences traffic law 
enforcement adjustment effort and system investment decisions, which, in turn, influence the AV technology 
usage share and the system performance. The case study applies to the greater Washington, D.C. area for 
demonstrating the feasibility and advantages of the proposed model and for studying policy implications. This 
paper does not attempt to forecast; instead, we propose a modeling framework for studying the conditions 
under which differentiating the installation and the usage of AV technologies might be critical in forecasting 
the traffic composition trend and system performance for public policy and investment decisions.  
 
Keywords: Autonomous Vehicles Usage; FIFO Violation; Law Enforcement; Public Sentiment; Delay; System 
Dynamics 
 
 
1. Introduction 
 
Many (e.g., Litman, 2017; Bansal and Kockelman, 2017) argue, and we agree, that mixed traffic of vehicles 
with and without connected and autonomous vehicle (CAV or AV for short) technologies will last for at least 
decades even in extreme market growth conditions. Existing research has been focused on forecasting market 
penetration (MP) of the installation of AV technologies (e.g., Bansal and Kockelman, 2017; Nieuwenhuijsen 
et al., 2018). However, this MP is unlikely to equal the traffic composition of the active fleet (i.e., the usage 
share of AV technologies).  

Since most potential AV stockholders adopt a progressive strategy (Deloitte, 2020), AV users, for a 
relatively long time, may still have the freedom to drive in manual mode temporarily or continuously in various 
circumstances for comparative advantages over the AV mode. In mixed traffic, vehicles manually driven by 
humans might be more favorable in insufficient AV infrastructure, inadequate or biased law enforcement, ill-
natured collective driving culture, pressure for punctual arrival, envies, etc. Some people might prefer 
ridesharing services using manually driven vehicles (HVs) because AVs would drive “too conservatively,” 
would not surpass the front vehicle when “it supposes to,” or would not across the double-yellow lines even 
though it looks “perfectly safe” to do so. Privately-owned freight operators might have similar incentives for 
such a temporary switchover to reduce delivery time and cost if human drivers are in the trucks or can override 
the AV mode remotely. Although lacking empirical evidence, one can still derive from general principles that 
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human drivers tend to follow traffic rules less strictly than AVs in terms of whether and how to surprising a 
front vehicle, speed limit, solid double yellow lines, no U-turns, no right-turn-on-red, no use of emergency 
lanes, illegal parking, etc. Moreover, the peer AVs being perceived to be more predictable to yield may further 
contribute to manual driving, which might lead to a vicious cycle.  
 “First-In-First-Out (FIFO) violation.” in traffic studies, are often used to describe scenarios where 
flows that enter a link (without intermediate exit) at a later time propagate faster than flows that entered a link 
earlier (e.g., Carey, 1992; Boyce et al., 2001; Jin et al., 2005; Jin, 2007). Specific to this paper are the two 
types of driving behaviors that tend to incentivize people to (at least temporarily) override the AV mode. The 
first type includes driving behaviors that violating traffic rules such as making a U-Turn at an intersection that 
prohibits such movement and using the lane of opposing traffic when a “double-yellow line” is present. These 
behaviors are likely considered unallowable by the AV algorithms. The second type is the unrecommended 
risky driving behaviors (that may not violate traffic rules). For example, a driver might lose patient and tries 
to surpass the slow heavy-duty truck in front of it even though the AV technology does not recommend it. For 
another example, it is considered a (HV) FIFO violation when an HV surpasses a leading vehicle (while an 
AV would not); this behavior may cause the destabilization of the fleet and motivate surrounding vehicles to 
switchover to manual mode for performing similar behaviors. The common feature of these two types of FIFO 
violations is the intention and the associated driving behaviors of reaching a destination faster than what it 
would have been than using AV technologies. This paper uses the term FIFO violation as an all-encompassing 
term for any manual driving behaviors that fail to strictly follow traffic rules and courtesies, negatively impact 
the reliability of the system (relative to that of the AV technologies), and induce envies and behavioral mimicry.  
 FIFO violations may have both short-term and long-term impact on the system performance, law 
enforcement effort, network planning and policy decisions, etc., which, in turn, may influence the utility of 
FIFO violations. In a society where a switchover from AV mode to manual mode becomes common, people 
would be less incentivized to pay extra for vehicles to equip with advanced AV technologies. In this paper, we 
focus our study of implications of FIFO violation on network asset management, capital investment, public 
sentiment, and traffic law enforcement, to gain better understanding of three main policy leverages: (1) the 
effort of traffic law enforcement, (2) the overall fleet size and AV technology equipment regulations, and (3) 
the overall network facility investment and those that tend to encourage FIFO violations.  

We hypothesize that differentiating AV technology installation and usage may be relevant to 
transportation systems planning and policy decision making. AV usage may be influenced by the overall AV 
installation rate, law enforcement, network performance (e.g., average networkwide speed), and traffic 
composition (HV-AV ratio). On the other hand, network performance is influenced by traffic composition and 
network investment. We will explore the conditions, under which the network stakeholders might make 
seeming rational policy and investment decisions that lead to rewarding HV’s rule-violating behaviors and 
penalizing the attractiveness of AV technologies. For a concrete example, when adding solid double yellow 
lines to prohibit the left turns to driveways on the opposite side of a roadway might be a paradoxically 
contributing factor for more users to switch to the manual mode. The realization of such situations can serve 
as a reminder for analysts, urban system engineers, and policymakers to think in broader scope and to take 
more realistic human behaviors into account (including their owns); a system dynamics (SD) approach is well-
suited for studying such complex system interactions.  

An SD approach is particularly suitable for capturing complex systems that contain interacting stock 
and flow variables and is characterized by positive and negative feedback loops often mistakenly thought as 
exogeneous by analysts and decision-makers (Richardson, 2011). Abbas and Bell (1994) list multiple 
advantages of SD for strategic policy analysis and decision supporting tool development. Shepherd (2014) 
summarized some common applications of SD in transportation. Particularly relevant to this study are the 
applications in adoption forecast of the uptake of vehicles with alternative fuel and automation technologies 
(e.g., Struben and Sternman, 2008; Kwon, 2012; Gruel and Stanford, 2016; Niuwenhuijsen et al., 2018), 
infrastructure maintenance funding allocation (e.g., Guevara et al., 2017), and strategic urban policy decisions 
(e.g., Pfaffenbichler, 2011). One main reason that we adopt the SD approach, rather than an agent-based 
approach, is that more unformal knowledge and insights (e.g., panel discussions in conferences and webinars) 
are available about the macroscopic (aggregate) phenomena than formal data in behavioral details of the 
present subject.  
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In a SD model, stock variables are commonly used to capturing the accumulation (or decumulation) 
process of materials and information. For example, the size of a vehicle fleet can be captured as a stock variable, 
where purchase (inflow) and shedding (outflow) change the fleet size over time. Similarly, a stock variable 
can be used to capture the total mileage of a roadway system, and the construction (inflow) and 
demolition/deterioration (outflow) change the state of the stock. Stock variables can also be used to capture 
abstract (non-material) entities and their “inertia” over time. For example, the traffic law enforcement resources 
available of the current year is partially influenced by the funding level determined in the last fiscal year, while 
the decision about the funding level in the last fiscal year might be partially influenced by the average rate of 
incidents in the past several years due to delayed data collection and the wait of a sufficient sample size. 
Loosely speaking, a stock variable at a given moment contains “memory” about its past self. Whether a variable 
can be seen as a stock variable or an auxiliary variable (no “memory” about its value in the past) depends on 
the study scope. In a simulation where the time step is in, say, minute, the traffic condition should be considered 
stock since whether the roadway system is congested in the past minute influences whether the system is 
congested in the present minute. However, in a simulation where the time step is, say, year, it might be 
reasonable to assume that the traffic pattern can be fully determined by the transportation network and the land 
use pattern of that year, and therefore, might be seen as a regular auxiliary variable to sufficiently serve the 
purpose of a study. On the other hand, this step size (year) might be considered short for the change of the 
transportation network and the land use pattern, which, therefore, should still be treated as stocks. 
 Next, we review some relevant studies in the process of developing of a high-level causal loop diagram 
(CLD). Then we specify the SD model structure and its five main components based on this CLD. We apply 
the model to the Washington D.C. Metropolitan Area to demonstrate the model and propose policy and 
investment implications obtained from the sensitivity analysis. We conclude by proposing the importance of 
taking FIFO violation and traffic law enforcement into account in forecasting AV usage, network performance, 
and policy and project evaluation. Throughout the study, we assume that, within the study horizon, regulations 
and vehicle manufacturers will not adopt extreme measures such as removing driving wheel to force people to 
use AV technologies. In other words, users always have the option to control their vehicles even in Level 5 
automation.  
 
 
2. Causal Loop Diagram (CLD) and Relevant Studies 
 
This section describes a high-level causal loop diagram (CLD) that serves as the conceptual framework for the 
more concrete SD model to be specified in the next section. Such a conceptual framework can assist the readers 
in developing an intuition on how different model components interact. A CLD is often used to explain or 
hypothesize the causal relationship among variables within the system under a study. Figure 1 illustrates the 
overarching CLD associated with the analytical structure of the proposed SD model. Different factors are 
connected through directed links. Each arrow of a link is associated with a polarity mark (“+” or “-”) showing 
the qualitative causal relationship. Positive (negative) marks suggest that the increase (decrease) of the cause 
variable raises (reduces) the effect variable than what it would have been. For example, the link from “FIFO 
Violation Intensity” to “Congestion in Favor of FIFO Violation” has a positive polarity (“+”) to suggest that 
the former tends to increase the latter than what it would have been. Note that it is possible that the latter still 
decreases when the former increases due to the existence of other factors such as “Law Enforcement” and “HV 
Fleet Size”. In this case, the latter would have decreased even more without the increase of the former. The 
double crosses indicate delays. Relevant studies are cited along the description; these studies are either the 
bases of individual causal relationships represented by individual arrows or individual feedback loops formed 
by a set of arrows. 
 
Individual Causal Links. Due to lack of observation (since the AV-HV traffic condition has not started), the 
proposed CLD can only be developed based on relevant studies with generalization. In a sense, each element 
of the CLD is not new and has been used broadly and only needs minor generalization. For instance, although 
we have not observed the research and development (R&D) feedback loops in the era of significant AV market 
penetration (MP), we can still hypothesize its existence by observing and generalizing the past experiences in 
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the R&D feedback loops in the auto industry in terms of driver safety technologies, fuel efficiency 
improvement, alternative fuel technologies, etc.  

The interplay between traffic law enforcement and traffic conditions have been studied for decades. 
de Waard and Rooijers (1994) conduct experiments to evaluate the effectiveness of various methods and 
intensities of law enforcement on driving-speed violation behaviors. Tay (2009) studies the effectiveness of 
automated and non-automated traffic enforcement on driving behaviors that violate traffic laws. Mehdizadeh 
and Shariat-Mohaymany (2020) study the attributes of individuals that tend to break the rules of congestion 
charging. Fakhrmoosavi et al. (2020) use a mesoscopic traffic simulator to study the network impact of mixed 
traffic of different vehicle types (including AVs) and heterogenous drivers, where the compositions and 
distributions of the mixed traffic are exogenous.  
 

 
Figure 1. The causal loop diagram of the analytical structure of this paper. 

 
 It has been well-recognized that the transition period where HVs and AVs co-exist and share network 
capacity should not be ignored in evaluating policy, investment, and planning scenarios. Zhao et al. (2020) 
conduct field experiments about HVs’ driving behaviors when following AVs. However, it has been rarely 
studied for the possibility of HV drivers surpassing AVs in risky manners (e.g., HV drivers making left-turn 
without yielding AVs from the opposing direction; AV users temporarily switching back to manual mode to 
surpass the speed limit or make a U-turn at a location that prohibits such movement). Quantifying FIFO 
violation intensity and its impact on network performance and policy evaluation is critical in studying the 
dynamics of such mixed traffic, which shall not be confused with the case where users are heterogeneous in 
terms of preferred driving speed, distance to leading vehicles, reaction time, etc. Jin and Jayakrishnan (2005) 
develop measurements of FIFO violation and show how it connects to the solution of a commodity-based 
kinematic wave model for vehicular traffic networks. Mesa-Arango and Ukkusuri (2014) model the 
asymmetrical car-truck interactions in dynamic traffic flows. Argarwar and Lämmel (2016) model the seepage 
behavior of smaller vehicles in mixed traffic via agent-based simulations. Ryu et al. (2016) consider the 
asymmetric interactions among different vehicle types (e.g., the impact of trucks on passenger vehicles tends 
to be higher than that of passenger vehicles on trucks) in a stochastic traffic equilibrium framework. Yu (2018) 
proposes a three-dimensional fundamental diagram that captures the relationship among density, speed, and 
MP of AVs, under different levels of technologies and regulation intensities. Zhong et al. (2020) study the 
impact on mixed microscopic traffic flow characteristics using high-resolution vehicle trajectory simulation 
data.  
 
Feedback loops. The individual causal links justified above might form feedback loops, which might be either 
self-enforcing or self-balancing. Some key loops labeled in Figure 1 are important for developing an intuition 
of the proposed system dynamics. Loops R1 and R2 capture the R&D feedbacks where more AV technology 
installation tends to lead to more usage, data, and revenue for the researchers and engineers to further improve 
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the attractiveness of AV technologies. In Loop R3, more FIFO violation tends to lead to more public and media 
sympathy, which might cause the reduction of law enforcement and, hence, more FIFO violations than what it 
would have been. Loops R4 and R5 capture the similar reinforcement but through network project planning 
and construction with longer delays. Loop B1 captures the phenomena where more FIFO violation tends to 
cause more traffic accidents which lead to stricter law enforcement than what it would have been. We focus 
our discussion on Loops R3, R4, and R5 since this paper does not strictly differentiate different levels of 
automation.  
 Figure 2(a) and Figure 2(b) highlight the two key loops, R3 and R4, in the discussion of this paper. 
Other feedback loops are also important, but they have been discussed or at least identified by previous 
researchers. However, as far as we know, R3 and R4 have not been identified in any formal studies. 
 

   
(a) R3 loop      (b)  R4 loop 

Figure 2. The two highlighted feedback loops, R3 and R4, are the focus of the discussion in this paper. 
 

The general idea of each loop is not novel and has been proposed and utilized in existing research. The 
R&D and network facility feedbacks are captured by Struben and Sterman (2008) in modelling the adoption 
of alternative fuel vehicles. The impact of social exposure and word-of-mouth on adopting new vehicle 
technologies have been incorporated by Struben and Sterman (2008) and by Shepherd et al. (2012). Causal 
loop diagram for cycling in London contains the “perceived safety-injury” loop, “bicycle facility investment-
safety” loop, and “social normality” loop (Macmillan and Woodcock, 2017). The mutual impact of human 
biases towards the type of highway projects and the (delayed) resultant system performance have been captured 
by Guevera et al (2017). Friedman (2006) shows that the mental model underlying the policy of road 
maintenance to reduce accidents could in most cases increase accidents due to ignoring the induced risky 
driving behaviors (e.g., change of speed), change of traffic volume and composition, the changed polishing 
effect of the pavement, etc. Time-of-day of day and drug or alcohol use are also identified by Friedman (2006) 
as factors that might increase the accident rate and worth further studies. 
 
Exogeneity Assumption. In this framework, variables such as total vehicle fleet size dynamics, trip length, and 
land-use patterns are considered exogeneous and given. The proposed model can be seen as a model built on 
top of existing ones that do not differentiate AV technology installation and usage, which leads to the proposed 
model to further incorporate the impact of system performance, safety, roadway planning and construction, 
and public sentiment into consideration. It is indeed possible that the impact of factors such as system 
performance and public sentiment influence not only AV technology usage conditioning on AV technology 
installation but also the AV technology installation itself. Such feedback can be further incorporated in the 
future study (if the impact is found significant) in a relatively straightforward manner. 
 Various approaches have been proposed to forecast household-owned vehicle fleets size and general 
selling prospects (e.g., Hülsmann et al., 2012; Wu et al., 2014). Some focus on the forecast of the share of AVs 
(e.g., Bansal and Kockelman, 2017; Litman, 2017). Lavieri et al. (2017) study the preference between owning 
and sharing autonomous vehicle technologies. Kim et al. (2020) examine the potential benefits and concerns 
associated with AV adoptions. Raj et al. (2020) summarize the barriers to the adoption of AVs based on 
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previous literature and expert inputs. They then propose that industry standards and the absence of regulations 
and certifications can be addressed to improve customer acceptance.   
 
Sensitivity and elasticity. Due to the considerable uncertainty of future prospects of almost any studies related 
to factors such as fleet size, technology, and emerging business models, researchers have proposed and utilized 
various scenario analysis approaches. Wang and Kockelman (2018) discuss three methods − local sensitivity 
analysis with interaction, Monte Carlo, and Bayesian Melding −  for considering the uncertainty of 
transportation and land-use models. Hsieh et al. (2018) develop a Monte Carlo based approach to sample model 
parameters in projecting aspects of private car diffusion of the Chinese private car sales and stock. Milkovits 
et al. (2019) demonstrate and motivate the use of an exploratory modeling and analysis tool, TMIP-EMAT, 
for transportation systems modeling.  
 
 
3. Model Specification 
 
Derived from the CLD are the five interactive model components identified as particularly related to the present 
study. Other various (e.g., those related to the R&D loop) in the CLD have been at least considered in the past, 
and hence we consider them exogenous in this section to allow the focus on the research gap – the 
differentiation between the installation and the usage of AV technologies. However, these exogenous variables 
can be potential incorporated into the proposed model as explicit and endogenous by combining with existing 
methods (e.g., Struben and Sterman, 2008).  

The first component captures the trend of the overall fleet size. The second component captures the 
trend of the AV technology installation as the portion of the fleet being equipped with AV technologies. The 
third component captures the planning, construction, and maintenance process of the transportation systems 
whose stakeholders might be influenced by recent network performance and public sentiment when making 
planning decisions. This component is also influenced by funding availability and delays from planning and 
construction. A stock-chaining and co-flow structure is adopted for simulating the cumulative effect of 
investment on the network and different types of projects in terms of the tendency to favor or disfavor manual 
driving. The fourth component captures the intensity of FIFO violation and its interplay with the lagged 
adjustment in traffic law enforcement and the general public sentiment towards manual driving. The fifth 
component captures the “equilibrium” between the travel demand and network capacity in each stimulation 
step to model the short-term interaction between the network facility and (vehicular) travel demand a 
macroscopic fundamental diagram augmented to be sensitive to the MP of the usage of AV technologies. 
Compared with the 45-year simulation horizon (2020 to 2065) with one year as the step size, the impact of 
day-to-day traffic oscillations during a given simulation year is considered small. 
 
Component 1: Fleet Size Dynamics. The variable fleet size is modeled as a stock whose level at 𝑡𝑡 is 
determined cumulatively by the purchase rate, 𝑝𝑝𝑠𝑠𝑡𝑡, and the shedding rate, 𝑠𝑠ℎ𝑟𝑟𝑡𝑡, from the initial time 𝑡𝑡0 to a 
later time step 𝑇𝑇 (𝑡𝑡0 ≤ 𝑡𝑡 ≤ 𝑇𝑇). We assume that the changing rate of the overall fleet size is exogenous and 
given for each scenario. This assumption can be relaxed when combined with existing models whose fleet 
size is endogenous (but do not differentiate AV installation and AV usage). Following the vein of the 
formulations used by Struben and Sterman (2008) and by Nieuwenhuijsen et al. (2018), the accumulation of 
fleet size can be described as: 
 
𝐹𝐹𝑆𝑆𝑇𝑇 = 𝐹𝐹𝑆𝑆0 + ∫ (𝑝𝑝𝑠𝑠𝑡𝑡 − 𝑠𝑠ℎ𝑟𝑟𝑡𝑡)𝑑𝑑𝑑𝑑

𝑇𝑇
𝑡𝑡0

        (1) 
 
where 𝑝𝑝𝑠𝑠𝑡𝑡 = 𝑏𝑏𝑏𝑏𝑟𝑟𝑡𝑡 ∙ 𝑎𝑎𝑎𝑎_𝑏𝑏𝑏𝑏𝑟𝑟𝑡𝑡 and 𝑠𝑠ℎ𝑟𝑟𝑡𝑡 = 𝐹𝐹𝑆𝑆𝑡𝑡 ∙ 𝑠𝑠ℎ𝑓𝑓. 𝑏𝑏𝑏𝑏𝑟𝑟𝑡𝑡 is the base change rate of the fleet size. 𝑎𝑎𝑎𝑎_𝑏𝑏𝑏𝑏𝑟𝑟𝑡𝑡 is an 
exogeneous adjustment factor of 𝑏𝑏𝑏𝑏𝑟𝑟𝑡𝑡  for considering factors such as the overall economy, innovative 
technology, and emerging business models for vehicle ownerships. 𝐹𝐹𝑆𝑆𝑡𝑡  is the fleet stock at 𝑡𝑡. 𝑠𝑠ℎ𝑓𝑓𝑡𝑡  is the 
percentage of 𝐹𝐹𝑆𝑆𝑡𝑡 shredded at 𝑡𝑡. Technically, 𝑠𝑠ℎ𝑟𝑟𝑡𝑡, shedding rate, should be determined by an aging chain of 
stocks, where each stock represents vehicles with a particular year since usage. A coflow structure can be 
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further added to capture different types of vehicles. In this paper, we choose to use a single stop to simplify 
the case since the purchasing rate and shedding rate are assumed time-invariant and exogenous. 
 The active fleet size on roads, 𝑣𝑣𝑣𝑣ℎ𝑡𝑡𝑜𝑜𝑜𝑜, is converted from 𝐹𝐹𝑆𝑆𝑡𝑡 using three exogeneous variables. 𝑝𝑝𝑜𝑜𝑜𝑜 
captures the base percentage which can be estimated from historical data (e.g., total vehicles in usage through 
travel surveys and total registered vehicles from the departments of motor vehicles). 𝑣𝑣𝑣𝑣ℎ𝑡𝑡𝑜𝑜𝑜𝑜 is also influenced 
by its composition (e.g., vans and trucks), which is captured by traffic composition factor, 𝑓𝑓𝑐𝑐𝑐𝑐, and the new 
service business models that have a substitution or a complementary effect, 𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛.  Hence, the operational 
fleet size for the next time step can be calculated as  
 
𝑣𝑣𝑣𝑣ℎ𝑡𝑡𝑜𝑜𝑜𝑜 = 𝐹𝐹𝑆𝑆𝑡𝑡 ∙ 𝑝𝑝𝑜𝑜𝑜𝑜 ∙ 𝑓𝑓𝑐𝑐𝑐𝑐 ∙ 𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛        (2) 
 

Traffic composition is considered as an exogenous variable to simplify the discussion, though it can 
be extended as an endogenous variable as well. In a sense, the exogenous 𝑓𝑓𝑐𝑐𝑐𝑐 can be seen as the passenger car 
equivalent (PCE) factor for considering the heterogeneous traffic composition. The model does not explicitly 
model the case where 𝑣𝑣𝑣𝑣ℎ𝑡𝑡𝑜𝑜𝑜𝑜 is influenced by system performance (e.g., when roadways is highly congested, 
some people might plan to shift to other travel modes), though such influence with perception delays can be 
either incorporated by making these factors endogenous.  

The following discussion introduces the variables in other components, and to simplify the notation, 
the subscript “𝑡𝑡” are dropped unless confusion might arise.  
 
Component 2: AV Adoption Forecast. We define the MP of AV technology installation to be 𝑀𝑀𝑃𝑃𝐴𝐴𝐴𝐴 and the 
𝑀𝑀𝑀𝑀 of the actual AV usage to be 𝑀𝑀𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴. Similarly, we define the MP of vehicles without AV technologies 
installed as 𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻 and the 𝑀𝑀𝑀𝑀 of the manually-driven vehicles (i.e., 𝐴𝐴𝐴𝐴s that are driven manually and 𝐻𝐻𝐻𝐻s) 
as 𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 . Based on the above definitions, we have 𝑀𝑀𝑃𝑃𝐴𝐴𝐴𝐴 + 𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻 = 1  and 𝑀𝑀𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 = 1 , and 
𝑀𝑀𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 ≤ 𝑀𝑀𝑃𝑃𝐴𝐴𝐴𝐴 and 𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 ≥ 𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻. To simplify the case, we consider vehicles with Level 4 and Level 5 
technologies described by Bansal and Kockelman (2017) as AVs.  

𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 is a function of 𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻 and 𝐽𝐽. HV FIFO violation intensity, 𝐽𝐽 ∈ [0,1], will be described in detail 
in the section on quantifying FIFO violation (Component 4). 𝜆𝜆 captures the sensitivity of the FIFO violation 
intensity to the HV usage share, 𝜆𝜆 > 0. Eqn. (3) implies that 𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 should always equal to or greater than 
𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻, which reflects the fact that a user with an AV can switch to the HV mode (i.e., choose to drive manually) 
while a user driving a HV has no option to switch to the AV mode.  
 
𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 = (𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻)𝐽𝐽𝜆𝜆         (3) 
 

Eqn. (3) also implies that the difference between 𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻  and 𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻  is most significant when the 
mixed degree is moderate. Indeed, when 𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻  approaches 0+,  𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻  approaches 0+ ; when 𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻 
approaches 1−,  𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 approaches 1−. We set 𝑏𝑏𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, the base growth rate of 𝑀𝑀𝑃𝑃𝐴𝐴𝐴𝐴, as exogenous, though 
it can be relaxed to become endogenous when integrating with existing models that mainly deal with 𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻 
without differentiating AV installation and AV usage. 
 
Component 3: Planning & Construction of Network Projects. The lifecycle of the infrastructure is captured by 
a structure of process chains. The changing rate of the generalized network capacity or service capability, 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, measured by equivalent mileage, is proportional to the implementation rate of the network projects, 
whose changing rate, in turn, is positively influenced by the length of the project list (backlog), 𝑃𝑃𝑃𝑃, and funding 
availability, 𝐴𝐴𝐴𝐴. The decline of the system performance tends to lead to more scheduled projects added to the 
project list due to pressure from the public and possibly the additional funding (e.g., dedicated ballot). We 
referred to the formulations proposed by Guevara et al. (2017) for the formulation development of this 
component.  
 For modeling the overall dynamics of the network capacity, we consider two phases of implementation 
sequentially – planning and construction. In the planning phase, 
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𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑝𝑝𝑝𝑝𝑝𝑝�𝑣𝑣�𝜌𝜌𝑒𝑒𝑒𝑒�, 𝑣𝑣𝑓𝑓
𝑚𝑚𝑚𝑚,𝐴𝐴𝐴𝐴, 𝑐𝑐𝑐𝑐𝑐𝑐� − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑃𝑃𝑃𝑃, 𝑑𝑑𝑑𝑑𝑑𝑑)    (4) 

 
where 𝑝𝑝𝑝𝑝𝑝𝑝�𝑣𝑣�𝜌𝜌𝑒𝑒𝑒𝑒�,𝐴𝐴𝐴𝐴, 𝑐𝑐𝑐𝑐𝑐𝑐� = 𝐴𝐴𝐴𝐴 ∙ 𝑐𝑐𝑐𝑐𝑝𝑝−1 ∙ exp (−𝛽𝛽𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑 ∙ (𝑣𝑣�𝜌𝜌𝑒𝑒𝑒𝑒� − 𝑣𝑣∗))  can be seen as the number of 
projects funded and scheduled (but not built) in a year. 𝑐𝑐𝑐𝑐𝑐𝑐 the average cost per project, and 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝 captures the 
sensitivity of project planning activities to the system performance. 𝑣𝑣�𝜌𝜌𝑒𝑒𝑒𝑒�  and 𝑣𝑣𝑓𝑓

𝑚𝑚𝑚𝑚  capture the system 
performance and reference speed, respectively. More details about system performance are provided in the 
description in the subsection for Component 5. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, the construction rate, is assumed to follow a first-order 
material delay (i.e., 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑃𝑃𝑃𝑃,𝑑𝑑𝑑𝑑𝑑𝑑) = 𝑃𝑃𝑃𝑃 ∙ 𝑑𝑑𝑑𝑑𝑝𝑝−1), which is sensitive to the length of the project list -- the longer 
the project list, the higher the pressure of construction. 𝑑𝑑𝑑𝑑𝑑𝑑 is the average delay during the planning phase. 𝑒𝑒𝑒𝑒 
is the average project equivalent mileage for capturing the average project contribution to the network capacity 
measured in mileage equivalent.  
 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑃𝑃𝑃𝑃, 𝑒𝑒𝑒𝑒,𝑑𝑑𝑑𝑑𝑑𝑑) − 𝑑𝑑𝑑𝑑(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑑𝑑𝑑𝑑𝑑𝑑)      (5) 
 
where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the network capacity or service capability in terms of equivalent lane mileage. We assume a 
first-order material delay, and hence 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑃𝑃𝑃𝑃, 𝑒𝑒𝑒𝑒,𝑑𝑑𝑑𝑑𝑑𝑑) = 𝑃𝑃𝑃𝑃 ∙ 𝑒𝑒𝑒𝑒 ∙ 𝑑𝑑𝑑𝑑𝑝𝑝−1 . 𝑑𝑑𝑑𝑑  is the outflow rate of the 
capacity due to deterioration or accidental damage, which is assumed first-order delay (i.e., 𝑑𝑑𝑑𝑑(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑑𝑑𝑑𝑑𝑑𝑑) =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝑑𝑑𝑑𝑑𝑑𝑑). 𝑑𝑑𝑑𝑑𝑑𝑑 is the base deterioration rate, and 𝑑𝑑𝑑𝑑𝑑𝑑 is the average delay during the construction phase. 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶0 is the length of the project list at the initial time step.  
 Different types of transportation facilities have different impacts on the FIFO violation tendency. 
Examples of facilities that are in favor of manual driving (and FIFO violation) are adding new lanes, more 
road restriction such as double yellow lines no U-turns, and lower speed limit. To consider the impact of 
different types of projects on the FIFO violation tendency, a co-flow structure is designated to capture the 
dynamic characteristics of the overall network capacity and that of the portion that tends to induce FIFO 
violations. 
 Conceptually, this structure runs in parallel, as coflows, with the overall investment structure just 
described above. The coflow-specific variables are denoted with the “~” symbol. Similar to Eqn. (4), we 
consider the planning list that favors FIFO violations as a stock so that 

 
𝑑𝑑𝑃𝑃𝑃𝑃�
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

∙ 𝑤𝑤𝐹𝐹𝐹𝐹 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑃𝑃𝑃𝑃� , 𝑑𝑑𝑑𝑑𝑑𝑑)       (6) 
 
where 𝑃𝑃𝑃𝑃�  is the project list for the type of projects and designs that tend to induce FIFO violation; 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the 
public and media bias towards manual driving, the details of which can be found in the next subsection for 

Component 4; and 𝑤𝑤𝐹𝐹𝐹𝐹 = �1 + exp�𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑤𝑤𝐹𝐹𝐹𝐹 ∙ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏��

−1
 can be seen as a logistic model where the percentage 

of a project has a tendency to induce FIFO violation at 𝑡𝑡. Note that when 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0, the planning decisions do 
not favor either type of projects/designs. Similar to Eqn. 5, the counterpart of the systemwide capacity, we 
have 

 
𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�
𝑑𝑑𝑑𝑑

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑃𝑃𝑃𝑃� , 𝑒𝑒𝑒𝑒,𝑑𝑑𝑑𝑑𝑑𝑑� − 𝑑𝑑𝑑𝑑(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶� ,𝑑𝑑𝑑𝑑𝑑𝑑)      (7) 
 
where we assume the same deterioration rate as that in Eqn. (5). The percentage of facilities that tend to 
incentivize FIFO violation, 𝑝𝑝𝐹𝐹𝐹𝐹, is the portion of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�  in 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. The combined usage of process chains and 
co-flow structure is illustrated as Component 4 in Figure 5 , where Eqn. (4) and (5) correspond to the process 
chain on the lower two stocks, while Eqn. (6) and (7) correspond to the process chain on the upper two stocks. 
 Some network policies and investments might instead favor AVs (e.g., AV only lanes), but we anchor 
on the overall condition as the reference point. That is, the facilities that are in favor of manual driving are 
determined by the relative impact to those facilities that are either neutral or in favor of automated driving, not 
the neutral impact on FIFO violation.  
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Component 4: FIFO Violation, Law Enforcement, and Public Sympathy. This component considers the 
interconnections among manual driving proportion, FIFO violation intensity, the adjustment of law 
enforcement, and public and media sympathy that might influence the planning bias towards facilities that 
further incentivize manual driving (and FIFO violation.) The FIFO violation intensity, 𝐽𝐽 ∈ [0,1], is the key 
variable of this component. As shown in Eqn. (8), we capture the magnitude of 𝐽𝐽 using two main factors: traffic 
law enforcement intensity, 𝑙𝑙𝑙𝑙, and the percentage of facilities that tend to incentivize HV FIFO Violation, 
𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. Note that 𝐽𝐽 measures the FIFO violation intensity for an “average” manually driven vehicle in a network, 
not the intensity of the overall network’s FIFO violation. 
 
𝐽𝐽 = �1 + exp�𝛽𝛽𝑝𝑝𝐹𝐹𝐹𝐹

𝐽𝐽 ∙ 𝑝𝑝𝐹𝐹𝐹𝐹 + 𝛽𝛽𝑙𝑙𝑙𝑙
𝐽𝐽 ∙ 𝑙𝑙𝑙𝑙��

−1
       (8) 

 
When 𝑙𝑙𝑙𝑙 increases and 𝛽𝛽𝑙𝑙𝑙𝑙

𝐽𝐽 > 0, 𝐽𝐽 decreases than what it would have been. When 𝑝𝑝𝐹𝐹𝐹𝐹 increases and 
𝛽𝛽𝑝𝑝𝐹𝐹𝐹𝐹
𝐽𝐽 < 0, 𝐽𝐽 increases than what it would have been. The intensity of traffic law enforcement depends on the 

available enforcement resources, 𝐿𝐿𝐿𝐿, as shown in Eqn. (9).  
 
𝑙𝑙𝑙𝑙 = �1 + exp�−𝛽𝛽𝐿𝐿𝐿𝐿𝑙𝑙𝑙𝑙 ∙ (𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐸𝐸𝑡𝑡0)��−1       (9) 
 
where 𝑙𝑙𝑙𝑙 ∈ [0,1) is an auxiliary variable of 𝐿𝐿𝐿𝐿 - a stock that represents the law enforcement resources to 
capture delays due to information feedback (e.g., accumulation of accident data and response to the public 
sentiment), police enforcement funding cycle, recruiting and laying-off process, etc. The sensitivity of 
enforcement intensity to the law enforcement resources,  𝛽𝛽𝐿𝐿𝐿𝐿𝑙𝑙𝑙𝑙 ≥ 0, is a parameter to be estimated and 𝐿𝐿𝐸𝐸𝑡𝑡0 is 
the baseline initial resources that can be obtained from the annual financial report from local or regional 
agencies responsible for traffic law enforcement.  

We model the dynamics of the law enforcement resources, 𝐿𝐿𝐿𝐿, through its adjustment to capture the 
delays from the funding allocation process, police officer recruiting, staff training, etc. Funding availability is 
not endogenously modeled in this paper, but such constraint can be conveniently incorporated when studying 
a specific area where the exact funding mechanism and interactions with other funding options are transparent. 
Three main influencers of 𝐿𝐿𝐿𝐿 are FIFO violation intensity itself, media and public sympathy, and the overall 
percentage of AV usage. However, when FIFO violation is common and the facilities tend to incentivize FIFO 
violation, the media and public sympathy towards such violation might increase and cause the gradual 
adjustment rate for traffic law enforcement effort. Traffic collision is inherently captured by 𝐽𝐽. Let 
  
𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑𝐸𝐸(𝑟𝑟) + 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑 ∙ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝛽𝛽𝐽𝐽𝑑𝑑𝑑𝑑𝑑𝑑 ∙ 𝐽𝐽      (10) 
 
and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is expressed as  
 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑠𝑠𝑠𝑠𝑠𝑠 ∙ exp�𝛽𝛽𝐽𝐽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∙ 𝐽𝐽 + 𝛽𝛽𝑝𝑝𝐹𝐹𝐹𝐹

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∙ 𝑝𝑝𝐹𝐹𝐹𝐹�      (11) 
 
where 𝑠𝑠𝑠𝑠𝑠𝑠 is exogenous and captures the general sentiments towards manual driving. This can be influenced 
by external forces and considered as a policy leverage. 𝛽𝛽𝐽𝐽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the coefficient that scales the FIFO violation 
intensity to capture the influence of traffic condition (travel experience) on the general sentiment. 𝛽𝛽𝑝𝑝𝐹𝐹𝐹𝐹

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the 
coefficient that captures the influence of facilities. In general, the higher percentage of facilities that tend to 
induce or even encourage FIFO violations in their effect, the more likely that the public tend to show sympathy 
on such behaviors. On the other hand, people might also turn negative towards manual driving when FIFO 
violation intensity deems too high. Note that 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is defined based on its impact on the planning and traffic 
enforcement, not the positive or negative sentiment the public and media have. Indeed, both public revulsion 
and penchant towards manual driving could lead to biased funding towards changing a two-way left turn lane 
(TWLTL) into a double-yellow line and induce FIFO violation.   



Yu and Chen 

- 10 - 

Note that whether a proposed project would accommodate/incentivize FIFO violations is assumed to 
be only influenced by the media and public opinions and the design conventions. For example, a newly 
proposed arterial does not require the installation of median barriers except some portions near intersections 
based on certain design guideline or convention. But due to the potential influence from the public, more 
physical median barriers might be added or removed. For another example, planners might propose an AV-
only lane (assuming such lane has the technologies to detect whether the vehicle is indeed driven 
autonomously,) but whether such a lane should be constructed as a new lane or converted from a general-
purpose or a high-occupancy toll (HOT) lane might be influenced by the public and media sentiment in the 
public outreach phase. Such a decision might also be influenced by the funding availability, but the funding 
availability tends to be greatly influenced by the public and median sentiment.  

Component 3 and 4 interact through two main mechanisms. First, the composite effect of FIFO 
violation and percentage of facilities that tend to incentive FIFO violation influence media and public sentiment, 
which, in turn, influences both the network planning process and law enforcement effort. Second, the FIFO 
violation influence how common to manually drive vehicles installed with AV technologies, which then 
influences traffic systemwide performance and the network planning decisions. The next sub-section on 
Component 5 describes how the model captures the influence of HV and AV usage share on systemwide 
performance. 
 
Component 5: Equilibrium Density and System Performance. We adopt the generalized network speed, 𝑣𝑣, as 
the proxy for system performance, in which travel time reliability and safety are factored. To capture the 
“equilibrium” between the travel demand and network capacity in each stimulation step, a macroscopic 
fundamental diagram augmented to be sensitive to the MP of the usage of AV technologies is proposed. The 
formulations of this augmented macroscopic fundamental diagram are mainly a quantitative substantiation of 
the qualitative relationships proposed by Yu (2018). For the original concept of the macroscopic fundamental 
diagram, please refer to Godfrey (1969), Vickery (1991), and Geroliminis and Daganzo (2007). System 
performance is a function of vehicle-based travel demand and the network capacity. We first use 𝑣𝑣𝑣𝑣ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜  to 
obtain the generalized density, with two exogenous adjustment factors: 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  for the uneven temporal 
distribution of the vehicles on the network, and 𝑎𝑎𝑎𝑎𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 for the uneven spatial distribution. The generalized 
density is further normalized using the generalized maximum density 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 to obtain the normalized equivalent 
density 𝜌𝜌𝑒𝑒𝑒𝑒. The calculation is shown in Eqn. (12). 
  
𝜌𝜌𝑒𝑒𝑒𝑒 = 𝑣𝑣𝑣𝑣ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑜𝑜𝑟𝑟

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
∙  𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝑎𝑎𝑎𝑎𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙

1
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

       (12) 
 
where the equivalent network capacity, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, is a function of present network capacity and newly added 
capacity, as described in the subsection for Component 3.  
 The three-dimensional fundamental diagram (Yu, 2018) is utilized to capture the macroscopic network 
performance for the AV-HV mixed traffic so that the network performance is sensitive to the MP of AV 
technology usage, 𝑀𝑀𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴, and the (equivalent) traffic density, 𝜌𝜌𝑒𝑒𝑒𝑒. Eqn. (13) formulates the subspace formed 
by the density and the generalized network speed given a specific MP, denoted as, 𝑚𝑚𝑚𝑚. 

 

𝑣𝑣(𝜌𝜌𝑒𝑒𝑒𝑒) = �
𝑣𝑣𝑓𝑓
𝑚𝑚𝑚𝑚, 𝜌𝜌𝑒𝑒𝑒𝑒 < 𝜌𝜌𝑐𝑐

𝑚𝑚𝑚𝑚

𝑣𝑣𝑓𝑓
𝑚𝑚𝑚𝑚 ∙ �

𝜌𝜌𝑗𝑗
𝑚𝑚𝑚𝑚−𝜌𝜌𝑒𝑒𝑒𝑒

𝜌𝜌𝑗𝑗
𝑚𝑚𝑚𝑚−𝜌𝜌𝑐𝑐

𝑚𝑚𝑚𝑚�
𝛼𝛼

, 𝜌𝜌𝑒𝑒𝑒𝑒 ≥ 𝜌𝜌𝑐𝑐
𝑚𝑚𝑚𝑚      (13) 

 
where 𝑚𝑚𝑚𝑚 = 1 −𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑀𝑀𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 in the specific context of this paper, 𝑣𝑣𝑓𝑓

𝑚𝑚𝑚𝑚 is the reference system speed at 
𝑚𝑚𝑚𝑚, and 𝛼𝛼 is for capturing the technology advancement. When 𝑣𝑣𝑓𝑓

𝑚𝑚𝑚𝑚 is not sensitive to 𝑚𝑚𝑚𝑚, we simplify it as 
𝑣𝑣𝑓𝑓. Equivalent density and the HV usage share (i.e., 𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻) are used as the two main factors that the system 
decision makers consider in project programming. 𝜌𝜌𝑗𝑗

𝑚𝑚𝑚𝑚 is the jam density given 𝑚𝑚𝑚𝑚. When the vehicle length 
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is not correlated with whether a vehicle is AV or HV, 𝜌𝜌𝑗𝑗
𝑚𝑚𝑚𝑚 = 𝜌𝜌𝑗𝑗, ∀𝑚𝑚𝑚𝑚 ∈ [0,1]. Eqn. (13) is illustrated in Figure 

3(a), as postulated by Yu (2018).  
 Next, we consider the subspace formed by the normalized density, 𝜌𝜌�𝑐𝑐

𝑚𝑚𝑚𝑚, and 𝑚𝑚𝑚𝑚, as a function of AV 
usage share (and hence of FFIO violation intensity.) Yu (2018) postulates a “S” shaped nonlinear relationship 
as illustrated in Figure 3(b). Let the function that describes such a relationship be 𝜌𝜌�𝑐𝑐

𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚), where 𝜌𝜌�𝑐𝑐
𝑚𝑚𝑚𝑚 =

𝜌𝜌𝑐𝑐
𝑚𝑚𝑚𝑚−𝜌𝜌𝑐𝑐

𝑚𝑚𝑚𝑚=0

𝜌𝜌𝑐𝑐
𝑚𝑚𝑚𝑚=1 . 𝜌𝜌�𝑐𝑐

𝑚𝑚𝑚𝑚=0 and 𝜌𝜌�𝑐𝑐
𝑚𝑚𝑚𝑚=1 are the critical density when 𝑚𝑚𝑚𝑚 = 0 and 𝑚𝑚𝑚𝑚 = 1, respectively. 𝛾𝛾 > 0 allows 

further adjustment on the “S” shaped curvature to capture the impact of different regulation and policy 
constraints so that the critical density threshold, 𝜌𝜌�𝑐𝑐

𝑚𝑚𝑚𝑚 , to be used for calculating system performance is 
�𝜌𝜌�𝑐𝑐

𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚)�
𝛾𝛾
. In the numerical simulation, this relationship can also be expressed using a lookup table, whose 

curvature can be manually adjusted to reflect the regulation and policy impact. Note that 𝜌𝜌�𝑐𝑐
𝑚𝑚𝑚𝑚 in Figure 3 (b) 

as a function of 𝑚𝑚𝑚𝑚, is the input for obtaining 𝑣𝑣 in Figure 3(a). Without loss of generality, 𝜌𝜌�𝑗𝑗𝑗𝑗𝑗𝑗 is set as 1.0 to 
be the normalized jam density. 

 
(a)      (b) 

Figure 3 (a) The hypothetical impact of technology advancement and MP on the relationship between the 
equivalent system speed and equivalent system density; (b) the hypothetical impact of regulation and policy 

constraints on the relationship between the MP of AV usage and the equivalent traffic density.  
 

The overall three-dimensional fundamental diagram (density-speed) is illustrated in Figure 4. 𝜌𝜌𝑗𝑗 is 
fixed by assuming that the average vehicle dimension is unchanged. The assumption 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚=0 = 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚=1, in this 

paper, can be conveniently relaxed by making  𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚=𝑝𝑝 as a function of AV usage share.  

 

 
Figure 4 Generalized MP-𝑣𝑣-𝜌𝜌 relationship proposed by Yu (2018). 

 
 This component is mainly used to capture how network stakeholders make decisions. It is arguable 
that planning activities are usually based on the “projected” or “expected” situations. However, we use the 
“present” system performance for three main reasons. First, it is still common for public agencies to make 
reactive decisions instead of proactive ones (even though many claim they are proactive) due to lack of funding 
and high pressure from the voters to deliver immediate results or before the next election. Second, how the 

𝜌𝜌 
𝜌𝜌𝑗𝑗  𝜌𝜌𝑐𝑐

𝑚𝑚𝑚𝑚 

𝑣𝑣 
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𝑣𝑣𝑓𝑓 

𝜌𝜌𝑐𝑐
𝑚𝑚𝑚𝑚 

𝜌𝜌𝑗𝑗  𝜌𝜌𝑐𝑐
𝑚𝑚𝑚𝑚=0 𝜌𝜌𝑐𝑐

𝑚𝑚𝑚𝑚=1 

Regulation & Policy Constraints 

𝑚𝑚𝑚𝑚 
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𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚=0 

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚=1 

𝜌𝜌𝑗𝑗 

𝜌𝜌𝑐𝑐
𝑚𝑚𝑚𝑚=1 

𝜌𝜌𝑐𝑐
𝑚𝑚𝑚𝑚=0 

𝜌𝜌 



Yu and Chen 

- 12 - 

forecast is done is typically influenced and framed by the present conditions. Indeed, many forecasts are used 
to prove that the stakeholder’s intuition is right instead of guiding the decisions (Sternman, 2000). Third, we 
put additional effort to keeping the model as simple as possible to show the most important dynamics related 
to the core subject of this paper, and it is relatively straightforward to further incorporate the “projection” and 
“expectation” into this component when needed.  
 
System Dynamics of the Five Components. The system dynamics model is illustrated in the diagram shown in 
Figure 5. The text of each variable is color-coded to reflect which one of the five model components it belongs 
to. 

 
Figure 5 System dynamics diagram of the interaction of the five main components 

 
 
4. Case Study & Scenario Analysis 
 
Background & Baseline Development. The greater Washington, D.C. area is chosen for a case study to 
demonstrate the model and provide general policy implications. The base rate fleet size is based on a simple 
projection of the county-level household estimates of the 2012-2016 5-year estimates from the Census 
Transportation Planning Products (CTPP) data, a special tabulation of the American Community Survey (ACS) 
data. Figure 6 shows the selected county-level geographies that form the study area. Table 1 shows the 
estimates and their 90-percentile margin of error (MOE) of the available household vehicles in each geography. 
This scope is generally consistent with that of the National Capital Region Transportation Planning Board 
(TPB)1 model.  
 

                                                      
1 The National Capital Region Transportation Board (TPB) is the federally designated metropolitan planning organization 
(MPO), housed at the Metropolitan Washington Council of Governments (MWCOG). 

Component 2 Component 1 

Component 3 

Component 4 

Component 5 
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Figure 6 The selected county-level geography based on the definition of the MWCOG/TPB Region 

 
Table 1 The 2012-2016 ACS/CTPP estimates of household vehicles available and the margin-of-errors.  

Geography Vehicles Available MOE (90%) 
District of Columbia 276,545        ±1,295  
Montgomery County, MD 367,765        ±1,241  
Prince George's County, MD 306,710        ±1,132  
Arlington County, VA 100,705            ±915  
Fairfax County, VA 393,360        ±1,138  
Alexandria city, VA 68,065         ±684  
Fairfax city, VA 8,475        ±135  
Falls Church city, VA 5,300         ±130  
Total 1,526,925        ±2,671  

*source: 2012-2016 Estimates from the Census Transportation Planning Product (CTPP), a special tabulation of the American Community Survey 
(ACS) data.  
 

The vehicle trend is mainly developed based on the household forecast made by the TPB model 
baseline scenario. The effect of innovative business models (e.g., car-sharing services and virtual shopping) 
on the reducing needs of owning vehicles is considered exogenous. The base and the sensitivity analysis range 
of the AV technology adoption rate, 𝑏𝑏𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, is developed based on the study by Bansal and Kockelman (2016). 
To simplify the demonstration, we use Level 4 (inclusive) as the threshold where we refer to a vehicle to be 
equipped with AV technologies. The project size is developed based on the Regional Transportation 
Improvement Program (RTIP) of the MWCOG, released on March 18, 2020 (The Metropolitan Washington 
Council of Government, 2020). Table 2 to Table 6 list the variables and parameters used in the model, along 
with the variable type, units, and baseline values for each model component. 

The model is further tuned using the data between 2000 and 2019 from the city-wide and regional 
traffic fatality report (Metropolitan Police Department, 2020), police budget and full-time equivalent (Office 
of the Chief Financial Officer, 2019), active vehicle registrations (Department of Motor Vehicles), ABS 
installation and other safety measures (National Highway Traffic Safety Administration, 2020)¸ recorded 
traffic violations and the enaction of the automated traffic enforcement program (District Department of 
Transportation, 2020), etc. It is challenging to completely isolate the budget portion for traffic enforcement 
(e.g., general training on administration and law enforcement skillsets can improve law enforcement 
effectiveness), so we used the overall budget of the Police Department budget (with Year 2019 as the baseline) 
to approximate. We assume that 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚  is not sensitive to the MP to simplify the analysis, though this 
assumption can be relaxed by modifying Eqn. (13). The original starting year is 2020 and horizon year is 2065. 
We set modeling time horizon to be from 2022 to 2067, where 2022 is assumed to be the official market 
entrance time of the AV technologies. Since the same generalized network density can be achieved from 
infinite possible combinations of network capacity, fleet size, and PCE factor, we simply fixed 𝑓𝑓𝑐𝑐𝑐𝑐 in the 
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baseline as 1.05 to adjust others without loss of generality. This can be easily modified when a specific PCE 
is known for a region. 

A set of tests for assessment specified by Sternman (2000) is used to adjust the model to increase the 
confidence that the proposed model can be useful for the study objective. We deem the model boundary 
adequate for the differentiation between AV usage and AV installation to be mainly interacted with the traffic 
condition, network facility planning decisions, traffic law enforcement, and general public sentiment. We also 
leave sufficient space for further extension to consider more factors endogenously. For example, the 
installation of AV technologies may be influenced by how transportation facilities are “AV-friendly.” The 
model structure, though significantly simplified from the real-world situations, is considered sufficiently 
homeomorphic to the actual systems. The stocks such as fleet size, project list, and network lane miles are 
verified to be conserved, and the generalized network lane miles for facilities that tend to induce FIFO 
violations are always smaller than the total network lane miles. The four main types of system “players” – 
travelers, law enforcement forces, network planners, and the general public are verified to be bounded by the 
actual information available to them. The units are confirmed to be consistent within the model.  

As this paper is being written, no observation is available about official market entrance by the AV 
technologies, so it is impossible to estimate the parameters using real-world data directly. However, we utilize 
the existing driver assistant technologies (e.g., anti-lock braking system, lane-departure warning, parking 
functions) as a reference to assess the reasonableness of the parameters and the model behaviors. For example, 
it is not uncommon for drivers to turn off the lane-departure warnings (Forbes, 2016), and therefore, it is logical 
that the installation percentage of AV technologies should always be equal to or higher than the actual usage 
percentage of AV technologies. This type of test can also be counted as a “family member” test, where the 
proposed model is shown to be able to generate reasonable behaviors in similar system dynamics. Extreme 
conditions are further tested to the boundaries of the theoretical ranges of each parameter specified in Table 2 
to Table 6, where we used large numbers to represent negative and positive infinite values. We cut the time 
step in half and do not observe significant changes in the model behavior. The key long-term loop is removed 
for the behavior anomaly test, as shown in the comparison between the “Baseline” and the “NoDiff” scenario 
in the latter part of the present section. Surprise behavior tests and sensitive tests are also conducted, parts of 
which are shown and discussed in the latter part of the present section and the next section. Based on these 
tests, we fail to falsify the proposed model for the specific application context, and we are convinced that the 
model may provide useful insights to policy and public investment decision-making.  
 
Table 2 (Component 1) Model variable, description, type, unit, theoretical range, and their baseline value. 

Variable Description Type Unit Baseline Value 
𝐹𝐹𝐹𝐹 Fleet size Stock Households 

Vehicles 
Init: 1.6E+6 

𝑝𝑝𝑝𝑝 Purchasing rate Inflow 
(Auxiliary) 

Vehicles Per Year -- 

𝑏𝑏𝑏𝑏𝑏𝑏 Base purchase rate Exogenous Vehicles Per Year 40,000 
𝑎𝑎𝑎𝑎_𝑏𝑏𝑏𝑏𝑏𝑏 Adjustment factor on the base fleet change rate Exogenous Diml 1.0 
𝑠𝑠ℎ𝑟𝑟 Shedding rate Outflow 

(Auxiliary) 
Vehicles Per Year -- 

𝑠𝑠ℎ𝑓𝑓 Shedding Percentage Exogenous Percent Per Year 1.1 
𝑣𝑣𝑣𝑣ℎ𝑜𝑜𝑜𝑜 Active Fleet on Roads Auxiliary Vehicles -- 
𝑝𝑝𝑜𝑜𝑜𝑜 Percentage of active/operational vehicles Exogenous Percent 39 

𝑓𝑓𝑐𝑐𝑐𝑐 Traffic composition factor to convert to 
passenger car equivalent (PCE) 

Exogeneous Diml 1.05 

𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 Substitution or complementary effect of new 
business models and technologies 

Exogeneous Diml 0.226 

* “Diml” in this column refers to dimensionless units. 
* Auxiliary variables are determined by other variables, and therefore, the baseline values show as “--”.  
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Table 3 (Component 2) Model variable, description, type, unit, theoretical range, and their baseline value. 
Variable Description Type Unit Baseline Value 

𝑀𝑀𝑃𝑃𝐴𝐴𝐴𝐴 MP of vehicles equipped with AV 
technologies 

Stock Percent Init: 0 

𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻 Market penetration of vehicles without AV 
technologies 

Auxiliary Percent -- 

𝑀𝑀𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 AV usage share (equivalent MP of vehicles 
using AV technologies to drive) 

Auxiliary Percent -- 

𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 HV usage share (equivalent MP of vehicles 
not using AV technologies to drive) 

Auxiliary Percent -- 

𝜆𝜆 Sensitivity to FIFO violation  Exogenous Diml 0.235 

𝑏𝑏𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 Base (reference) rate of 𝑀𝑀𝑃𝑃𝐴𝐴𝐴𝐴 Exogenous Percent (as decimal) 
Per Year 

2.1 

* “Diml” in this column refers to dimensionless units. 
* Auxiliary variables are determined by other variables, and therefore, the baseline values show as “--”.  

 
Table 4 (Component 3) Model variable, description, type, unit, theoretical boundary, and their baseline value. 

Variable Description Type Unit Baseline Value 
𝑃𝑃𝑃𝑃 List of scheduled network projects Stock Projects Init: 25.0 
𝑃𝑃𝑃𝑃�  List of scheduled network projects that tend to 

induce FIFO violation 
Stock Projects Init: 7.5 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 Generalized network capacity Stock Lane Miles Init: 2600.0 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�  Generalized network capacity for facilities that 
tend to induce FIFO violation, as a subset of the 
overall network capacity  

Stock Lane Miles Init: 500.0 

𝐴𝐴𝐴𝐴 Available funding  Exogenous US Dollars 5.0E+07 
𝑐𝑐𝑐𝑐𝑐𝑐 Average cost per project Exogenous US Dollars Per 

Project 
4.7E+05 

𝛽𝛽𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑 Planning sensitivity to system performance Exogenous Diml -0.05 
𝑝𝑝𝐹𝐹𝐹𝐹 Percent of facilities that tend to induce HV FIFO 

violation 
Auxiliary Percent -- 

𝑤𝑤𝐹𝐹𝐹𝐹 Planning judgement on the appropriate portion of 
facilities that tend to induce HV FIFO.  

Auxiliary Percent -- 

𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑤𝑤𝐹𝐹𝐹𝐹  Sensitivity of planning bias towards HVs due to 

public sentiment 
Exogeneous Diml -4.5 

𝑑𝑑𝑑𝑑𝑑𝑑 Delay in the planning phase Exogenous Years 2.79 
𝑑𝑑𝑑𝑑𝑑𝑑 Delay in the construction phase Exogenous Years 3.24 
𝑑𝑑𝑑𝑑𝑑𝑑 Deterioration rate as percentage Exogenous  Diml 0.001 
𝑒𝑒𝑒𝑒 Average project contribution to network capacity 

(mileage equivalent) 
Exogenous Mileage Per 

Project 
4.125 

* “Diml” in this column refers to dimensionless units. 
* Auxiliary variables are determined by other variables, and therefore, the baseline values show as “--”.  
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Table 5 (Component 4) Model variable, description, type, unit, theoretical boundary, and their baseline value. 
Variable Description Type Unit Baseline Value 

𝐽𝐽 FIFO violation (including traffic law 
violation) intensity 

Auxiliary Diml -- 

𝐿𝐿𝐿𝐿 Law enforcement resources Stock Million Dollars Init: 553.54 

𝑙𝑙𝑙𝑙 Law enforcement intensity Auxiliary Diml  

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 Media and public sympathy/bias 
towards HVs 

Auxiliary Dmnl -- 

𝑆𝑆𝑆𝑆𝑆𝑆 General public’s sentiment towards 
HV driving 

Exogenous Diml 1.0 

𝑑𝑑𝑑𝑑𝐸𝐸(𝑟𝑟) Reference annual adjustment rate on 
traffic law enforcement resources 

Exogeneous Million Dollars 9.0 

𝛽𝛽𝐿𝐿𝐿𝐿𝑙𝑙𝑙𝑙  Sensitivity of law enforcement 
intensity to the resources of law 
enforcement.  

Exogenous Diml 0.01 

𝛽𝛽𝑝𝑝𝐹𝐹𝐹𝐹
𝐽𝐽  Sensitivity of FIFO violation intensity 

to the percent of facilities that tend to 
induce FIFO violation. 

Exogeneous Diml -3.1 

𝛽𝛽𝑙𝑙𝑙𝑙
𝐽𝐽  Sensitivity FIFO violation intensity to 

of law enforcement intensity 
Exogenous Diml 3.0 

𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑  Sensitivity of law enforcement 
resource adjustment to public 
sentiment 

Exogenous Diml -0.1 

𝛽𝛽𝐽𝐽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 Sensitivity of public sentiment to 
FIFO violation intesntiy 

Exogenous Diml 1.5 

𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑  Sensitivity of the adjustment of law 
enforcement resources to public 
sentiment. 

Exogenous Diml 20.0 

𝛽𝛽𝑝𝑝𝐹𝐹𝐹𝐹
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 Sensitivity of the percent of facilities 

that intend to induce FIFO violation 
to public sentiment 

Exogeneous Diml 2.5 

* “Diml” in this column refers to dimensionless units. 
* Auxiliary variables are determined by other variables, and therefore, the baseline values show as “--”.  

 
Table 6 (Component 5) Model variable, description, type, unit, theoretical boundary, and their baseline value. 

Variable Description Type Unit Baseline Value 
𝜌𝜌𝑒𝑒𝑒𝑒 (Normalized) equivalent traffic density 

for the macroscopic fundamental 
diagram  

Auxiliary Vehicles Per 
Mile 

-- 

𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 Adjustment factor for considering 
temporally uneven distribution of traffic 

Exogenous Diml 0.0913 

𝑎𝑎𝑎𝑎𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Adjustment factor for considering 
spatially uneven distribution of traffic 

Exogenous Diml 0.0526 

𝛼𝛼 Technical advancement Exogenous Diml 0.89 

𝛾𝛾 Regulation & policy impact factor Exogenous Diml 0.88 

𝑣𝑣𝑓𝑓 Reference systemwide speed Exogenous Miles/Hour 55 

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 Generalized maximum density Exogenous Vehicles Per 
Mile 

170 

𝜌𝜌�𝑗𝑗 Generalized and normalized Jam 
density  

Exogenous Vehicles Per 
Mile 

1.0 

𝜌𝜌�𝑐𝑐
𝑚𝑚𝑚𝑚 Generalized and normalized critical 

density as a lookup function of 𝑚𝑚𝑚𝑚 
(with linear interpolation), where 𝑚𝑚𝑚𝑚 ∈
[0,1] 

Auxiliary Vehicles Per 
Mile 

(0.0, 0.1), (0.153, 0.123), 
(0.297, 0.175), (0.422, 0.276), 
(0.529, 0.417), (0.587, 0.570), 
(0.661, 0.728), (0.740, 0.846), 
(0.844, 0.912), (1.0, 0.943) 

* “Diml” in this column refers to dimensionless units. 
* Auxiliary variables are determined by other variables, and therefore, the baseline values show as “--”.  
 

Figure 7 compares the baseline scenario (“Baseline”) with the “No Differentiation (NoDiff)” scenario. 
By “NoDiff,” we refer to the scenario where the network stakeholders and decision-makers do not differentiate 
the installation and the usage in their evaluation and forecast of the system performance. Specific to the 
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proposed model, “NoDiff” is reflected through setting the AV usage rate equals to the AV installation rate. 
This way, the network stakeholders tend to overestimate the AV usage when planning for network projects. 
The comparison serves two main purposes. First, it quantifies the impact of differentiating the AV installation 
and AV usage in the planning process with all else equal. Second, it serves as a validation and stress testing 
where the only difference is whether the planners and decision makers would accommodate the impact of 
manually driven AVs on the network performance by adjusting the overall network capacity.  

The six selected endogenous variables are: AV usage share, system performance, project list, network 
service capacity, percentage of facilities that tend to induce FIFIO violation, and FIFO violation intensity. Not 
surprisingly, the AV usage share is always lower than the AV installation rate since users of vehicles equipped 
with AV technologies can choose to drive manually. The system performance tends to be overestimated in the 
“NoDiff” scenario compared with the “Baseline,” especially when the share of vehicles with AV technologies 
installed is similar to that of their counterpart. In the “NoDiff” scenario, there is a tendency to under-invest the 
network, compared to the “Baseline” due to the overoptimism. Among those under-invested projects, the 
“NoDiff” scenario tends to plan more projects that may incentivize more FIFO violations. There exists minor 
“overshoot” for the project list or backlog when AV technologies start to enter the travel market. Which can 
be interpreted as that the decision-makers tend to overreact to the need for network projects due to the 
information feedback delay about the effect of planning and construction. The non-zero project list after around 
2052 for the “Baseline” (and 2060 for the “NoDiff) is mainly due to the accommodation effort of the increase 
of the active fleet size and the network deterioration. For FIFO violation intensity, the small difference between 
the two scenarios is mainly because FIFO violation exists regardless of whether network stakeholders take it 
into account in their planning process.  
 

 

 
 

Figure 7 The dynamics of the six selected endogenous variables in the “Baseline” scenario and the “NoDiff” 
scenario. 

 
Sensitivity Analysis. The robustness and sensitivity of all exogenous variables are tested, which are anchored 
at the values in the “Baseline.” We present in detail three main exogenous variables that may have particularly 
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useful policy implications: “Base Adjustment Rate on Enforcement Resources,” “Base AV Technology 
Adoption Percentage Change,” and “Public and Media Bias Towards Manual Driving.” These three variables, 
selected from the domains of policy leverages (law enforcement, auto management/administration, and media 
regulations), are considered critical to understanding the model and providing policy implications. Each 
leverage is first studied while holding all other exogenous variables as those in the “Baseline.” As an 
exploratory analysis, the variable(s) are assumed to be uniformly distributed within the test range. Then, 
random perturbations of all three variables are used to study their combinatory effect.  
 The variable “Base Adjustment Rate on Enforcement Resources (Million Dollars)” is tested in the 
range between -6.0 and 12.0 (uniform distribution). When positive, the higher (lower) this variable is, the faster 
(slower) the resources related to the traffic law enforcement grow with all else equal. Similarly, when negative, 
the lower (higher) this variable is, the faster (slower) the resources decrease with all else equal. The testing 
results of four selected variables are shown in Figure 8. 
 

 
(a) (b) 

  
(c) (d) 

 
Figure 8 Univariate sensitivity analysis on “Base Adjustment Rate on Enforcement Resources” 

 
From Figure 8(a), each percentile range has a clear trend of improvement until the maximum allowable 

speed (threshold) is reached. This threshold is determined jointly by technological and policy constraints. The 
pattern of the percentiles shows that the variable influence when the threshold similarly until reaching the 95 
percentile, which suggests a “small” tail of the outcome distribution. Figure 8(b) shows the percentage of 
facilities that tend to induce FIFO violation. Due to the planning and construction delay, the effect of system 
capacity responds to the change of system performance later. Also note that the outcome range is smoother 
than the system performance since it was “buffered” (or “smoothed”) by the four stocks in Component 3. The 
outcome range of this variable is relatively small, suggesting that the law enforcement tends to have a smaller 
impact on it. Figure 8(c) shows the influence of the tested variable on the range of the FIFO violation intensity. 
Figure 8(d) shows that the MP of AV usage has a similar trend to that of the AV installation but always lower 
than the MP of the AV installation.  

The variable “Base AV Technology Adoption Percentage Change” is tested in the range of 0.005 and 
0.031. This variable reflects the change of circumstances external to the modeling scope on the base AV 
technology installation rate. The smaller (greater) the variable is, the slower (faster) the MP of vehicles 
installed with AV technologies. The testing results of four selected variables are shown in Figure 9. 
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(a)  (b)  

 
(c) (d) 

 
Figure 9 Univariate sensitivity analysis on “Base AV Technology Adoption Percentage Change.” 

 
Figure 9(a) shows that each percentile range has a clear trend of improvement until the maximum 

allowable speed (threshold) is reached. This threshold is determined jointly by technological and policy 
constraints. The pattern of the percentiles shows high sensitivity, which suggests a “small” tail of the outcome 
distribution. Also, it seems possible for the system performance to be worsened when the baseline funding 
constraints cannot keep up with the increasing demand of the network capacity without the traffic mitigation 
effect of the AV usage. Figure 9(b) shows the percentage of facilities that tend to induce FIFO violation. Due 
to the planning and construction delay, the effect of system capacity responds to the change of system 
performance in the later phase of the simulation. The range of the 50 percentile is relatively wide suggesting a 
high sensitivity of the variable around the baseline value. The overall outcome range of this variable is 
relatively small, suggesting that the law enforcement tends to have a smaller impact on it. Figure 9(c) shows 
the influence of the tested variable on the range of the FIFO violation intensity. In addition to the MP of AV 
usage having a similar trend to that of the AV installation but always lower than the MP of the AV installation, 
Figure 9(d) also suggests that the AV usage share starts having minor irregular oscillation when the MP of AV 
usage reaches 100%. This is probably because when most vehicles are automated, it becomes safer to drive 
manually since other vehicles tend to do what they “can” to avoid collisions with manually driven vehicles and 
are significantly better at it than human drivers, which gives human incentives to switch back to manual mode.  

The variable “Public and media bias towards HV” is tested in the range of 0.1 and 0.9. This variable 
captures the public’s general sentiments towards manual driving. This general sentiment can be influenced by 
both external factors (e.g., political entities promote the freedom of choice between manual and automated 
driving through new networks and social media) as well as usable policy leverage (e.g., regulations on requiring 
media to proportionally report AV-involved incidents and HV-involved incidents) with and without delays as 
a potential extension of the model. When this variable is large (small), the public sentiment tends to be positive 
(negative). Such as positive (negative) sentiment might further cause the increase (reduction) of the bias in 
favor of manual driving and might increase (decrease) the planning and design bias towards manual driving. 
The testing results of four selected variables are shown in Figure 10. 
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(a) (b) 

 
(c) (d) 

 
Figure 10 Univariate sensitivity analysis on “Public and Media Bias Towards Manual Driving.” 

 
Figure 10(a) shows that each outcome percentile range for system performance, though narrow, has a 

clear trend of improvement until the maximum allowable speed (threshold) is reached. Figure 10(b) shows the 
percentage of facilities that tend to induce FIFO violation. The outcome range of this variable is relatively 
small, suggesting that the law enforcement tends to have a smaller impact on it. Figure 10(c) shows the 
influence of the tested variable on the range of the FIFO violation intensity. The relatively wide range is mainly 
due to the high sensitivity of law enforcement effort in the short term and the high sensitivity of the facility 
types in the long term. It is also noticeable that the pattern tends to stabilize between 2040 and 2050 before it 
further trends down. Figure 10(d) shows that the MP of AV usage has a similar (and strictly lower) trend to 
that of the MP of the vehicles with AV technologies installed.  

The sensitivity analysis of simultaneously perturbating the three selected variables is shown in Figure 
11. In addition to understand the general boundaries, these simultaneous perturbations reveal potential 
nonlinear interaction of these variables, which might not be additive and intuitive. Comparing them with their 
counterparts in Figure 8 to Figure 10, the major (50 and 75 percentile) portion of the output distributions for 
(a) tends to be dominated by the second test variable, “Base AV Technology Adoption Percentage Change.” 
Although the overall trend of (b) tends to be more influenced by the first testing variable, “Base Adjustment 
Rate on Enforcement Resources,” and the output range is more similar to that of the third testing variable, 
“Public and Media Bias Towards HV”. The output boundary and the distribution of (c) is mainly determined 
by the first testing variable, while that of (d) is mainly influenced by the second testing variable.  
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(a) (b) 

 
(c) (d) 

 
Figure 11 Sensitivity analysis on simultaneously perturbating the three selected variables. 

 
 
5. Discussion 
 
Results Interpretation. The case study supports the hypothesis that differentiating AV technology installation 
and usage could be relevant for network planning and policy decision-making in the age of autonomous and 
connected vehicles when the AV usage share has non-negligible impact on system performances. There is no 
evidence of a significant difference of the overall evolving pattern and trend of the AV usage compared with 
that of the installation studied by Bansal et al. (2017) and Nieuwenhuijsen et al. (2018). Nonetheless, there 
would be a pronounced systematic forecast bias that worsen with the increase of study time horizon. As shown 
in Figure 7, the improvement of system performance “plateaued” around the year 2047 in the “NoDiff” 
scenario where the planners do not differentiate the installation and the usage, while the “Baseline” scenario 
shows that such situation would not occur until the year 2054 or so. This bias is mostly caused by the self-
induction of multiple positive feedback loops. The seemingly small deviation of the type of projects funded 
and scheduled due to the influence of driving behaviors encourages more instances to manually drive vehicles 
installed with AV technologies, which in term further increase the FIFO violation intensity. FIFO violation 
intensity might then influence public attitude and sentiment towards FIFO violation, which in term, further 
influence the type of project being scheduled and the adjustment on the effort of traffic law enforcement.  

As expected, the share of the AV usage is equal or lower than that of the AV installation in any 
scenarios. When the share of the AV installation is near 0% or 100%, so is the share of the AV usage. Because 
of the characteristics of the three-dimensional macroscopic fundamental diagram (density-speed), it is 
observed that system performance experiences a diminishing improvement that eventually “plateaus.” This is 
consistent with the claims by Yu (2018) as the AVs tend to serve as a “buffer” for the traffic oscillation and 
potential risky driving behaviors, and the marginal “buffer effect” is strong even with a small MP and gradually 
decreases to zero.  

Because the increase MP of AV usage tends to lead to the higher critical density, not differentiating 
AV installation and AV usage tends to be overly optimistic about future system performance. Such 
overoptimism might lead to fewer network capacity improvement projects and hence lower network capacity 
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in a long run. In the planning phase, since how the percent of facilities that tend to induce FIFO violation is 
influence heavily by FIFO violation intensity and public opinion, how the overall network-wide percentage of 
such facilities evolve depending on the initial percentage – low (high) initial percentage tend to have low (high) 
planning bias, and hence, low (high) percentage in the future.  

From the sensitivity analysis, FIFO violation intensity might increase over time if the law enforcement 
is significantly insufficient. Indeed, if there is no concern of getting penalized at all, people might have the 
tendency to take advantage of the “kindness” or “politeness” of AVs frequently, which causes significant 
increase of FIFO violation and trend behaviors. The general sentiments of media report to the public about 
new AV technology advancement and AV-involved accidents) tend to only have a “local” impact without 
affecting the overall trend of the system performance, planning and construction of different project types (with 
delay), and the actual usage of AV technology.  
 Jointly looking at Figure 8-10, two feedback loops may seem to have considerable impacts on the trend 
of AV usage and could lead to biased forecasts if ignored. The first one is that FIFO violation might affect the 
adjustment of law enforcement effort both directly (e.g., perceived violation intensity and documented collision 
records) and indirectly (e.g., public and media sentiment) with delay. The second one is that AV technology 
equipment rate and AV usage influence the system performance in terms of average system speed, which, in 
turn, influence the planning and construction of facility amount and facility types. Different facility types have 
different impacts on FIFO violation tendency, which influences the difference between the installation and the 
usage. The latter feedback loop is longer in delay and harder to reverse. Both feedback loops contain policy 
leverages that allow policymakers to influence the trend of the AV usage and the corresponding system 
performance, though decisions have to be made under incomplete information since both loops contain 
exogenous variables with high uncertainty.  

Public and media bias and their influences towards funding allocation and law enforcement intensity 
for FIFO violation also have a strong impact. But due to the delay in the planning phase and construction phase, 
their effects on FIFO violation might be hard for policymakers to incorporate in their mental models and their 
decisions. Clearly, more research is needed to study the sensitivity of different policy leverages to network 
topology, specific features, and area types to quantify this systematic bias with higher precision. 
 Somewhat surprising is the minor “overshoot” pattern observed in some of the parameter combinations 
(as shown in Figure 10). Specifically, it seems there might be a tendency to observe system performance 
initially when the AVs start to get implemented. However, if the facilities could not “catch up” and the newly 
proposed facilities tend to systematically incentivize manual-drive AVs, there might be a “drop” in system 
performance.  Another somewhat surprising finding is that the project list tends to be longer in the “Baseline” 
scenario compared to the “NoDiff” scenario, which could be mainly due to decision-makers’ overreaction to 
the insufficient system performance than expected. A longer project list also imposes risk of longer delays and 
higher risks in project implementation and construction. If the decision-makers keep assuming that the 
installation forecast is the same as the usage forecast, they will keep overestimating the benefits of the MP of 
the vehicles installed with AV technologies to the system performance, and, hence, keep falling short than 
expected and keep acting reactively. In the scenario where the type of projects added to the network might 
further incentivize HVs and manually driven AVs, the forecast gap between the AV installation and AV usage 
might grow even larger.  

Adding to the complexity of these feedback loops is their variable delays (e.g., it sometimes takes 
multiple years for a programed project to be funded and eventually constructed) and the potential path-
dependency (e.g., hard to moderate once the system tends to encourage FIFO violation). Since different regions 
have different planning procedures, driving cultures, law enforcement intensities, and pressure levels from the 
general public, the system dynamics may exhibit different patterns. Indeed, Figure 11 shows that the FIFO 
violation intensity might not necessarily go down with the increase of MP for vehicles installed with AV 
technologies.  
 
Policy Implications. The policy implications from the SD framework and the case study have two folds. First, 
the manual driving behaviors and the improvement (or non-deterioration) of the system performance are not 
necessarily going in the opposite direction. As shown in Figure 7, when network stakeholders ignore the 
differentiation between the installation and the usage, the FIFO violation intensity tends to decrease especially 
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when the traffic enforcement effort is insufficient. The network stakeholders, therefore, seem to face a trade-
off between future system performance and FIFO violation. When the FIFO violation dominates, this situation 
might be worsened if the decision-makers do not (sufficiently) consider the planning, funding, and construction 
delays. Hence, decision-makers should plan in a way that allows the network capacity improvement dominates 
through an appropriate amount of “pessimism” about future system performance. On the other hand, the initial 
encouragement of AV without the sufficient infrastructure to “catch up” might cause increase (than what it 
would have been) or even minor “overshoot” of the manual driving behaviors. 

Second, how the public and network stakeholders respond to the FIFO violation through the law 
enforcement effort and through the response to the public sentiment in the network planning and operation 
should be considered. Due to the positive feedbacks, the seemingly small influence can have a major impact 
on the overall evolution of the characteristics of the system (in terms of whether the system is more AV friendly 
or HV friendly) and the performance. This feedback can be further strengthened due to people’s tendency to 
compare with others -- (relatively speaking) encouraging FIFO violation is essentially (relatively speaking) 
penalizing people who are strictly following the traffic rules and being kind to others. Such feedback might 
have a long-term effect in terms of the overall driving culture in a region. These two main implications boil 
down to whether decision-makers should react to the trend of AV technology installation trend for its own sake 
or encouraging people to use AV technologies to improve safety and system performance.  

The two folds of implications suggest that a balanced mix of reactive and proactive approaches might 
be superior to purely proactive or reactive. In other words, overly emphasizing one of the types may be 
inappropriate. Certain policies that react to FIFO violation might be intuitively reasonable but might cause a 
more frequent violation. For a concrete example, lowering the speed limit as a response to intensive speeding 
might further cause the increased disutility of AV usage and the utility of manual driving behaviors. Due to 
the nonlinearity and interaction of various inputs, it is suggested to use system-wide key performance indicators 
(e.g., injuries and fatalities, cumulative travel time delay of the entire simulation scope, construction cost) to 
evaluate alternative policies and investment portfolios. The high uncertainty of the model parameters and 
exogenous variables further backs up the claim of the balance. 
 Delays are a key factor in both folds of implications. The first type of delay is mainly due to project 
planning, financing, and construction, which has been discussed thoroughly by Guevara et al. (2017) in the 
context of interstate highway systems and only requires minor generalization by differentiating the projects 
based on whether the projects tend to induce manual driving (and hence FIFO violation). Decision-makers 
may find it helpful to consider a “reverse reasoning” – if the positive sentiments towards manual driving 
increases, it might be because of more existing facilities that tend to induce manual driving, not because of 
such facilities being insufficient. At its least, the interpretation should be made on a case-by-case basis, not 
just go along with the public sentiment due to the upcoming performance review or election pressure of the 
decision-makers. Both types of delay might cause overreaction and waste of resources, which should be 
considered by policymakers who are under pressure for “delivering the results.”  
 The lack of observations is the biggest challenge for proposing an SD model of this topic. At the 
moment this paper was produced, high-level AV technologies has not officially entered the mass travel market, 
except some assistant technologies such as crash avoidance warning, lane warning, ABS, etc. Adding more 
challenges is the possibility to make HV illegal or impossible (e.g., Level 5 automation without human control 
options), and the potential technologies can detect whether a vehicle has AV technologies equipped and 
whether the vehicles are driven by AV technologies or manually. This paper assumes that the public agencies 
and auto manufacturers cannot force people to use AV technologies (e.g., Level 5 automation), but a future 
extension is needed if these scenarios become increasingly likely. Some exogeneous variables might also need 
to be incorporated into the model as endogenous for broader policy strategies. As shown in  Figure 9, the high 
sensitivity of “Base AV Technology Adoption Percentage Change” has a high impact on the system 
performance over time, implying a strong impact of the specific policy that influences the base adoption rate 
(especially in the later phase of a simulation). For instance, whether public agencies adopt an effective rebate 
program or a set of mandatory adoption regulations about the installation of AV technologies might have a 
strong impact on the trend of the system performance and the AV usage share. However, the feasibility of such 
a rebate program partially depends on how the cash flow and the fund balance (as a stock variable) evolves, 
which, therefore, should be also incorporated in the model.  
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 One may also question whether policymakers might directly influence the structure of the CLD. Is it 
possible for public agencies to influence how media reporting the crashes to help people think more rationally 
when there is a report of an AV-involved collision? Should it be required that every time an AV-related crashes 
occur, the media report whether the AV was actually driven by a human and make sure to present the latest 
statistics about how risky such crashes occur? Is it possible that new technologies might emerge and create 
additional incentive to just let the vehicles drive themselves? Many might agree that emerging smartphone 
technologies make the spare time and increase the relative utility of using AV technology usage. With the 
development of Virtual Reality (VR) and more convenient entertainment and working systems, the relative 
utility of pursuing other activities than driving manually might further increase. These questions bring the 
necessity of more extensive studies of broader scenario specifications.  

It should be noted that public agencies of different countries and regions have different decision styles. 
For example, a jurisdiction might tend to directly respond to the public’s sentiment surge due to biased media 
reporting without considering the long-term negative impact because, say, the “mess” will be taken care of by 
the next mayor. The intensity of the FIFO violation issue might also be different among regions with different 
driving cultures. For example, some regions might have a more friendly and fair-minded driving culture and 
AV-friendly facility design, so HV and FIFO violations might be perceived less attractive and less common.  
 
 
6. Conclusions 
 
The paper starts with no presumption that AV installation and AV usage is negligible in public policy and 
investment decision making. We consider various feedback loops under a framework of SD to investigate the 
potential impact of differentiating AV technology installation and AV technology usage in forecasting future 
system performance and, in turn, forecasting AV usage trend itself. In the proposed model, AV users may 
choose to manually drive their vehicles for bypassing the front vehicle, driving above the speed limit, speeding 
up when a signal light turns yellow, making a left turn at solid double yellow lines, illegal parking, etc. These 
behaviors along with insufficient AV-friendly infrastructure might further induce other travelers to do so.  

The SD-based approach facilitates the study of various complex feedbacks that that relevant to such a 
differentiation. We identify the factors, such as public sentiment, facility composition, traffic law enforcement, 
network planning decisions, and construction delay that may influence the FIFO violation intensity. Such 
violations might have complex interactions with the MP of AV usage and, in the long run, affect the public 
and media sentiment, which, in turn, influences the intensity of traffic law enforcement and the types of 
network projects to be programed and implemented. Additionally, some exogenous variables such as the 
market entrance pattern of the vehicles equipped with AV technologies can become endogenous by 
incorporating existing models that are particularly targeted at modeling these variables. The framework can 
also serve as a qualitative mental model to help transportation planners and traffic operators to make more 
productive and constructive discussion and realize implicit assumptions. 
 A case study is used to demonstrate the SD-based model and provides preliminary analysis and 
potential policy implications. The sensitivity analysis shows that a mix of reactive and proactive approaches 
might be superior to purely proactive or reactive due to the high uncertainty of the exogenous variables in 
different model components and the potential feedback loops not captured by the model. In other words, overly 
emphasizing one of the types may be inappropriate. It is also important to realize that certain policies that seem 
reasonable might worsen the situation. Adding more complexity is the high uncertainty of the variable. 
Therefore, one major policy implication is a mix of policies that balance reactive and proactive strategies.  
 Other variables and feedbacks that this paper does not consider are worth further investigation in future 
studies. The model does not explicitly consider the impact of system performance on/from the change of trip 
length, trip purpose, occupancy (including shared ride), departure time, destination choice, business innovation, 
land-use change, and climate. It might be interesting to extend the model to consider user heterogeneity on 
characteristics such as fatigue levels, DUI, perceptions about the severity of a traffic accident, cognitive 
capacities, personalities, and age pyramid (e.g., younger people might drive in a riskier manner and tend to 
override the AV mode more frequently). Equity implications might emerge if early AV adopters tend to be 
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high in income – since people tend to unintentionally violate traffic rules more in MVs, low-income 
populations might, on average, bear more share of injuries and traffic violation penalty that would further 
exacerbate their financial situations. The total fleet trend might have interactions with the MP of the AV 
technology installation. Embedding the proposed model into a broader model that considers other modes of 
transport, land use evolvement, and socioeconomic activities can also be considered. However, even without 
considering these factors, it seems clear that the difference between the vehicles equipped with AV 
technologies and the vehicles driven automatically on roads should not be instantaneously assumed ignorable 
in planning and policy decision-making. 
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