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Abstract

During pre-clinical evaluations of drug candidates, several physicochemical (p-chem) 

properties are measured and employed as metrics to estimate drug efficacy in vivo.  Two such 

p-chem properties are the octanol-water partition coefficient, Log P, and distribution 

coefficient, Log D, which are useful in estimating the distribution of drugs within the body.  

Log P and Log D are traditionally measured using the shake-flask method and high-

performance liquid chromatography (HPLC). However, it is challenging to measure these 

properties for species that are very hydrophobic (or hydrophilic) owing to the very low 

equilibrium concentrations partitioned into octanol (or aqueous) phases. Moreover, the shake-

flask method is relatively time-consuming and can require multistep dilutions as the range of 

analyte concentrations can differ by several orders of magnitude. Here, we circumvent these 

limitations by using machine learning (ML) to correlate Log P and Log D with liquid 

chromatography (LC) retention time (RT). Predictive models based on four ML algorithms, 

which used molecular descriptors and LC RTs as features, were extensively tested and 

compared. The inclusion of RT as an additional descriptor improves model performance 

(MAE = 0.366 and R2 = 0.89), and SHAP analysis indicates that RT has the highest impact on 

model accuracy. 

KEYWORDS: Physicochemical properties, Machine learning, Cheminformatics
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Introduction
     In early-stage drug discovery, candidate molecules must be screened to identify 

pharmacological activity and physicochemical (p-chem) properties.1,2,3,4 This process 

commonly begins with a computer-aided molecular design and in silico property predictions 

which are then experimentally refined for a selected subset of molecules.4 With regard to p-

chem properties, medicinal chemists are concerned with the tangible physical attributes that 

are related to molecular interactions with different media and environments.4 Some of the most 

important parameters in this context are the pKa (acid dissociation constant), PSA (polar 

surface area), solubility, and lipophilicity (as defined by the partition and distribution 

coefficients, Log P and Log D).5,6,7–9  Log D is a measure of the concentration ratio of an 

ionizable compound following equilibrated distribution between water and a hydrophobic 

solvent (e.g., octanol), whereas the partition coefficient (Log P) refers to the concentration ratio 

of un-ionized compounds. For non-ionizable compounds, Log P is equal to Log D for all pH, 

whereas for ionizable compounds Log D considers the partition of both ionized and non-

ionized forms. For example, drug molecules must possess a suitable water solubility for 

transport in aqueous media like body fluids, yet must also exhibit lipophilicity suitable for the 

environments of drug action and transport (e.g., through membranes).4 Identifying molecules 

that lie in this “goldilocks zone” of compromise while simultaneously exhibiting appropriate 

activities, pharmacodynamic responses, and pharmacokinetic exposures (while also 

minimizing toxicity and off-target activity) lies at the heart of medicinal chemistry.10,11

   For a compound to be a drug candidate, it should have a lipophilicity (Log P/Log D) value 

between 1 and 3.12,13 If the value is lower than this range, the compound will have low 

membrane permeability, whereas species with lipophilicity > 3 exhibit poor absorption.14 

Traditionally, lipophilicity is determined by using methods such as water-octanol shake flask 

and high-performance liquid chromatography (HPLC) to partition and measure both un-ionized 
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and ionized molecular concentration in the aqueous and hydrophobic phases.15  Although 

relatively time-consuming (measurements can take several hours), the shake flask method 

provides a direct and accurate determination of Log P and Log D.16 However, it is necessary 

to conduct measurements with purified solvents and analytes to prevent confusion in analysis 

and unintended matrix effects.17 Analyte purification post-synthesis can be accomplished using 

column chromatography. In fact, reaction mixtures are commonly characterized using LC 

(typically coupled with mass spectrometry; MS) to confirm the presence of the desired product 

and estimate product yield. This serves the dual purposes of separating the components of the 

mixture and determining analyte affinity for the column packing material (measured as 

retention time; RT), which is also a metric that may be employed for compound 

characterization and identification. Using this RT information for the added purpose of 

determining Log P and Log D (or validating subsequent measurements) would be desirable.    

  Recently, we have reported correlations between gas phase dynamic ion-solvent clustering 

behaviour and solution phase p-chem properties18–20. We hypothesize that the clustering 

process effectively samples the ion-solvent interaction potential, and that the gas phase 

interactions correlate strongly with the condensed phase interactions that give rise to p-chem 

properties such as lipophilicity. To use these data to create general predictive models for p-

chem properties of interest, it is necessary to treat dynamic clustering data with supervised 

machine learning (ML). A variety of ML algorithms have been used for regression and 

classification purposes in drug discovery studies,21–27,28,29 the most common of which are 

support vector machine (SVM),23 random forest (RF),30 and multi-layer perceptron (MLP; i.e., 

a feedforward artificial neural network).31 Regarding Log P predictions, several methods have 

been reported that employ physicochemical descriptors to represent molecules.12,32–38 Given 

our success with gas phase ion-solvent clustering, we hypothesize that incorporating LC RTs 

as a feature will improve ML model accuracy since this parameter will provide an experimental 
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5

measurement of the condensed phase analyte-solvent interaction potential. We test this 

hypothesis in this work. 

   In this study, we investigate 2070 molecules from the small molecule retention time (SMRT) 

data set for which p-chem properties could be found in the ChEMBL database.39,40 These 

molecules are represented as a vector of molecular descriptors as determined from SMILES 

codes via the RDKit software.41 To these feature vectors, we append RT as an additional feature. 

We then evaluate the accuracy of predictive models based on the supervised ML algorithms: 

SVM, MLP, RF, and extreme gradient boosting (XGB). We show that the use of RT as a 

descriptor improves the accuracy of the ML models, that one can approach the inherent 

accuracy of the target variable (e.g., Log P, Log D) with only 2070 molecules in the training 

set, and that including additional molecules in the training set further improves model accuracy.

Methods
Molecules from the METLIN SMRT dataset were screened against the ChEMBL database to 

identify compounds for which RT, Log P and Log D were known.39  The METLIN small 

molecule RT (SMRT) dataset contains 80,038 small molecules that were measured with single 

reversed-phase method LC-MS using a Zorbax Extend-C18 reverse-phase column (2.1 x 50 

mm, 1.8μm, Agilent Technologies, Santa Clara,CA).39  RT variability was measured at 36 s. 

Further details of the dataset are provided in the supporting information. This process yielded 

a data set of 2070 compounds. The SMILES notations for these compounds were then used in 

conjunction with the open-source software RDKit (Version: 2021.03.4)41 to generate a vector 

of 204 molecular descriptors, which included properties such as atom-type, molecular weight, 

and number of rotatable bonds. Features with low variance (< 0.05), high degrees of correlation 

with another feature (<0.95), missing values, and zero values (for all analytes) were removed 

from the data set prior to scaling each feature to a mean value of 0 and variance of 1. Following 
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pruning, a total of 125 RDKit descriptors were carried forward for ML treatment. The data set 

and a detailed description of the molecular descriptors42 is provided in the supporting 

information that accompanies this manuscript (supporting information, Table S1 and Table S2). 

The original SMRT dataset consists of data for molecules of seven chemical classes: 

organoheterocyclic compounds, organic acids, organic nitrogen compounds, benzenoids, 

organic oxygen compounds, organosulfur compounds, and “other compounds”, which includes 

lipids, lignans, nucleosides, nucleotides, phenylpropanoids, and polyketides. Our pruned 

dataset includes compounds from each of these classes.

Machine learning models

   Four ML algorithms (i.e., SVM, MLP, XGB, RF) were used to develop the descriptor-based 

models. These ML algorithms are implemented in the scikit-learn package (Version: 0.24.2) of 

Python (Version: 3.9.6 × 64 ).43 The complete list of hyper-parameters optimized per ML 

method is provided in the supporting information, Table S6.

   Multilayer perceptron (MLP) is a fully connected artificial neural network (ANN) which 

trains using backpropagation.44 It consists of five layers of nodes: an input layer, three hidden 

layers, and an output layer. Each neuron in MLP uses a nonlinear activation function except 

the input layer. The following hyper-parameters were optimized: the size of the hidden layers, 

the maximum number of iterations, the neuron activation function, the solver, regularization, 

and the learning rate. Details for all algorithms tested are provided in the supporting 

information. Other hyper-parameters were set at default values as described in the SKLearn 

software package. Extreme gradient boosting (XGB) is a decision tree-based method that 

minimized errors associated with bias and variance.45 In the training of XGB, the following 

hyper-parameters were optimized: learning rate, number of boosting stages, subsample, 

minimum number of samples for internal node, and minimum number of samples for leaf node. 

Support vector machine (SVM) is a popular machine learning method based on statistical 
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learning theory.23,24,46 Here, a linear kernel that was used for which the regularization parameter 

(C) was optimized in the range of 0.1 - 100. Random forest (RF) is a decision tree-based 

learning algorithm (like XGB) which employs ensemble learning for classification and 

regression.47 The following hyper-parameters were optimized: number of trees in the forest, 

maximum depth of the tree, minimum number of samples, minimum impurity decrease, and 

number of features.

Hyper-parameter tuning

   To identify the ideal hyper-parameters for the ML algorithms, the hyperopt package (Version: 

0.2.5)48 was employed to optimize algorithm hyperparameters (e.g., number of trees in the RF 

treatment). Python scripts are available via our research group GitHub site 

(https://github.com/jamesleocodes/p_chem_CEVR.git). To evaluate model performance, the 

dataset was randomly split into training (80%), validation (10%), and testing (10%) sets. 

Following model training, predictions ( ) were made using the out-of-the-bag test set and 𝑦𝑖

were subsequently compared to the literature values ( ) to calculate the mean square error 𝑦𝑖

(MSE), root mean square error (RMSE), mean absolute error (MAE), and the coefficient of 

determination (R2). These metrics are described by equations 1 – 4, respectively.

 (1)𝑀𝑆𝐸 =  
1
𝑛 ∑𝑛

𝑖 = 1(𝑦𝑖 ― 𝑦𝑖)2

 (2)𝑅𝑀𝑆𝐸 =
1
𝑛 ∑𝑛

𝑖 = 1(𝑦𝑖 ― 𝑦𝑖)2 

 (3)𝑀𝐴𝐸 =
1
𝑛 ∑𝑛

𝑖 = 1|𝑦𝑖 ― 𝑦𝑖|

 (4)𝑅2 = 1 ―  
∑(𝑦𝑖 ― 𝑦𝑖)2

∑(𝑦𝑖 ― 𝑦𝑖)2

Where n is total number of instances in the test set and  represents the mean of the values.𝑦𝑖

Results & Discussion

Distribution of parameters
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   Figure 1 shows the distribution of values for Log P, Log D, and RT of the compounds in the 

data set used for this study. Distributions were approximately Gaussian in nature for the 

distribution coefficients, which span ca. 12 orders of magnitude, and partition coefficients, 

which span ca. 5 orders of magnitude. RT values ranged from ca. 200 – 1400 s. As an initial 

test to assess whether RT might be a useful feature for predicting p-chem properties, 

Spearman’s correlation coefficients () were computed for Log P, Log D, and RT. Spearman’s 

correlation assess monotonic relationships (whether linear or not), rather than simply assessing 

linear relationships as does Pearson correlation. Figure 2 shows a heatmap of the computed  

values; Log P and Log D values in our dataset are positively correlated with RT. Out of 

curiosity, we also computed the correlation coefficients of polar surface area (PSA) and pKa, 

which were weakly anti-correlated. The correlation between RT and Log P/Log D values 

suggested that including RT as a descriptor in a ML model might improve prediction accuracy 

and/or reduce the number of instances required for model training. 
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9

 

Figure 1. Distribution of values of (A) Log P, (B) Log D, and (C) RT of compounds in the 
data set used for this study.

 
Figure 2. The heat map of Spearman’s correlation coefficient () for experimental 
retention time and physicochemical properties in the dataset. Values of 1, 0, and –1 
indicate perfect correlation, no correlation, and anti-correlation, respectively.
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ML Model Construction

   For ML model training and testing purposes, the extracted data were randomly divided into 

training (80%), validation (10%), and testing (10%) sets as per conventional protocol.49,50 The 

hyperopt optimization technique, which uses a form of Bayesian optimization to identify the 

best parameter for a given model,48 was employed in conjunction with the validation set to 

optimize model hyper-parameters. Fifty independent runs with different random seeds for data 

splitting were performed and the average taken to ensure results are statistically valid. Since 

all the models in this study were for regression tasks, they were evaluated predominantly by 

mean absolute error (MAE), but other metrics (as described above) were also assessed to ensure 

statistical validity.

   Fixed molecular representations were used as input data to build predictive models for 

molecular properties.51–57  Fixed representations such as Morgan fingerprints are widely known 

and commonly used as molecular descriptions.58 Here, the RDKit python library was used to 

generate a Morgan Fingerprint that contains 204 molecular descriptors.41,42 

   The best performing model was the MLP neural network. Hyper-parameter optimization 

resulted in an MLP configuration with three hidden layers having 120, 80, 40 neurons, 

respectively, maximum iteration of 100, a hyperbolic tangent (tanh) activation function, an 

alpha parameter of 0.0001, and an constant learning rate. Weights and bias updates are handled 

via momentum, specifically through the Adam routine, implemented as described in the work 

of Kingma and Ba.59 Using the MLP algorithm, MAE = 0.366 ± 0.057 was achieved for Log P 

and MAE = 0.470 ± 0.030 was achieved for Log D predictions (see Tables 1 and 2). From the 

learning curves for the MLP model for Log P (shown in Figure 3a) and Log D (shown in Figure 

3c), it is apparent that the testing set error decreases with increasing size of training set, but 

that the error has not plateaued to a constant value, indicating that including additional 

instances in the data set will further improve model performance. Correlation plots of the 
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11

predicted versus experimental values of Log P and Log D are presented in Figures 3b and 3d, 

respectively. Correlations were quite strong, with correlation coefficients of R2 = 0.88 and 

R2 = 0.85 for Log P and Log D, respectively. Furthermore, as can be seen in Figure 3b and 3d, 

much of the prediction error occurs at low values of Log D and Log P, where there were 

relatively few experimental measurements in the data set (see Figure 1) and where there tends 

to be more error associated with experimental measurements.

Figure 3. (A) Mean absolute error (MAE) for Log P predictions for the training and test set as 
a function of training set size. (B) Correlation plot of experimentally determined Log P values 
and Log P values predicted by the MLP model. (C) Mean absolute error (MAE) for Log D 
predictions for the training and test set as a function of training set size. (D) Correlation plot of 
experimentally determined Log D values and Log D values predicted by the MLP model. 
   

The XGB, SVM, and RF models were less accurate than the MLP model. Details for these 

other models, including learning curves and correlation plots, are provided in the supporting 

information. Table 1 presents the performance results for the MLP model of Log P and Table 

2 provides the results for the MLP model of Log D. Table 3 shows the three largest deviations 
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between the literature Log P values (from ChEMBL) and those predicted by the MLP algorithm. 

The complete list of deviations predicted by other methods is provided in the supporting 

information, Tables S8-10.

To evaluate the models, fifty independent runs with different random seeds were conducted for 

generating the training, validation, and test sets at a splitting ratio of 80% : 10% : 10%. Model 

accuracies and precisions, as reported in Tables 1 and 2, indicate that there is a slight overfitting 

of the training set data. Nevertheless, test set accuracies indicate that our MLP model, which 

includes RTs, improves on other recently published models. For example, the MLP model 

reported by Datta et al. uses the DeepChem database and performs with an estimated accuracy 

of MAE = 0.477 on Log P predictions, 30% larger the error that we achieved when including 

RT as a feature in the dataset.38 Samarjeet et al. also recently developed a predictive model for 

Log P, which yields RMSE = 0.61 for a set of 11 drug-like molecules provided by SAMPL6, 

20% larger than the error that we obtain from our treatment.32 Ulrich et al developed a deep 

neural network (DNN) model with RMSE = 0.50, similar to the performance of our model.35 

The dataset used by Ulrich et al. is classified depending on the number of nonhydrogen atoms 

(NHA). They are molecules with an NHA of 1-10, molecules with an NHA of 11-20, molecules 

with an NHA of 21-30, and molecules with above an NHA of 30. 35 Ulrich et al. converted 

SMILES codes into molecular graphs for input features and required nearly 14,000 instances 

to achieve the same error as our model does with ~2,100 instances. Unfortunately, learning 
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curves were not provided, so we can’t comment as to if Ulrich’s model will further improve 

with additional data. 

Table 1. Performance of the MLP model for Log P predictions. Statistics were assessed for fifty 

independent, randomized runs. Mean squared error (MSE), root mean squared error (RMSE), mean 

absolute error (MAE), and the correlation coefficient (R2) for predicted versus measured values are 

provided. The precision of the statistical metrics are reported as  (i.e., 68% confidence interval).± 𝜎

Metric Training Validation Test

MSE 0.172 0.012±
0.255 ±

0.050
0.260 0.057±

RMSE 0.414 0.014±
0.503 ±

0.048
0.507 0.054±

MAE 0.307 0.011±
0.363 ±

0.022
0.366 0.024±

R2 0.927 0.005±
0.889 ±

0.019
0.885 ± 0.030

Table 2. Performance of the MLP model for Log D predictions. Statistics were assessed for fifty 

independent, randomized runs. Mean squared error (MSE), root mean squared error (RMSE), mean 

absolute error (MAE), and the correlation coefficient (R2) for predicted versus measured values are 

provided. The precision of the statistical metrics are reported as  (i.e., 68% confidence interval).± 𝜎

Metric Training Validation Test

MSE 0. 0.017144 ± 0. 0.071446 ± 0. 0.065423 ±

RMSE 0. 0.022378 ± 0. 0.052666 ± 0. 0.051649 ±

MAE 0. 0.017498 ± 0. 0.033487 ± 0 0.031.470 ±

R2 0.9 0.00653 ± 0.8 0.02354 ± 0.857 ± 0.026

Table 3. The three largest deviations between literature and predicted Log P values. 
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Molecule
Literature Log P 

(ChEMBL)
Predicted Log P Deviation

3-(4-oxo-1,2,3-

benzotriazin-3-yl)propanoic 

acid
1.73 -0.26 1.96

(6S)-2-nitro-6-[[4-

(trifluoromethoxy)phenyl]

methoxy]-6,7-dihydro-5H-

imidazo[2,1-b][1,3]oxazine

4.14 2.28 1.86

N-butyl-N-ethyl-2,5-

dimethyl-7-(2,4,6-

trimethylphenyl)pyrrolo[2,3

-d]pyrimidin-4-amine

7.36 5.53 1.83

    To explore the importance of the various features in our model, we conducted a SHAP (i.e., 

Shapley Additive exPlanations) analysis.60 The SHAP explanation method computes Shapley 

values from coalition game theory. The feature values of a data instance act as players in a 

coalition and the Shapley values describe how to distribute the prediction among the various 

features. In other words, the Shapley value of a given feature describes its importance to the 

accuracy of the prediction. In our data, each instance (i.e., analyte molecule) is described by a 

vector of 125 features (see Table S2). Figure 4 shows a SHAP summary plot for the ten most 

important features in the dataset with respect to Log P predictions. Each point on the summary 

plot is a Shapley value for a feature and an instance; the position on the x-axis is determined 

by the Shapely value and the position on the y-axis is determined by the feature. The heatmap 

of Figure 4 shows the feature values from low to high. Points that overlap are jittered in the y-

axis direction to provide a sense of the distribution of the Shapley values per feature. The 

features are ordered according to their importance, indicating that the most important feature 

for the predictive MLP model of Log P is the experimental RT. 
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   One can interpret Shapley values as “forces” that either increase or decrease the prediction 

from a baseline value that corresponds to the average of all predictions. We find that high 

values of the RT “push” the predicted Log P to higher values and low values of RT push the 

predicted Log P to lower values. In other words, analytes that interact more strongly with the 

C18 column exhibit higher water:octanol partition coefficients. 

The partition coefficient is defined by equation 5:

 (5)𝐿𝑜𝑔𝑃𝑜𝑐𝑡𝑎𝑛𝑜𝑙/𝑤𝑎𝑡𝑒𝑟 = log10 ([𝑆𝑜𝑙𝑢𝑡𝑒]𝑢𝑛 ― 𝑖𝑜𝑛𝑖𝑧𝑒𝑑
𝑜𝑐𝑡𝑎𝑛𝑜𝑙

[𝑆𝑜𝑙𝑢𝑡𝑒]𝑢𝑛 ― 𝑖𝑜𝑛𝑖𝑧𝑒𝑑
𝑤𝑎𝑡𝑒𝑟

)
Species that bind more strongly to the C18 column. C18 is octyldecylsilane, which contains a 

linear eighteen carbon linear alkyl chain bound to the silica support. Molecules that bind to the 

C18 column have an affinity for the non-polar environment and are expected to exhibit likewise 

exhibit an affinity to the hydrophobic octanol environment. Consequently, we observe strong 

correlation between RT and the Log P value for a given analyte.

   Similar, albeit less impactful contributions, are observed for the next three most important 

features: PEOE_VSA7, VSA_Estate6, and PEOE_VSA6. These three features describe van 

der Waals surface area (i.e., VSA) charges for the analytes as estimated using the Molecular 

Operating Environment (MOE).61 The correlation of these features with Log P also aligns with 

expectation since the van der Waals surface area of a molecule should correlate with molecular 

polarizability, and highly polarizable species are expected to bind relatively strongly with the 

C18 alkyl chains and exhibit relatively high solubility in octanol. Interestingly, the fifth-most 

important feature, the topological polar surface area (TPSA), exhibits a trend opposite to the 

four features of most importance; high values of TPSA push Log P predictions to lower values. 

This correlation indicates that polar species exhibit relatively high affinity for the polar aqueous 

phase (and thus relatively low affinity for the hydrophobic octanol environment), in accordance 

with chemical intuition,  The features ranked from sixth to tenth in importance are two indices 

of van der walls surface area (Estate_VSA8 and SMR_VSA7), the BCUT descriptor for Log 
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P,62 molecular mass (MolMR), and the number of aromatic rings (NumAromaticRings). These 

correlations can also be explained based on the molecular interactions described above. Below 

the five features of highest importance, feature impact on model performance diminishes 

significantly. In fact, including only the top 20 features in the dataset yields a model accuracy 

of MAE = 0.483.

Figure 4. SHAP summary plot showing the impact of descriptors (the top 10) on the model. One 
dot represents one molecule, and the dots stack up to show its density.

Conclusions

   A major challenge in developing accurate ML models is identifying high quality, 

representative data. With regard to predicting molecular properties, attention has focused on 

employing structural features owing to the perspective that structure affects functionality and 

because one can quickly generate a large number of molecular features from a simple SMILES 

string. By including additional information that encodes molecular interactions, such as 

experimental LC retention times, one provides the ML algorithm with important information 

regarding how strongly analytes interact with their environments (e.g., with solvents or 
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substrates). Such information should correlate strongly with several condensed phase 

properties. Here, we have demonstrated that LC retention times correlate with partition and 

distribution coefficients, and that inclusion of retention time as a dataset feature improves the 

accuracy of predictive ML models for Log P and Log D. Moreover, SHAP analysis showed 

that LC retention time is the most important feature with respect to accuracy for these models. 

We expect that including LC retention time as a feature will improve model accuracy for other 

molecular properties (e.g., Log S). An interesting open question is: will the inclusion of other 

experimentally determined parameters further improve model accuracy or enable accurate 

predictions of other molecular properties (e.g., pKa)?

   Clearly, incorporating retention time as a model feature is not as convenient as simply using 

the structural features generated from, for example, a SMILES string; one must first measure 

the retention time, which requires both a physical sample and appropriate instrumentation. 

Thus, the method that we report here cannot replace the purely in silico screening of early-

stage drug discovery. However, LC-MS measurements are commonly employed in the 

characterization of newly synthesized drug candidates, so the method reported here does offer 

the possibility of re-purposing these LC measurements for property determination (or perhaps 

confirmation/validation of standard techniques). In addition to pre-clinical drug discovery, the 

LC RT method described here could find application in other areas. For example, distribution 

coefficients are important parameters used in mass transport models for environmental 

contaminants.64  Given that LC-MS is a commonly used tool in environmental analysis, one 

could envision simultaneously identifying a trace contaminant and predicting its 

physicochemical properties such that one could determine the compound’s fate in the 

environment. One could envision LC-MS measurements of environmental contaminants 

followed by structural characterization based on the mass spectrometric data and the METLIN 
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RT data. With molecular structure in hand, one could then employ our LC-based ML model to 

predict Log P and Log D.

   As a final note, the variation in LC retention time between instruments is a well-known 

challenge for site-to-site comparisons. One strategy to overcome such variation would be the 

introduction of a site (or instrument) label as a feature in a combined dataset and the use of 

transductive transfer learning.63 This method, which assumes a single source domain and 

single task (e.g., prediction of Log P), can account for sample selection bias / covariance 

shifts. We are currently exploring the use of transfer learning for combining dataset (or pre-

training models) and will report results in due course.

Data and Software Availability

The dataset and python scripts described in this work can be publicly accessed at the open-

source GitHub repository “p_Chem_CEVR”

(https://github.com/jamesleocodes/p_chem_CEVR.git). The METLIN small molecule(SMRT) 

dataset is available on (https://doi.org/10.6084/m9 .figshare.8038913.v1). The software tools 

used in this study, including RDKit (https://www.rdkit.org/), scikit-learn (https://www.scikit-

learn.org), NumPy (https://www.numpy.org), SciPy (https://www.scipy.org), and Pandas 

(https://www.pandas.pydata.org) are freely available at their website.

Supporting Information

Supporting information Available: [LC method. Table S1:Data set used in the article. 

Table S2:Molecular descriptors, Table S3-S5: Performance comparison of the models. Table 

S6:List of optimized hyper-parameters per ML method. Table S7:Illustration of SMILES-

based molecular construction predicted values by MLP. Table S8-S10:Three most deviations 

Page 18 of 30

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://github.com/jamesleocodes/p_chem_CEVR
https://doi.org/10.6084/m9%20.figshare.8038913.v1
https://www.rdkit.org
https://www.scikit-learn.org
https://www.scikit-learn.org
http://www.numpy.org
https://www.scipy.org
https://www.pandas.pydata.org


19

between the experimental values and predicted values for XGB, SVM, and RF. Figure S1-

S3:learning curve for  XGB , SVM and RF model (Log P). Figure S4:The complete set of 

performance metrics on the test set using different machine learning models. Figure S5:The 

learning curves for four models for Log D. Figure S6:the complete set of performance metrics on 

the test set for Log D using different machine learning models. Figure S7: SHAP summary for Log 
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Figure 1. Distribution of values of (A) Log P, (B) Log D, and (C) RT of compounds in the data set used for 
this study. 
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Figure 2. The heat map of Spearman’s correlation coefficient () for experimental retention time and 
physicochemical properties in the dataset. Values of 1, 0, and –1 indicate perfect correlation, no correlation, 

and anti-correlation, respectively. 
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Figure 3. (A) Mean absolute error (MAE) for Log P predictions for the training and test set as a function of 
training set size. (B) Correlation plot of experimentally determined Log P values and Log P values predicted 

by the MLP model. (C) Mean absolute error (MAE) for Log D predictions for the training and test set as a 
function of training set size. (D) Correlation plot of experimentally determined Log D values and Log D 

values predicted by the MLP model. 
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Figure 4. SHAP summary plot showing the impact of descriptors (the top 10) on the model. One dot 
represents one molecule, and the dots stack up to show its density. 
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