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Modelling of Pavement Performance Evolution Considering Uncertainty 1 

and Interpretability: A Machine Learning Based Framework 2 

Machine learning (ML) based pavement performance models have gained increasing 3 

popularity in recent years due to their strong power in modelling complex relationships. 4 

However, the insufficiency of a feature selection process prior to model construction, 5 

the difficulty in explaining the black box models, and the lack of uncertainty 6 

consideration all impeded the application of the produced models in real world. To fill 7 

these gaps, this study aims to develop a new framework to model the pavement 8 

performance evolution based on the state-of-the-art ML techniques, including the 9 

BorutaShap method for feature selection, the Bayesian neural network (BNN) for 10 

model development and uncertainty quantification, and the SHapley Additive 11 

exPlanations (SHAP) approach for model interpretation. A case study of predicting the 12 

pavement transverse cracking was conducted. The two generated BNN models yielded 13 

relatively accurate predictions with the R-square of 0.86 and 0.79 for unmaintained and 14 

maintained segments, respectively. Poor data quality was found to be the dominant 15 

source of uncertainty. The model interpretation also provided some insight into the 16 

underlying influential mechanism of various factors. The framework was expected to 17 

enable the decision-makers to build more reliable and informative pavement 18 

performance models that could be integrated into the pavement management tools. 19 

Keywords: Pavement performance model; Machine learning; Feature selection; 20 

Uncertainty quantification; Model interpretation. 21 

 22 

1 Introduction 23 

Pavement performance model is one of the main building blocks in modern pavement 24 

management systems (PMS). An accurate pavement performance model can help 25 

significantly reduce the long-term maintenance cost since it allows agencies to proactively 26 

conduct maintenance and rehabilitation (M&R) on roadway infrastructures (Rahman et al., 27 

2017; Yao et al., 2020). However, modelling of pavement performance is a complex and 28 

challenging task, as pavement deterioration is influenced by many factors.  29 

The available pavement performance models can be commonly classified into three 30 

types, namely empirical, mechanistic, and mechanistic-empirical models (Yehia and Swei, 31 
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2020). Mechanistic models rely heavily on the expected theoretical behaviour of the materials. 1 

However, for pavement materials that suffer from large variations, these models sometimes 2 

may produce unexpected results (Choi et al., 2004). In contrast, empirical models are 3 

formulated on the basis of statistical correlations between pavement performance and various 4 

explanatory variables, which include both simple regression models, such as linear, 5 

exponential, and sigmoid, and complicated machine learning (ML) models. Simple regression 6 

models are frequently criticized for their low accuracy, which is mainly caused by the 7 

inadequate model formulation. Although ML models have demonstrated their power in 8 

modelling pavement deterioration, there are still some problems that have not been properly 9 

addressed which would be discussed in more details later. Mechanistic-empirical (ME) 10 

models adopt mechanistic approaches to compute the critical pavement responses and 11 

empirical methods to correlate the responses to pavement failure (Li et al., 2011). But some 12 

researchers have proved that ME models tend to perform worse than ML models (El-Hakim 13 

and El-Badawy, 2013).  14 

It should be recognized that no single prediction method applies to all scenarios. 15 

Building a systematic framework for modelling pavement performance evolution is somehow 16 

more important. This study mainly focusses on the ML based pavement performance models, 17 

considering that ML models can better capture the complex nonlinear relationships among 18 

various variables and are therefore more promising for current and future pavement 19 

management practice. Previous studies have extensively explored the potential of applying 20 

ML techniques to model pavement deterioration (Gong et al. 2018; Tabatabaee et al. 2013). 21 

However, as explained in the following paragraphs, the existing ML models still have some 22 

obvious limitations despite the efforts to improve the predictive abilities of the models by 23 

means of sophisticated methods.  24 

Firstly, the selection of explanatory variables according to their importance level to 25 

the response variable was rarely considered. Researchers may have reached a consensus on 26 

the variable types that should be included in a pavement performance model. When it comes 27 

to the specific variables, it depends mostly on the modelers’ experience and the available data. 28 

This may result in either the inclusion of irrelevant and redundant features or the exclusion of 29 

important features. The former will increase the computational time, reduce the model 30 

accuracy, and impede the understanding of the model (Cai et al., 2018), while the latter may 31 

make the model unable to fully capture the variations in the dependent variables. For example, 32 
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equivalent single axle load (ESAL) is one of the most commonly used traffic variables in 1 

previous pavement performance models (Karlaftis and Badr, 2015; Mazari and Rodriguez, 2 

2016; Choi and Do, 2020). However, the validity of the expression of ESAL has always been 3 

controversial among pavement researchers (Prozzi and Madanat, 2004; Guler and Madanat, 4 

2011). Thus, the use of multiple traffic variables including axle load spectrum information 5 

may be more beneficial to fully characterize the traffic conditions and predict the progression 6 

of pavement distresses. On the other hand, the rapidly increasing volume and complexity of 7 

the data in today’s PMS allow the formulation of various features. Hence, without a complete 8 

assessment, incorporating certain features that are deemed sustainable may actually generate 9 

counterproductive results. Several recent studies investigated the importance of attributes to 10 

pavement performance (Piryonesi and El-Diraby, 2020; Gong et al., 2019; Zeiada et al., 11 

2020). However, attempts to incorporate such importance evaluation results into the selection 12 

of model inputs are still limited. Meanwhile, the existing literature differed from this study in 13 

that most of them tried to find a possible compact subset of features that minimizes the model 14 

error (El-Diraby, 2020; Zeiada et al., 2019; Zeiada et al., 2020) or selected a certain number 15 

of features according to the order of feature importance (Roberts et al., 2021; Yao et al., 16 

2019). In contrast, this study aims to capture more features relevant to the output variable 17 

with a so-called all-relevant feature selection method, which is beneficial to understanding 18 

the mechanisms of the problems instead of merely building a black box model (Kursa and 19 

Rudnicki, 2010). 20 

Secondly, pavement deterioration has inherent uncertainty due to measurement error, 21 

data processing, and other possible reasons (Yehia and Swei, 2020; Amin and Amador-22 

Jiménez, 2017). This motivates many researchers to incorporate uncertainty consideration 23 

into their modelling framework, which helps evaluate the reliability of prediction results. A 24 

large number of existing studies have estimated the uncertainties in performance models by 25 

assessing the measurement errors in pavement condition data, considering the discrete state 26 

space and Markov chain model (Osorio-Lird et al., 2018; Kobayashi et al., 2012). Only 27 

limited research extended to the continuous state space. However, these studies tend to focus 28 

on either data-driven (aleatoric) or model-driven (epistemic) uncertainty alone (Hong and 29 

Prozzi, 2006; Guo et al., 2020), resulting in insufficient estimation of uncertainties from 30 

different sources in pavement performance models. To the best of the authors’ knowledge, 31 

none of the previous ML-based pavement performance models have quantified both the 32 

aleatoric and epistemic uncertainties in the continuous state space. 33 
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Finally, it is worth noting that explanatory modelling is highly desired by practitioners 1 

because they need to understand the effects of specific features on the model output for real-2 

world applications. Otherwise, the validity of the decisions derived from the prediction of the 3 

ML models cannot be guaranteed. In the existing literature that uses ML to model pavement 4 

deterioration, researchers tend to focus on model accuracy only (Dong et al., 2019; Kırbaş 5 

and Karaşahin, 2016; Hossain et al., 2019), or utilize the simplest one-at-a-time (OAT) 6 

approach to estimate the feature importance (Hossain et al., 2019; Yao et al., 2019; Kargah-7 

Ostadi and Stoffels, 2015). OAT means varying one input variable at a time and observing 8 

the maximum range of variation in output variable. However, this method cannot reflect the 9 

interactions among input variables, which is statistically incorrect when applied to nonlinear 10 

models (Saltelli, 1999; Saltelli et al., 2019). Besides, even though these ML-based models 11 

involve some interpretation of the model results, they often stop at evaluating the feature 12 

importance or sensitivity without delving into the feature effect (Gong et al., 2019; Yao et al., 13 

2019; Tabatabaee et al., 2013). 14 

To address the aforementioned limitations, this research aims to establish a pavement 15 

performance modelling framework based on state-of-the-art ML techniques while taking into 16 

account the feature selection, uncertainty estimation and model interpretation problems. The 17 

proposed modelling framework is expected to help transport agencies make better use of the 18 

increasing available pavement condition data. It will contribute to improved understanding of 19 

the uncertainties underlying the pavement performance prediction tools, leading to more 20 

confident projection of the future road infrastructure conditions. Moreover, by introducing 21 

advanced ML model interpretation techniques, the established models can help explore the 22 

pavement deterioration mechanisms under different conditions. 23 

2 Methodology 24 

In this section, first, a high-level overview of the proposed framework is presented, and then 25 

different stages of the framework are discussed in detail. 26 

2.1 The proposed modelling framework 27 

Figure 1 illustrates the proposed modelling framework, which is composed of three stages, 28 

i.e., pre-modelling, modelling and post-modelling.  29 
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 1 

Figure 1. The proposed framework for pavement performance modelling. 2 

2.2 Data preparation and feature selection  3 

Pre-modelling is the most important and time-consuming stage, including data preparation 4 

and feature selection. First, all the expressways need to be divided into sub-sections to ensure 5 

the prediction accuracy. Two segment groups were formed, including the maintained and 6 

unmaintained segments.  Unmaintained segments refer to the segments that have never been 7 

maintained at the time of condition data collection. Therefore, it includes two situations: 1) 8 

the segment has never been maintained since it was opened to traffic; 2) the segment has been 9 

maintained, but the condition data were collected before the first maintenance. Conversely, 10 

maintained segments are the segments that have been maintained for one or more times and 11 

the condition data were collected after the maintenance. Thus, once a segment was 12 

maintained for the first time, it converted from an unmaintained segment to a maintained 13 

segment. After that, data extracted from multiple databases were combined to form the panel 14 

data. A method developed in the previous study (Yao et al., 2019), which adopted the longest 15 

increasing (for non-decreasing indexes) or decreasing (for non-increasing indexes) 16 

subsequence method, was utilized to remove the noise and inconsistent data in the dataset. 17 

Optimal features were selected by integrating the consideration of domain knowledge and 18 
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model efficiency. More specifically, an initial set of input features were chosen as candidates 1 

for use by the models based on literature review, engineering judgement and available data. 2 

Later, a feature selection algorithm named BorutaShap (Keany, 2020) was applied on the 3 

initial feature set to automatically determine the optimal feature set for each model.  4 

BorutaShap combines the Boruta feature selection algorithm with the SHapley 5 

Additive exPlanations (SHAP) technique, which was proposed and written as a python 6 

package by Keany (2020). It can be considered as an improvement of the original Boruta 7 

algorithm. Boruta is a wrapper method built around the Random Forest model (Kursa and 8 

Rudnicki, 2010). It is an all-relevant feature selection method, aiming to capture all the 9 

important features in the dataset that is usable for prediction. The importance of a feature is 10 

measured by the permutation importance, which is defined as the loss in accuracy of the 11 

model by randomly shuffling a feature in the dataset (Kursa and Rudnicki, 2010). However, 12 

this importance metric causes the algorithm computationally expensive and is not considered 13 

to be a reliable measure of global feature importance, which led to the replacement of 14 

permutation importance with SHAP importance in the BorutaShap algorithm (Keany, 2020). 15 

Since SHAP method is also used for model interpretation, more details about it will be 16 

introduced later. Besides, in this study, the BorutaShap algorithm was implemented in Python 17 

using the BorutaShap package developed by Keany (2020). 18 

2.3 Model development 19 

In the modelling stage, Bayesian neural network (BNN) (Gal et al., 2017), which is powerful 20 

in avoiding over-fitting and estimating uncertainties, was employed to develop two pavement 21 

performance models to model the performance deterioration of the maintained and 22 

unmaintained segments, respectively.  23 

Bayesian neural network differs from the standard deep learning in that all its 24 

parameters are represented by probability distributions rather than having fixed values 25 

(Blundell et al., 2015). This makes BNN powerful in avoiding over-fitting problems and 26 

quantifying the uncertainties in predictions. For a training data set 𝑿 = {𝑥1, 𝑥2, … , 𝑥𝑁 , }, 𝒀 =27 

{𝑦1, 𝑦2, … , 𝑦𝑁 , }, letting  𝑝(𝑾), 𝑦 = 𝑓𝑾(𝑥) and 𝑝(𝒀|𝑿, 𝑾) be the prior distribution of the 28 

network parameters, the random output and the model likelihood of the BNN model, the 29 

posterior over the parameters can be computed using Bayesian inference (Ryu et al., 2019): 30 
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 𝑝(𝑾|𝑿, 𝒀) =
𝑝(𝒀|𝑿, 𝑾)𝑝(𝑾)

𝑝(𝒀|𝑿)
 (1) 

The predictive distribution for a new input 𝑥∗ then can be obtained as (Ryu et al., 2019): 1 

 𝑝(𝑦∗|𝑥∗, 𝑿, 𝒀) = ∫ 𝑝(𝑦∗|𝑥∗, 𝑾) 𝑝(𝑾|𝑿, 𝒀)𝑑𝑾 (2) 

However, the posterior  𝑝(𝑾|𝑿, 𝒀) cannot be solved analytically. Instead, it is fitted with an 2 

approximating variational distribution 𝑞𝜃(𝑾), parameterised by θ. Kullback–Leibler (KL) 3 

divergence can be used to measure the similarity between the two distributions (Gal and 4 

Ghahramani, 2015): 5 

 𝐾𝐿(𝑞𝜃(𝑾)||𝑝(𝑾|𝑿, 𝒀)) = ∫ 𝑞𝜃(𝑾) log
𝑞𝜃(𝑾)

𝑝(𝑾|𝑿, 𝒀)
𝑑𝑾 (3) 

By replacing the intractable posterior in Eq. (3) with Eq. (1), minimizing the KL divergence 6 

becomes equivalent to maximising the log evidence lower bound (Gal and Ghahramani, 7 

2015): 8 

 𝐿𝑉1: = ∫ 𝑞𝜃(𝑾) log 𝑝(𝒀|𝑿, 𝑾) 𝑑𝑾 − 𝐾𝐿(𝑞𝜃(𝑾)||𝑝(𝑾)) (4) 

The posterior distribution is usually approximated using factorised Gaussian distributions. 9 

However, this approximation does not perform well in practice due to the large number of 10 

extra parameters that need to be learnt (Ryu et al., 2019). In contrast, Monte Carlo (MC) 11 

dropout is another variational approximation method which applies dropout at both training 12 

and test time (Gal and Ghahramani, 2016; Gal et al., 2017). For regression, sampling T times 13 

from the approximate posterior 𝑞𝜃(𝑾) leads to the estimation of the predictive mean: 14 

 𝐸(𝑦) =
1

𝑇
∑ 𝑓𝑤𝒕(𝑥)

𝑇

𝑡=1

 (5) 

, and the predictive variance (Ryu et al., 2019): 15 

 𝑉𝑎𝑟(𝑦) ≈ 𝜎2 +
1

𝑇
∑ 𝑓𝑤𝒕(𝑥)𝑇𝑓𝑤𝒕(𝑥) −

𝑇

𝑡=1

𝐸(𝑦)𝑇𝐸(𝑦) (6) 
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where 𝜎 denotes the parameter of Gaussian likelihood: 𝑝(𝑦|𝑓𝑾(𝑥)) = 𝑁(𝑦; 𝑓𝑾(𝑥), 𝜎). 𝜎2 is 1 

termed aleatoric uncertainty, which captures the amount of noise inherent in the outputs. It is 2 

homoscedastic for every data point but can be different or heteroscedastic for different data 3 

points. It is worth noting that it is very important to assume heteroscedastic uncertainty 4 

because the noise level in real-word data is usually unbalanced. In this case, the model output 5 

is expressed as [ 𝑦, 𝜎2] = 𝑓𝑾(𝑥) . Both predictive mean and predictive variance can be 6 

obtained through a single network (Kendall et al., 2017). Finally, the predictive uncertainty is 7 

given by (Ryu et al., 2019): 8 

 

 

(7) 

where 𝑦𝑡, 𝜎𝑡 = 𝑓𝑤𝒕(𝑥) and 𝑤𝒕 is randomly sampled from 𝑞𝜃(𝑾). Eq. (7) can be split into 9 

epistemic uncertainty and aleatoric uncertainty as labelled. Aleatoric uncertainty is data-10 

driven and cannot be reduced by collecting more data while epistemic uncertainty is model-11 

driven and can be explained given enough data (Kendall et al., 2017). The models were 12 

trained and tested in Python 3.8.3 using the codes adapted from 13 

https://github.com/anassinator/bnn. 14 

2.4 Model interpretation 15 

Post-modelling, generally referring to model interpretation, is a stage that was often 16 

overlooked but actually indispensable in pavement performance modelling. In the developed 17 

framework, the SHapley Additive exPlanations (SHAP) approach (Lundberg and Lee, 2017) 18 

was applied to the established BNN models to investigate the feature importance and feature 19 

effect.  20 

SHAP is an approach based on coalitional game theory to explain the output of any 21 

machine learning models recently proposed by Lundberg and Lee (2017).  Shapley values 22 

take each feature value of the data instance as the player and the prediction as the “payout”, 23 

and then consider how to distribute the “payout” fairly among the different features (Molnar 24 

2018). Thus, the Shapley value can be regarded as the average marginal contribution of a 25 

feature value across all possible coalitions. SHAP goes further by connecting different 26 

https://github.com/anassinator/bnn
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explanation methods with Shapley values, representing the Shapley value explanation as an 1 

additive feature attribution method, i.e., a linear model. Let 𝑓(𝑥) and 𝑔(𝑥′) be the prediction 2 

model and explanation model, respectively, such that 𝑥 = ℎ𝑥(𝑥′) is the mapping function that 3 

maps the simplified inputs 𝑥′ to the original input 𝑥, then the explanation model 𝑔(𝑥′) for the 4 

original model 𝑓(𝑥) can be expressed as: 5 

 𝑓(𝑥) = 𝑔(𝑥′) = 𝜙0 + ∑ 𝜙𝑖𝑥𝑖
′

𝑀

𝑖=1

 (8) 

where M is the number of simplified inputs and 𝜙𝑖 is the SHAP value, which indicates the 6 

effect of each feature. The effects of all the features are added up to approximate the output 7 

of the original model. Figure 2 illustrates how the prediction develops from the base value 8 

𝐸[𝐹(𝑧)], which is predicted without knowing any feature values, to the current output 𝑓(𝑥) 9 

based on the SHAP values of each feature. In other words, the SHAP value of each feature is 10 

just like a force to either increase or decrease the prediction. More details about SHAP can be 11 

found in (Lundberg and Lee, 2017). 12 

 13 

Figure 2. SHAP values (Lundberg and Lee, 2017). 14 

According to the different approximation methods of SHAP values, the SHAP 15 

approach can be further classified into Kernel SHAP, Tree SHAP and Deep SHAP (Lundberg 16 

et al. 2020; Shrikumar et al., 2017). Kernel SHAP estimates SHAP values for any model 17 

using a specially-weighted local linear regression. Tree SHAP is mainly for tree-based 18 

models, such as decision trees, random forest (RF), etc. It is also embedded in the Brutashap 19 

algorithm as Brutashap is built around the RF model. Deep SHAP, on the other hand, can 20 

generate efficient approximation of SHAP values in deep learning models. Hence, Deep 21 

SHAP is used to interpret the BNN model output in this study. 22 

This begins with the computation of the SHAP value, which could be regarded as the 23 

marginal contribution of every feature for every sample. The feature importance was then 24 

measured by averaging the SHAP values over all samples. By plotting the SHAP value of the 25 
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feature versus the value of the feature for all examples in the dataset and colouring the points 1 

by another feature, the interaction effect between features could be visualized. All these 2 

analyses were carried out in Python using the “shap” package. 3 

3 Case Study 4 

While the framework proposed in this study is applicable to various pavement performance 5 

indicators, the Transverse Cracks Evaluation Index (TCEI) was selected to conduct the case 6 

study, as transverse cracking is one of the major distress modes for semi-rigid base asphalt 7 

pavement, which is the most popular type of pavement in China. The TCEI was calculated by 8 

normalizing the ratio of transverse crack spacing (TCS) to transverse crack width ratio (TWR) 9 

to a range of 0 to 100, with 100 representing the best condition (i.e., no transverse cracks). It 10 

was proposed by Zhou et al. (2010) and has been widely used in Jiangsu and Anhui province, 11 

China (Han et al., 2020; Yao et al., 2019). 12 

The data for this case study were from the pavement management system of Jiangsu 13 

Province, China, covering a total of 49 expressways. All the expressways were first divided 14 

into sub-sections according to their directions, lanes, locations, structure sections, and traffic 15 

sections. Then, the sub-sections longer than 1.5 km were further divided at intervals of 1 km. 16 

The lengths of pavement segments after the completion of roadway segmentation were 17 

between 0.1 km to 1.5 km. The data with only basic road section information were then 18 

expanded to create multi-feature, multi-observation panel data. 35,599 road segments with a 19 

total length of 14,162 lane-kilometres and 258,988 observations were acquired. Among them, 20 

195,921 observations were collected from the unmaintained segments while 63,067 21 

observations were collected from the maintained segments.  22 

In this study, the performance model was formulated as a recursive nonlinear model, 23 

which was considered to be more beneficial to pavement management since the condition 24 

data were usually available on a regular basis (Prozzi and Madanat, 2003). The general form 25 

of the model can be expressed as follows: 26 

 𝑦
𝑡+1

= 𝑓(𝑦
𝑡
, 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒, 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝑡𝑟𝑎𝑓𝑓𝑖𝑐, 𝑐𝑙𝑖𝑚𝑎𝑡𝑒, 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 … ) (9) 

where 𝑦
𝑡+1

 and 𝑦
𝑡
 are the pavement conditions at time t+1 and t, respectively; and structure, 27 

material, traffic, climate and maintenance denote the different influential factors. The model 28 

would predict the TCEI of the following year using the TCEI of the previous year as well as 29 

other features.  However, in some cases, if the pavement inspection was not carried out every 30 



12 

 

year or some of the inspection data were missing or considered abnormal, it was also possible 1 

to predict the TCEI in a few years. Therefore, time increment was also among the considered 2 

features. 3 

Preliminary selection of the features was based on literature review (Yao et al., 2019; 4 

Karlaftis and Badr, 2015; Onayev and Swei, 2021) and data availability. As Table 1 shows, 5 

38 features covering different characteristics of the pavement were selected. Except for 6 

ESAL, all other features related to traffic load and climate condition were expressed in the 7 

form of mean values or ratios during the period from time t to time t+1. Features in the 8 

category of maintenance history are only included in the analysis of maintained segments. No. 9 

of lanes&lane is a combination of two features: number of lanes in both directions (4, 6, or 8) 10 

and the lane (the 1st,2nd,3rd, or 4th lane outward from the central divider, if applicable). This 11 

feature was used as a proxy of lane distribution factor, depicting the traffic distribution in 12 

different lanes. R_below 0 oC and R_over 35 oC represent the ratio of days with daily 13 

minimum temperature below 0 oC and daily maximum temperature over 35 oC, respectively. 14 

R_greater_or_equal_10 mm is the ratio of days with 24-hour precipitation greater than or 15 

equal to 10 mm. ESAL, MESAL and MADT denote equivalent single-axle loads, monthly 16 

equivalent single-axle loads, and monthly average daily traffic, respectively. In addition, the 17 

different ages of different asphalt layers are used to reflect the rehabilitation history of the 18 

maintained segments. 19 

Table 1 The initial feature set pending for selection. 20 

Feature type Feature name 

Basic information 

Current TCEI 

Road age 

Pavement or bridge 

Time increment 

No. of lanes&lane 

Pavement structure 

and material 

Styrene-Butadiene-Styrene (SBS) modified asphalt layer thickness 

Asphalt layer materials 

Asphalt layer thickness 

Base layer material 

Base layer thickness 

Traffic load 

Number of single-axle loads 

Single-axle overload rate 

Number of tandem-axle loads 

Tandem-axle overload rate 

Number of tridem-axle loads 

Tridem-axle overload rate 

ESAL 

ESAL increment 

Mean MESAL 
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Mean MADT 

Ratio of passenger cars to trucks 

Climate condition 

Mean temperature 

Mean daily precipitation 

Mean relative humidity 

Mean wind speed 

Ratio of rainy days 

R_below 0 oC 

R_over 35 oC 

Extreme temperature range 

Maximum 5 d mean temperature 

Maximum 5 d precipitation total 

R_greater_or_equal_10 mm 

Maintenance history 

Pre-treatment TCEI 

Treatment age 

Maintenance and Rehabilitation (M&R) treatment 

Upper asphalt layer age 

Middle asphalt layer age 

Lower asphalt layer age 

 1 

4 Results and Discussion 2 

4.1 Selected features 3 

4.1.1 Unmaintained segments 4 

Figure 3 shows the feature selection results for unmaintained segments. Each feature is 5 

represented by a boxplot. Green and red boxes indicate the features that have been accepted 6 

and rejected, respectively, while blue boxes represent the shadow features. The y axis is a 7 

metric of feature importance in logarithmic scale. A total of 26 features were selected for 8 

building the BNN model. Among them, the current TCEI is the most dominant. The 9 

descriptive statistics of the optimal features are also shown in Table 2. Better performance 10 

and higher reliability of the model are expected for the cases within the ranges given in Table 11 

2. 12 
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 1 

Figure 3. Results of feature selection for unmaintained segments. 2 

Table 2 Descriptive statistics of the selected features for unmaintained segments. 3 

Variables Mean Std Min. Max. Median Unit 

Current TCEI 93.8 13.3 15.3 100.0 100.0 / 

Time increment 1.2 0.9 0.1 20.0 1.0 year 

Extreme temperature range 46.0 3.8 18.4 54.2 45.9 oC 

ESAL 777.1 904.4 0.0 10470.0 482.5 × 104 

Mean MADT 10737.3 19225.6 0.0 256628.8 6119.2 / 

Road age 5.7 3.5 0.0 20.2 5.4 year 

Number of tandem-axle loads 29055.4 26869.9 32.2 422194.0 20271.2 / 

R_below 0 oC 18.9 8.3 1.0 90.3 18.2 % 

Asphalt layer thickness 18.1 1.1 16.0 21.0 18.0 cm 

R_over 35 oC 1.9 2.0 0.0 15.8 1.2 % 

Tandem-axle overload rate 38.7 17.5 5.7 94.0 35.6 % 

Ratio of passenger cars to trucks 1.9 1.0 0.2 15.4 1.8 / 

Number of single-axle loads 64330.2 64822.8 247.2 1212853.2 45004.0 / 

Pavement or bridge / / / / / / 

Number of tridem-axle loads 31964.9 31579.6 20.2 574032.4 22403.8 / 

Single-axle overload rate 40.4 16.3 4.9 80.8 38.0 % 

Modified asphalt layer thickness 9.2 4.0 0.0 20.0 10.0 cm 

Mean temperature 14.5 2.6 -1.0 20.9 14.8 oC 

Base layer thickness 37.6 1.6 0.0 46.0 38.0 cm 

Maximum 5 d mean 30.0 3.4 3.0 35.0 30.6 oC 
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temperature 

ESAL increment 161.2 229.6 0.0 5757.7 91.3 × 104 

Maximum 5 d precipitation total 191.2 89.1 3.5 455.7 183.5 mm 

Tridem-axle overload rate 59.6 15.9 9.6 95.9 57.7 % 

No. of lanes & lane / / / / / / 

Ratio of rainy days 27.1 5.5 6.5 46.7 26.0 % 

Asphalt layer materials / / / / / / 

4.1.2 Maintained segments 1 

For the maintained segments, a subset of 27 features were selected for further analysis, as 2 

illustrated in Figure 4 The current TCEI is still the most important. The descriptive statistics 3 

of the selected features are shown in Table 3. 4 

  5 

Figure 4. Results of feature selection for maintained segments. 6 

Table 3 Descriptive statistics of the selected features for maintained segments. 7 

Variables Mean Std Min. Max. Median Unit 

Current TCEI 92.8 14.4 22.1 100.0 100.0 / 

Time increment 1.1 0.6 0.1 12.4 1.0 year 

Treatment age 3.5 2.9 0.0 14.4 2.8 year 

Mean MADT 14135.6 17442.7 0.0 716098.0 10644.8 / 
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Extreme temperature range 46.3 3.9 17.3 53.3 47.0 oC 

Pre-treatment TCEI 85.5 20.3 6.9 100.0 100.0 / 

Mean wind speed 2.3 0.3 1.0 3.5 2.3 m/s 

Ratio of passenger cars to 

trucks 
1.8 1.0 0.2 15.1 1.8 / 

Maximum 5 d mean 

temperature 
30.7 3.1 3.0 35.0 31.1 oC 

Tandem-axle overload rate 32.7 15.3 7.5 90.4 29.1 % 

R_greater_or_equal_10 mm 8.0 2.4 0.0 26.2 8.0 % 

Number of tridem-axle loads 64759.6 46787.7 336.0 574032.4 56278.9 / 

ESAL increment 221.1 253.2 0.2 5257.4 155.3 × 104 

Lower asphalt layer age 7.9 5.0 0.0 20.7 7.4 year 

Mean relative humidity 72.0 4.0 50.0 86.1 73.0 % 

Road age 11.6 3.8 0.7 20.7 11.9 year 

Single-axle overload rate 39.2 15.8 8.8 80.0 36.6 % 

R_over 35 oC 2.3 2.2 0.0 29.6 1.6 % 

Tridem-axle overload rate 61.5 15.5 15.1 94.8 59.9 % 

Middle asphalt layer age 9.4 4.5 0.0 20.7 10.0 year 

Asphalt layer materials / / / / / / 

ESAL 3029.5 2615.4 0.0 11408.7 2135.8 × 104 

Number of tandem-axle loads 46322.4 31031.4 361.4 422194.0 44552.1 / 

No. of lanes & lane / / / / / / 

M&R Treatment / / / / / / 

Number of single-axle loads 104864.7 80854.5 622.6 1212853.2 93972.3 / 

Modified asphalt layer 

thickness 
6.5 4.6 0.0 18.0 4.0 cm 

4.2 Model training 1 

To develop the BNN model, the data was first normalized through one-hot coding (for 2 

categorical variables) and standardization (for numerical variables). The entire data set was 3 

then split in a ratio of 75:25, i.e., 75% of the data were used for training the model while 25% 4 

were used for testing the model that was built out of it. Hyperparameters, such as the number 5 

of hidden layers and neurons, optimizer, learning rate, batch size and number of epochs were 6 

tuned manually through trial and error. Table 4 shows the optimum hyperparameters that 7 

were acquired after careful tuning and utilized to build the BNN models. n_particles is the 8 

number of particles used to estimate the epistemic uncertainty, i.e., epistemic uncertainty was 9 

estimated by running the model n_particles times for each input sample. Both models have 10 

one input layer, four hidden layers and one output layer. The configuration of the optimal 11 

model is 26-128-128-64-16-2 for unmaintained segments and 27-256-256-64-16-2 for 12 

maintained segments, with the numbers denoting the neuron numbers in each layer. Figure 5 13 

shows the schematic diagram of the model structures for unmaintained and maintained 14 

segments. The circles and arrows indicate the neurons and connections, respectively. A 15 

dotted circle with a cross in the centre stands for those dropped units and the dashed arrows 16 
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are invalid neuronal connections. As dropout was applied at both training and test time, 1 

certain percent of units would be randomly dropped in each run, allowing the estimation of 2 

epistemic uncertainty. For more information about BNN model training, the reader can refer 3 

to the original article (Gal et al., 2017). 4 

Table 4 Model hyperparameters. 5 

 Maintained segments Unmaintained segments 

Model structure 27-256-256-64-16-2 26-128-128-64-16-2 

Optimizer Adam Adam 

Learning rate 0.0001 0.0001 

Batch size 128 128 

Epochs 500 500 

n_particles 100 100 

Activation function Rectified Linear Unit (ReLU) ReLU 

 6 

 7 

Figure 5. A schematic diagram of the BNN model structure. 8 

After the model was trained, both epistemic and aleatoric uncertainty could be 9 

quantified. Aleatoric uncertainty arise from data noise, which is input-dependent and could be 10 

directly output from the model. Epistemic uncertainty is related to the uncertainty in the 11 

model parameters. It was estimated by running the model for multiple times. 12 

 13 
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4.3 Model performance 1 

The performances of the two models were evaluated using the metrics in Table 5. R-square is 2 

the statistical parameter that represents the proportion of the variance for a dependent 3 

variable that is explained by the independent variables. Mean Absolute Error (MAE) 4 

measures the average magnitude of the errors in the predictions, without considering their 5 

direction. Root Mean Squared Error (RMSE) is the square root of the average squared errors, 6 

which assigns a much larger weight to larger errors compared with MAE. From Table 5, it 7 

can be observed that the model of unmaintained segments outperforms the model of 8 

maintained segments in terms of these three metrics for both the training and testing dataset. 9 

This is expectable since the implementation of different maintenance activities may make the 10 

deterioration of pavement performance more complicated and unpredictable. Meanwhile, the 11 

much smaller sample size of the model of maintained segments may also has some effect on 12 

its relatively lower accuracy. In addition, Figure 6 shows the two-dimensional histograms of 13 

the measured TCEI verse the predicted TCEI with the colour of the points representing the 14 

density of the points at a given location. It implies that although most of the points are 15 

densely around the line of equality, there are still some points that are not well predicted 16 

which also explains the necessity of uncertainty analysis. But overall, the performances of 17 

these two models are comparable with recently developed ML-based models (Kırbaş and 18 

Karaşahin, 2016; Madeh Piryonesi and El-Diraby, 2021; Yao et al., 2019). Moreover, the 19 

much larger dataset used in this study allow the model to handle more complex real-world 20 

problems. The ensemble learning in BNN also ensures the model to achieve higher 21 

generalization performance (Barber and Bishop, 1998; Wittek, 2014). 22 

Table 5 Model evaluation results.  23 

Dataset Evaluation metrics Unmaintained segments Maintained segments 

Training 

Sample size 137649 40759 

R-square 0.86 0.79 

MAE 3.08 5.11 

RMSE 6.21 8.50 

Testing 

Sample size 45884 13587 

R-square 0.85 0.77 

MAE 3.13 5.37 

RMSE 6.26 8.92 

 24 
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(a) Training data of unmaintained segments (b) Testing data of unmaintained segments 

  

(c) Training data of maintained segments (d) Testing data of maintained segments 

Figure 6. Measured against predicted TCEI values. 1 

4.4 Uncertainty analysis 2 

Figure 7 shows the distributions of the three types of uncertainty at different TCEI levels 3 

which were quantified by the BNN models. In general, the results of maintained segments 4 

have greater uncertainty compared with their unmaintained counterparts, but the overall 5 

trends on the boxplots are similar. Segments with lower TCEI values show larger epistemic 6 

uncertainty. One possible reason is that agencies do not allow very dense transverse cracks on 7 

the highway pavement, resulting in fewer data samples at lower TCEI values, which in turn 8 

leads to greater epistemic uncertainty. Regarding the aleatoric uncertainty, Figure 7(c) and (d) 9 

clearly show that the magnitude of data-driven uncertainty varied greatly with different TCEI 10 
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values. This reveals that the inherent noise in the measured TCEI was heterogenous. More 1 

attention need be paid to the inspection data with high aleatoric uncertainty. Moreover, since 2 

aleatoric uncertainties are more dominant than epistemic uncertainties, the distributions of 3 

total uncertainties are very similar to those of aleatoric uncertainties. Thus, it can be 4 

concluded that the uncertainty quantification enables to identify the uncertainty sources, 5 

evaluate the data quality, and estimate the prediction confidence. It also provides implications 6 

for reducing the uncertainty and improving the prediction. For example, the results of this 7 

study suggest that continuously improving the quality of inspection data and expanding the 8 

data to include more observations from segments with poor transverse cracking conditions 9 

are two potential approaches to enhance the reliability of prediction.  10 

  

(a) Epistemic uncertainties of unmaintained 

segments 

(b) Epistemic uncertainties of maintained 

segments 

  

(c) Aleatoric uncertainties of unmaintained (d) Aleatoric uncertainties of maintained 
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segments segments 

  

(e) Total uncertainties of unmaintained 

segments 

(f) Total uncertainties of maintained 

segments 

Figure 7. Epistemic, aleatoric and total uncertainties against the measured TCEI values of the 1 

entire dataset. 2 

4.5 Model interpretation 3 

4.5.1 Unmaintained segments 4 

The left side of Figure 8 shows the importance of each feature with longer bar indicating 5 

higher importance level. The current TCEI has the dominant importance among all the 6 

features making almost half of the contributions to the prediction. The right side of Figure 8 7 

indicates the feature effect. Each point corresponds to a Shapley value of a feature and an 8 

instance. The position of the points on the x-axis is determined by the Shapley value and the 9 

different colours represent the value of each feature from low to high. From this informative 10 

figure, the relationship between the value of a feature and its impact on the prediction could 11 

be preliminary inferred. For instance, a lower current TCEI value and a higher road age value 12 

would both decrease the predicted TCEI, which corresponds to more severe transverse 13 

cracking condition. However, for the features that do not meet general engineering 14 

expectations at first glance but are ranked relatively high on the importance plot, a further in-15 

depth exploration needs to be performed to check whether it is caused by the interaction 16 

effect between features or the few abnormal instances. Meanwhile, some features of interest 17 

also deserve further examination. 18 



22 

 

 1 

Figure 8. Results of feature importance and feature effect for unmaintained segments. 2 

In order to gain an insight into those unexpected or unclear feature effects, a feature 3 

dependency analysis was conducted by plotting the variation in SHAP value with the change 4 

in the feature value. As SHAP value characterizes the marginal contribution of a feature to 5 

the change in the model output, these figures represent the change in the model output as the 6 

feature changes (Lundberg and Lee, 2017). By colouring with another feature, the interaction 7 

effect could be revealed. 8 

 Two features were selected as the examples. Figure 9(a) shows that the strongest 9 

interacting feature of the number of single-axle loads is its corresponding overload rate. Red 10 

points represent higher values of single-axle overload rate while blue points represent lower 11 

ones. Focusing on the red points, it can be found that under high overload rate, larger amount 12 
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of single-axle loads generally lead to lower predicted TCEI. However, when the overload rate 1 

is less than 30%, a larger number of single-axle loads does not necessarily decrease the 2 

prediction. Moreover, in Figure 8, asphalt layer material is represented as a dummy variable, 3 

so its effect on the model output is not clear. In this study, asphalt layer material refers to the 4 

combination of the aggregate gradation of the three asphalt layers due to no reliable material 5 

property data. SMA is a gap-graded mixture, whereas AC, AK and SUP represent three 6 

different dense-graded mixtures. ARAC, OGFC and PAC denote asphalt-rubber concrete, 7 

open-graded friction course mixture and porous asphalt concrete, respectively. The numbers, 8 

such as 13, 16, 20, and 25, signify the nominal maximum aggregate size in millimetres. 9 

Figure 9(b) illustrates the interaction of asphalt layer materials with SBS modified asphalt 10 

layer thickness. Among all the combinations with an SBS modified asphalt layer thickness of 11 

about 10 cm (purple points), the predicted TCEI corresponding to the OGFC-13 upper asphalt 12 

layer tends to be the lowest. However, when the SBS modified asphalt layer thickness is 13 

between 0 to 5 cm (blue points), the combinations of AK-16+AC-25+AC-25 and SMA-14 

13+SUP-25+SUP-25 seem to have the largest negative contribution to the model output. All 15 

these demonstrate that looking at one single feature is usually not sufficient. 16 

 

 

(a) Number of single-axle loads vs Single-

axle overloading rate 

(b) Asphalt layer materials vs SBS modified 

asphalt layer thickness 

Figure 9. Visualization of feature interaction effect. 17 

Furthermore, it is interesting to notice that a higher mean temperature seems to lower 18 
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the predicted TCEI. While digging into how mean temperature interacts with others, the 1 

current TCEI, road age, and mean MADT were found to have strong interaction effect with it. 2 

More specifically, the blue points in Figure 10(a) and red points in Figure 10(b) and (c) 3 

suggest that a higher mean temperature has greater adverse impact on the transverse cracking 4 

of asphalt pavement for road segments with lower current TCEI, larger road age, or higher 5 

traffic volume. A possible reason is that exposure to a relatively high mean temperature 6 

would significantly accelerate the aging of asphalt mixtures and asphalt binder hardening 7 

(Braswell et al., 2020). As a result, the crack resistance of asphalt pavement becomes poorer. 8 

When poor current transverse cracking condition, large road age, or high traffic volume is 9 

combined with high mean temperature, the aged pavement materials are more prone to 10 

cracking. 11 

  

(a) Mean temperature vs Current TCEI (b) Mean temperature vs Pavement age 

 

(c) Mean temperature vs Mean MADT 

Figure 10. Visualization of interacting features of mean temperature. 12 
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4.5.2 Maintained segments 1 

Figure 11 shows the feature importance and feature effect on model output for maintained 2 

segments. Current TCEI is still the most important feature. Some unique features of 3 

maintenance segments, such as M&R treatment and pre-treatment TCEI, are also of great 4 

importance. 5 

 6 

Figure 11. Results of feature importance and feature effect for maintained segments. 7 

M&R treatment is the third important feature of the maintained model. Figure 12 8 

shows the distribution of the contribution of each M&R treatment to the model output, 9 

covering about 78% of the total M&R mileage in Jiangsu Province. Each M&R treatment is 10 

represented by the M&R type and the corresponding M&R materials. In addition to the 11 

abbreviations previously defined, EAC, M., M&F, MFU, MFUM, MFUML represent a gap 12 
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graded gradation, SBS modified bitumen, mill and fill, mill and fill the upper asphalt layer, 1 

mill and fill the upper and middle asphalt layer, and mill and fill the entire asphalt layer, 2 

respectively. “Fine M&F” and “thin overlay” means that the milling depth or the overlay 3 

thickness is no more than 2.5 cm. “Fine M&F and overlay” refers to milling the existing 4 

asphalt layer of no more than 2.5 cm, resurfacing it with new asphalt mixtures, and then 5 

adding an asphalt overlay of 2~4 cm on the resurfaced pavement. Its only difference with 6 

“MFU and overlay” is the milling and resurfacing depth. It is apparent from Figure 12 that 7 

seal coating, micro-surfacing, hot-in-place rehabilitation, and fine M&F significantly 8 

decrease the predicted TCEI while the two MFUML treatments lead to the highest SHAP 9 

values. Regarding the other treatments, there is no obvious difference mainly because of the 10 

complicated influence of various factors on the effects of M&R treatments. Therefore, they 11 

need to be discussed case by case.  12 
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Figure 12. The distributions of SHAP values of M&R treatments. 1 

Additionally, an unexpected positive relationship between ESAL and model output 2 

was found in Figure 11. To shed further light on this effect, the interaction between ESAL 3 

and treatment age was plotted in Figure 13(a). The red points suggest that a larger ESAL 4 

would noticeably increase the predicted TCEI when the treatment has served for more than 4 5 

years which is somewhat counterintuitive. However, it should be noted that the models in this 6 

study are using the TCEI value of the current year to predict that of the following year. Given 7 

the dominant importance of the current TCEI, most of the conclusions need to be drawn on a 8 

basis of equivalent current TCEI values. Otherwise, the difference in the model output 9 

induced by the different values of current TCEI already overwhelms the impact of other 10 

features. Meanwhile, ESAL refers to the cumulative traffic loads that have been experienced 11 

by the current road segment. Thus, the conclusion should be rephrased as: If the road segment 12 

with the same transverse cracking condition has been subjected to more accumulative traffic 13 

loads, it is more likely that the predicted TCEI value will be higher. This may be due to the 14 

better maintenance effect of the road segment that bear greater traffic loads but reach the 15 

same transverse cracking condition. Moreover, this advantage would become more 16 

pronounced when the treatment age is over 4 years. 17 

The interaction effect between R_greater_or_equal_10 mm and current TCEI was 18 

also examined. It can be observed from Figure 13(b) that when the current TCEI is lower 19 

than 80, a higher ratio of days with 24-hour precipitation greater than or equal to 10 mm will 20 

remarkably decline the predicted TCEI value, which might arise from water infiltrating into 21 

the cracked asphalt pavement and further exacerbating the cracking.  22 
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(a) ESAL vs Treatment age 
(b) R_greater_or_equal_10 mm/day vs 

Current TCEI 

Figure 13. Visualization of feature interaction effect. 1 

Thermal cracking is also a major distress mode in semi-rigid base asphalt pavement 2 

caused by the contraction and expansion of the asphalt mixture under extreme temperature 3 

changes. Therefore, the top interacting features of extreme temperature range were 4 

investigated, as exhibited in Figure 14. Negative correlations could be clearly seen by 5 

observing the blue points in Figure 14(a) and (c) and the red points in Figure 14(b). There is a 6 

clear trend that with a higher truck ratio, higher ESAL increment or lower road age, the larger 7 

extreme temperature range reduces the predicted TCEI. In other words, these conditions 8 

make the effect of larger extreme temperature ranges more unfavourable to transverse 9 

cracking. It implies that heavy traffic load may aggravate the thermal cracking of asphalt 10 

pavement, and thermal cracking could be the main form of early transverse cracks on semi-11 

rigid base asphalt pavement. 12 

  

(a) Extreme temperature range vs Ratio of 

passenger cars to trucks 

(b) Extreme temperature range vs ESAL 

increment 
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(c) Extreme temperature range vs Road age 

Figure 14. Visualization of interacting features of extreme temperature range. 1 

5 Conclusions 2 

Pavement performance model constitutes an important basis for maintenance decision-3 

making and budget allocation. While previous studies tended to only focus on model 4 

accuracy, the ability of the model to estimate the uncertainties and interpret the results cannot 5 

be ignored. As a result, this study developed a modelling framework for pavement 6 

performance evolution based on state-of-the-art ML techniques. The importance of feature 7 

selection, uncertainty analysis and model interpretation corresponding to the three modelling 8 

stages: pre-modelling, modelling and post-modelling, was emphasized. BorutaShap algorithm, 9 

Bayesian neural network and SHAP approach were proved to be powerful tools in dealing 10 

with these three tasks. 11 

A case study of predicting the pavement transverse cracking was conducted to 12 

demonstrate the application and performance of the proposed framework. It was found that 13 

combining the pavement engineering expertise and the automatic feature selection method 14 

BorutaShap can efficiently determine the optimal features for empirical pavement 15 

performance modelling. A subset of 26 and 27 features that accounts for the pavement age, 16 

material, structure, traffic load, climate condition, maintenance history, etc., was selected for 17 

unmaintained and maintained models, respectively.  18 

Two BNN models were established and proved to be accurate in predicting TCEI 19 

values, with the R-square, MAE and RMSE of 0.86, 3.08, 6.21 for unmaintained segments 20 
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and 0.79, 5.11, 8.50 for maintained segments, respectively. Both model-driven and data-1 

driven uncertainties were estimated. Aleatoric uncertainty was much larger than epistemic 2 

uncertainty, indicating that poor data quality played a more dominant role in the total 3 

uncertainty. The greater epistemic uncertainty at lower TCEI values also revealed that the 4 

developed BNN models have less confidence in predicting lower TCEI values. Thus, it was 5 

recommended that practitioners should be careful when using the models to predict possible 6 

poor transverse cracking conditions. In addition, further improvement of the predictive power 7 

of the model mainly relies on the improvement of the data quality.  8 

Interesting findings were also obtained from the interpretation of model output. For 9 

example, the explanation of unmaintained model indicated that high mean temperature has 10 

greater adverse impact on the transverse cracking of asphalt pavement for road segments with 11 

low current TCEI, high road age, or high traffic volume, which may be caused by the 12 

accelerated aging of asphalt mixtures in hotter areas. The results of maintained model showed 13 

that seal coating, micro-surfacing, hot-in-place rehabilitation, and fine M&F significantly 14 

decrease the predicted TCEI while mill & fill the entire asphalt layer leads to the largest 15 

model output. It also implied that heavy traffic load may aggravate the thermal cracking of 16 

asphalt pavement, and thermal cracking could be the main form of early transverse cracks in 17 

semi-rigid base asphalt pavement. Therefore, exploring the additional combined feature effect 18 

after accounting for the individual feature effect is necessary and beneficial for practitioners 19 

to understand the mechanism of pavement deterioration. 20 

Finally, despite the contributions this study has made, there are still opportunities to 21 

further extend this research. First, the proposed framework has been only applied to the 22 

prediction of transverse cracks. Further studies are needed for its application to other 23 

pavement performance indicators. Second, only some features were investigated in this study. 24 

Hence, it is better to explore the impact of other features as well so that practitioners can get 25 

the whole picture of the impact of different factors on pavement deterioration. Finally, when 26 

more data are collected or the quality of data is improved, the model could also be upgraded 27 

by allowing it to continue learning. 28 
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