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ABSTRACT 1 

 2 

Despite the recognized environmental and health benefits of cycling, bicyclists are vulnerable 3 

to severe injuries and mortalities in the road crashes. Therefore, it is of paramount importance 4 

to identify the possible factors that may affect the bicycle crash risk. However, reliable 5 

estimates of bicycle exposure are often not available for the safety risk evaluation of different 6 

entities. The objective of this study is to advance the estimation of exposure in the bicycle 7 

safety analysis, using the detailed origin-destination data of each trip of the London public 8 

bicycle rental system. Two approaches including shortest path method (SPM) and weighted 9 

shortest path method (WSPM) are proposed to model the bicycle path choice and to estimate 10 

the bicycle distance traveled (BDT). Then, the bicycle crash frequency models that adopt BDTs 11 

as the exposure estimated using SPM and three WSPMs are developed. Three exposure 12 

measures including bicycle trips, bicycle time traveled (BTT), and BDT are assessed. Results 13 

indicate that the bicycle crash frequency models that incorporate the BDTs using WSPM have 14 

superior model fit. Moreover, the bicycle crash frequency model that incorporate the BDTs as 15 

the exposure outperforms those that incorporate the bicycle trips and BTT as the exposures. 16 

Findings of current study are indicative to the development of bicycle crash frequency model. 17 

Moreover, it should enhance the understanding on the roles of environmental, traffic and 18 

bicyclist factors in bicycle crash risk, based on appropriate estimates of bicycle exposures. 19 

Therefore, it should be useful to the transport planners and engineers for the development of 20 

bicycle infrastructures that can improve the overall bicycle safety in the long run.  21 

 22 

Keywords: Bicycle safety, exposure, bicycle distance traveled, bicycle crash prediction model, 23 

shortest path method  24 

 25 

  26 
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1. INTRODUCTION 1 

 2 

Cycling has been increasingly promoted as a sustainable transport mode in many cities round 3 

the world. It does not only alleviate the traffic congestion and reduce the vehicle emissions, but 4 

also improves the health and well-being of the society (Menghini et al., 2010; Guo et al., 2019). 5 

For example, about 25% of the trips in Central London were made by bicycles in 2018. In 6 

Torrington Place, the bicycle share was 65% (Transport for London, 2018). Despite that, 7 

bicyclists are vulnerable to severe injuries and mortalities in the road crashes. As reported by 8 

Transport for London (2019), 16% of road casualties and 20% of road fatalities were bicyclists 9 

respectively.  10 

 11 

Bicycle safety has received more and more attention in recent years. Studies have been 12 

conducted to identify the possible factors including built environment and bicycle facilities 13 

(Guo et al., 2018b; Wei and Lovegrove., 2013; Chen et al.,2016), population and household 14 

characteristics (Ghekiere et al., 2014; Vanparijs et al., 2015; Guo et al., 2018a), land use (Chen, 15 

2015) and traffic attributes (Wei and Lovegrove., 2013) that may affect the bicycle safety. To 16 

better quantify the potential of bicycle crash involvement and interpret the risk of different 17 

entities, it is necessary to measure the crash exposure. In previous studies, bicycle exposures 18 

adopted were bicycle flow counts, bicycle trips (Miranda-Moreno et al., 2011), bicycle time 19 

traveled (BTT), and bicycle distance traveled (BDT) (Mindell et al., 2012; Poulos et al., 2015) 20 

which were measured using retrospective and prospective surveys. Regardless of sampling 21 

framework and survey design, data may be subject to recall and selection biases. In addition, 22 

an extensive household travel survey can be expensive and time-consuming. In a recent study, 23 

the transaction records of the London public bicycle rental system were used to estimate the 24 

bicycle crash exposure. Despite this system covered most bicycle trips in London, exposure 25 

measures were limited to bicycle trips and BTT (Ding et al., 2020). 26 

 27 

In London, two cycle superhighways were introduced in 2010. They provided the faster, safer, 28 

and more direct routes for the bicyclists. The cycle superhighways are completely separated 29 

from the trafficable roads and footpaths. In addition, segregated crossings are provided at the 30 
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intersections (Rayaprolu et al., 2020). The minimum width is 4 meters for a bi-directional cycle 1 

superhighway (European Cyclists’ Federation, 2014). Currently, there are six cycle 2 

superhighways in London (Li et al., 2018). As illustrated in Figure 1, the total road length in 3 

London is 6,139 km. Cycle lanes (known as ‘cycleway’) are present on 8.1% (i.e. 496 km) of 4 

the roads. Overall, the total length of cycle superhighways in London is 77 km. Since the 5 

bicyclists do not only consider the path distance, but also the perceived safety and level-of-6 

service when choosing the routes, it is expected that one would prefer the cycle superhighway 7 

to the traditional cycleway. The roads that have no cycle lane are expected to be the least 8 

preferred. 9 

 10 

 11 

Figure 1. Illustration of London road network  12 

 13 

In this study, the bicycle routing will be modeled, and the BDT will be estimated based on the 14 

origin and destination data of each trip of the London public bicycle rental system. Different 15 

from the vehicle drivers, the bicyclists generally consider multiple objectives including travel 16 

time and safety when choosing the route (Ehrgott et al., 2012). Two path analysis models: (a) 17 

the simple shortest path model (SPM) that incorporates the effect of path distance only; and (b) 18 
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the weighted shortest path model (WSPM) that incorporates the effects of path distance and 1 

perceived safety level, in the route choices are proposed in this study. Then, the negative 2 

binomial regression models will be applied to assess the performances of the proposed bicycle 3 

path analysis models. Moreover, the associations between bicycle crash, various exposure 4 

measures (bicycle trips, BDT and BTT) and potential influencing factors will be estimated. 5 

Findings of this study would indicate the suitability of different bicycle exposure measures. 6 

Also, it can improve the understanding on the role of exposure in bicycle safety analysis. 7 

 8 

The paper is organized as follows. Literature review is presented in Section 2. Section 3 and 9 

Section 4 describes the model formulation and method of data collection. The analysis results 10 

are then given in Section 5. Finally, the policy implications are discussed in Section 6 and the 11 

concluding remarks are given in Section 7. 12 

 13 

2. LITERATURE REVIEW 14 

 15 

2.1 Bicycle safety covariates 16 

 17 

Generally, the factors that affect the bicycle safety can be classified into three categories: 18 

environmental, traffic and human factors. For the environmental factors, land use, built 19 

environment and road infrastructures can affect the bicycle safety. For example, bicycle crash 20 

rates of the industrial and commercial areas are often higher than that of other land uses (Chen, 21 

2015; Narayanamoorthy et al., 2013). In addition, the landscape, terrain and weather conditions 22 

can also affect the bicycle crash frequency (Vanparijs et al., 2015; Xing et al., 2019; Zhai et al., 23 

2019). For the effect of traffic management, bicycle crash frequency is associated with the 24 

intersection density (Pulugurtha and Thakur, 2015; Wei and Lovegrove., 2013; Siddiqui et al., 25 

2012; Saad et al., 2019; Lee et al., 2019a), presence of cycle lane (Hamann and Peek-Asa, 2013; 26 

Wei and Lovegrove.,2013; Reynolds et al., 2009; Bai et al., 2017; Fournier et al., 2019), and 27 

presence of traffic signal (Guo et al., 2020; Chen,2015; Deliali et al., 2020). For the effect of 28 

human factor, personal and household characteristics are associated with the crash involvement 29 

of bicyclists. For example, crash involvement rates of younger and older bicyclists are higher 30 
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than their counterparts. This can be attributed to the variation in physiological capability and 1 

risk perception among individual bicyclists (Ghekiere et al., 2014; Siddiqui et al., 2012; Tin 2 

Tin et al., 2010; Rodgers, 1995; Lee et al., 2019b). Also, the fatality risk of male bicyclists is 3 

remarkably higher than that of female bicyclists (Wei and Lovegrove., 2013; Vanparijs et al., 4 

2015; Guo et al., 2018b). Furthermore, household income can also affect the bicycle crash risk 5 

(Siddiqui et al., 2012; Guo et al.; 2018a). 6 

 7 

For the association measure between bicycle crash frequency and possible influencing factors, 8 

it is necessary to consider the exposure to facilitate the accurate assessment and effective 9 

comparison. For example, cycling activities can vary across different built environments and 10 

road infrastructures. Unlike the vehicle crash analysis, automated bicycle counts are often not 11 

available for the estimation of bicycle exposure. In previous studies, population and population 12 

density were used to proxy the bicycle crash exposure at the macroscopic level (Wang et al., 13 

2017; Lee et al., 2015; Cottrill and Thakuriah., 2010). Alternately, some studies used the total 14 

road length and length of cycle path to represent the exposure (Siddiqui et al., 2012; Wei and 15 

Lovegrove., 2013). However, these studies did not account for the differences in traffic flow 16 

between different roads and cycling activities between different population groups. To get rid 17 

of this, some studies adopted bicycle trips (Ding et al., 2020; Fournier et al., 2019; Miranda-18 

Moreno et al., 2011; Guo et al., 2018b), vehicular traffic volume (Beck et al., 2007; Hamann 19 

and Peek-Asa, 2013; Wei and Lovegrove., 2013), BTT and BDT (Ding et al., 2020; Mindell et 20 

al., 2012; Poulos et al., 2015) as the exposure measure in bicycle crash analysis. 21 

 22 

To measure the bicycle exposure, a possible way is to investigate the travel behavior (in term 23 

of bicycle trip, BTT and BDT) of specific bicyclist group using the questionnaire survey 24 

(Poulos et al., 2015). However, accuracies of the survey data, especially for time and distance 25 

traveled, are subject to recall bias. The BDT can be over- or underestimated. In contrast, bicycle 26 

trips, origin and destination data are more reliable. Therefore, it may be possible to estimate 27 

the BDT based on the shortest path between the origin and destination of each trip (Zacharias, 28 

2005; Pucher and Buehler, 2006; Larsen and El-Geneidy, 2011). 29 
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 1 

2.2 Factors affecting bicycle route choice  2 

 3 

For the route choice decision of motor vehicle drivers, common influencing factors are 4 

monetary cost, travel time and reliability. However, for the route choice decision of bicyclists, 5 

some other factors including road environment and level of service should also be considered 6 

(Ehrgott et al., 2012; Yang and Mesbah., 2013; Chen et al., 2017; Sener et al., 2009). For 7 

example, studies indicate that bicyclists tend to choose the routes that have less traffic signals 8 

and stop signs to avoid frequent stop-and-go (Heinen et al., 2010; Menghini et al., 2010; 9 

Stinson and Bhat., 2003). In addition, bicyclists tend to avoid the interactions with pedestrians 10 

and motor vehicles by choosing the routes that have less crosswalks and roadside parking 11 

(Stinson and Bhat., 2003; Yang and Mesbah., 2013). Furthermore, road geometric design 12 

including gradient and crossfall and road surface condition are also associated with the bicycle 13 

route choice (Sensor et al., 2009; Chen et al., 2017; Casello and Usyukov., 2014).  14 

 15 

Nevertheless, the perceived safety risk can play an important role, as much as distance and 16 

time, in the bicycle route choice (Hopkinson and Wardman., 1996; Broach et al, 2012; Ehrgott 17 

et al, 2012). Possible factors that may affect the perceived safety risk of bicyclists are vehicular 18 

traffic flow and speed (Menghini et al., 2010; Gonza´lez et al., 2016). For instance, bicyclists 19 

tend to ride on the roads that have less vehicular traffic and lower speed limit (Sener et al., 20 

2009). In addition, presence of bicycle infrastructures and facilities, including cycle lanes, 21 

cycle tracks, intersection crossing markings and corner refuge islands, is associated with the 22 

increase in bicycle use (Barnes and Thompson., 2006; Sener et al., 2009; Deliali et al., 2020; 23 

Ding et al., 2021). Figure 2 depicts the typical bicycle facilities including (a) segregated cycle 24 

lane, (b) designated cycle lane, (c) shared bus and cycle lane, and (d) shared cycle lane and 25 

footpath. Several studies were conducted to examine the relationship between bicycle facility 26 

and bicycle route choice (Broach et al., 2012). Results indicate that bicyclists generally prefer 27 

segregated cycle lane to designated cycle lane. The shared cycle lanes are the least preferred 28 

choice (Jensen., 2007; Winters and Teschke., 2010). Moreover, directness and connectivity of 29 

the bicycle infrastructures can also affect the bicycle use. It is necessary to provide a direct and 30 
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uninterrupted route for bicyclists to reach the desired destinations (Stinson and Bath, 2003). 1 

Last but not least, presence of protected intersections can improve the safety perception of 2 

bicyclists since the vehicular traffic are physically separated from the bicycles (Deliali et al., 3 

2020).  4 

 5 

(a) Segregated cycle lane 
(Source: 

http://www.walkbikecupertino.org/new_wbc/index.ph

p/2019/02/20/separated-bicycle-lanes-coming-to-

mcclellan-road/)   

(b) Designated cycle lane 
(Source: https://ourhamilton.co.nz/on-the-

move/council-take-steps-to-improve-cycle-lane-

safety/ 

(c) Shared bus and cycle lane 
(Source: https://future-

economics.com/2019/03/24/bike-bus-lanes-can-i-

interest-you-in-a-time-share/) 

(d) Shared cycle lane and footpath 
(Source: 
https://www.brooklynpaper.com/breaking-away-

city-panel-green-lights-protected-pulaski-bike-

lane/) 

Figure 2. Illustrations of typical bicycle facilities 6 

 7 
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2.3 The current paper  1 

 2 

Findings of previous studies indicate that bicycle trips, BTT and BDT are commonly used to 3 

proxy the exposure in bicycle safety analysis. Availability of extensive, accurate and reliable 4 

bicycle trip data is crucial. To this end, detailed transaction records of a public bicycle rental 5 

system were used to estimate the exposures (Ding et al., 2020). However, information on BDT 6 

is not available in the dataset. In this study, four path analysis models will be developed, i.e., 7 

shortest path method (SPM), weighted shortest path method 1 (WSPM1), weighted shortest 8 

path method 2 (WSPM2), and weighted shortest path method 3 (WSPM3), to model the 9 

bicyclist route choice and to estimate the BDT. Furthermore, the roles of three exposure 10 

measures, i.e. bicycle trips, BTT and BDT, that are played in the bicycle safety analysis would 11 

be investigated. 12 

 13 

3 METHOD 14 

 15 

In this study, the bicycle transaction records obtained from the London public bicycle rental 16 

system - Santander bikes are used to estimate the BDT. The dataset records the information on 17 

start time, end time, origin and destination of each bicycle trip. Then, the path of each trip 18 

would be determined using the SPM method. Considering the preferences of bicyclists to 19 

different bicycle infrastructures, the WSPM is also proposed to model the bicycle path. The 20 

model formulations of SPM and WSPM are given in the following sub-sections. 21 

 22 

3.1 Bicycle path analysis 23 

 24 

3.1.1 Simple shortest path model (SPM)  25 

 26 

In this model, the shortest path is determined using the Dijkstra’s algorithm, assuming that a 27 

bicyclist would consider the path distance only in the route choice decision (Deng et at., 2012; 28 

Wang., 2012; Sedeño-noda and Colebrook., 2019; Liu and Chen., 2010). The key steps are 29 

given as follows. 30 
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 1 

Step 1: Let V denote the set of vertices of the road network in the algorithm. Denote Cij as the 2 

weight that is assigned to the arc connecting Vi and Vj given by 3 

 4 

𝐶 ൌ ൜
∞, if no path between 𝑉 and 𝑉 

𝑑, otherwise
 5 

where di denotes the distance of the shortest path originated from the vertex i, and is given by 6 

𝑑 ൌ 𝐿 7 

where Lij is the connection distance between Vi and Vj. 8 

 9 

Step 2: Let Vs be the source vertex which is labeled. Estimate the distance between Vs and other 10 

unlabeled vertices one by one, then an end vertex Vp will be identified when 11 

𝑑 ൌ 𝑚𝑖𝑛൛𝑑ห𝑉 ∈ 𝑉 െ 𝑆ൟ 12 

where dp is the distance of the shortest path from the source vertex to the end vertex, S is the 13 

set of labeled vertices of the shortest path, and (V-S) refers to all unlabeled vertices that are not 14 

‘visited’ yet. 15 

 16 

Step 3: When Vp = Vt, then dp is the distance of the shortest path from Vs to the end point Vt, 17 

and the searching process can be stopped. Otherwise, assess another end point by, 18 

𝑑 ൌ 𝑚𝑖𝑛൛𝑑, 𝑑  𝑙ൟ, 𝑉 ∈ 𝑉 െ 𝑆, 𝑉 ∈ 𝑆 19 

 20 

Step 4: Repeat step 2 and step 3 until Vp = Vt. 21 

 22 

3.1.2 Weighted shortest path model (WSPM)  23 

 24 

As mentioned above, not only the path distance, but also the perceived safety and level of 25 

service are considered in the bicycle route choice. In this study, it is assumed that cycle 26 

superhighway and cycleway are preferred by the bicyclists. Therefore, a weighted shortest path 27 

method (WSPM) is proposed, with which different weights are assigned to cycle superhighway, 28 

cycleway and other roads (that have no cycle lanes) respectively in the algorithm. As illustrated 29 
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in Table 1, three different scenarios of weight allocation are considered: (i) WSPM1: Cycle 1 

superhighway is preferred, and there is no difference between cycleway and other roads; (ii) 2 

WSPM2: Cycle superhighway is the most preferred, followed by the cycleway, and other roads 3 

are the least preferred; (iii) WSPM3: Similar to WSPM2, just the differences in the weights are 4 

magnified. Figure 3 shows an example of the bicycle path choice based on different WSPMs. 5 

 6 

 Table 1. Setting of different weighted shortest path model 7 

Model   

Road type 

(A) Cycle 

superhighway 
 (B) Cycleway  (C) Other roads 

WSPM1 WA   > WB = WC 

WSPM2 WA > WB > WC 

WSPM3 WA >> WB >> WC 

 8 

(a) WSPM1 versus WSPM2 (b) WSPM2 versus WSPM3 

Figure 3. Bicycle path choices using different WSPM  9 

 10 

3.2 Bicycle safety analysis 11 

 12 

Poisson regression method is often applied to model the crash frequency because of the random 13 

and non-negative nature of crash data. The mean and variance of Poisson distribution are 14 
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assumed to be equal. When the variance is greater than the mean (i.e., over-dispersion), the 1 

negative binomial (NB) regression approach should be used (Mannering et al., 2016; Wong et 2 

al., 2007; Lee et al., 2019c; Lord and Mannering., 2010; Lord., 2006; Lord and Bonneson., 3 

2007). 4 

 5 

In this study, to evaluate the suitability of bicycle crash exposure, the BDTs estimated based 6 

on the SPM and WSPM would be incorporated into the bicycle crash prediction models using 7 

the Poisson and NB regression approaches. 8 

 9 

For the Poisson regression model, probability of having y bicycle crashes in unit i at time t can 10 

be given by, 11 

𝑃ሺy௧|𝜇௧ሻ ൌ
exp ሺെ𝜇௧ሻሺ𝜇௧ሻ୷

y௧!
 12 

where Eሺy௧ሻ ൌ 𝜇௧ be the expected number of bicycle crashes. 13 

 14 

On the other hand, the NB regression model can be derived by incorporating an error term that 15 

follows the gamma distribution into the probability density function, which is given by, 16 

𝑃ሺy௧ሻ ൌ
Γሺy௧  𝛼ିଵሻ

y௧Γሺ𝛼ିଵሻ
ቆ

𝛼ିଵ

𝛼ିଵ  𝜇୧୲
ቇ

ఈషభ

൬
𝜇௧

𝛼ିଵ  𝜇௧
൰

୷

 17 

where Γሺ∙ሻ is the gamma distribution with 𝛼 being the over-dispersion parameter.  18 

 19 

To assess the goodness-of-fit of the bicycle crash prediction models, Akaike information 20 

criterion (AIC) and Bayesian information criterion (BIC) are used. AIC and BIC are given as 21 

follows 22 

𝐴𝐼𝐶 ൌ  െ2 lnሺ𝐿ሻ  2𝑘 and 𝐵𝐼𝐶 ൌ lnሺ𝑛ሻ𝑘 െ 2ln ሺ𝐿ሻ 23 

 24 

where 𝐿 is the maximum likelihood function, 𝑛 is the number of observations and 𝑘 is the 25 

number of parameters. 26 

 27 

4 Data 28 

 29 
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In this study, the observation unit of bicycle crash analysis is the Lower Super Output Area 1 

(LSOA) in London. LSOA is the primary unit for population census, public administration, and 2 

election in the United Kingdom. On average, each LSOA has a population of 1,500 people. 3 

Explanatory variables considered are land use, population characteristics, traffic flow and road 4 

infrastructure. 5 

 6 

Bicycle crash data in the period between 2015 and 2016 are obtained from the Department for 7 

Transport (DfT)’s database. For each crash, information on road type, speed limit, lighting and 8 

weather condition, crash location, injury severity, and involvement of vehicles and other road 9 

users (i.e. pedestrians, bicycles, motor vehicles, etc.) are available. Also, information on the 10 

road network characteristics (i.e. road class and speed limit, etc.), traffic flow and traffic 11 

composition (i.e. private car, taxi, bus and goods vehicle, etc.) of all public roads are collected 12 

from the DfT’s database. Therefore, the vehicle-kilometer (VKT) can be estimated. 13 

 14 

In addition, information on the population profile, which are aggregated at the LSOA level, are 15 

available in the Office for National Statistics (ONS)’s database. For example, information on 16 

population and population density, poverty (i.e. Index of Multiple Deprivation, IMD), gender 17 

and age distribution are available. Moreover, information on land use (i.e. residential, 18 

commercial, and green area, etc.) are extracted from the ONS’s database. 19 

 20 

Furthermore, to examine the bicyclist travel behavior (i.e. trips and time), the transaction 21 

records of the London Public Bicycle Rental system - Santander Bike – in the period between 22 

2015 and 2016 are used. As shown in Table 2, for each transaction, time duration, start time 23 

and end time, and origin and destination are recorded. 24 

Table 2. Sample of bicycle rental transaction records 25 

Transection 

ID 

Duration 

(minute) 
Bicycle 

ID 
End time 

Station ID 

(Destination)
Start time 

Station ID 

(Origin) 

40,346,512 120 7793 
04/01/2015 

00:03 
450 

04/01/2015 

00:01 
443 

40,346,519 180 4643 
04/01/2015 

00:06 
701 

04/01/2015 

00:03 
680 
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40,346,508 360 12019 
04/01/2015 

00:06 
424 

04/01/2015 

00:00 
368 

40,346,520 240 9978 
04/01/2015 

00:08 
313 

04/01/2015 

00:04 
98 

…… …… …… …… …… …… …… 

 1 

The area of interest of the current study is illustrated in Figure 4. The study area is 49.1 km2 2 

and covers several Inner London Boroughs including City of London, Islington, Hackney, 3 

Tower Hamlets and Westminster. There are more than 750 docking stations in the study area. 4 

In 2017, the Santander Bike constituted about 74% of overall bicycle trips in London (TfL, 5 

2018). The observation unit - LSOA is adopted to better characterize the spatial distributions 6 

of the population, land use and traffic characteristics. A total of 270 LSOAs are selected. The 7 

data from multiple sources are mapped to the corresponding LSOA using the geographical 8 

information system (GIS) approach. Table 3 summarizes the characteristics of the LSOAs. 9 

 10 

Figure 4. Location of the study area 11 

Table 3. Summary statistics of the sample 12 

Category Factor Attribute Mean Std. Dev. Min. Max. 

Outcome 
Frequency of 
bicycle crash 

5.13 5.83 1 38 

Land use Proportion for 0.15 0.07 0.02 0.36 
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residential 
Proportion for 
commercial 

0.25 0.14 0.01 0.56 

Proportion for green 
area 

0.28 0.16 0.03 0.77 

Proportion for 
transport facilities 

0.32 0.16 0.03 0.77 

Population 
characteristics 

Population density 
(per km2) 

14.28 7.36 0.86 39.77 

Population 1298 464 1077 3351 

Gender 

Proportion 
of male 

0.52 0.03 0.45 0.65 

Proportion 
of female 

0.48 0.04 0.35 0.55 

Age 

Proportion 
of age 
above 64 

0.11 0.05 0.02 0.3 

Proportion 
of others 

0.89 0.05 0.7 0.98 

IMD 24.49 10.46 6.06 53.20 

Exposure 

Annual BTT (hour) 10297 13434 163 14912 

Annual bicycle trips 28035 28748 544 236240 

VKT 45849 78965 51 712666 

Note: Number of observations is 270 1 

 2 

5 RESULTS 3 

 4 

5.1 Estimation of BDTs 5 

 6 

Figure 5 and Table 4 illustrate the results of BDT estimations using SPM and WSPMs 7 

respectively. As depicted in Figure 5(a), the BDTs seem evenly distributed across the whole 8 

study area, when the simple shortest path method is used. As expected, when higher weights 9 

are assigned to the cycleway (i.e. WSPM2) and cycle superhighway (i.e. WSPM3) in the 10 

bicycle path choice analysis, the BDTs would concentrate to the areas that have more cycleway 11 

(see Figure 5(b)) and cycle superhighway (see Figure 5(c)). Among the three WPSMs, as 12 

shown in Table 4, the total estimated BDT is the highest (annual average bicycle distance 13 

traveled of 159,600 km per unit) for the WPSM3, followed by the WPSM2 (150,100 km per 14 
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unit) and then the WPSM1 (146,600 km per unit). This could be attributed to the higher 1 

operating speeds of cycle superhighway and cycleway. Therefore, the total estimated BDT 2 

tends to be higher given the same travel time. 3 

 4 

  

(a) SPM (b) WSPM1 

  

(c) WSPM2 (d) WSPM3 

Figure 5. Distributions of BDTs by LSOA 5 

Table 4. Estimation results of BDTs by LSOA (103 km) 6 

Model Mean Standard Deviation Maximum  Minimum  
SPM 133.6 145.3  1,351.4  0.3  
WSPM1 146.6 158.6  1,368.6  0.3  

WSPM2 150.1  162.3  1,376.7  0.4  

WSPM3 159.6  173.4  1,582.3  0.5  

 7 

5.2 Bicycle crash analysis 8 

 9 

To eliminate the heteroscedasticity among the variables, variables including population and 10 
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VKT are logarithmically transformed prior to the parameter estimation (Quddus, 2008). On the 1 

other hand, the multi-collinearity test is conducted to assess the correlations between the 2 

independent variables. Results indicate that the variance inflation factor (VIF) are less than five 3 

for all independent variables. Therefore, all candidate variables are considered appropriate. 4 

  5 

5.2.1 BDTs as exposure (SPM versus WSPM) 6 

 7 

Since the over-dispersion is prevalent for the data (mean = 5.13 and variance = 33.98), the 8 

bicycle crash prediction models, with which the BDTs are used to proxy the bicycle crash 9 

exposure, are established using the NB regression model. Table 5 illustrates the model 10 

estimation results. As shown in Table 5, bicycle crash prediction models that incorporate the 11 

BDTs estimated by the WSPM are superior to that using the SPM, in accordance with the values 12 

of AIC and BIC, regardless of the weights assigned to cycleway and cycle superhighway. 13 

WSPM2 has the best model fit, with the lowest values of AIC (1268.48) and BIC (1305.46). In 14 

addition, differences in AIC and BIC between WSPM2 and SPM are all greater than 10 15 

(Fabozzi et al., 2014). This implies that it is appropriate to assign a higher weight to cycle 16 

superhighway in bicycle route choice and safety analysis. Also, the over-dispersion parameter 17 

(0.172) of WSPM2 is significant at the 5% level. Therefore, it is appropriate to adopt the NB 18 

regression model. The marginal effects of BDTs on the bicycle crash frequency are also 19 

estimated (see Table 6). As shown in Table 6, bicycle crash frequency is more sensitive to the 20 

BDTs that are estimated using the WSPM as compared to that using the SPM. 1% increase in 21 

BDT is correlated with 0.47-0.70% increase in bicycle crash frequency when the WSPM is 22 

used. On the other hand, 1% increase in BDT is correlated with 0.11% increase in bicycle crash 23 

frequency when the SPM is used.  24 

 25 
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Table 5. Results of bicycle crash prediction models using BDTs as exposure  1 

 2 

Category Factor 
WSPM1 WSPM2 WSPM3 SPM 

Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat

Constant -11.04** 
-

6.31 
-10.98** 

-
6.45 

-11.27** 
-

6.45 
-10.79** 

-
6.13 

Land use 
Proportion of commercial 
area 

2.41** 4.52 2.18** 4.17 2.37** 4.52 2.60** 4.89 

Proportion of green area 1.16** 2.80 1.05** 2.60 1.15** 2.81 1.24** 3.23 

Population characteristics 

log (population) 1.51** 3.12 1.38** 2.90 1.53** 3.19 1.58** 3.23 
Proportion of age above 64 IS -- IS -- IS -- IS -- 
Proportion of male 5.77** 5.11 5.49** 4.98 5.69** 5.06 5.95** 5.22 
IMD IS -- IS -- IS -- IS -- 

Exposure 
log (VKT) 0.63** 7.01 0.59** 6.87 0.62** 7.21 0.64** 7.21 
BDT (km) 0.08* 1.92 0.14** 3.70 0.10** 2.48 0.02 0.53 

Over-dispersion parameter alpha 0.189 0.172 0.186 0.197 

Goodness-of-fit 
AIC 1279.07 1268.48 1276.65 1282.45 
BIC 1315.05 1305.46 1312.64 1318.43 

Note 1: * and ** denote statistical significance at the 5% and 1% levels respectively.  3 

Note 2: IS denotes insignificant. 4 
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Table 6. Marginal effects of BDTs on bicycle crash frequency 1 

Model  Elasticity  p-value 
SPM 0.11 0.596 
WSPM1 0.47 0.035 
WSPM2 0.70 0.000 
WSPM3 0.49 0.014 

 2 

5.2.2 Bicycle trip, BTT and BDT as exposures 3 

 4 

Three bicycle crash prediction models that incorporate bicycle trips, BTT and BDT 5 

respectively as exposure are also developed using the NB regression approach (see Table 7). 6 

As shown in Table 7, Model 3 which incorporate BDT as the exposure has the best model fit 7 

with the lowest values of AIC and BIC. Again, there are remarkable differences in AIC and 8 

BIC between Model 3 and Model 2 (both greater than ten). This indicates that model using 9 

BDT as the exposure is preferred. Table 7 also shows that factors including road density, green 10 

area, commercial area, population and gender significantly affect the bicycle crash frequency 11 

at the 1% level. Such finding is consistent with that of many previous studies (Ding et al., 2020; 12 

Guo et al., 2018a; Chen, 2015; Wei and Lovegrove., 2013). Specifically, increases in the 13 

proportion of green area (1.05), proportion of commercial area (2.18), log (population) (1.38), 14 

proportion of male (5.49), log (VKT) (0.59) are associated with the increase in bicycle crash 15 

frequency. However, effects of IMD and proportion of elderly on bicycle crash frequency are 16 

not significant. 17 

 18 

 19 

 20 

 21 

 22 

 23 



20 
 

Table 7. Results of bicycle crash prediction models with different exposures 1 

 2 

Category Factor 
Model 1 Model 2 Model 3 

coefficient t-stat coefficient t-stat coefficient t-stat 
Constant -10.80** -6.28 -10.78** -6.19 -10.98** -6.45 

Land use 
Proportion of commercial area 2.32** 4.41 2.39** 4.48 2.18** 4.17 
Proportion of green area 1.16** 2.86 1.16** 2.82 1.05** 2.60 

Population characteristics 

log (population) 1.46** 3.05 1.48** 3.05 1.38** 2.90 
Proportion of age above 64 IS -- IS -- IS -- 
Proportion of male 5.55** 4.95 5.61** 4.92 5.49** 4.98 
IMD IS -- IS -- IS -- 

Exposure 

log (VKT) 0.59** 6.76 0.61** 7.01 0.59** 6.87 
Bicycle trips   0.10** 2.06   
BTT (hour) 0.13** 3.10     
BDT (km)     0.14** 3.70 

Over-dispersion parameter alpha 0.182 0.189 0.172 

Goodness-of-fit 
AIC 1274.49 1278.56 1268.48 
BIC 1309.29 1315.52 1305.46 

Note 1: ** denotes statistical significance at the 1% level.  3 

Note 2: IS denotes insignificant.4 
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Again, we have estimated the marginal effects of different exposures on bicycle crashes (see 1 

Table 8). As shown in Table 8, bicycle crash frequency is more sensitive to the BDT (WSPM2), 2 

as compared to bicycle trips and BTT. 1% increase in BDT is correlated with 0.70% increase 3 

in bicycle crash frequency. On the other hand, 1% increase in bicycle trips and BTT is 4 

correlated with 0.53% and 0.66% increases in bicycle crash frequencies, respectively. 5 

 6 

Table 8. Parameter estimates for the effects of exposures on bicycle crash frequency 7 

Exposure Elasticity  p-value  

BTT 0.66 0.002 

Bicycle trips   0.53 0.025 

BDT (WSPM2)  0.70 0.000 

 8 

6 DISCUSSION 9 

 10 

In previous studies, it is rare that bicycle crash exposure is incorporated into the bicycle crash 11 

prediction model, limited to the reliable bicycle count data. Taking the advantage of the 12 

availability of bicycle trip data obtained from the public bicycle rental system, we adopt various 13 

path analysis approaches to estimate the BDT as bicycle crash exposure.  14 

 15 

6.1 SPM versus WSPM in estimating BDT 16 

 17 

For the estimation of BDT, results indicate that the WSPM is superior to the SPM. Such result 18 

is reasonable since the SPM assumes that the bicyclists only consider path distance when 19 

making route choice decision. In contrast, the WSPM assigns different weights to different 20 

bicycle facilities. For example, higher weights are assigned to the cycleway and cycle 21 

superhighway, consider the fact that bicyclists would consider the connectivity, directness, 22 

environmental quality and safety when planning the travel routes (Ehrgott et al., 2012; Broach 23 

et al., 2012; Hopkinson and Wardman., 1996). 24 

 25 

Among the WSPMs, WSPM1 has the worst model performance with the highest values of AIC 26 
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and BIC. It is because such assignment approach is contradicting with conventional wisdom 1 

that the perceived safety level of the cycleway is higher than that of the roads that have no 2 

cycle lane. Indeed, the revealed safety level of the former is 28% higher than that of the latter. 3 

Additionally, many studies also indicate that the bicyclists are more willing to ride on the 4 

cycleway (Lusk et al., 2011, Broach et al., 2012; Winters and Teschke., 2010). Nevertheless, 5 

the bicycle crash frequency models that incorporate the BDT based on WSPM2 (WA>WB>WC) 6 

is superior to that based on WSPM3 (WA>>WB>>WC). The latter hypothesizes that preferences 7 

towards cycleway and cycle superhighway are more substantial. It implies that the bicyclists 8 

would give up the safety and level of service by riding on the roads that have no cycle lane 9 

only if the time saving and/or the reduction in total travel distance was considerable. However, 10 

such speculation might be controversial. 11 

 12 

Indeed, several studies indicate that there is no noticeable difference in traffic safety among 13 

cycleway, cycle superhighway and other roads that have no cycle lane (Li et al., 2017). It could 14 

be because of the heterogeneity in the preference among the bicyclists. For example, even the 15 

occasional bicyclists generally prefer the cycleway and cycle superhighway, the commuting 16 

cyclists may have some other considerations (i.e. route directness and attractiveness) when 17 

making the route choice (Ehrgott et al., 2012; Howard and Burns., 2001). Moreover, studies 18 

also show that the cycleway is not always considered as more desirable than a wider arterial 19 

road for the experienced bicyclists (Taylor and Mahmassani., 1996; Heinen et al., 2010). 20 

Furthermore, factors like gender can also affect the safety perception and bicycle route choice 21 

(Gonza´lez et al., 2016; Sener et al., 2009; Stinson and Bhat, 2003; Krizek et al., 2004). It is 22 

therefore worth exploring the effects of individual characteristics and trip purpose on the 23 

association between route choice and road attributes using the bicyclist survey in the future 24 

study. 25 

 26 

6.2 Bicycle crash exposures 27 

 28 

We also assess the use of bicycle trips, BTT, and BDT as exposures in the bicycle crash analysis. 29 
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Results indicate that bicycle crash frequency model using the BDT as the exposure provides 1 

the best model fit. It is because trip distance is more sensitive to the interactions between 2 

bicycle and other road users, and therefore potential traffic conflicts, as compared to trip 3 

frequency (Pei et al., 2012). Indeed, there is no noticeable difference in the elasticities between 4 

BTT and BDT (see Table 8).  5 

 6 

In this study, factors including land use, population characteristics and traffic conditions that 7 

affect the bicycle crash frequency at zonal level are considered. Results show that the 8 

proportion of commercial area (2.18) and green area (1.05) are positively correlated with 9 

bicycle crashes. This can be attributed to the frequent pick-up and drop-off activities at the 10 

roadsides in the commercial area (Ding et al., 2020). As for the effect of green area, it is not 11 

surprising since considerable portion (31%) of bicyclists in London report that they ride for 12 

recreation purpose (TfL., 2015). In addition, log (VKT) (0.59) is positively associated with 13 

bicycle crashes. It is consistent with that of previous study (Alkahtani et al., 2018), since the 14 

interactions between vehicles and bicycles can increase with the traffic volume. Furthermore, 15 

the increase in the proportion of male (5.49) is associated with the increase in bicycle crash 16 

frequency. This can be attributed to the difference in safety perception and cycling behaviors 17 

among different bicyclist groups (Guo et al., 2018b). Nevertheless, current study is limited to 18 

the average effect of built environment on bicycle safety at the macroscopic level (i.e. LSOA). 19 

It is worth exploring the moderating effect of geometric design and road environment on the 20 

association between bicycle crashes and BTT and BDT, when detailed crash, traffic and 21 

environment data at the microscopic level is available in the future study. On the other hand, it 22 

is worth noting that crash occurrence is rare. It is often necessary to accumulate more bicycle 23 

crashes over a considerable period when evaluating the safety effect of an intervention. To this 24 

end, it is possible to evaluate the bicycle safety level using appropriate surrogate safety 25 

measures, e.g. conflicts (Sayed et al., 2013; Kassim et al., 2014; Christofa et al., 2019; Strauss 26 

et al., 2017; Guo et al., 2020). 27 

 28 

7 CONCLUSION 29 

 30 
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To assess the bicycle crash risk of different entities and better interpret the relationship between 1 

bicycle safety and possible risk factors, it is necessary to have reliable exposure measures such 2 

as bicycle count number, bicycle trips, BTT, and BDT. Unlike vehicular crash analysis, 3 

extensive bicycle counts are often not available. In a recent work, detailed transaction data of 4 

the London public bicycle rental system was available to estimate the bicycle crash exposure 5 

(i.e., BTT and bicycle trips) at the zonal level, using the data on bicycle trip, origin and 6 

destination (Ding et al., 2020). In this study, we revisit the topic of bicycle crash exposure by 7 

estimating the BDT of each trip using the shortest path method. Considering the effects of 8 

safety perception, attitudes and preferences to different bicycle infrastructures on bicycle route 9 

choice, a modified path analysis approach – weighted shortest path method – is proposed.  10 

 11 

Results indicate that the bicycle crash frequency model that adopts BDT as the exposure is 12 

superior, compared to that using bicycle trips and BTT as the exposures. In addition, the bicycle 13 

crash frequency models that adopt BDTs estimated using the WSPM apparently have better 14 

model fit, compared to that using the SPM. For instance, when the differences between the 15 

preferences toward cycle superhighway, cycleway and other roads are moderate, the best model 16 

fit can be attained. This justify that bicyclists do not only consider path distance, but also other 17 

factors such as level of service and perceived safety when choosing the routes (Ehrgott et al., 18 

2012; Broach et al., 2012). Indeed, safety perception may vary across individuals and trip 19 

purposes, and the uncertainty in the route choice can be considerable (Heinen et al., 2010; 20 

Gonza´lez et al., 2016; Sener et al., 2009). In this study, we consider only the effect of the 21 

presence of cycle superhighway and cycleway on bicycle exposure limited to available data. It 22 

is worth investigating the factors including bicycle infrastructure, traffic volume and perceived 23 

safety of bicyclists (Ehrgott et al., 2012; Yang and Mesbah., 2013; Menghini et al., 2010; 24 

Gonza´lez et al., 2016) that may affect the bicycle exposure when required data is available. In 25 

addition, the bicycle exposures are estimated based on transaction records of a public bicycle 26 

rental system in London - Santander Bike. Despite that the Santander Bike system constitutes 27 

over 70% of bicycle trips in the study area, results of parameter estimation can be subject to 28 

bias because there may be difference in the behaviors between different bicyclist groups. This 29 
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can be overcome when comprehensive bicycle count data are available. On the other hand, 1 

current study focuses on the relationship between bicycle crash frequency, exposure and 2 

possible risk factors at the zonal level. Effect of the uncertainty in route choice on the 3 

association measure can be incremental. Nevertheless, it is worth exploring the effect of the 4 

variation in route choice on the space-time evolution of bicycle trip distance, and therefore the 5 

bicycle crash exposure at the microscopic level, e.g. road segment, in the future study. 6 

Furthermore, this study does not consider the bicycle crash severity. Indeed, under reporting of 7 

bicycle crashes is prevalent, especially for the single bicycle and minor injury crashes (Tsui et 8 

al., 2009). In the future study, heterogeneity in the bicycle crash risk by collision type and 9 

injury severity would be investigated. 10 

 11 
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