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Abstract: We propose an enhanced tool by combining X-ray micro-computed 

tomography test and hybrid finite and discrete element method to investigate the 

mechanical behaviors of granular materials. We first conduct a min-triaxial test of 

Ottawa sand under X-ray micro-CT. Then, spherical harmonic analysis is performed 

to characterize multi-scale morphological characteristics of particles and used in the 

particle matching. The particle tracking algorithm ensures the matching accuracy 

between particle configurations even at large strain intervals. To probe intra-particle 

contact force, we reconstruct the numerical sample from X-ray image data. Without 

calibrating material parameters, FDEM simulation quantitatively agrees with the 

overall response of Ottawa sand recorded in experiment. Moreover, the particle scale 

dynamics obtained by simulation are remarkably quantitatively consistent with 

experiment results. The proposed tool sheds new light on bridging length scales from 
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particle to granular system. We find that the granular material deforms plastically 

through spatially localized zones of large nonaffine displacements, and the 

spatiotemporal evolution of these zones controls the macroscopic responses of the 

system. The force chain collapse is relevant to the large induced structural voids 

formation within the shear transformation zones. Furthermore, we discover a 

connection between particle stress fluctuations and particle plastic rearrangements in 

granular materials. 

Keywords: Granular materials; X-ray micro-computed tomography; FDEM; Particle 

matching and tracking; Microscopic dynamics; Intra-particle contact force 

1. Introduction 

Granular materials, especially consist of naturally occurring geo-materials and 

fault gouge, deform and failure in response to external mechanical loading, such as 

natural landslides, soil foundation instability, avalanches. Because of the inherently 

amorphous nature in granular system, the microstructure of confined granular 

materials is heterogenous and disordered. The granular system responds to the 

mechanical stimuli through the spatial rearrangement of particles and the dynamics of 

force transmission network [1]. Therefore, the measurements of particle motion and 

the intra-particle force transmission are significant to understand the underlying 

physics and mechanisms responsible for the loss of structural stability. 

More recently, advanced tomographic techniques, such as X-ray computed 

tomography [2-7], 3D X-ray diffraction microscopy [8,9], have been successfully 

used to characterize the structural properties and particle scale dynamics throughout 

the full 3D systems. X-ray computed tomography aided laboratory test allows for the 

investigation of granular materials from micro-meso-macro perspectives [10-17], thus 
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making it a promising tool in studying the complex granular systems. Tracking the 

trajectory of large number of moving particles remains a challenge, especially for the 

granular system undergoing large deformation and the large scanning interval. Andò 

et al. [2] first developed a particle matching algorithm using particle volume as 

matching index to identify the same particle between adjacent assembly 

configurations. Subsequently, more morphological features are used in particle 

matching and tracking algorithm [18], such as the particle volume, surface area, and 

principal axis lengths of the particle. These morphological quantities are fairly 

sensitive to the X-ray CT images processing precision. One promising way of 

improving the matching accuracy is to use more morphological features ranging from 

particulate size to surface texture. Spherical harmonic (SH) analysis is capable of 

characterizing and quantifying the multiscale morphological features of irregular 

shaped particles [19-22]. The SH invariants, independent of particle translation and 

rotation, are adopted in evaluating the similarities of particles and thus can help to 

track particles across multiple loading frames [23-25]. 

Although having the tremendous ability in exploring the dynamics of granular 

system, X-ray CT techniques lack the ability of probing intra-particle contact 

behaviors. Saadatfar et al. [26] measure contact forces from X-ray CT data, but this 

work is restricted to spherical particles and highly depends on the assumption of 

Hertzian contact behavior. By combining the Granular Element Method (GEM) and 

X-ray CT data, Andrade and Hurley [27,28] infer the local contact forces by inversely 

solving the governing equations of granular materials in static equilibrium. However, 

this method is computationally expensive and thus limited to a small granular system. 

Recently, Hurley et al. [29] develop a new technique by combining the X-ray 

tomography and X-ray diffraction, which allows for the quantitative measurements of 
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microscopic structure [9], intra-particle forces [30,31], and energy dissipation due to 

grain fracture [32,33]. These investigations are carried out in single-crystal granular 

systems with a limited number of particles as several hundred. The particle based 

numerical simulation methods are versatile in direct probing the intra-particle force 

transmission in large-scale granular system [34,35]. The commonly accepted idea that 

particle shape has profound influences on granular dynamic behavior promotes the 

development of more advanced modeling techniques [7][36], such as the combined 

finite and discrete element method (FDEM) [37-39], DEM [67] and the LS-DEM 

method [40,41]. The studies proposed by researchers [41][67] shows great 

effectiveness in considering the irregular particle shapes. FDEM has great advantages 

not only in considering the irregular particle shapes but also in particle breakage 

[42-49]. In FDEM analysis framework, each individual particle with arbitrary shape is 

discretized into finite element meshes, and the particle-level stress and strain field and 

contact force are governed by the material constitutive law and penalty contact 

algorithm, respectively. 

Arising from the limitations in pure experimental test and numerical simulation, 

the present work develops an enhanced tool for probing the microscopic behavior of 

granular materials by combining X-ray micro-CT test and FDEM modeling. The 

schematic illustrations of the present work is shown in Fig. 1. A mini-triaxial shear 

test of Ottawa sand is first carried out under X-ray micro-CT. Spherical harmonic 

analysis is then performed to characterize the particle shape and track moved particles 

during the loading process. We prepare the numerical sample for FDEM simulation 

with the spherical harmonic mathematical reconstruction of particle shape. 

Quantitative comparison and investigation of macroscopic responses and microscopic 
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dynamics in FDEM simulation and X-ray micro-CT test are performed. Then the 

plastic behaviors of the sheared granular system are discussed. The contact force 

evolution is further assessed through FDEM simulation to gain in-depth 

understanding of the mechanism responsible for the failure of sheared granular 

system.  

 

Fig.1. Schematic description of the present research. 

2. Experiments of triaxial test based on X-ray computed 

tomography 

2.1 Experimental method 

In the present work, experiment tests are carried out using the ERDμ apparatus 

[50,51] to subject the Ottawa sand sample to shear condition (Figs. 2a and 2b). The 

diameter of the tested Ottawa sand grain ranges from 0.3 to 1.03 mm with a mean 

particle diameter of 0.551 mm (Fig. 2c). The cylindrical sample is prepared by dry 

pluviation method and subjected to vibration and tap horizontally and vertically until 

attaining a dense packing [52], with an initial diameter of approximately 12 mm and a 

height of 25 mm. The test sample is confined by a 0.3 mm thick flexible latex 

membrane, providing the flexible boundary condition. Subsequently, the sample is 

placed inside the ERDμ apparatus that is mounted on the computer numerical control 

(CNC) rotation table inside the X-ray micro-CT [50]. The specimen sample is first 

isotropically compressed to 300 kPa and then subjected to strain-controlled axial 

loading by the downward movement of the top platen at a constant strain rate of 
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0.1%/min, which is small enough to ensure quasi-static condition (Fig. 2b). During 

experiment, tomography images of the sample are acquired nondestructively at 15 

loading frames. The first scanning point is at the end of compression prior to axial 

loading. At each imaging stage, a total of 1080 projections with a pixel size of 27.5μm 

are taken by rotating the ERDμ apparatus 360° around the vertical axis, while keeping 

the piston stationary and confining pressure constant, which provides enough image 

quality for quantitative analysis of internal structure and distributions of all particles. 

 

Fig. 2. Schematic diagram of the experiment setup. (a) The ERDμ vessel. (b) The sample during 

the experiment test. (c) Particle size distribution of Ottawa sand tested. 

2.2 Image processing  

The three-dimensional structure is first reconstructed based on the filtered 

back-projection algorithm. Then the reconstructed 3D grayscale image is transformed 

to a binary image and eventually to a segmentation image (Fig. 3(a)). The 

marker-based watershed technique [3][53,54] is used to separate particles so that each 

particle can be identified and labelled. In this process, a global threshold is applied to 

the image segmentation, which may lead to an over-estimation of inter-particle 

contacts because of the partial volume effect of the CT image. However, it may not 

influence much the overall contact behavior [15]. Following the image segmentation, 

15961 individual particles are identified and automatically isolated in the test sample 
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(Fig. 3(b)). Voxels representing contacts between neighboring particles can be 

identified by subtracting the labelled data from the binary data without watershed 

segmentation [55]. It is noted that contact between two particles is not always a single 

continuous region. For particles with complex irregular morphology, several contact 

regions are assigned to the same contact particle pair. For this case, these isolated 

regions are regarded as one contact in this study, which is similar to the study of some 

researches [15][68]. In addition, a contact size threshold of one voxel is considered in 

contact detection. Those contacts with a size larger than the threshold are regarded as 

true contacts. The particle IDs involved in each true contact are determined via 

analysis of the boundary shells of each contact based on the 26 neighborhood 

situations consist of six faces, eight corners and twelve edges [47][55]. Therefore, the 

branch vectors can be clearly defined by connecting the centroids of the contact 

particle pairs. The contact normal vectors are determined by principal component 

analysis (PCA) of contact voxels [47,48].  

As we have known the volume occupied by the particle voxels, we can calculate 

the void ratio of the sample at the beginning of axial loading, which is 0.593. The 

labelled data of particle assembly is then exported to MATLAB [56] as a 3D matrix 

for post-processing. Such a large database offers rich particle informatics.  

Particle matching is a key process in tracking the trajectory of large number of 

moving particles across multiple loading frames. For granular system undergoing 

large deformation, accurate particle matching is necessary for quantifying particle 

kinematics. Morphological features as the intrinsic characteristics can be used in the 

particle matching. The spherical harmonic (SH) analysis is utilized to characterize and 
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quantify the multiscale morphological features of particles [19-22]. The surfaces of 

particles extracted from image data can be depicted via SH function: 
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corresponding SH coefficient, and according to Eq. (1), a total number of ( )
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unknown coefficients need to be determined. Taking ( , )r    as the input on the left 

side of Eq. (1), a linear equation system with ( )
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1n + unknowns can be obtained.  

Thus it is easy to solve these linear equations and determine all of the coefficients of 

m

nc  by performing the standard least squares estimation for Eq. (1). ( )cosm

nP   

denotes the Legendre function of degree n  and order m , expressed by Rodrigues’s 

formula 
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The SH coefficients describe the general conformation of the particle shape at 

different scales. The more SH coefficients we use, the more detailed characterization 

and more accurate reconstruction of the particle shape can be achieved. It has been 

found that the SH analysis with spherical harmonic degree 15n  is enough to describe 

the morphology of a particle (as shown in Fig. 3(b)) [57]. We can then define a set of 

SH frequencies as ( ) ( ), = ,
n

m m

n n n

m n

R c Y   
=−

 , which exhibit rotational invariant 

properties independent of particle translation and rotation [23]. The modulus of the 



 

9 

 

SH frequency is referred to as ‘SH rotation-invariant’ and calculated as:  
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When SH degree n  goes to infinity, the spherical harmonic function describes 

all the features it contains at different frequencies over the space of all transformations. 

For a particular kind of natural sand, there are no two particulates with completely 

identical morphology features. Consequently, any natural sand of such kind has a 

unique set of SH rotation-invariants depicting its collective morphological features 

over full SH degree. Therefore, the SH rotation-invariants can be used as the 

geometrical DNA for matching particle. SH function, approximating particle 

morphology in collective derivations of polar radius via different SH degrees, is 

band-limited with a bandwidth, hence information loss may happen when SH function 

goes to its SH rotation-invariants, because the spatial dimension changes. This 

phenomenon generally happens in the case where the bandwidth is too small to 

describe the multiscale morphology of natural sand. In this study, the maximum of SH 

degree is set to 15, and the SH rotation-invariants are sufficient to represent the 

morphological features at multi-scales, i.e., 
0R  represents the particle volume, 

2R  

to 
4R  represent the general shape, 

5R  to 
8R  represent the local roundness, and 

9R  

to 
15R  represent the surface texture at very small scale level [57]. The correlation 

coefficient matrix shown in Fig. 4 demonstrates that the SH rotation-invariants are 

relatively independent of each other, especially between different scales. Thus, we can 

conclude that particle shape characterization using SH rotation-invariants is 

comprehensive. Hence, we can identify the matching particles between adjacent 

loading frames by evaluating the minimum 2-L norm  difference between the 

corresponding vectors 
nR  (Fig. 3(c-d)) [25], measured by  
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where k  is the loading states and 
SN  is the total number of micro-CT scan points.  

 

Fig. 3. Schematic flow of the 3-dimensional image processing and modeling. (a) Processing of 3D 

image segmentation. (b) Mathematical characterization and modeling of particle surface based on 

spherical harmonic reconstruction. (c) Statistical difference of derived spherical harmonic 

rotation-invariants at different SH-degrees (one particle is from reference (Ref.) configuration and 

three particles are from deformed (Def.) configuration). (d) Digital reconstruction of particles 

selected and matching results (particle Ref.1 matches to particle Def.2). 

 

Fig. 4. Correlation coefficient matrix of the SH rotation-invariants for all particles in sample. The 

color represents the data point density in range (0, 1) and the yellow represents the higher density. 

As shown in Algorithm 1, a pseudo-code representation of particle matching and 

tracking algorithm, we first construct a superset of candidate particles by evaluating 
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the particle distance between two successive loading frames. The particles within 

503d  of particle i  are selected and denoted as 
1 ,k iC . We then narrow the superset by 

removing the particles with volume difference larger than 10% of particle i . We 

therefore obtain the superset 
2 ,k iC  with those remaining particles j . Note that, if  

2 ,k iC is an empty set, we specify the reference particle i  is lost [2][14]. Among them, 

the one that corresponds to the minimum 2-L norm  difference ,k i

DR of spherical 

harmonic rotational invariants between particle i  is temporarily identified as the 

matching particle and stored into subset 
3 ,k iC . If a particle is found to be assigned in 

more than one reference particles’ subsets, the reference particle with the smallest 

( ),k i jDR  is considered as the best match. Subsequently, the other reference particle 

rematches again after the candidate particle is removed from its subset. We repeat this 

matching process for particles in reference configuration and finally determine a 

matching set 
k

T . During each matching regime, just a few dozen particles are lost or 

incorrectly matched, which is induced by information loss or image segmentation 

error, such as over-segmentation and under-segmentation. Overall, the matching 

provides highly accurate matching results. Due to the limited contents of this study, 

the detailed description of the tracking efficiency is illustrated in Appendix A. 

Require: Spherical harmonic rotational invariant vector 
,k i

R , 
1,k j+

R , particle’s centroid 
,k ir , 

1,k j+
r  and volume 

,k i
v , 

1,k j
v

+
of particle i  at loading state k  and particle j  at loading state 

1k +  by evaluating eq.(4); Average particle diameter 50
d , total number N  of particles.  

1:    ( ) ( ) ( ) , , , ,

0 1
, , , , , ,

k i k i k i k i

n
R R R     R K  

2:    ( ) ( ) ( ) 1, 1, 1, 1,

0 1
, , , , , ,

k j k j k j k j

n
R R R     

+ + + +
R K  

3:    for = 1i  to Number of particles in reference configuration do 

4:    / Search particles j  locating in the certain region from particle i /  

5:      for = 1j  to Number of particles in deformed configuration do 

Algorithm 1. Particle matching based on spherical harmonic rotational invariant 
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6:        if L2-norm (
1, ,k j k i+
−r r ) 

50
3d  then  

7:           1 ,k i
jC  

8:        end if 

9:      end for 

10:     / Update matching array by estimating the volume difference tolerance /  

11:     for particle j  is in the first matching set  1 ,k i
C  do 

12:       if 
,1, , k ik j k i

vv v+ −  0.1  then  

13:          2 ,k i
jC  

14:          
,k i

D
R   L2-norm (

1, ,k j k i+
−R R ) 

15:       end if 

16:     end for 

17:     1m  ; l i  

18:     while 1m   do 

19:       if 
,k l

D
R is an empty set then 

20:         1m  − ; 
3 ,

0
k l
C  

21:       else 

22:        
3 ,k l

jC  corresponding to 
,

min( )
k l

D
R  

23:        /  Judge if j  has been matched to previous particle p , and confirm which 

particle is more similar to particle j /  

24:         if 
3 , 3 ,

=
k l k p

C C  and ( ) ( ), ,k p k l
j j

D D
R R then 

25:            1m m +  

26:            remove ( ),k l
j

D
R  from 2

-L norm difference vector 
,k l

D
R  

27:         end if  

28:         if 
3 , 3 ,

=
k l k p

C C  and ( ) ( ), ,k p k l
j j

D D
R R then 

29:            1m m +  

30:            remove ( ),k p
j

D
R  from 2

-L norm difference vector ,k p

D
R ; l p  

31:         end if  

32:         1m m −  

33:       end if 

34:     end while 

35:      3 ,k k i
T C  

36:   end for 

37:   Return  k
T  

3. Numerical modeling based on FDEM 

3.1 Numerical framework and model formulation 

Strictly speaking, the FDEM technique alternates between employing FEM 

formulation to assess the deformation and stress in individual particle level and DEM 

concepts for handling contact detection and contact interaction between discrete 
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particles. The dynamic equation of FDEM is essentially the same as that of DEM. 

That is, the dynamic equation of the element nodes is expressed by Newton’s second 

law as:  

                        int+ = + −ext conMu Cu F F F&& &                           (6) 

where u&&  and u&  are acceleration and velocity vectors of nodes, respectively; M  

and C  are the lumped mass matrix and damping matrix of nodes, respectively; intF , 

extF , and conF  is the nodal force vector caused by the deformation of elements, by the 

external load distributed to the node and by the contact force, respectively. The 

solution of Eq. (6) uses the same method as the DEM, namely, that the dynamic 

equation of element nodes is integrated using the explicit central-difference 

integration scheme. In FDEM approach, the contact mechanics is solved by a 

distributed contact force approach applied to element nodes and a penalty function 

method. Viscous damping is introduced to maintain the numerical stability and the 

quasi-static equilibrium. Thus, combining the elastic and viscous contributions, the 

distributed normal contact force is calculated as: 

                        2n n n n n rnF k mk v = −                              (7)    

The tangential friction force is calculated by a Coulomb-type friction law: 

                   min 2 ,t t t t rt nF k t mk v F  =   −&                        (8) 

where n n nodek p A=  and t t nodek p A=  are the contact stiffness along the normal and 

tangential direction at nodes, receptively; np  ( tp ) is the normal (tangential) penalty 

stiffness, nodeA  is the node’s control area on the contacting surface, n  is the 

penetration, &  is the slip rate, t  is the time increment. n  ( t ) is the normal 

(tangential) critical damping fraction corresponding to a restitution coefficient   by 
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( ) ( )2 2ln ln   = − +  [46]. m  is the mass of node and rnv  ( rtv ) is the normal 

(tangential) relative velocity between contact particles. Due to the Coulomb frictional 

limit, the total tangential force is depending on the friction coefficient m of the 

material.  

3.2 Bridging the experimental test and numerical modeling 

As a pre-processing stage, a shape library containing multi-scale morphologies of 

Ottawa particles, explicitly represented by the spherical harmonic analysis described 

above (section 2), is extracted from the X-ray micro-CT image data. The packing 

procedure mimics the sample preparation in laboratory, aiming to generate a 

numerical sample for FDEM simulation statistically consistent with the Ottawa sand 

tested (see Fig. 5(a-b)), such as the volume fraction, grain-size distribution, and 

microstructural properties. Each particle is meshed into second-order tetrahedral finite 

elements, as a result, millions of elements represent the sample in the numerical 

domain. To evaluate the similarity between numerical and experimental samples, we 

compare the structural properties of two samples prior to shearing. In a granular 

system, the pair correlation function ( ) ( ) 24πg r n r r dr= describes how density 

varies as a function of distance from a reference particle. It is a measure of how many 

particles are within a distance of r  and r dr+  away from a particle. ( )n r  is the 

number of particle within the shell, N V =  is the average density of particles, that 

is, the ratio of the total number of particles to the volume of the sample . As shown in 

Fig. 6a, the pair correlation functions are similar to each other and exhibit no 

long-range ordering and the first peak is small and broad, so that the particle assembly 

can be regarded as a highly disordered system. Fig. 6b shows that coordination 

number (CN) distributions of numerical and experimental samples are similar, 
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although the numerical sample keeps a relatively larger proportion of CNs around a 

value of 7. The angular distributions of branch vectors (see Fig. 6c) and contact 

normal vector (see Fig. 6d) demonstrate no significant difference, manifesting as the 

almost isotropic states. The statistical consistency ensures that the reconstructed 

numerical sample is a representative of the experiment granular system.    

 

Fig. 5. Reconstruction of the Ottawa sand sample (a) 3D rendering of the X-ray tomography data 

for the experimental sample. (b) Numerical sample and the finite element discretization. 

 
Fig. 6. Comparisons of the numerical and experimental samples. (a) The pair correlation function 

g(r), data for numerical sample are shifted vertically by 0.7 for clarity, (b) Distribution of the 

coordination number, (c-d) Angular distribution of branch vectors and contact normal vector, the 

length and color of each corner indicate the density of branch vector and contact normal vector 

oriented within the angles, respectively 

We investigate the evolution of particle size distribution (PSD) in the laboratory 
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test of Ottawa sand (Fig. 7). The excellent agreement of PSDs reveals the fact that no 

significant damage to particles occurs in laboratory test. The negligible difference 

seen stems in part from the particle surface abrasion or segmentation precision. 

Therefore, there is no need to consider particle breakage in FDEM simulation. To 

mimic the experiment testing conditions, the numerical sample is confined by the 

smooth rigid platen on top and bottom as well as a thin flexible cylindrical-membrane. 

The membrane elements are capable of deforming flexibly to accommodate the 

sample deformation. The strain-controlled loading rate in FDEM simulation is several 

orders of magnitude larger than the experimental test to attain enough computational 

efficiency, but can still guarantee the quasi-static loading condition while keeping 

kinetic energy below 5% of internal energy. The material parameters used in the 

FDEM simulation are listed in Table 1, obtained from laboratory test or relevant 

literatures. We note that the values of Young’s modulus and Poisson’s ratio lie in the 

range of experimental measurements for Ottawa sand [58]. The normal and tangential 

penalty stiffnesses ensure that the contact relationship of two elastic spheres follows 

Hertz contact law [39]. It is worth noting that all modeling parameters except 

damping fractions   are consistent with experimental measurements and theory. As 

suggested by Tatone and Grasselli [69], when penalty terms are adopted magnitudes 

that are two orders of magnitude of the input elastic modulus, a reduction of time step 

is not necessary to maintain numerical stability. Therefore, in this work, the penalty 

terms np  and tp  are set to two orders of magnitude of the input elastic modulus. 

 

Fig. 7. Evolution of particle size distributions in experiment covering all the whole loading. 
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Table 1 

Material parameters used in the FDEM simulation. 

Parameter  Value Unit Reference 

Density 𝜌 2650 kg/m3 [49] 

Young’s modulus 𝐸 92.1 GPa Instrumented nanoindentation 

Poisson’ s ratio 𝜐 0.118 - [47] 

Sliding friction coefficient 𝜇 0.5 - [59] 

Normal and Tangential penalty 𝑝n 𝑝t 92.1×1011 N/m3 [69]  

Critical damping fraction in 

normal and tangential direction 
𝛽n 𝛽t 0.03 - [46] 

4. Quantitative comparison between X-ray CT test and FDEM  

4.1 Macroscopic behavior 

We first compare the macroscopic responses obtained from experiment test and 

FDEM simulation. Fig.8 shows the stress-strain-dilation curves. Overall, the FDEM 

simulation of reconstructed Ottawa sand sample can reasonably reproduce the 

macroscopic behaviors recorded in experiment test. The simulation shows an earlier 

peak stress ratio 1 3  from the experiment, indicating a slight difference in particle 

rearrangement, and that particle abrasion occurred in experiment are not considered in 

FDEM simulation. The overall consistency again releases an important sign, what you 

need in modeling of granular material are particle shape and packing properties. In 

total, there are 15 tomography scan points at which 3D tomography scans are taken. 

Note that, the drop of stress ratio during each scan point is due to the stress relaxation 

caused by loading pause during each X-ray imaging. 
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Fig. 8. Macroscopic responses obtained from the experiment test and numerical simulation. 

Dashed lines indicate the five strain states corresponding to the five X-ray micro-CT scan points 

(A to E) shown in future analysis. The negative values of volumetric strain indicate dilation. 

Besides the macroscopic responses, we further compare the particle kinematics 

obtained from X-ray micro-CT test and FDEM simulation. For experiment test, the 

obtained matching set 
k

T  (introduced in section 2.2) serves as bridging signal for 

directly tracking the kinematic of the individual particles throughout the loading 

process. Thus we compare the incremental particle displacements at six strain states, as 

marked in Fig. 9. We make the particles transparent whose displacement lies in the 

median domain to clearly show the internal particle displacement field. The FDEM 

simulated particle motion field is also in good agreement with that obtained in the X-ray 

micro-CT test, that is, the magnitude of particle displacement increases as the shearing 

process and bulging is shown in all of the snapshots. Two cone-shaped dead zones are 

well developed at the top and bottom of the sample at the post-peak softening stages. 

While in the middle of the sample, a zone of intensive shearing localizes into an 

X-shaped shear band, bordering on an arched motion zone distributed by the particle 

with low translation. We also quantitatively compare the frequency distributions of the 

particle displacements shown in Fig. 10(a). Overall, we see that there is a good 

agreement at the distributions of particle kinematics between the experiment and the 

FDEM simulation. It is clear in Fig. 10(b) that the particle displacements during 
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corresponding axial strain increments are close between experiment and simulation. 

These results demonstrate that the simulation quantitatively reproduces the motion 

behavior at the particle scale level of the experiment. 

 

Fig. 9. Incremental particle displacements between (a) 0.0 and 0.99%, (b) 0.99 and 5.03%, (c) 

5.03 and 8.06%, (d) 8.06 and 11.06%, (e) 11.06 and 14.06%, (f) 14.06 and 18.06% axial strain for 

experimental test and FDEM simulation. The color of particle represents the magnitude of 

displacement. 

 

Fig. 10. (a) Frequency distributions and (b) box charts of incremental particle displacements 

during three axial strain increments for experiment test and FDEM simulation.  

4.2 Microscopic dynamics 

From the microscopic level, the sheared granular materials appear to strongly 



 

20 

 

rearrange themselves in response to shear. The varying local structure of particles 

leads to highly heterogeneous particle motion, as a result, granular materials deform 

in a nonaffine form [44]. The X-ray CT test and FDEM simulation allow us to 

quantify the nonaffine motion of particle using the local minimum nonaffine 

displacement 2

minD , which measures the mean square deviation of the particle’s 

position from the best-fit affine transformation of its neighborhood over the strain 

interval   [60-62] . 

            ( )  
22

min

1
, = ( ) ( ) ( )

iN

ki i ki

ki

D
N

      + + − μ Λ μ                 (9) 

where ( )i Λ  is the best-fit affine deformation tensor of particle i  extracted by 

minimizing the ( )2

min ,D   + [63,64],  

                             1

i

−= Λ X Y                                   (10) 

                       ( ) ( )
iN

ki ki

k

  = + X μ μ                        (11) 

                          ( ) ( )
iN

ki ki

k

 = Y μ μ                             (12) 

( )ki μ  is the displacement vector between reference particle i  and its neighbor k  

at strain state  . Note that the nonaffinity measure depends on the size of the 

neighborhood. Here, we take the cutoff distance as 
501.5d , which corresponds to the 

first minimum of the pair-correlation function ( )g r  (Refer to Fig. 6a) [63]. The local 

strain tensor is deduced based on the affine tensorΛ  by ( )= + 2L T−ε Λ Λ , we thus 

can calculate the local deviatoric strain 
2

= :
3

L L L

q dev dev ε ε  for each particle. 

The nonaffine deformation 2

minD  and local deviatoric strain 
L

q  are evaluated 

within the strain interval of =1.0%a  at five loading states labelled in Fig.8. The 
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maps of 
L

q  shown in Fig. 11 display similar spatial distribution and temporal 

evolution for both X-ray micro-CT test and FDEM simulation. At 1.0% axial strain, 

we see only a few localized plastic zones randomly embedded in elastic deformation 

surroundings. After the onset of yielding, particles rearrange themselves to 

accommodate the increase of applied strain, a large number of activated plastic zones 

appeared as close-packed particles demarcate regions of high local strain magnitude. 

Eventually, those highly plastic zones are localized in a conjugate X-shaped band 

spanning the granular system. The annihilation and formation of those regions 

through cooperative particle motions is to sustain the applied shear. It turns out that 

the subsequent plastic activity is essentially dominated by the localized plastic region 

once the shear band formed, e.g., the evolution of this region through thickening and 

sliding. Although the evolution modes in experiment and simulation have so much in 

common, the thickness and spanning region of shear band is slightly different, which 

is probably due to the FDEM simulation lacks the consideration of multiscale 

contacting behavior of particles, where the FDEM contact model assumes the contact 

point is fully sticking before reaching the Column frictional resistance. For real 

particles with multi-scale structure characteristics, even slightest perturbation can 

drive the relative motion and affect the local rearrangement of particles due to the 

surface roughness of particles and friction on small length scales [5]. Furthermore, the 

discrepancy of variable friction conditions in particles is left unnoticed by adopting 

the same friction coefficient for all particles. 
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Fig. 11. The spatial distribution of local deviatoric strain at five strain states for both (a) 

experiment and (b) numerical simulation. The yellow and red particles indicate particle subjected 

to large local deviatoric strain, and particles with small 
L

q are colored black and are transparent. 

Fig. 12 presents the probability distribution functions (PDFs) of nonaffine 

displacements and local deviatoric strain at the loading states indicated in legend. 

Notably, the statistics of plastic heterogeneity exhibit remarkable consistency between 

the experiment and FDEM simulation. With the increase of a , the large value part of 

the PDFs shift to right and the small part of the PDFs gradually lower, indicating the 

increased plastic heterogeneity during shearing. At the elastic regime, the granular 

system undergoes mainly elastic deformation, and few particles experience nonaffine 

displacements exceed 2

min = 0.01D . Thus, the sample deformation is relatively 

homogeneous at this state, which is consistent with the maps of 
L

q  at 1.0% axial strain 

shown in Fig. 11. After yielding, the population of larger 2

minD  and 
L

q  increases, 

distorting the uniformity of deformation field and triggering other nearby shear 

transformation zones. Eventually, those plastic localized zones give rise to strain 

localization, manifesting as banded regions of intensive plastic deformation.  
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Fig. 12. Probability distribution functions of (a-b) nonaffine displacement 2

minD  and (c-d) local 

deviatoric strain 
L

q for experiment and simulation.  

The power-law decay of 2

minD shown in Fig. 12a and b implies that particles with 

large nonaffine displacements are collectively organized. Those particles with similar 

nonaffine displacements tend to form compact clusters [65]. We then identify those 

activated nonaffine clusters by connecting the 10% highest 2

minD  particles that are 

nearest neighbors. Fig. 13(a-b) show spatial distributions of the clusters of three 

loading states for experiment and simulation, respectively. The clusters are colored by 

the radius of gyration 
gR : 

                           
( )2 1

1

=

N

i ii
g N

ii

V
R

V

=

=

−



r R
                            (13) 

where the summation is over N  particles belonging to the cluster, 
iV  and 

ir  is 

respectively the volume and position of particle i ,,  R  is the center of mass of the 

cluster calculated by
1 1

N N

i i ii i
V V

= =
= R r .  
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At the initial elastic regime, the clusters are randomly distributed and 

predominantly isolated. With further strain, the clusters rearrange themselves by the 

change of their local topology, and some of the clusters are annihilated and others may 

proliferate by the merging of smaller clusters to form larger ones. When shearing to 

large strain, the nonaffine clusters accumulate along the direction of maximum shear 

stress, and forms an X-shaped shear band. Those findings suggest that these clusters are 

the fundamental plastic carrier and lead to the irreversible plastic deformation of the 

granular system. 

 Fig. 13(c) shows the cluster size distribution ( )P s  for experiment and 

simulation covering strain states from 8.0% to 18.0%, where s is the number of particles 

in a cluster. The data is well fitted by a power law. The exponent is small for FDEM 

simulation, which indicates the particles with large nonaffine displacements are more 

inclined to clustering together. We think this difference is probably because the FDEM 

contact model assume the contact point is fully sticking before reaching the Column 

frictional resistance, whereas even slightest perturbation can drive the relative motion 

of particles due to the particle surface texture. Thus, it gives rise to more advanced 

contact model in future numerical simulation method. As shown in Fig. 13d, the 

gyration radius shows power-law growth with the cluster size, i.e., 
1/d f

gR s . The 

clusters of both experiment and simulation have a fractal dimension 
fd  of 

approximate 2.0. Similar fractal clusters have been observed for the fast translating 

clusters in cyclic sheared granular systems [63].  
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Fig. 13. (a-b) Spatial distributions of the clusters at axial strain 0.99%, 8.06%, and 14.09% for 

experiment and simulation respectively. Particles of a cluster are colored according to the cluster 

gyration radius, other particles are made transparent for clarity. (c) Cluster size distributions. (d) 

Radius of gyration of the clusters versus the cluster size. Data for simulation are shifted 

horizontally by 102 for clarity. The solid lines are power-law fits to the data. 

5. Contact force network 

We have seen a rather satisfactory agreement of the macroscopic properties, as 

well as the local ones, between the X-ray micro-CT test and FDEM simulation. The 

comparison of distribution of contact normal vector between experiment and 

simulation is shown in Fig.14. It is seen that there is a good agreement at the 

distributions and evolutions of inter-particle contact information between experiment 

and FDEM simulation along the whole shearing process. A slight difference of 

magnitude in local corner branch is attributed to a possible over-estimation of 

inter-particle contacts. That is, a global threshold is applied to the image segmentation, 

which may result in the over-detection of inter-particle contacts because of the partial 

volume effect related to imaging resolution. Overall, we see that the slight 

over-estimation of the inter-particle contacts does not have a significant influence on 
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the overall contact behavior. Here, we probe the contact force evolution accessible to 

numerical simulation. The angular distributions of the normal contact forces between 

particles are shown in Fig.15a, where the length and color represent the density of 

normal contact vector and the average normal contact forces oriented within the 

angles, respectively. It clearly shows that the normal contact force distributes 

isotropically prior to shearing and becomes much more anisotropic as a preferred 

orientation towards the vertical direction showing up and remain this way through the 

post-peak loading process. The contacts aligned with the loading direction transmit 

markedly larger contact forces, thereby, the granular system strengthens its capability 

to resist the vertical load. 

The relatively dominant bias along loading direction of the normal contact forces 

manifesting strong force chains plotted in Fig.15 (b-c), where the chains are scaled in 

thickness, color and opacity by being proportional to the magnitude of contact forces. 

It is notable that the spatial and temporal evolutions of the force chains are shown 

from different perspectives as approximately parallel to the X and Y axes, respectively. 

Initially, the intra-particle force exhibits an isotropic distribution with a small 

magnitude, but strong force chains form along the loading direction at the peak stress 

state, which is representative of force transmission patterns. However, as the shear 

strain increase, the force chain network becomes sparse and scatter because of dilation, 

and the network is more vulnerable to collapse when the shear bands have completely 

formed, which is most apparent at 14.0% axial strains. More particles begin to lose the 

capacity of sustaining force transmission manifesting the enlarged local voids located 

inside the force chain network (marked by red dotted circles). The collapse coinciding 

with shear band formation is readily comprehensible because of the large induced 

structural voids induced by more floating particles (involving few contacts) formation 
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within the shear bands.  

Further insights into the quantitative linkage between particle stress dynamics 

and nonaffine behavior. Here, the particle stress is calculated as ' '1
2 ij ijq  = , 

where 
'

ij  is the deviatoric part of the particle stress tensor 
ij . Specifically, we 

quantify the temporal fluctuations of particle stress in terms of the volatility in the 

Black-Scholes model [7][66]. For each particle, the particle stress is regarded as a 

discretized series 
iq , where i  corresponds to a strain state, the instantaneous ‘return’ 

is defined as:  

                             ( )1lni i iR q q −=                                (14) 

The volatility of the particle stress data series is quantified by the standard deviation 

of R : 

                        ( )
2

1

1

1

N

i

i

V R R
N =

= −
−
                             (15) 

where N is the number of strain intervals in the particle stress data set, for our study, 

the particle stress is extracted at the strain interval 32.5 10a
− =  during a strain 

window 10% 20%a = : .  

Fig. 16 correlate the volatility of particle stress V  with the nonaffine behavior, 

as measured by 2

minD . As the data indicates, particles with large stress volatility 

exhibit more intensive nonaffine motions. There is a strong correlation between the 

particle stress volatility and nonaffine displacement with a correlation coefficient of 

0.541, and the correlation is significant at the 0.01 level. The result quantitatively 

demonstrates a deep correlation between particle stress fluctuations and particle 

plastic rearrangement.      
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Fig. 14. Angular distribution of contact normal vector at three strain states, initial state, peak state 

and critical state, for both experiment and numerical simulation, the length and color of each 

corner indicate the density of branch vector and contact normal vector oriented within the angles, 

respectively. 

 

Fig. 15. (a) Rose diagrams of the normal contact force at different strain states. The length and 

color represent the density of normal contact vector and the average normal contact forces 

oriented within the angles, respectively. (b-c) Spatial distributions of force chains at different 

strain states from different perspectives as approximately parallel to the X and Y axes, respectively. 

The thickness, color and opacity of the chain are proportional to the magnitude of contact forces. 
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Fig. 16. Correlations between particle nonaffine displacements 2

minD and particle stress volatility 

V . The color represents the data point density in range (0, 1) and the yellow represents the higher 

density. 

6. Conclusions 

In this work, we propose an enhanced tool to investigate the mechanical behavior 

of granular materials by combining the merits of the in-situ X-ray CT test and FDEM 

modeling. We then perform spherical harmonic analysis to characterize and 

reconstruct the multiscale morphological characteristics of irregularly shaped particles. 

A set of the SH rotation-invariants of each particle are used as matching index in the 

particle tracking. The implemented particle tracking algorithm enables accurate 

matching of particles even at the large strain interval. Rely on the detailed spherical 

harmonic reconstruction, we implement the conversion from X-ray image data into 

FDEM numerical sample with the consistent particle morphology and disordered 

structure.  

Without calibrating FDEM parameters based on experiment test, the FDEM 

simulation results quantitatively agree with the overall response recorded in 

experiment test. Moreover, the particle scale dynamics including the nonaffine 
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particle displacements and particle clustering behavior, show a remarkable 

quantitative agreement between simulation and experiment. It provides a clear 

understanding in two aspects: the particle tracking is robust and accurate; the FDEM 

modeling of granular materials is complete at both macro scale and micro scale. The 

slight difference between X-ray CT test and FDEM simulation may due to the lack of 

consideration of the multiscale contact behavior in FDEM contact model. The 

localized triggering of large nonaffine particle displacements is responsible for the 

plastic deformation, highlighting a spatial heterogeneity of dynamics behavior. The 

spatiotemporal evolution of such localized zones controls the macroscopic responses 

of the system. We further probe the contact force network via FDEM simulation. The 

spatially heterogeneous dynamics induce the evolution of contact force network, and 

especially the collapse of contact force chain networks coincide with the shear band 

formation. The collapse is relevant to the large induced structural voids formation 

within the shear transformation zones. Finally, we find the particle plastic 

rearrangements are closely related to the particle stress fluctuations. 

To conclude, the proposed tool, combining experimental X-ray CT and 

numerical FDEM, sheds new light on bridging length scales from particle size to 

granular system, making accurately understanding physical mechanism of granular 

system failure simple and flexible. Further, the enhanced tool makes it possibilities in 

studying the microscopic behavior of granular systems considering the particle 

breakage, and the complex dynamics over very small time scales because of the high 

temporal resolution in FDEM simulation.  
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 Appendix A Efficiency of SH-invariants to track particles 

The number of individual particles at the first and second scans is 15961 and 

15952, respectively, within which 15927 particles are tracked and 34 particles are lost 

during in the first strain interval. Fig. A1 shows the relative deviation 

( )d r rERR   = − of particle shapes for reference particle (
r ) and matching 

particle (
d ) between adjacent loading states, where the deviation is basically within 

4.0%. As shown in Table A1, all particle pairs are divided into four groups according 

to the magnitudes of particle volume difference, aspect ratio difference and sphericity 

difference. The first row in the table represents the shape difference, and the second 

row represents the number of particle pairs located in each group. The particle pair 

with smaller differences in morphology features are normally has a higher possibility 

to be correctly matched. We select reference particles and corresponding matching 

particles located in the group of 2.0%-10.0%, and an imaging comparison is made to 

check the matching result. Only six particle pairs are incorrectly matched, which 

indicates the matching provides highly accurate matching results in almost all the 

cases. For several error matched particles, it may be due to the information loss, or a 

significant image segmentation error occurs. As shown in Fig. A2, several image 

segmentation errors, such as over-segmentation (Fig. A2(a)) and under-segmentation 

(Fig. A2(b-c)), occur among the six particles which result in incorrect matching.  

In the future, high-resolution X-ray CT data and requisite image processing are 

needed to capture enough information in the higher frequency components to improve 

the matching precision. Those extensions would be better suited for matching 

irregularly shaped objects. 

 



 

32 

 

Table A1 Results of the matching  

0-0.5% 0.5%-2.0% 2.0%-5.0% 2.0%-10.0% 

9322 6102 459 28 

 

Fig. A1. The relative deviation of particle shapes for reference particle and matching particle 

between adjacent loading states. 

 

Fig. A2. Image segmentation errors (a) over-segmentation (b-c) under-segmentation. 
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