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Abstract: Deep learning algorithm bidirectional long-short term memory (BiLSTM) neural network is 4 

employed to model behaviors of the soil-structure interface in this study, as a pioneer research work to 5 

investigate the feasibility of using DL to model interface behaviors. Datasets are collected from 12 constant 6 

normal stress and 14 constant normal stiffness sand-structure interface tests. A modelling framework with 7 

the integration of BiLSTM is thereafter proposed. The results indicate the BiLSTM-based model can 8 

accurately capture the responses of interface behaviors including volumetric dilatancy and strain hardening 9 

on the dense samples, and volumetric and strain softening on the loose samples, respectively. The effects 10 

of surface roughness, soil relative density and normal stiffness on the interface behaviors are also 11 

investigated using the BiLSTM-based model. The predicted normal stress, shear stress and normal 12 

displacement show good agreement with measured results.  13 
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Introduction 16 

A fundamental understanding of the strength and deformation behaviors of the soil-structure interface is 17 

crucial for the geotechnical design such as piles, retaining walls and soil nails(Jin et al. 2019; Potts and Day 18 

1999; Ye et al. 2017; Zhou et al. 2020). The implementation of a shearing test on the soil-steel interface is 19 

an extensively applied method to investigate the responses of the interface. The involved tests include direct 20 

shear test, ring shear test, ring torsion shear test and simple shear test, and the characteristics of such 21 

interface shearing tests have been summarized by Kishida and Uesugi (1987). In particular, simple shear 22 

testing apparatus has been extensively employed on the interface test due to its simplicity (Evgin and 23 

Fakharian 1996). 24 

Numerous experimental tests have been conducted to investigate the effects of various factors on the 25 

responses of the soil-structure interface, such as surface roughness, surface hardness, particle morphology 26 

and gradation (Eid et al. 2015; Han et al. 2018; Hu and Pu 2004). With the development of computer 27 

hardware, the discrete element method (DEM) has been applied to investigate the microscopic behaviors 28 

of particles, such as rotation, breakage and fabric anisotropy, and provides a method for deeply explaining 29 

the macroscopic phenomena of the interface (Huang et al. 2019; Jing et al. 2018). Two failure modes were 30 

summarized based on the experimental and numerical observations, which is the elastic perfect-plastic 31 

failure mode along with the smooth interface and the strain localization including strain softening and 32 

dilatancy along with the rough interface (Hu and Pu 2004). Accordingly, the linear elastic constitutive 33 

model and non-linear constitutive model with a hyperbolic stress-strain relationship in the normal and 34 

tangential directions were developed to simulate the responses of the interface (D’Aguiar et al. 2011). A 35 

fraction of such constitutive models has been successfully implemented into finite element code for the 36 

simulation of geotechnical engineering (D’Aguiar et al. 2011; Stutz et al. 2017). The analysis methods 37 

associated with conventional constitutive models are limited to a fixed framework, that is, the assumed 38 

behaviors of the interface are ideal and cannot escape from the given mode. Meanwhile, excessive 39 

knowledge of domain experts is required to calibrate the parameters of constitutive models. 40 
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Machine learning (ML) has recently gained much attention to model mechanical behaviors of soils 41 

owning to its excellent capability of solving complex nonlinear problems with the interaction of high-42 

dimensional parameters (Chen et al. 2019; Zhang et al. 2019; Zhang et al. 2020). In comparison to the 43 

physics-driven constitutive model, the ML-driven model directly learns mechanical behaviors of soils from 44 

the raw data without making any assumptions. Moreover, the application scopes and accuracy of the ML-45 

driven model can be improved with the increasing number of datasets, and parameters are not required to 46 

be calibrated for the ML-driven model (Feng et al. 2002; Gao et al. 2016; Zhang et al. 2020). Various ML 47 

algorithms such as support vector machine (Kohestani and Hassanlourad 2016; Zhao et al. 2014), genetic 48 

algorithms (Cabalar and Cevik 2011) and evolutionary polynomial regression (Cuisinier et al. 2013; Javadi 49 

et al. 2012) have been applied to simulate the mechanical behaviors of soils. Besides, deep learning (DL) 50 

algorithms with more complex topology and stronger representation learning capability have recently been 51 

successfully employed to reproduce more complicated behaviors of soils, such as cyclic responses (Zhang 52 

et al. 2020) and multiscale hydro-mechanical coupling responses (Wang and Sun 2018). Nevertheless, 53 

behaviors of the soil-structure interface have not been modelled using ML or DL algorithms, thereby the 54 

feasibility and efficiency of such algorithms for this issue deserve to be investigated. 55 

This study aims to use the DL algorithm to model the behaviors of the soil-structure interface. A 56 

comprehensive evaluation with qualitative and quantitative analysis of the performance of the DL-based 57 

model is implemented. To examine the generalization ability of the DL-based model, the effects of surface 58 

roughness, relative density of soils and normal stiffness on the responses of the interface are investigated 59 

using DL.  60 

 61 

Modelling framework using deep learning  62 

Applied methodology 63 

Recurrent neural network (RNN) is characterized by a cyclic connection topology, which means the data 64 



 

4 

conveys along with two directions: vertical flow from input to output layers and horizontal flow between 65 

hidden layers. Therefore, the output at the time step t is affected by both current input and previous 66 

information stored in the hidden neurons. Such characteristic is more suitable for modelling mechanical 67 

behaviors of soils than other ML algorithms (Gorji et al. 2020; Wang and Sun 2018; Zhang et al. 2020), 68 

because the responses of soils at a given phase are related to the current status and the previous stress or 69 

strain history. Nevertheless, conventional RNN merely learns the information stored in the nearby units 70 

while the information stored in the far units is discarded. In other words, RNN only learns the short-term 71 

history information. Moreover, the back-propagated gradients of the conventional RNN suffer from either 72 

increase or decrease at each time step, resulting in exploding or vanishing gradients (LeCun et al. 2015). 73 

To overcome such issues, a memory cell with an entity termed as “gate” is proposed. Thereafter, a series of 74 

algorithms motivated by the “gate” mechanism have been proposed and successfully applied in many 75 

domains (Zhang et al. 2020), such as long short-term memory (LSTM) (Hochreiter and Schmidhuber 1997), 76 

bidirectional LSTM (BiLSTM) (Graves and Schmidhuber 2005) and gated recurrent unit (GRU) (Cho et 77 

al. 2014).  78 

Herein, GRU refines the memory cell of LSTM and forms a simpler architecture, thereby the 79 

implementation of GRU is easier with a less computational cost. There is no convincing evidence to 80 

evaluate the superiority of various algorithms. The memory cell of BiLSTM is the same as LSTM, but 81 

BiLSTM utilizes both positive and reverses sequential information by concatenating the outputs of hidden 82 

layers. Therefore, BiLSTM enhances the interaction of sequential datasets, but the number of weights and 83 

biases increases two times in comparison with LSTM. Considering the datasets and features used in soil 84 

constitutive modelling are limited, the complexity of the framework of DL-based constitutive model is 85 

acceptable, thereby the effect of an increasing number of weights and biases on the computational efficiency 86 

can be neglected. To this end, BiLSTM is ultimately employed to simulate the behaviors of the soil-structure 87 

interface in this study. 88 

Modelling strategy 89 
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The selection of features determines what factors can be considered by the BiLSTM -based model, thereby 90 

it is related to the application scopes of the BiLSTM -based model. To improve the generalization ability 91 

of the DL-based model, the features are required to involve inherent properties of the studied object, state 92 

parameters and historical information of stress or strain. The inherent properties are used to describe the 93 

characteristics of soils and structural surfaces, such as normal stiffness kn, relative density ID0 and 94 

normalized roughness Rn. Such features as input parameters ensure that the BiLSTM-based model can be 95 

used to investigate behaviors of the interface of various soils and structures. State parameters are employed 96 

to represent experimental steps, such as initial normal stress σn0, shear displacement w and shear 97 

displacement increment Δw. The outputs of the DL-based model at the previous time steps are added to the 98 

input parameters for considering loading and deformation history. Overall, the input and output parameters 99 

are summarized in Table 1 and the BiLSTM-based model for modelling behaviors of the soil-structure 100 

interface can be mathematically expressed by: 101 

 ( ) ( )+1 +1 +1

0 0, , , , , , , , , ,t t t t t t t t

n n nDn nu f u w w Ik R    =   (1) 102 

where ut+1, σ
t+1 

n , τt+1 and Δwt are the predicted normal displacement, shear stress, normal stress and shear 103 

displacement increment at the tth step, respectively; ut, σ
t 

n, τ
t and wt are the normal displacement, shear 104 

stress, normal stress and shear displacement at the tth step. Herein, Rn = Rmax (L = D50)/D50, in which Rmax 105 

(L = D50) represents the relative height between the highest peak and the lowest valley along with a surface 106 

profile over the gauge length D50 (diameter through which 50% of sands pass). The value of Δw is assigned 107 

beforehand, and it increases with the increasing shear displacement. Therefore, the value of Δw is prescribed 108 

as 0.01 (w ≤ 0.5 mm), 0.02 (0.5 < w ≤ 1 mm), 0.05 (1 < w ≤ 3 mm), 0.1 (3 < w ≤ 4 mm), and 0.2 (w > 4 109 

mm). 110 

It should be noted that the architecture of the memory cell (see Fig. 1) used for positive and reverse 111 

directions in the BiLSTM is the same, but the values of weights and biases are different. fW, fU and fb are 112 

the weights matrices and biases vector used for the positive data flow, and bW, bU and bb are used for the 113 

reverse data flow, as presented in Fig. 1. Given a set of input parameters x = [ut, σ
t 

n, τ
t, wt, Δwt, σn0, kn, ID0, 114 
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Rn] at the tth step, the calculation principle of the BiLSTM-based model with two hidden layers is 115 

introduced. Herein, the calculation of the positive data flow is introduced for revealing the mechanism of 116 

BiLSTM, whereas the calculation of the reverse data flow is dismissed for brevity, because the calculation 117 

of data flow for both directions is similar except the used weights matrices and bias vector. results of the 118 

forget, input and output gates are obtained by: 119 

(1) First, the input data xt pass through the first hidden layer, and the outputs at the forget, input and output 120 

gates can be obtained using:  121 

 ( )1f t f t f f t f

f f f −= + +W Uf x h b  (2) 122 

 ( )1f t f t f f t f

i i i −= + +W Ui x h b  (3) 123 

 ( )1f t f t f f t f

o o o −= + +W Uο x h b  (4) 124 

where subscript f, i and o denote the matric weight and bias vectors used in the forget, input and output 125 

gates, respectively. The result of memory is thereafter obtained by: 126 

 ( )1f t f t f f t f

c c ctanh −= + +W Uc x h b%  (5) 127 

 1f t f t f t f t f t= ++
c f c i c%e e  (6) 128 

where e  denotes the element-wise product. Next, the output of the hidden layer is obtained by: 129 

 ( )f t f t f ttanh=h o ce  (7) 130 

Similar to the calculation of the positive data flow, the output of the hidden layer for the reverse data 131 

flow bht can also be obtained using Eqs. (2)–(7) as long as replacing the fW, fU and fb with the bW, bU and 132 

bb. The ultimate output of the first hidden layer is obtained by  133 

 
1h h h
t f t b t=   (8) 134 

where   denotes concatenation operation. 135 
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(2) Second, from the first hidden layer to the second hidden layer. The calculation at the second layer still 136 

uses the same equations with the first layer, i.e., from Eqs. (2)–(8) as long as replacing the xt with the h
t 

1 as 137 

the input data at the second hidden layer and using the output of hidden layer from the (t–1)th step, weights 138 

matrics and biases vectors at this layer. Finally, the output h
t 

2 can be obtained. 139 

(3) Finally, from the second hidden layer to the output layer. The final output of the BiLSTM-based model 140 

at the tth step is obtained by: 141 

 
2y h b
t=  +W  (9) 142 

where W and b are the weights and biases used in the output layer. The linear activation function is used. 143 

Following Eqs. (2)–(9), the mathematic expression of the BiLSTM-based model is established. 144 

Database 145 

Data source 146 

The datasets used in this study refer to Praai (2013). The results of 12 constant normal stress (CNL) tests 147 

and 20 constant normal stiffness (CNS) tests on the standard Fontainebleau sand were collected, and its 148 

properties are presented in Table 2. Such tests involve the responses of the soil-steel interface under 149 

different relative densities of soil, normal stresses, normal stiffness and surface roughness, as shown in 150 

Table 3, which are sufficient enough to develop the BiLSTM-based model and evaluate its generalization 151 

ability. However, the data points of each test are relatively limited and are interfered with by experimental 152 

and measurement errors. Numerous datasets with useful information are the basis for developing the DL-153 

based model. The raw experimental datasets are thus preprocessed. 154 

Data preprocessing 155 

As presented in the Eq. [8], after the value of Δw is prescribed, the relationships of w–u, w–σ and w–τ can 156 

be interpolated for increasing the number of datasets, meanwhile, the remaining input parameters maintain 157 

constant values. Herein, the piecewise cubic Hermitian interpolation polynomials (PCHIP) method is first 158 

used, considering such an interpolation method does not change the shape of the raw relationship curve 159 
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(Moler 2004). Next, the Savitzky-Golay filter is selected to denoise the experimental data, because it can 160 

smoothen the data without distorting the tendency of original data (Savitzky and Golay 1964). Fig. 2 161 

presents the results of data pre-processing on a representative experiment. It can be seen from the curves 162 

that the fidelity of raw data is maintained and meanwhile the noise is dismissed. Such factors improve the 163 

quality and quantity of datasets, thereby ensuring that the useful information can be learned by the BiLSTM. 164 

Therefore, 24 experimental tests with 3063 datasets and 8 experimental tests with 1064 datasets are used 165 

as training and testing sets, respectively. 166 

To eliminate the effect of scale difference of input parameters on the training process, all datasets are 167 

normalized using the Min-Max scaling method and mapped into the range (–1, 1).  168 

 ( )min
max min min

max min

norm

x x
x x x x

x x

−
= − +

−
 (10) 169 

where xmax and xmin are the maximum and minimum values of the parameter x, respectively; maxx  and minx  170 

are the 1 and −1, respectively.  171 

 172 

Modelling results of BiLSTM-based model 173 

Training of the BiLSTM-based model 174 

To detect the overfitting of the BiLSTM, the 10-fold cross-validation method is used. The original training 175 

set is randomly divided into 10 subsets, the model is thus trained 10 times with the same initial weights and 176 

biases at each training epoch. At each time, the model is trained based on 9 random subsets, and is tested 177 

on the 1 remaining subset. The ultimately propagated error at each epoch is the mean square error (MSE) 178 

on the 10 validation subsets rather than merely on one testing set. Because the excellent performance of a 179 

DL-based model on one test set may be just coincident, the model performance evaluated based on one 180 

testing set may lead to misunderstanding of the model performance. The results of 10-fold cross-validation 181 

method do not rely on the spilt results of training and testing sets, thereby it can eliminate such issue and 182 
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give a fair evaluation of the model performance. In this way, the BiLSTM-based model with the integration 183 

of the 10-fold cross-validation is much more robust and the overfitting issue can also be detected.  184 

Mean square error (MSE) is used for evaluating the difference of predicted and measured results during 185 

the training process, thereby the ultimate loss function can be expressed using 186 

 ( )
2

1

1
Loss function

10

n
p m

i i

i

y y
n =

= −  (11) 187 

where n is the total number of datasets; 10 is the number of folds; y
p 

i  and y
m 

i  are predicted and measured 188 

values, respectively. 189 

Based on the prescribed loss function, the training process is activated for developing the BiLSTM-190 

based model. The configurations of the BiLSTM-based model are determined using the trial-and-error 191 

method, and the results are presented in Table 4. The BiLSTM-based model with four layers (one input 192 

layer, two hidden layers with memory cell and one output dense layer) shows optimum performance. The 193 

optimum number of hidden neurons in each hidden layer is identified as 60. The activation function used 194 

in the hidden layer is ReLU, meanwhile, the linear activation function is applied in the output layer. The 195 

Adam optimizer is used to update the weights and biases of the BiLSTM, which makes use of the advantages 196 

of AdaGrad and RMSProp (Kingma 2015) and has been extensively used in many domains. The batch size 197 

determines the number of datasets to be fed to BiLSTM for training at each round. Considering the number 198 

of datasets after data pre-processing in each experiment is roughly identical to 120, the batch size is thus 199 

set as 120 so that ensures BiLSTM can learn the entire information of an entire experiment test at each 200 

round. The 200 epochs are large enough to guarantee the convergence of training. The final loss value 201 

generated during the training process is presented in Fig. 3. It can be seen that the loss value is convergent 202 

on both training and testing sets.  203 

One of the important parameters in BiLSTM is the time step, which determines the span of the history 204 

information. The additional history information can improve the learning capability of the BiLSTM-based 205 

model, but too long history information also degrades the learning efficiency and causes overfitting. To 206 
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select the appropriate time step, the performance of the BiLSTM-based model with the time step from 1 to 207 

5 is investigated, and the corresponding training process is presented in Fig. 4. It should be noted that the 208 

performance of the BiLSTM-based model is dramatically affected by the initial weights and biases. To 209 

fairly evaluate the performance of the BiLSTM-based model, the model with each time step is trained 10 210 

times with different weights and biases. Therefore, 10 MSE values are generated at each epoch, and they 211 

are represented using a boxplot. It can be observed in Fig. 4 that the error on the training set decreases with 212 

the increasing time step as expected, and the convergence rate increases. However, the overfitting issue 213 

appears as the time step increases to 4, causing the larger error on the validation set than that generated by 214 

the model with the time step less than 3. As the time step is 1, the MSE decreases to the minimum value 215 

with the epoch reaching 200, thereafter the increasing epoch leads to the increase in the MSE value, which 216 

is attributed to under-fitting. As the time step exceeds 300, similar status is observed in the model with the 217 

time step of 2. The model with the time step of 3 presents stable convergence on the validation set, and the 218 

MSE value on the training set is also acceptable. Therefore, the optimum time step of the BiLSTM-based 219 

model is identified as 3 in this study, which means that the current behavior of the interface is affected by 220 

the stress or strain status of the previous three steps. 221 

Performance of the BiLSTM-based model 222 

Fig. 5 presents the scatter plots of the predicted and measured normal stress, shear stress and normal 223 

displacement. The predicted results on both training and testing sets show excellent agreement with the 224 

measured results, and all data points are close to the line with the slope of 1. To quantitatively evaluate the 225 

performance of the BiLSTM-based model. Absolute and relative error indicators, i.e., mean absolute error 226 

(MAE) and mean absolute percentage error (MAPE), are calculated. 227 

 
1

1
MAE

n
p m

i i

i

y y
n =

= −  (12) 228 

 
1

1
MAPE 100%

p mn
i i

m
i i

y y

n y=

−
=   (13) 229 
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As presented in Fig. 5, the MAE and MAPE values for the three outputs on both training and testing 230 

are small, and the errors on the testing set are roughly three times larger than that generated on the training 231 

sets. The MAPE value for the predicted shear displacement is much larger than the remaining two outputs, 232 

which is attributed to the small value of the measured shear displacement. The MAE value is indiscernible, 233 

thereby the prediction accuracy for the shear displacement is guaranteed. The results of error analysis 234 

indicate that the BiLSTM-based model exhibits high accuracy and strong generalization ability on unknown 235 

datasets. 236 

To further reveal the performance of the BiLSTM-based model, Fig. 6 presents the predicted 237 

relationships of w–u, w–σ and w–τ on each testing set. The predicted relationships on the training set are 238 

not presented for brevity, because they are better than the results on the testing set. Fig. 6 presents the 239 

predicted and measured behaviours of the interface under the CNL test. Regarding the rough interface with 240 

the dense sample, it can be seen from Fig. 6(a) that the shear stress increases with the increasing shear 241 

relative displacement until reaching the peak value, thereafter decreased to residual shear stress. In the case 242 

of the loose sample, the slight softening is observed. In Fig. 6(b), the dilative behavior of dense samples 243 

can be clearly observed whereas the volumetric contraction occurs on the loose sample. Regarding the 244 

smooth interface, the softening behavior on both dense or loose samples is negligible. The peak and residual 245 

shear stress decrease to 60%–70% of values generated on the rough interface, because the less dilative and 246 

contractive behaviors on the dense and loose samples are observed, respectively.  247 

The predicted results under the CNS test for the rough interface with the normal stiffness of 2000 248 

kPa/mm are presented in Figs. 7a–7c. When the sample is subjected to normal stiffness, behaviors of the 249 

interface are changed dramatically, but the BiLSTM-based model still accurately identifies such behaviors. 250 

As shown in Figs. 7(b) and (c), on the dense sample, the BiLSTM-based model can predict the softening 251 

and dilative behaviors. On the loose sample, at the beginning of the shearing phase, the interface contracts 252 

and consequently leads to the significant degradation of the normal stress. During the shearing phase, the 253 

interface continuously contracts and the normal stress degrades as well as shear stress (see Fig. 7(a)).  254 
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Figs. 7d–7f present the behaviors of the smooth interface under the CNS condition for the dense sand 255 

sample. The observed trends differ from the responses in the rough interface test. The dilative behavior 256 

significantly mitigates as well as the variation of stress states. The increase of normal stress can only be 257 

observed in the case of kn = 5000 kPa/mm (see Fig. 7(d)), and the strain-softening does not occur (see Fig. 258 

7(e)) during the shearing phase. The normal displacement roughly maintains constant (see Fig. 7(f)). 259 

Overall, under the CNS condition, the behaviors of smooth interface dramatically differ from the rough 260 

interface, and the BiLSTM-based model can still accurately capture such responses. 261 

Overall, from the perspective of the predicted results, the relationships of w–u, w–σ and w–τ of the 262 

soil-structure interface with different surface roughness, relative density and normal stiffness can be 263 

accurately predicted using the BiLSTM-based model, and outperform the modelling results using the 264 

theoretical formulations presented by Praai (2013). 265 

 266 

Conclusions 267 

A bidirectional long-short term memory (BiLSTM) neural network-based model for investigating the 268 

behaviors of the soil-structure interface was proposed in this study, as a pioneer research work to investigate 269 

the feasibility of the DL algorithm to model interface behaviors. BiLSTM is characterized by the sequence 270 

prediction capability and all simulation results indicated the BiLSTM-based model was suitable for 271 

modelling behaviors of soil-structure interface with small prediction errors. Meanwhile, the BiLSTM-based 272 

model can accurately capture responses of behaviors of the soil-structure interface, such as volumetric 273 

dilatancy and strain hardening on the dense samples, and volumetric and strain softening on loose samples, 274 

respectively. The results generated by the BiLSTM-based model are more accurate than that generated by 275 

the theoretical formulations. Meanwhile, the effects of surface roughness, the relative density of soil and 276 

normal stiffness on the interface behaviors can also be accurately captured by the same BiLSTM-based 277 

model. 278 
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1 

Table 

Table 1 Input and output parameters/variables 

Type Parameter/variable Definition 

Input σn0 Initial normal stress 

kn Normal stiffness 

ID0 Relative density 

Rn Normalized roughness 

Δwt+1 Shear displacement increment 

wt Shear displacement 

σt 

n Normal stress 

τt Shear stress 

ut Normal displacement 

Output σt+1 

n  Normal stress 

τt+1 Shear stress 

ut+1 Normal displacement 

Note: t denotes values of parameters/variables at the step t 

 

Table 2 Properties of standard Fontainebleau sand (after Praai 2013) 

d50 

(mm) 

G 

(g/cm3) 

ρd, max 

(g/cm3) 

ρd, min 

(g/cm3) 

emax emin Cu 

0.23 2.65 1.72 1.42 0.866 0.545 1.72 

 

 

Table 3 Summary of experimental tests 

Experiment type ID0 σn0 (kPa) kn (kPa/mm) Rn 

CNL 0.9, 0.3 60, 120, 310 0 0.87 (Rough), 0.06 (Smooth) 

CNS 0.9, 0.3 100 1000, 2000, 5000 0.87 (Rough) 

0.9, 0.3 60, 310 1000, 5000 0.87 (Rough) 

0.9 60, 100, 310 1000, 5000 0.06 (Smooth) 

Note: 12 CNL tests and 20 CNS tests 

 

 

Table 4 Configurations of the BiLSTM based model 

Configuration value 

Architecture 9–60(ReLU)–60(ReLU)–3(linear) 

Optimizer adam 

Batch size 120 

Epoch 200 

Overfitting prevention 10-fold cross-validation 

Time step 3 
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