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Abstract: Machine learning (ML) may provide a new methodology to directly learn from raw data to 

develop constitutive models for soils by using pure mathematic skills, and it has presented success and 

versatility in cases of simple stress paths due to its strong non-linear mapping capacity without limitations 

of constitutive formulations. However, current studies on the ML based constitutive modeling of soils is 

still very limited. This study comprehensively reviews the application of ML algorithms in the development 

of constitutive models of soils and compares the performance of different ML algorithms. First, the basic 

principles of typical ML algorithms used in describing soil behaviors are briefly elaborated. The main 

characteristics and the limitations of such ML algorithms are summarized and compared. Then, the 

methodology of developing a ML-based soil model is reviewed from six aspects, such as adopted ML 

algorithms, data source, framework of the ML based model, training strategy, generalization ability and 

application scope. Finally, five new ML based models are developed using five typical ML algorithms (i.e. 

BPNN, RBF, LSTM, GRU and BiLSTM that can predict multi outputs together) based on same set of 

experimental results of sand, and compare each other in terms of the predictive accuracy and generalization 

ability. Results show the long short-term memory (LSTM) neural network and its variants are most suitable 

for developing constitutive models. Moreover, some useful suggestions for developing ML-based soil 

models are also provided for the community. 
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1 Introduction 

Soil is a complicated granular material that exhibits non-linear mechanical behaviors involving state-

dependence [1, 2], stress dilatancy [3], anisotropy [4, 5], destructuration [6, 7], stress-path dependence [8], 

time-dependence [9], and non-coaxiality [10], and so on. To describe such complicated soil behaviors for 

prompting their application in engineering practice, researchers have preoccupied with proposing 

constitutive models during last decades. Such models can be mainly categorized into (1) linear elastic 

perfectly plastic models (e.g. the Mohr-Coulomb model, Drucker Prager model), (2) nonlinear models (e.g. 

the hardening soil [11] and nonlinear Mohr-Coulomb [12] models), (3) critical state–based models (e.g. the 

modified cam-clay model [13], Nor-Sand model [14], CSAM model [15], Severn–Trent model [16], UH 

models [17-19], SANISAND model [20], SIMSAND model [12, 21, 22] and ANICREEP model [23], 

hypoplasticity [24-27]) and (4) micromechanical models [28-33]. In general, these models have four main 

limitations in simulating soil behaviors: (1) all constitutive models are proposed on the basis of certain 

assumptions [4, 9, 34]; (2) each model is only suitable for few soil types; (3) although the mathematical 

formulas in a constitutive model are derived from the experimental data, and the formula’s form presents 

excellent accuracy for the selected tests, meanwhile it limits the model’s predictive ability for other tests 

with different stress paths; (4) the mathematical formulas become increasingly complicated with numerous 

parameters [35], as presented in Fig. 1, resulting in difficulties with respect to the calibration of parameters 

and applications in engineering practice. Furthermore, the complexity of advanced constitutive models 

generally increases the risk of non-convergence during the numerical analysis using such models being 

implemented into numerical codes.  

Fig. 1 Relationship between the complexity of constitutive model and the number of parameters 
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Machine learning (ML) has been back on the stage of research works in all the walks in recent years 

[36-40] due to its excellent capacity of solving nonlinear problems with desired speed and accuracy [41]. 

Therefore, ML may provide a new methodology to model the complicated mechanical behaviors of soils. 

In general, ML has three advantages in developing constitutive models of soils: (1) ML algorithms can 

directly learn the stress–strain relationship from the raw data without making any assumptions [42-44]; (2) 

ML is able to develop a uniform model for simulating behaviors of various soils as long as the experiments 

of such soils are involved in a database; (3) the predictive accuracy and application scopes of ML-based 

models can be improved with the increasing number of datasets; (4) ML based model is a data-driven model, 

thereby no parameters calibration is needed once the configurations of ML are determined. 

However, current studies of ML based constitutive modeling exhibit obvious limitations, which can 

be concluded from two aspects: model development and application. From the perspective of developing a 

ML based constitutive model, most of models were developed by conventional ML algorithms, but some 

effective ML algorithms such as LSTM or its variants that are characterized by predicting sequential data 

such as stress-strain relationship have been rarely used. Current ML based models were developed based 

on experimental or synthetic datasets generated by physics-based constitutive models. The performance of 

these ML based models was merely evaluated using several experimental tests of a given soil, thereby it is 

hard to guarantee the robustness of such models and the feasibility of applying such models to predict 

stress-strain relationship of other soils. Synthetic datasets are derived from theoretical formulations, thereby 

ML based models developed based on synthetic datasets cannot show better performance and dig deeper 

mechanism than physics-based constitutive models used for data creation. Such problems regarding the 

data source have not been fully discussed and resolved. Currently, the input parameters and framework used 
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in ML based constitutive modeling are diverse, and there is no methodology or suggestion to guide the 

selection of input parameters and framework. Meanwhile currently used modules (e.g. activation functions) 

and learning strategies (e.g. optimizers) for constructing ML based models extremely lag the development 

in the ML domain. Such out-of-style algorithms and training strategies reduce the learning efficiency. The 

training process is also easily trapped into the local optima. Moreover, methods of preventing overfitting 

and enhancing model robustness are not used in most of studies of ML based models.  

From the perspective of the application of ML based constitutive models, the generalization ability of 

ML based constitutive models in literature has not been carefully checked. It is clear that extrapolation is 

the more pervasive task for the prediction of soil stress-strain relationship, but only the interpolation 

predictability of ML based constitutive models was investigated in most of studies. Moreover, the ML based 

models in literature were merely used to calculate several stress-strain responses with different values of 

commonly used soil physical properties such as relative density, overconsolidation ratio, particle size 

distribution, individual fraction of mixed materials, but the range of such physical properties is very limited. 

In addition, almost all of these ML based models were independently developed based on drained or 

undrained datasets, which means that such models cannot simultaneously simulate soil behaviors under 

complex loading conditions, even simply for both drained and undrained conditions. Overall, most of 

current ML based models cannot comprehensively simulate mechanical behaviors of a soil sample, and 

thus the further application would be far from the reality. As a result, the application of ML based 

constitutive models with the integration of numerical analysis platform for practical engineering project has 

not been conducted up to now. 

Hence, this study aims to comprehensively investigate the current application of ML algorithms in the 
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development of constitutive modeling for soils. Six important aspects for developing a ML based 

constitutive model such as the adopted ML algorithms, data source, framework of the ML based model, 

training strategy, generalization ability and application scope are discussed. Then, the limitations of current 

ML based constitutive models and the potential aspects that deserve to be further improved are summarized. 

Finally, a real case to compare the performance of different ML algorithms in developing a soil model is 

presented.  

2 Some typical machine learning algorithms 

According to the literature investigation results, it can be seen from Fig. 2 that the number of articles 

regarding the application of ML for developing constitutive models has gradually increased since the end 

of last century, which indicates an increasing interest of the researchers to explore this new methodology 

for constitutive modeling of soils. Table 1 summarizes all ML based constitutive models in open literatures 

collected from google scholar. To construct a ML based constitutive model of soils, it can be observed that 

researchers have used numerous ML algorithms, such as genetic programming (GP) [45], evolutionary 

polynomial regression (EPR) [46-51], support vector machine (SVM) [52, 53], backpropagation neural 

network (BPNN) [53-74], radial basis function (RBF) neural network [74-76], recurrent neural network 

(RNN) [77-79], long short-term memory (LSTM) neural network [80-82] and gate recurrent unit (GRU) 

neural network [83], to simulate stress-strain responses of various soils including clay, sand, gravel, ballast, 

rockfill, frozen soil, reinforced soil and soils with various mixture such as turf and carbonate. Overall, the 

proportion of such eight ML algorithms used for constitutive modeling is summarized in Fig. 3. 

Table 1 Summary of ML based constitutive models in literature 
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Fig. 2 Increasing number of papers regrading ML based constitutive models 

Fig. 3 Proportion of various machine learning based model 

2.1 Genetic programming 

GP is a type of evolutionary algorithm, which is characterized by the symbolic optimization to search the 

optimum structure of formulations rather than the number optimization in general evolutionary algorithms. 

Binary tree is the widely used method in GP to represent the candidate structure. Fig. 4 shows the process 

of building a binary tree, in which the symbol and parameter values at all nodes form the equation that is 

assembled from the leaves to the root. Various hierarchically structured trees consist of a population. 

Thereafter the evolutionary process is activated that includes selection, crossing and mutation operations 

[84]. The symbol and parameter values at each node can be changed using crossing and mutation (see Fig. 

4), and the structure with lower fitness value is selected. GP has been extensively used to investigate the 

relationship between independent variables and answer variables because its simple and explicit expression 

can provide clear explanation such as the prediction of soil physical indices [85-88]. However, GP heavily 

relies on stochastics procedures and operators, and the combination of the initial population is relatively 

numerous [89]. Such non-deterministic operations cannot ensure to find the optimum solution and develop 

a model with excellent generalization ability. There is no doubt that one deterministic formulation only has 

a unique result, which means that a GP based model cannot be used to predict multi outputs. Meanwhile 

the output of GP is single, which is not convenient to be further applied. Such factors lead to the few 

applications of GP to develop a constitutive model of soils, as presented in Fig 3 and Table 1, there is only 

one research work where GP is used to simulate stress-strain relationship of the sand–mica mixtures under 
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undrained and monotonic loading condition. 

Fig. 4 Framework of genetic programming 

2.2 Evolutionary polynomial regression 

EPR is a type of genetic programming, in which the number of transformed parameters is prescribed in 

advance, and it is generally used with meta-heuristic algorithms such as genetic algorithm and particle 

swarm optimization [90]. As shown in Fig. 5, EPR starts from generating an exponent matrix E using a 

meta-heuristic algorithm, thereafter the transformed parameters xt can be obtained by: 

 
1, 2, ,xti i i n ix x x E E E

 (1) 

The corresponding EPR expression can thus be formulated as:  

 0

1

y xt
m

i i

i

c c


   (2) 

where the constant vector c = [c0, c1, …, cm] can be determined by linear least square methods. The 

advantages and limitations of EPR are similar to GP. Most of previous ML based constitutive models of 

soils were developed based on EPR with the proportion of 14.29% including the investigation of soil 

monotonic and cyclic behaviors under drained or undrained condition. However, EPR is hardly used to 

predict soil stress-strain relationships in the recent research works, considering the EPR cannot perform 

well for complicated problems with high-dimensional data in comparison with currently proposed ML 

algorithms. Similar to GP, its output is also single. 

Fig. 5 Framework of evolutionary polynomial regression 
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2.3 Support vector machine 

SVM is developed based on structural risk minimization, thereby it can be used to train model with small 

datasets. The computational cost is related to the number of support vectors rather the number of input 

parameters, but the computational cost of SVM is expensive with numerous training datasets. In SVM, 

datasets are first mapped to a high-dimension space by a kernel function to find a linear decision surface or 

hyperplane to separate datasets [91]. As presented in Fig. 6, γ(i) that is orthogonal to the hyperplane is term 

as the geometric margin, which is used to measure the distance of a training sample to the decision boundary. 

The training of SVM is to find a hyperplane which can separate all datasets with a largest “gap”, that is, the 

minimum γ reaches the maximum value, which can be expressed by: 

 

      

2

, ,

1

1
min

2

       s.t.  1 ,   = 1,2, , ,  0

m

b i

i

T i

i i

C

y i x b i m

   

  





    


 (3) 

where m is a total of training samples. ω and b are weights and biases. ξ and C are slack and penalty 

parameters. SVM shows excellent performance for high-dimensional datasets, and it has been extensively 

used in classification problems with numerous features [92, 93]. Nevertheless, SVM based model cannot 

be expressed with an explicit formulation, and it also cannot be used to predict multi outputs. Therefore, 

the poor readability and interpretability prevent its application scopes such as the combination with 

numerical modeling. It can be seen from Fig. 3 that the proportion of SVM based constitutive model of 

soils is lowest. It was only used to model stress-strain relationship under monotonic loading and drained 

conditions. 

Fig. 6 Framework of support vector machine 
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2.4 Backpropagation neural network 

The most widely used ML algorithm for modeling soil stress-strain relationship is backpropagation neural 

network (BPNN), which is a type of feedforward neural network. It can be seen from Fig. 3 that half of ML 

based constitutive models are developed using BPNN. The monotonic and cyclic stress-strain relationships 

of clay and sand under drained or undrained condition have been sufficiently investigated using BPNN. Fig. 

7 presents the architecture of BPNN with three layers, and the corresponding formulations are presented in 

Eqs. [4]–[5]. The input data flows from the input layer to the output layer and error is propagated from the 

output layer for finding a set of weights that ensure that the output value produced by the network is the 

same as the actual output value [94].  

  1 1θf H WX  (4) 

  2 2θg O W H  (5) 

where X is the input matrix. H and O are the output of hidden and output layers, respectively. W1 and W2 

are weights matrix on the connections between input and hidden layers, between hidden and output layers, 

respectively. θ1 and θ2 are the bias vectors added in the hidden and output layers, respectively. f, g are 

activation functions in hidden and output layers, respectively. BPNN is a multilayer stack of simple 

modules, and a system with 5–20 nonlinear layers can implement extremely intricate functions [41, 95, 96], 

thereby BPNN has been extensively used for regression and classification problems in many domains [97]. 

However, BPNN cannot store history information, meanwhile gradients exploding or vanishing may occur 

as the increasing depth of network architecture, which means that it is not suitable to predict sequential data 

and build deep network. 
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Fig. 7 Framework of backpropagation neural network 

2.5 Radial basis function neural network 

RBF neural network is characterized by the fixed architecture (three layers including an input, a hidden and 

an output layers) and fast learning process. The weights connecting the input and hidden layers are 

randomly assigned, and the weights connecting the hidden and output layer are determined using linear 

least square methods, e.g. least mean square [98]. As presented in Fig. 8, given an input matrix Xm×n, the 

output can be obtained by: 

  
1

( , )y c
k

i

i

c


    W X W X  (6) 

 

2

22( )

x

x e 


   (7) 

where cj is the jth center. k is the number of hidden neurons; || || denotes Euclidean distance.  is the basis 

function, and Gaussian formulation is commonly used as presented in Ep. [7], in which σ is the smoothing 

parameter. The weights and biases of RBF are obtained by using function approximation rather than the 

recursive iterations in BPNN, which means that the computational cost is low, and it is extremely suitable 

for approximation and interpolation [99, 100]. The shallow network structure of RBF means the prediction 

capacity of RBF neural network is poorer than BPNN, thereby it can be seen from Fig. 3 that only 7.14% 

of ML based constitutive models of soils were developed based on RBF. However, the exploitation of such 

algorithm is sufficient including the modeling of monotonic and cyclic stress-strain relationships of clay 

and sand under drained or undrained condition. 

Fig. 8 Framework of radial basis function neural network 
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2.6 Recurrent neural network 

The ML algorithms mentioned above cannot account for soil loading history themselves, that is, the model 

output only depends on the current input of stress or strain increment. RNN is characterized by a cyclic 

connection topology, as presented in Fig. 9. In this way, the hidden layer output at the time step t is not only 

affected by the input, but also relates to the hidden output at the (t–1)th step, which can be expressed by: 

  1

1 1x + b
t t tf  H W UH  (8) 

where U is matrix connecting hidden layers at adjacent steps. The calculation of output is similar to the Eq. 

[5]. 

Hence, the history information is stored and it is applied to predict the next status. Such history-

dependent characteristic makes RNN applicable to investigate problems with sequential datasets, such as 

language transformation, speech recognition [78, 101]. Soil response is undoubtedly affected by the loading 

history, and the stress-strain datasets have sequential characteristic. RNN has been applied to investigate 

soil behavior under monotonic loading and different drained conditions, and been gradually gained attention 

in the development of ML based constitutive model of soils (8.33% as shown in Fig. 3). 

Fig. 9 Framework of recurrent neural network 

2.7 Long short-term memory neural network 

The training of conventional RNN has two obvious issues: i) the back-propagated gradients either grow or 

shrink at each time step, resulting in exploding or vanishing gradients [95], ii) the learning efficiency of the 

hidden layers in the front of the architecture is poorer than the later hidden layers, which means RNN only 
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stores the short-term history. To overcome such problems, LSTM neural network is developed, in which a 

memory cell is added in the architecture of LSTM, as presented in Fig. 10. Such memory cell can store 

information over extended time intervals and handle long-time-lag tasks [102] by using a novel entity 

termed as “gate”, that is, forget, input and output gates. The outputs of such gates at the tth step can be 

obtained by:  

  1t t t

f f f   W Uf x h b  (9) 

  1t t t

i i i   W Ui x h b  (10) 

  1t t t

o o o   W Uο x h b  (11) 

where σ is the sigmoid function. In the forget gate, σ = 1 and 0 represent all information is maintained or 

discarded, respectively. In the input gate, σ = 1 and 0 represent all information is selected or discarded, 

respectively. The memory cell and hidden layer states at the tth current step are updated using: 

  1t t t

c c ctanh   W Uc x h b  (12) 

 1
c f c i c

t t t t t   (13) 

  h o c
t t ttanh  (14) 

where tanh is the activation function;  denotes elementwise product; ct stores the long-term memory.

1
f c

t t
 represents the discarded information; i c

t t represents the newly selected information. The 

update of memory cell status with an addition format can avoid the gradients vanishing and exploding. 

Because of the effectiveness of LSTM, increasing researchers have used it to model soil behavior in the 
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recent years [80, 81, 101]. Zhang et al. [80] have successfully used it to simulate cyclic behaviors of 

granular materials under both drained and undrained conditions. 

Fig. 10 Framework of memory cell of LSTM 

2.8 Gated recurrent unit neural network 

GRU is a variant of LSTM and it has fewer weights and biases than LSTM as presented in Fig. 11, because 

the memory cell of GRU only has two gates, that is, update (z) and reset (r) gates, respectively [103]. The 

output of such two gates can be obtained by: 

  1t t t

r r r   W Ur x h b  (15) 

  1t t t

z z z   W Uz x h b  (16) 

Herein, reset gate decides which part of previous hidden information ht–1 can be discarded, thereby 

the current candidate hidden state ct can be expressed by: 

  1t t t ttanh   
 
W Uh x r h  (17) 

The update gate decides which part of the current hidden state ht need to be updated through the 

candidate hidden state ct, thereby ht can be obtained by: 

  1t t t t t h z h + z h  (18) 

where (1–zt) indicates the information inherits from the previous hidden state. 

Similar to the LSTM, GRU has also been extensively used in sequential issues [104]. Both LSTM and 
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GRU have presented successful application in many domains, and there is no deterministic statement to 

explain which algorithm is suitable to certain specific problems. Recently, [83] have also used GRU to 

investigate traction-separation relationship of granular material. 

Fig. 11 Framework of memory cell of GRU 

2.9 Summary and suggestions 

There are typically eight ML algorithms used to develop constitutive models of soils, i.e. GP, EPR, SVM, 

BPNN, RBF, RNN, LSTM and GRU. The main advantages and limitations of such ML algorithms as 

mentioned above are summarized in Table 2. It can be seen that neural networks have been becoming the 

mainstream to develop constitutive models of soils, because such algorithms have excellent generalization 

ability and can predict multi outputs simultaneously. The multi outputs prediction is important, because it 

provides a basis to integrate with numerical analysis codes to ensure the application of ML based model in 

engineering practice. RNNs, particularly the LSTM and its variants such as GRU that can eliminate the 

problems existing in conventional RNNs, have increasingly been introduced to develop constitutive models 

of soils, because such algorithms based model can account for the loading history. Overall, currently 

adopted ML algorithms in developing soil models tend to lag behind the development of the ML domain. 

Special attention should be paid on timely introduction of advanced and efficient algorithms. 

Table 2 Main characteristics of typically adopted ML algorithms for developing constitutive models of soils 
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3 Procedure of proposing a ML based constitutive model 

3.1 Selection of data source 

3.1.1 Experimental data 

Sufficient data are the basis to develop a ML based constitutive model. It can be seen from Table 1 that 

most of ML based models are constructed using experimental data. The studied soils involve clay, sand, 

gravel, ballast, rockfill, frozen soil, reinforced soil and soils with various mixture such as turf and carbonate. 

It should be noted that current research works merely focus on the modeling of soil shearing behavior under 

triaxial [54, 55], direct shearing [68], simple shearing [80, 101], tension-shear [83] and unconfined 

compression shearing test [59], and the stress history prior to shearing has not been considered. It can be 

obtained from Table 1 that shearing behavior of soils under drained or undrained triaxial tests has been 

largely investigated using the ML based constitutive models comparing to others. 

Learning from raw experimental data ensures ML algorithms capture the essential stress-strain 

relationship, because the mechanical responses of soils are included in such data. Nevertheless, for ML 

based model as data-driven model, in previous studies the type of tests and number of experimental data 

adopted for training are still limited. Moreover, the performance of current ML based models has been 

merely evaluated on several experimental tests of a given soil. Such factors lead to the robustness of current 

ML models hard to be guaranteed. To this end, the reliability of such models developed based on a given 

soil for modeling the stress-strain relationship of other soils has not been investigated.  
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3.1.2 Synthetic data 

The number of synthetic datasets is infinite, and they can eliminate the interference of experimental and 

measurement errors. As presented in Table 1, most of synthetic datasets were derived from conventional 

physics-driven constitutive models, such as using the simple monotonic Konder’s expression [105], the 

Modified Cam Clay (MCC) [106, 107], the hardening soil (HS) model [108], the two-surface model in 

multilaminate framework (TDH) [109] and the endochronic model [110]. Furthermore, various numerical 

modeling methods such as discrete element method were also used to generate synthetic datasets [73].  

The performance of ML based model developed using sufficient datasets is stable and robust, thereby 

synthetic datasets are suitable to explore the training strategy and framework of the ML based constitutive 

models. For instance, Sidarta and Ghaboussi [56] utilized synthetic datasets to propose an auto-progressive 

method to describe stress-strain relationship of sand under monotonic loading. Basheer [59] presented and 

cross-compared several methodologies for effectiveness in approximating a theoretical hysteresis model 

resembling stress-strain behavior, and a true sequential dynamic mapping method was recommended to 

simulate cyclic behavior of soils. Considering the synthetic datasets are generated from theoretical 

formulations, thereby such ML based models cannot show better performance and dig deeper mechanism 

than the physics-based constitutive models used for data creation.  

3.2 Training framework of ML based soil model 

The framework of a machine learning based model involves two important factors. The first is to determine 

the composition of input and output parameters that are known as feature selection, and the second is to 

determine its topology.  
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3.2.1 Feature selection 

Feature selection refers to determine the best set of features with maximum information to maximize the 

model accuracy [111, 112]. If the selected features include sufficient information regarding the soil behavior, 

then the trained ML based model would learn the soil behavior to qualify as a constitutive model. Such 

trained model not only is able to reproduce the experiments trained on, but also has capacity of 

approximating the results of other unexposed experiments. The selected features can be categorized into 

three groups: i) physical properties, such as relative density Dr and initial void ratio e0; ii) state parameters, 

such as stresses and/or strains, and iii) history parameters, such as stresses and/or strains and/or other 

variables like breakage index if the grain crushing is accounted for example. Physical property parameters 

(pp) are used to describe the intrinsic characteristics of studied soils. State parameters (s) focus on 

controlling the evolution of stress-strain development. In detail, state parameters are divided into static (ss) 

and dynamic (sd) parameters. ss parameters represent the unchanged or known attributes of stress-strain 

responses, e.g. amplitude of the applied shear stress and encoding for representing drained or undrained 

condition. sd parameters directly affect the stress-strain evolution, thereby they are updated in real time, 

e.g. p' and q. History parameters (o) are the model outputs at the previous step. The application of such 

parameters aims to account for the effects of stress-strain history to the current stress-strain development. 

The selected features in current ML based constitutive models of soils involve four combinations of such 

three types of parameters, as follows: 

(1) state parameters [74-76], such as p' and q as inputs [75]; 

(2) physical property with state parameters [45, 49, 53, 66, 69, 71, 81], such as percentage of mica pm and 
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axial strain εa as inputs [45]; 

(3) state parameters with history information [47, 48, 63, 64, 113], such as p', εa, q, deviatoric strain 

increment Δεq, and volumetric strain εv as inputs (q and εv are the model outputs) [48]; 

(4) physical property with state parameters and history information [50-52, 54, 55, 57-62, 67, 68, 70, 72, 

77-80], such as Dr, εa, effective confining stress σ'3, q and pore-water pressure u as inputs (q and u are 

also the model outputs). 

Herein, regarding the first and third combinations, such research works focus on the investigation of 

stress-strain relationships of a given soil with fixed physical properties. The start points of such research 

works are the validation of the performance of ML based models and the exploration of a reasonable 

training strategy. The most representative research was implemented by [55], in which a nested modularity 

of the history stress-strain information was added to guide how to increase the number of neurons in the 

input and hidden layers of BPNN. Such framework has been applied to constitutive modeling of sands [63-

65], structures [114, 115] and composite materials [116]. However, the application scopes of such models 

are still limited, because they are not useful once the studied material is changed. Therefore, the research 

works in the second and fourth combinations have preoccupied with overcoming such limitations by adding 

the physical properties as additional information to the input parameters. The application scopes of such 

ML based constitutive models can thus be enlarged, but the corresponding model complexity and datasets 

size also increase, and the requirement for the performance of ML algorithms is also high. In general, the 

fourth combination including three types of features should be recommended during the selection of input 

parameters, because such combination can ensure the application scope and accuracy of ML based 
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constitutive models. 

3.2.2 Topology of ML based model 

The topology of current ML based constitutive models of soils can be categorized into two groups: forward 

and feedback topologies. The forward topology means the data flow from the input layer to the output layer, 

as presented in Fig. 12, thereby it cannot account for the stress-strain history information. The feedback 

topology means the model outputs as the feedback to be used as inputs of model, as shown in Fig. 13. The 

use of history information as inputs is beneficial to enhance predictability. It should be noted that an internal 

connection may exist between dynamic state parameters. For example, if the selected features include strain 

and strain increments, the value of strain at each step needs to be updated beforehand using the strain 

increment. The outputs of such two topologies at the tth step can be expressed by: 

    1 1 1 1 2,..., , ,..., ,..., , , ,...,t t t t t

l i j ko o f pp pp ss ss sd sd sd  (19) 

    1 1 1

1 1 1 1 2 1 1,..., , ,..., ,..., , , ,..., , ,..., , ,...,t t t t t t h t h t t

l i j k l lo o f pp pp ss ss sd sd sd o o o o    -  (20) 

where i, j, k, l, h are the number of parameters regarding physical property, static state, dynamic state, output 

and recursive steps, respectively. 

In general, it can be stated that the model with feedback topology and three types of input parameters 

can present excellent performance. In particular, Ghaboussi and Sidarta [55] pointed out the model can be 

represented more accurately as more history information are included. However, the integration of more 

history points would definitely lead to the increasing complexity of the ML based model. The tradeoff 

between complexity and accuracy has to be well treated in the development of ML based constitutive 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

20 

 

models of soils. The establishment of a ML based model should include three types of input parameters, in 

which the history information stepwise increases until the optimum number of recursive steps is found. 

Fig. 12 Forward topology for training constitutive model of soil 

Fig. 13 Feedback topology for training constitutive model of soil 

3.3 Training strategy 

3.3.1 Determination of hyper-parameters 

Training of ML based model starts from selecting hyper-parameters, and the performance of ML based 

model is primarily affected by the hyper-parameters. ANNs have more hyper-parameters in comparison 

with other ML algorithms. To obtain a well-performed ANN based model, current research works focused 

on the optimization of architecture, that is, the number of hidden layers and the number of hidden neurons. 

Table 3 summarizes the ultimate architecture used in ANN based constitutive models. The commonly used 

method is trial and error, in which the number of hidden layers and neurons is adjusted by using domain 

knowledge and it actually relies on the user’s subjective experience heavily. Ghaboussi et al. [116] proposed 

an auto-progressive method to guide the adjustment of hidden neurons for developing an ANN based 

constitutive model. It can be observed that the deep ANN is not used in current ANN based models, in 

which the maximum number of hidden layers is only three and the number of hidden neurons ranges from 

4 to 90. The hyper-parameter learning rate used in current ANN based constitutive models tended to be set 

as the default value 0.01 or 0.001, and some modified adaptive learning rate strategies [117] have not been 

used. It can be observed from Table 4 that the hyper-parameters of SVM (e.g. slack and penalty parameters), 

EPR (e.g. number of transformed terms) and GP (e.g. mutation rate) based constitutive models are also 
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determined by trial and error method. Other algorithms for determining the hyper-parameters such as meta-

heuristic algorithm [118-120] have rarely been applied. 

Table 3 Summary of architectures and learning strategies used in ANN based models 

3.3.2 Selection of activation functions  

It is obvious that the currently used methods to develop ANN based constitutive model is out of style. Some 

advanced and effective modules and optimization algorithms in the ML domain have not been applied to 

develop an ANN based constitutive model, which may be attributable to the rapid development of the neural 

network in the field of artificial intelligence. For instance, the activation functions in most of ANN based 

models are sigmoid and tanh (see Eq. [20], respectively), as presented in Fig. 14(a). The derivative of the 

activation function is used during the error back propagation. The derivative functions of sigmoid and tanh 

are presented in Eq. [21], and the corresponding graph is presented in Fig. 14(b). It can be observed that 

the derivative value is close to zero that is gradient vanishing when the absolute values of inputs are larger 

than 4, which means that the weights and biases of ANN cannot be updated effectively when the values of 

input parameters are away from zero. Therefore, sigmoid and tanh activation functions suffer from 

saturation and limited sensitivity. Rectified linear unit (ReLU) activation function is thereafter proposed to 

overcome such issues (see Eq. [20]). In Fig. 14(b), it can be observed that the derivative is one when the 

values of input parameters are larger than zero, thereby the gradients vanishing problem is resolved. 

However, the derivative is zero when the values of input parameters are less than zero, which means some 

information will be missed. Leaky ReLU [121] and ELU as variants of ReLU were thereafter proposed (see 

Eq. [20]), and it can be seen from Fig. 14(b) that the value of the gradient is not stuck at zero. However, 
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such effective activation functions ReLU and its variants have rarely been used to build ML based 

constitutive model, and it was only used in the LSTM based constitutive model proposed by Zhang et al. 

[80]. Furthermore, some newly developed activation functions, such as Swish [122] and Mish [123], also 

perform well in other fields (such as natural language processing (NLP) and image recognition (IR)), which 

can be tentatively adopted in the constitutive modeling of soils by ML algorithms.  
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Fig. 14 Activation functions: (a) original formulation; (b) derivative  
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3.3.3 Selection of optimization algorithm 

Regarding the optimization algorithm, it can be seen from Table 3 that Stochastic Gradient Descend (SGD), 

Backpropagation training [94] (BProp), Quick Propagation training (QProp) [124], Resilient Propagation 

training (RProp) [125], Levenberg–Marquardt (LM) [126, 127], Scaled Conjugate Gradient (SCG ) [128], 

Generalized Delta Rule (GDR) [129] and adaptive learning rate Delta Bar method (DB) [117] have been 

used to update the weights and biases of ANN. Such learning strategies were proposed in the end of last 

century, which are known empirically to find poor solutions for networks [130]. They are easily trapped 

into local optima and the computational cost is expensive. However, recently proposed effective learning 

strategies have rarely been applied to train ANN based constitutive models such as AdaGrad [131] which 

works well with sparse gradients, RMSProp [132] which works well in on-line and non-stationary settings, 

Adam [133] that integrates the advantages of AdaGrad and RMSProp, and AdaMax [133] that is a variant 

of Adam. Zhang et al. [80] have noticed the advancement of such learning strategies, and first introduced 

Adam to train LSTM based constitutive model to simulate soil cyclic behavior. Table 4 presents the learning 

strategy used in SVM, EPR and GP based constitutive models. The learning strategy used in SVM and GP 

has not been clearly explained in current research works. In EPR, it can be observed that genetic algorithm 

(GA), as a meta-heuristic algorithm, was the primary method to optimize the exponent matrix of EPR. In 

reality, meta-heuristic algorithms such as evolutionary algorithms and reinforcement learning based 

optimizer [134], have also been used to optimize the weights and biases of ANNs in other domains [93, 

135], but they have not been adopted in ANN based soil modeling.  

Table 4 Summary of learning strategies used in SVM, EPR and GP based models 
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3.3.4 Selection of loss function 

Regarding the loss functions, it can be seen from Tables 2 and 3 that absolute and relative error indicators 

are the two main groups used in the ML based constitutive models. The commonly used absolute error 

indicators cover mean absolute error (MAE), mean square error (MSE), sum of square error (SSE) and 

mean sum of square error (MSSE). Such absolute error based loss functions put emphasis on shrinking the 

difference of large output value and sacrificing the accuracy in the prediction of small output value. The 

performance of some relative error based loss functions such as relative mean squared error (REMSE) and 

mean absolute percentage error (MAPE) may perform better in the prediction of initial stress-strain 

relationship. However, the training process with such relative error based loss functions are hard to 

converge, because relative error is sensitive to the denominator value. The loss value can be easily perturbed 

if the denominator value is low and be useless with the denominator of zero [136]. The expressions of such 

loss functions are presented as followings: 
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where y
m 

i  and y
p 

i  are the actual and predicted values of selected outputs, respectively; n is total number of 
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rows of datasets. 

3.3.5 Methods for preventing overfitting 

From the perspective of Tables 2 and 3, currently ML based constitutive models hardly use methods to 

prevent overfitting problem and thus enhance the model robustness. The commonly used methods for 

preventing overfitting problem in ML based modeling involve: (1) weight decay and (2) dropout. Weight 

decay, such as L1 and L2, constrains the capacity of model by adding penalty terms to the original objective 

function. The key idea of dropout is to randomly drop neurons (along with their connections) from the 

neural network during training, which can prevent neurons from co-adapting too much [137]. Weight decay 

can be integrated with ANN, GP and EPR algorithms [138, 139], whereas dropout is tailored to ANNs [140]. 

In recent years, Lin et al. [74] applied weight decay method to prevent overfitting of ML based constitutive 

model, in addition, Wang et al. [82] and Zhang et al. [80] introduced dropout method [137] to further prevent 

overfitting, and the k-fold cross-validation was applied to improve the model robustness. Overall, currently 

used modules (e.g. activation functions) and learning strategies (e.g. optimizer, overfitting prevention and 

robustness improvement) for constructing ML based constitutive models extremely lag the development in 

the ML domain. Therefore, introduction of effective training methods in the ML domain is necessary to 

develop a more robust ML based constitutive model. 

3.4 Summary and suggestions 

Data source is the basis to develop ML based constitutive models. The performance of current ML based 

models developed based on experimental datasets were always evaluated on several experimental tests with 

limited stress paths of a given soil, thereby it is hard to guarantee the robustness of such models and the 
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feasibility of applying such models to simulate stress-strain relationship of other soils. Synthetic datasets 

are derived from theoretical formulations, thereby ML based models developed based on synthetic datasets 

cannot show better performance and dig deeper mechanism than the physical models. To make use of the 

advantages of experimental and synthetic datasets, a tradeoff is to use synthetic datasets to explore and 

develop a general framework of establishing a ML based model, thereafter such framework is applied to 

the experimental datasets to assist to discover the potential mechanism of soil behavior and enhance model 

robustness. 

The framework of ML based constitutive model depends on the selected features and the topology, 

which reveals the operation mechanism of such ML based models. The applied features in current ML based 

constitutive models of soils involve four combinations of three types of parameters, that is, 1) state 

parameters; 2) physical properties with state parameters; 3) state parameters with history information; 4) 

physical properties with state parameters and history information. In general, the fourth combination 

including three types of features is recommended during the selection of input parameters, because such 

combination can ensure the application scope and accuracy of ML based constitutive models.  

The topology of current ML based constitutive models of soils can be categorized into two groups: 

forward and feedback topology. The feedback topology has been gradually acknowledged, because it can 

generate more accurate model than the forward topology as more history information is included. However, 

the integration of more history points would definitely lead to increasing complexity of the ML based model. 

The tradeoff between complexity and accuracy has to be well maintained in the development of ML based 

constitutive modeling. Therefore, the establishment of a ML based model is recommended to stepwise 

increase the history information until the optimum number of recursive steps is found. 
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Training strategy is the key factor to affect the training process and the performance of ML based 

constitutive models. Currently adopted modules (e.g. activation functions) and learning strategies (e.g. 

optimizers) for constructing a ML based constitutive model extremely lag the development in the ML 

domain. Such out-of-style methods and learning strategies reduce the learning efficiency and the training 

process is easily trapped into the local optima. Moreover, current ML based models rarely use methods to 

avoid overfitting problem and enhance model robustness. The introduction of effective training methods in 

the ML domain is recommended to develop a more robust ML based constitutive model. 

4 Estimation of ML based model performance 

From the perspective of modeling results presented in the current research works, the stress-strain responses 

can be accurately captured by ML based models. However, the reliability and robustness of such models 

have not been comprehensively discussed. The generalization ability and application scopes of such models 

deserve to be deeply investigated. 

4.1 Generalization ability 

Generalization ability refers to models’ ability to produce sensible answers on previously unexposed data 

[95]. It is important to distinguish two cases as follows during the evaluation of generalization ability [141]: 

(1) Interpolation: the training set is expected to be fully representative of input parameters during 

application, and the ranges of input parameters in the testing set totally fall into the training set; (2) 

Extrapolation: the training set can only represent certain features of datasets, and the values of input 

parameters in the testing set outside the ranges of training set. 

In other words, interpolation predictability is inherent to the environment in which the system is used, 
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whereas extrapolation means the exploration regions where no samples have reached. It can be seen from 

Fig. 15 that approximately half of research works (44.68%) merely examine the interpolation ability of ML 

based constitutive models, and only 2.13% of models examine their extrapolation ability. Moreover, 4.26% 

of research works only exhibit the predicted results on the training set, which actually cannot be used to 

test the performance of ML based models, and 38.3% of research works do not clearly explain which 

predictability is tested. Both interpolation and extrapolation predictability have been investigated in 10.64% 

of research works. It is clear that extrapolation is the more pervasive task, and in the prediction of soil 

stress-strain response it would be preferable if extrapolation could be performed. Therefore, in addition to 

examine the interpolation predictability of ML based constitutive models, it is reasonable and highly 

recommended to enhance the examination of extrapolation predictability. 

Fig. 15 Proportion of testing set type used in the training of constitutive model of soil 

4.2 Application scope 

The advanced physics-based constitutive models of soils have been able to simulate various soil mechanical 

behaviors such as compression [142], shear [143, 144], influence of intermediate principal stress [145], 

inherent and induced anisotropy [23, 146], non-coaxiality[147], small strain stiffness [148, 149], cyclic 

effect [30, 150], time-dependency [151-153], temperature effects [154], soil structure and destructuration 

[155]. From the perspective of input parameters used in current research works, such ML based models 

were merely used to simulate some of these features with different values of some commonly used soil 

physical properties such as relative density, overconsolidation ratio, particle size distribution, individual 

fraction of mixed materials, but the range of such physical properties is small. Meanwhile such research 
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works rarely use the ML based constitutive models to analysis the effects of such physical properties on the 

mechanical behaviors of soils. The reliability of such ML based models to investigate mechanical behaviors 

of soils has not been sufficiently discussed. Furthermore, almost all of these ML based models were 

independently developed based on drained or undrained datasets except the model proposed by Ghaboussi 

and Sidarta [55] and Zhang et al. [80] (see Table 1), which means that such models cannot simultaneously 

describe soil behaviors under both drained and undrained conditions. Such models are thus limited to 

simulate the stress-strain behavior of a given soil with single stress path (e.g. drained or undrained stress 

path). The most recent research work conducted by Zhang et al. [80] started to focus on modeling the cyclic 

behaviors of sand under both drained and undrained conditions, i.e., the cyclic mobility mechanism, the 

degradation of effective stress and large deformation under the undrained condition, and shear strain 

accumulation and densification under the drained condition. Overall, most of current ML based models 

cannot comprehensively simulate mechanical behaviors of a soil sample. As a result, the further application 

by the models combined with numerical platform is not realistic. This is also the reason that up to now, it 

lacks the application of ML based constitutive models integrated in numerical platforms to directly analyze 

practical engineering projects. 

4.3 Example of sand model using different ML algorithms 

To compare the performance of different ML algorithms and apply novel training strategies, the widely 

adopted four ML algorithms including BPNN, RBF, LSTM, and GRU are used to simulate soil behaviors. 

The reason for the selection of such four algorithms is that they can predict multi outputs together, which 

ensures the deep application of such algorithms based constitutive models to simulate complex soil 

behaviors and to be integrated in numerical codes. In contrast, however, GP, EPR and SVM only predict 
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one variable at one time. In addition, a variant of LSTM termed as bidirectional LSTM (BiLSTM) which 

has not been used to investigate soil behaviors is also introduced in study. Such algorithm utilizes both the 

positive and reverse sequential information by concatenating the hidden-layer outputs of each model. The 

detailed information regarding BiLSTM can refer to Graves et al. [156], which is not introduced in this 

study for brevity.  

The datasets used in this study are collected from 27 triaxial consolidation drained tests (three initial 

void ratio e0 with nine consolidation confining pressure σ3) on the Baskarp sand conducted by Ibsen and 

Bødker [157]. Herein, 23 experiments (about 80% of total 27 tests) with the confining stresses of 10, 20, 

40, 80, 160, 320, 640 kPa are used to train ML based models. The remaining 4 experiments with confining 

stresses of 5 and 800 kPa (for extrapolation), 20 and 160 kPa (for interpolation) are used to examine the 

developed ML based models. The feedback framework is used as shown: 

  1 1 1

1 1 3 0, , , , , , , ,t t t t t t t tp q e f p q e d e           (24) 

where p't, qt, et, ε
t 

1, dε
t 

1 are the mean effective stress, deviatoric stress, void ratio, axial strain, axial strain 

increment at the tth step, respectively; p't-1, qt-1 and et-1 are the mean effective stress, deviatoric stress and 

void ratio at the (t–1)th step, thereby the outputs of the LSTM based model at the (t–1)th step are used as 

the inputs at the tth step; σ'3 is the confining stress, and e0 is the initial void ratio. 

The optimum configurations of five ML based models are determined by trial and error method, and 

the detailed process for determining such configurations are not presented for brevity. It should be noted 

that the configurations of each model presented in Table 5 are optimum for comprehensively comparing 

the performance of different ML algorithms on the modeling of soil behaviors. Therefore, it can be seen 
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from Table 5 that the configurations of each optimum ML based model are different. To quantitively 

evaluate the performance of different ML based models, absolute and relative error evaluation indicators 

MAE and MAPE (see Eq. [23]) are used. The values of indicators are summarized in Table 6. Regarding 

the training set, it can be observed that the training performance of LSTM, GRU and BiLSTM outperforms 

BPNN and RBF. Such three time series prediction algorithms show better performance on the learning of 

soil behaviors. Regarding the testing set, it can be observed that the values of MAE and MAPE generated 

by BiLSTM are lowest at all cases. BiLSTM reduces the MAE and MAPE values in comparison with 

LSTM, whereas GRU increases the values of such two indicators. BiLSTM can learn the forward and 

backward data information, thereby the enhancement in the interaction of data is indeed beneficial to learn 

the complex soil behaviors from the raw data. BPNN and RBF produce much larger MAE and MAPE 

values on the testing sets, which indicates the generalization ability of such algorithms is much poorer than 

LSTM and its variants. 

Table 5 Configurations of different ML based models 

Table 6 Values of indicators generated by different ML based models 

To clearly reveal the reliability of such ML based models, Fig. 16 presents the predicted evolution of 

stress-strain relationship using five ML based constitutive models. The results shown in Figs. 16(a) and (b) 

can reflect the interpolation prediction capacity of ML based model, while the results shown in Figs. 16(c) 

and (d) are used to evaluate their extrapolation prediction capacity. It is clear that BPNN and RBF cannot 

accurately capture soil stress-strain relationships, showing much poorer performance than time series 

prediction algorithm LSTM and its variants GRU and BiLSTM. The results in Figs. 16 (c) and (d) indicate 
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that BPNN exhibits poor extrapolation prediction capacity on extrapolated data, resulting in the prediction 

error accumulating as the increasing strain. The predicted p', q and e at all four cases using RBF severely 

deviate from the measured results, which indicates the function approximation method used in RBF limits 

its capacity of learning mechanical behaviors of soils. The predicted p', q and e using LSTM for both 

interpolation and extrapolation experiments show excellent agreement with measured results. GRU has less 

weights and biases than LSTM, which more or less reduces the time series prediction capacity and further 

leads to the slightly poorer performance particularly on the extrapolation experiments in capturing soil 

behavior. It can be observed from Fig. 16 that the performance of BiLSTM is slightly better than LSTM on 

both extrapolation and extrapolation testing sets. The results indicate BiLSTM based model outperforms 

the remaining models. It can be seen from Figs. 16 (c) and (d) that BiLSTM based model can accurately 

capture shearing-induced volumetric contraction and dilation of experiments, which sufficiently indicates 

the reliability of such model. 

Fig. 16 Predicted stress-strain responses using four ML algorithms: (a) e0 = 0.696, σ'3 = 19.9 kPa; (b) e0 = 0.695 σ'3 = 160 

kPa; (c) e0 = 0.852, σ'3 = 5 kPa; (d) e0 = 0.852, σ'3 = 800 kPa 

4.4 Summary and suggestions 

Generalization ability which represents the predictability on the unseen data needs to be carefully examined 

before the further application of ML based constitutive model. It is clear that extrapolation is the more 

pervasive task for the prediction of soil stress-strain relationship, but most of current research works merely 

investigated the interpolation predictability of the ML based constitutive model. Therefore, in addition to 

examine the interpolation predictability, it is reasonable and recommended to enhance the examination of 
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extrapolation predictability of the ML based constitutive model. 

The application scopes of ML based constitutive models deserve to be deeply explored to guarantee 

its research significance. The reliability of current ML based models to investigate mechanical behaviors 

has not been sufficiently discussed. Furthermore, almost all of these ML based models were independently 

developed based on drained or undrained datasets, which means that such models are limited to modeling 

simple stress-strain behavior for a given soil with a fixed drained condition. Overall, most of current ML 

based model cannot comprehensively simulate mechanical behaviors of a soil sample, and the further 

application with the combination of numerical modeling is not realistic. To prompt the application of the 

ML based constitutive model and proves its significance in engineering practice, the integration with 

numerical modeling deserves to be conducted. 

5 Conclusions 

This study comprehensively reviewed the application of ML algorithms in the development of constitutive 

modeling and compared the performance of different ML algorithms. First, the main characteristics and the 

limitations of eight typically adopted ML algorithms were summarized and compared. Thereafter the 

methodology of developing ML based soil models was reviewed from six aspects: applied ML algorithms, 

data source, framework of the ML based model, training strategy, generalization ability and application 

scope. Finally, a comparison of five typical ML algorithms that can predict multi outputs together on the 

development of soil model from a series of experiments on sand was presented in terms of the prediction 

accuracy and generalization ability. The main conclusions are made as follows: 

(1) Long short-term memory (LSTM) neural network and its variants such as gate recurrent unit (GRU) 
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and bidirectional LSTM (BiLSTM) are suitable to be adopted in constitutive modeling, but they have rarely 

been used to develop constitutive models of soils. Special attention should be paid on the timely 

introduction of advanced and efficient algorithms.  

(2) The ML based constitutive modeling is recommended to be first developed based on synthetic datasets 

to explore a general framework, thereafter such framework is applied to the experimental datasets to assist 

to discover the potential mechanism of soil behavior and enhance model robustness. 

(3) Input parameters including physical properties, state and stress-strain history information parameters 

can ensure the application scope and accuracy of ML based constitutive models, thereby the feedback 

topology (model outputs at previous step are used as the input parameters at current step) is suitable. The 

history information can stepwisely increase until the optimum number of recursive steps is found. 

(4) Currently used modules (e.g. activation functions) and learning strategies (e.g. optimizers) for 

constructing ML based constitutive models extremely lag the development in the ML domain. Meanwhile 

such models hardly use methods to avoid overfitting problem and enhance model robustness. The 

introduction of effective training methods in the ML domain is necessary to develop a more robust ML 

based constitutive model. 

(5) The extrapolation predictability is the more pervasive task for the prediction of soil stress-strain 

relationship. It is reasonable and recommended to enhance the examination of extrapolation predictability 

for ML based constitutive models. 

(6) Current ML based models cannot comprehensively simulate mechanical behaviors of a soil with 
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complex stress paths, thereby the further application using numerical codes with model integration has not 

been conducted. To prompt the application of ML based constitutive models and prove its significance in 

engineering practice, the development of ML based models valid for complex stress paths and the 

implementation of such developed ML based models in numerical modeling codes is deserved. 
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Table 

Table 1 Summary of ML based constitutive models in literature 

Soil type References Experiment 

type 

Loading 

type 

Drained 

type 

Data source Test 

scope 

Algorithm History 

applied 

Input Output 

Sand Ellis et al. (1995) Triaxial test M U Experiment I BPNN Yes Cu, Dr, OCR, σ3, σ1, u, εa σ1, u 

Sacramento river 

sand 

Sidarta and 

Ghaboussi (1998) 

Triaxial test M D Experiment / BPNN Yes σrr, σzz, σrz, σθθ, εrr, εzz, εrz, 

εθθ, e0 

σrr, σzz, σrz, 

σθθ 

Sacramento river 

sand 

Ghaboussi and 

Sidarta (1998) 

Triaxial test M D + U Experiment I BPNN Yes p, q, u, εd, εv, Δεd, Δεv, e0 Δp, Δq, Δu 

Residual soil Zhu et al. (1998a) Triaxial test M D Experiment I&E RNN Yes σ1, Δσ1, σ3, Δσ3, u, e, εa, εv εa, εv 

Residual soil Zhu et al. (1998a) Triaxial test M U Experiment I RNN Yes εa, Δεa, σ3, e, q, u q, u 

Sand Zhu et al. (1998b) Triaxial test M D Experiment I RNN Yes Dr, Δq, σ1, Δσ1, εa, εv εa, εv 

Sand Penumadu and Zhao 

(1999) 

Triaxial test M D Experiment / BPNN Yes D50, Cu, Cc, h, ns, e, σ3, εa, 

Δεa, q, εv 

q, εv 

/ Basheer (2000) / C / Synthetic data 

using KM 

I BPNN Yes b, εa, σn σn 

Fat clay Basheer (2000) Unconfined 

compression 

C / Experiment / BPNN Yes λ1, λ2, λ3, ρd, w, εa, σ1 σ1 

Coarse sand Romo et al. (2001) Triaxial test M U Experiment I&E RNN Yes Dr, σ3, εa, q, u q, u 

/ Basheer (2002) / C / Synthetic data I BPNN Yes b, εa, σ1 σ1 

Lateritic gravel Habibagahi and 

Bamdad (2003) 

Triaxial test M D Experiment I&E BPNN Yes ρd, w; Sr; p–ua; εa, q, εv, ua–

uw 

q, εv 

ua–uw 

Toyoura sand Banimahd et al. 

(2005) 

Triaxial test M U Experiment / BPNN Yes Dr, Cu, Cc, Is, Pf, σ3, εa, Δεa, 

q 

q 

Toyoura sand Banimahd et al. 

(2005) 

Triaxial test M U Experiment / BPNN Yes Dr, Cu, Cc, Is, Pf, σ3, εa, Δεa, 

u 

u 

Ballast Shahin and 

Indraratna (2006) 

Triaxial test M D Experiment I BPNN Yes D50, Cu, Cc, σ3, e, εa, Δεa, γ', 

q, εv 

q, εv 

Tables and Figures Click here to access/download;Manuscript;Figure-State-of-the-Art of ML in
modeling_ACME.docx

Click here to view linked References
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Boston blue clay Fu et al. (2007) Triaxial test M U Synthetic data 

using MCC 

/ BPNN Yes σ11, σ22, σ33, σ12, σ13, σ23, ε11, 

ε22, ε33, ε12, ε13, ε23 

σ11, σ22, σ33, 

σ12, σ13, σ23 

Ricci sand Hashash and Song 

(2008) 

Triaxial test M D Experiment / BPNN Yes σ11, σ22, σ33, σ12, σ13, σ23, ε11, 

ε22, ε33, ε12, ε13, ε23 

σ11, σ22, σ33, 

σ12, σ13, σ23 

Moderate sandy clay Peng et al. (2008) Triaxial test M D Experiment I RBF No p, q εd, εv 

Sand Li et al. (2008) Triaxial test M D Experiment No RBF No q εd 

Reinforced soil He and Li (2009) Triaxial test M U Experiment I BPNN No σ3, εa, βF, βL, tc σ1 

Ricci sand Hashash et al. (2009) Triaxial test M D Experiment / BPNN Yes σ11, σ22, σ33, σ12, σ13, σ23, ε11, 

ε22, ε33, ε12, ε13, ε23 

σ11, σ22, σ33, 

σ12, σ13, σ23 

/ Javadi and Rezania 

(2009) 

Triaxial test M D Experiment I EPR Yes q, σ3, εa, Δεa q 

Lateritic gravel Johari et al. (2011) Triaxial test M D Experiment I&E BPNN Yes ρd, w; Sr; p–ua; εa, q, εv, ua–

uw 

q, εv, ua–uw 

Western Anatolian 

sand 

Sezer (2011) Direct shear M / Experiment / BPNN Yes Dr, DR, D10, Cu, Cc, r, s, γ, 

σ3, e, τ 

τ 

Turfy soil Lv et al. (2011) Triaxial test M U Experiment / BPNN No d, σ3, εa σ1 

Sand–mica mixtures Cabalar and Cevik 

(2011) 

Triaxial test M U Experiment / GP No pm, εa q, u 

Kaolin clay Faramarzi et al. 

(2012) 

Triaxial test M D Experiment I EPR Yes p, q, εv, εq, Δεq q, εv 

/ Javadi et al. (2012) Triaxial test C D Synthetic data 

using MCC 

I EPR Yes p, q, εv, εq, Δεq q, εv 

Mixed Manois 

argillite 

Cuisinier et al. 

(2013) 

Triaxial test M U Experiment / EPR No ρd, t, εa, u, σ3, eM, em, SS q 

Rockfill Araei (2014) Triaxial test M D Experiment I BPNN Yes ρd, ns, σ3, εa, Δεa, q, LA, wo, 

pp1, pp2, pp3, pp4 

q 

Rockfill Araei (2014) Triaxial test M D Experiment / BPNN Yes ρd, ns, σ3, εa, Δεa, εv, LA, wo, 

pp1, pp2, pp3, pp4 

εv 
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Carbonate sand Rashidian and 

Hassanlourad (2014) 

Triaxial test M D Experiment I BPNN No Dr, σ3, εa, pc, emax q, εv 

Clay Zhao et al. (2014) Triaxial test M D Synthetic data 

using MCC 

/ SVM Yes p, q, εa, εv, e εa, εv 

Sand Stefanos and Gyan 

(2015) 

Triaxial test M D Synthetic data 

using HS 

I BPNN Yes σ11, σ22, σ33, τ, Δε11, Δε22, 

Δε33, Δγ, ξ 

σ11, σ22, σ33, 

τ 

Loose sand Stefanos and Gyan 

(2015) 

Triaxial test C U Synthetic data 

using TDHM 

I BPNN Yes σ11, σ22, σ33, τ, Δε11, Δε22, 

Δε33, Δγ, ξ 

σ11, σ22, σ33, 

τ 

Carbonate sand Kohestani and 

Hassanlourad (2016) 

Triaxial test M D Experiment I BPNN No Dr, σ3, εa, pc, emax, emin q, εv 

Carbonate sand Kohestani and 

Hassanlourad (2016) 

Triaxial test M D Experiment I SVM No Dr, σ3, εa, pc, emax, emin q, εv 

/ Li et al. (2017) / M / Synthetic data 

using DEM 

E BPNN No / q 

Frozen soil Nassr et al. (2018) Triaxial test M U Experiment / EPR Yes T, εa,  , Δεa, σ3, q q 

Granular soil Ahangar Asr et al. 

(2018) 

Triaxial test M D Experiment / EPR Yes D50, Cu, Cc, h, ns, e, σ3, εa, 

Δεa, q, εv 

q, εv 

Granular Wang et al (2018) Simple shear C / Synthetic data 

using DEM 

I LSTM Yes σ3, γ, τ τ 

Clay Lin et al. (2019) Triaxial test C U Experiment / RBF No Nc, q εa 

Clay Lin et al. (2019) Triaxial test C U Experiment / BPNN No Nc, q εa 

Granular Wang et al (2019) Tension-shear 

test 

C / Synthetic data 

using DEM 

/ GRU Yes δn,m, φ, CN, Asf, da, ct, lsp, ρg tn,m 

/ Zhang et al. (2019) / M / Synthetic data 

using MCC 

No LSTM No e, p, λ, εa q 

Sand Zhang et al. (2020) Triaxial test C D + U Synthetic data 

using EM 

I&E LSTM Yes L1, L2, L3, m, e0, q, p, εv, εa q, p, εv, εa 

Fontainebleau sand  Zhang et al. (2020) Simple shear C D + U Experiment I LSTM Yes Nc, m, τave, τcyc, e0, τ; σn, γ, e σn, γ, e 
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Toyoura sand Zhang et al. (2020) Triaxial test C U Experiment I LSTM Yes Dr, qave, qcyc, q, p, εa, Nc p, εa 

Remarks: M = monotonic; C= cyclic; D = drained; U = undrained; I = interpolation; E = extrapolation; KM = monotonic Konder’s expression; MCC = modified Cam Clay; HS 

= hardening soil; TDH = Two-Surface model in multilaminate framework; EM = endochronic model; DEM = discrete element method; e0 = void ratio; εv = ε1 + 2ε3; εd = ε1 – ε3; σ 

= normal stress; τ = shear stress; γ = shear strain; / = corresponding information is not recorded. Nc = number of cycles; p = mean effective stress; q = deviatoric stress; σ3 = 

effective confining stress; σ1 = effective major principal stress; L1, L2, L3 = three labels for marking the cyclic loading process as mentioned earlier; e0 = initial void ratio; m = 

code for controlling experiment types, 1 represents drained condition and 0 represents undrained condition; e0 = initial void ratio; τave = average shear stress; τcyc = cyclic shear 

stress amplitude; qave = average deviatoric stress; qcyc = amplitude of the cyclic deviatoric stress; ρd = dry density; t = alkaline water circulation time; εa = axial strain; u = pore-

water pressure; eM = macro-pores; em = porosity of micro-pores; SS = specific surface; λ= slope of the virgin consolidation line; T = temperature;  = strain rate; D50 = average 

grain size; Cu =coefficient of uniformity; Cc =coefficient of curvature; h = hardness of the mineral; ns =shape factor; pm = percentage of mica; pc = carbonate calcium content; βF 

= contents of fiber; βL = contents of lime; tc = curing period of soil; emax = maximum void ratio; emin = minimum void ratio; w = water content; Sr = degree of saturation; mean 

stress with respect to pore-air pressure; ua–uw = suction; b = empirical constant; λ1, λ2, λ3 = encoding for loading; Pf = fine percentage; Is = fine shape index; σrr, σzz, σrz, σθθ, σ11, 

σ22, σ33, σ12, σ13, σ23 = stress components; εrr, εzz, εrz, εθθ, ε11, ε22, ε33, ε12, ε13, ε23 = strain components; LA = Los Angeles abrasion; wo = optimum moisture content; pp1, pp2, pp3, pp4 

= passing percentages for grain size 39.2, 25.4, 4.75, and 0.2 mm; γ' = bulk unit weight; DR = area–perimeter fractal dimension; D10 = effective diameter; r = roundness; s = 

sphericity; ξ = current length of strain trajectory; d = decomposition degree; δn,m = normal displacement jump; tn,m = normal traction; φ = porosity; CN = coordination number; Asf 

= strong fabric tensor; da, ct, lsp, ρg = measures of grain connectivities. 
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Table 2 Main characteristics of typically adopted ML algorithms for developing constitutive models of 

soils 

ML 

algorithms 

Advantages Limitations 

GP Simple and explicit expression Numerous structure; No sequential prediction 

ability; single output prediction 

EPR Simple and explicit expression Poor non-linear mapping ability; No sequential 

prediction ability; single output prediction 

SVM Structural risk minimization; Adaptability for 

high-dimensional data 

Poor readability and interpretability; No 

sequential prediction ability; single output 

prediction 

BPNN Strong non-linear mapping ability; multi output 

prediction 

No sequential prediction ability; Gradients 

exploding or vanishing 

RBF Low computational cost; multi output prediction No sequential prediction ability; Poor 

generalization ability 

RNN Strong non-linear mapping ability; Sequential 

prediction ability; multi outputs prediction 

Gradients exploding or vanishing 

LSTM Strong non-linear mapping ability; Sequential 

prediction ability; multi outputs prediction 

Numerous weights and biases 

GRU Strong non-linear mapping ability; Sequential 

prediction ability; multi outputs prediction 

Numerous weights and biases 
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Table 3 Summary of architectures and learning strategies used in ANN based models 

 

 

Algorithm References Hidden 

layers 

Hidden 

neurons 

Hyper-parameter 

determination 

Activation  

function 

Learning  

strategy 

Loss  

function 

Note 

BPNN Ellis et al. (1995) 1 10 / / SGD / / 

Ghaboussi and Sidarta (1998) 2 20-20 Auto-progressive sigmoid DB / / 

Sidarta and Ghaboussi (1998) 2 9-9/20-20 Auto-progressive / / / / 

Penumadu and Zhao (1999) 1 15 Trial and error / BProp / / 

Basheer (2000) 1 10/20 Trial and error / / / / 

Basheer (2002) 1 15 / / / / / 

Habibagahi and Bamdad (2003) 1 4 Trial and error sigmoid GDR MSSE / 

Banimahd et al. (2005) 1 10/15 Trial and error sigmoid LM / / 

Shahin and Indraratna (2006) 1 10 Trial and error tanh, 

sigmoid 

/ / / 

Fu et al. (2007) 2 14-14/18-18 Auto-progressive / / / / 

Hashash and Song (2008) 2 14-14 Auto-progressive / / / / 

He and Li (2009) 1 4 Trial and error tanh LM SSE / 

Hashash et al. (2009) 2 18-18 Auto-progressive / / / / 

Sezer (2011) 2 15-30 / / LM, GD, SCG MSE / 

Johari et al. (2011) 1 5 Trial and error tanh GA SSE / 

Lv et al. (2011) 1 50 / tanh LM MSE / 

Araei (2014) 1 10 Trial and error tanh LM / / 

Rashidian and Hassanlourad (2014) 1 10 Trial and error tanh LM MSE / 

Stefanos and Gyan (2015) 2 18-8 / / RProp  / / 

Kohestani and Hassanlourad (2016) 2 20-20 Trial and error sigmoid LM SSE / 

Li et al. (2017) 1 41 / / SCG MSE / 

Lin et al. (2019) 1 39/41 / / / / Weight decay 

RBF Lin et al. (2019) 1 27/16 / / / / Weight decay 
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RNN Zhu et al. (1998a), 

Zhu et al. (1998b) 

1 20 Trial and error tanh SGD SSE / 

Romo et al. (2001) 1 20 Trial and error bi-sigmoid SCG, QProp / / 

LSTM Wang et al. (2018) 2 80-80 Trial and error sigmoid / MSE Dropout 

Wang et al. (2019) 2 32-32 Trial and error / Adam MSE / 

Zhang et al. (2019) 2 12-12 / sigmoid CG REMSE / 

Zhang et al. (2020) 2 90-40/90-30 Trial and error tanh, ReLU Adam MSE k-fold cross-validation, 

Dropout, Weight decay 

Zhang et al. (2020) 3 80-80-80 Trial and error tanh, ReLU Adam MSE k-fold cross-validation, 

Dropout, Weight decay 

Zhang et al. (2020) 2 60-50 Trial and error tanh Adam MSE k-fold cross-validation, 

Dropout, Weight decay 

GRU Wang et al. (2019) 2 32-32 Trial and error / Adam MSE / 

Remarks: BProp = Backpropagation training; QProp = Quick propagation training; RProp = Resilient propagation training; SCG = Scaled conjugate gradient; LM = Levenberg–

Marquardt; SGD = Stochastic gradient descend; DB = Delta Bar; GDR = Generalized delta rule. 
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Table 4 Summary of learning strategies used in SVM, EPR and GP based models 

Algorithm References Hyper-parameter 

determination 

Learning  

strategy 

Loss  

function 

SVM Zhao et al. (2014) / / / 

Kohestani and Hassanlourad (2016) Trial and error / ε-insensitive 

EPR Javadi and Rezania (2009) / GA / 

Faramarzi et al. (2012) Trial and error GA  

Javadi et al. (2012) / GA  

Cuisinier et al. (2013) / GA SSE 

Nassr et al. (2018) Trial and error GA / 

Ahangar Asr et al. (2018) / GA SSE 

GP Cabalar and Cevik (2011) / / MAE 

 

 

Table 5 Configurations of different ML based models 

Configuration BPNN LSTM GRU BiLSTM RBF 

Architecture 130 70–70 80 70–70 70 

Time step / 3 3 3 / 

Activation function ReLU ReLU ReLU ELU Gaussian function with σ = 1.5 

Loss function MSE MSE MSE MSE MSE 

Optimizer AdaMax AdaMax AdaMax AdaMax Least square 

Batch size 60 60 60 60 / 

Overfitting prevention 10-fold CV 10-fold CV 10-fold CV 10-fold CV 10-fold CV 

Remarks: architecture represents the number of hidden layers and neurons, e.g. 130 denotes one hidden layer with 130 

neurons; CV = cross validation 

 

 

Table 6 Values of indicators generated by different ML based models 

ML 

Training set Testing set 

p q e p q e 

MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE 

BPNN 5.0 0.68% 9.9 1.63% 3e-4 0.05% 47.0 7.5% 133.5 25.2% 0.018 2.4% 

RBF 4.7 1.04% 9.8 2.34% 7e-4 0.11% 61.7 10.4% 107.4 21.1% 0.007 1.0% 

LSTM 1.2 0.33% 2.8 0.89% 2e-4 0.03% 15.3 2.7% 35.5 6.9% 0.005 0.6% 

GRU 2.5 0.36% 3.5 0.53% 2e-4 0.03% 18.3 4.6% 62.8 16.8% 0.001 0.2% 

BiLSTM 1.3 0.33% 1.7 0.62% 2e-4 0.02% 8.8 2.6% 17.7 7.2% 9e-4 0.1% 

Remarks: bold font denotes the optimum indicator value at each case 
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Figure captions 

 

Fig. 1 Relationship between the complexity of constitutive model and the number of parameters 

Fig. 2 Increasing number of papers regrading ML based constitutive models 

Fig. 3 Proportion of various machine learning based model 

Fig. 4 Framework of genetic programming 

Fig. 5 Framework of evolutionary polynomial regression 

Fig. 6 Framework of support vector machine 

Fig. 7 Framework of backpropagation neural network 

Fig. 8 Framework of radial basis function neural network 

Fig. 9 Framework of recurrent neural network 

Fig. 10 Framework of memory cell of LSTM 

Fig. 11 Framework of memory cell of GRU 

Fig. 12 Forward topology for training constitutive model of soil  

Fig. 13 Feedback topology for training constitutive model of soil  

Fig. 14 Activation functions: (a) original formulation; (b) derivative 

Fig. 15 Proportion of testing set type used in the training of constitutive model of soil  

Fig. 16 Predicted stress-strain responses using four ML algorithms: (a) e0 = 0.696, σ'3 = 19.9 kPa; (b) e0 = 

0.695 σ'3 = 160 kPa; (c) e0 = 0.852, σ'3 = 5 kPa; (d) e0 = 0.852, σ'3 = 800 kPa 
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Fig. 1 Relationship between the complexity of constitutive model and the number of parameters 
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Fig. 2 Increasing number of papers regrading ML based constitutive models 
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Fig. 3 Proportion of various machine learning based model 
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Fig. 4 Framework of genetic programming 
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Fig. 5 Framework of evolutionary polynomial regression 
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Fig. 6 Framework of support vector machine 
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Fig. 7 Framework of backpropagation neural network 
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Fig. 8 Framework of radial basis function neural network 
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Fig. 9 Framework of recurrent neural network 
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Fig. 10 Framework of memory cell of LSTM 
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Fig. 11 Framework of memory cell of GRU 
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Fig. 12 Forward topology for training constitutive model of soil  
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Fig. 13 Feedback topology for training constitutive model of soil  
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Fig. 14 Activation functions: (a) original formulation; (b) derivative 
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Fig. 15 Proportion of testing set type used in the training of constitutive model of soil 
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Fig. 16 Predicted stress-strain responses using four ML algorithms: (a) e0 = 0.696, σ'3 = 19.9 kPa; (b) e0 = 

0.695 σ'3 = 160 kPa; (c) e0 = 0.852, σ'3 = 5 kPa; (d) e0 = 0.852, σ'3 = 800 kPa 

 

0 3 6 9 12
0

100

200

300

400

e0 = 0.695, σ'
3 =  160 kPa

p
' 
(k

P
a)

1 (%)

0 3 6 9 12
0

200

400

600

e0 = 0.695, σ'
3 =  160 kPa

q
 (

k
P

a)

1 (%)

0 2 4 6 8 10 12
0.66

0.68

0.70

0.72

0.74

e0 = 0.695, σ'
3 =  160 kPa

e

1 (%)

0 2 4 6 8 10
0

5

10

15

e0 = 0.852, σ'
3 =  5 kPa

p
' 
(k

P
a)

1 (%)

0 2 4 6 8 10
0

5

10

15

20

25

e0 = 0.852, σ'
3 =  5 kPa

q
 (

k
P

a)

1 (%)

0 2 4 6 8 10
0.85

0.86

0.87

0.88

0.89 e0 = 0.852, σ'
3 =  5 kPa

e

1 (%)

0 3 6 9 12 15
400

800

1200

1600

e0 = 0.852, σ'
3 =  800 kPa

p
' 
(k

P
a)

1 (%)

0 2 4 6 8 10
0

20

40

60

80

100

e0 = 0.696, σ'
3 =  19.9 kPa

q
 (

k
P

a)

1 (%)

0 3 6 9 12 15
0.72

0.74

0.76

0.78

0.80

0.82 e0 = 0.852, σ'
3 =  800 kPa

e

1 (%)

 Measured  BPNN  RBF  GRU  LSTM  BiLSTM

0 3 6 9 12 15
0.72

0.74

0.76

0.78

0.80

0.82 e0 = 0.852, 3 =  800 kPa

p
 (

k
P

a)

1 (%)

0 2 4 6 8 10
10

20

30

40

50

e0 = 0.696, σ'
3 =  19.9 kPa

p
' 
(k

P
a)

1 (%)

0 2 4 6 8 10
0

20

40

60

80

100

e0 = 0.696, σ'
3 =  19.9 kPa

q
 (

k
P

a)

1 (%)

0 2 4 6 8 10
0.68

0.70

0.72

0.74

0.76

e

1 (%)

e0 = 0.696, σ'
3 =  19.9 kPa

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 




