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Abstract 

This paper presents unified analytical formulas to calculate the vertical temperature difference induced 

deflection of a prismatic beam with any number of spans. The influences of the structural geometry, 

material property, and temperature change on the beam deflection is are investigated through detailed 

parametric analysis. A beam with odd-numbered spans has distinct thermal deformation characteristics 

from that with even-numbered spans. For an equal-span continuous beam, the outermost spans on both 

ends undergo the largest deformation due to the vertical temperature difference, while the middlemost 

spans the least. The mid-span deflection of each span converges quickly to the limit value with the 

increase of the total span number n. The limits for the outermost and middlemost spans are respectively 

( )0 3 1 2D ⋅ −  and zero, where 0D  is the thermal deflection at mid-span of a simply supported 

beam with the same span length. This study proposes simple and exact formulas to compute the thermal 

deformation of beams, and also has far-reaching implications on the deflection-based structural health 

monitoring.This study enhances the understanding of the thermal behaviour of beams. 
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1 Introduction 

Civil structures are always subjected to the cyclic temperature change due to the sunlight exposure, 
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season alteration, etc. The field measurements show that varying temperature dominates the global 

deformation and internal force changes of the supertall buildings [1-3] and long-span bridges [4-6]. 

Also, the temperature change potentially results in local effects such as cracking of concrete [7, 8] and 

interface debonding between different materials [9, 10]. In the past half century, extensive studies were 

devoted to the temperature related topics, which in general fall into three categories: temperature 

distribution [11-14], dynamic property variation [15-18], and structural responses [19-22]. 

According to Eurocode 1991-1-5 [23], the temperature action on a structural element can be 

decomposed into four constituent components: (1) uniform temperature change, (2) linearly varying 

temperature difference along the height, (3) linearly varying temperature difference along the width, 

and (4) non-linear temperature difference component. Component 1 leads to an axial deformation; 

components 2 and 3 induce bending curvature, but in most cases the latter is negligible compared with 

the former; and component 4 corresponds to self-equilibrated stress on the cross section, which does 

not cause global responses of the structure. The uniform temperature effect is straightforward for 

beams, namely, the axial thermal expansion or contraction at beam ends org orgL L Tδ α δ= ⋅ , where 

orgL , α , and T  respectively represent the original free length, linear expansion coefficient, and 

temperature of the beam, and ( )δ ⋅  denotes the quantity change [24]. This study focuses on 

component 2 of simply supported and continuous beams.  

Although the differential temperature induced deflection has been discussed on various beams, 

e.g., the scaled bridge model in Ref. [25] and several short-span bridges in Ref. [22], the previous 

literatures are mainly case studies, and thus generalized conclusions are not available. For example, 

the variation in the beam deflection with the span number is still unclear. 

This study is intended to develop an analytical solutions to the beam deflection induced by the 

temperature difference across the depth with the aims: (1) to gain insights into the thermal deformation 

of continuous beams with any number of spans; (2) to provide a simple and precise formula to calculate 

the differential temperature induced beam deflection.  

The next section presents the detailed steps of the formula development in terms of the odd- and 

even-numbered-span beams. Section 3 characterizes the deflection shape of beams subjected to vertical 

temperature difference and discusses the variation in thermal response with the structural geometry 

through parametric analysis. The findings of the study are summarized in the final section. 
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2 Formula Derivation 

All derivations in this study are based on the classical Bernoulli–Euler beam theory. Consider a 

prismatic n-span beam subjected to a differential temperature change T∆  between the top and bottom 

surfaces, as shown in Figure 1. A positive T∆  means the top surface is warmer than the bottom. By 

introducing a positive integer 2u n=    , where 2n    means the smallest integer that is not less 

than 2n , the odd- and even-numbered n can be expressed as 2 1n u= −  and 2n u= , respectively. 

An n-span beam has n+1 joints, each corresponding to a support of the beam. When the beam consists 

of an odd number of spans (Figure 1(a)), namely, 2 1n u= − , the uth span is designated as the main 

span with a length of 1l , while the remaining spans are identical side spans with a length of 0l . When 

the beam has an even number of spans (Figure 1(b)), namely, 2n u= , both the uth and (u+1)th spans 

are main spans, while the other spans have identical length of 0l .  

The beam has a constant cross section with the depth h  and moment of inertia I , and is made 

up of the same material with elastic modulus E  and linear expansion coefficient α . The relative 

flexural stiffnesses of the main and side spans are denoted as 1 1i EI l=  and 0 0i EI l= , respectively. 

The side-to-main span ratio is defined as 0 1l lξ = . We then have 1 0i i ξ= . 

The mid-span deflection of the kth span beam, denoted by kD , can be solved separately according 

to whether the span number n is odd or even. 

 

 

(a) Span number is odd and 2 1n u= −  
 

 

(b) Span number is even and 2n u=  

Figure 1 Analytical model of an n-span beam 
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2.1 Odd-numbered n 

As shown in Figure 1(a), the joints on the beam are sequentially numbered as 1, 2, , 2u  from left to 

right. The rotation at joint k  (1 2k u≤ ≤ ) is denoted as kz , which is positive for a clockwise rotation. 

kz  can be solved by substituting the slope-deflection equations [26] into the moment equilibrium 

equations at each joint.  

At joint 1 , the moment equilibrium leads to: 

 0 1 0 2 T4 2 0i z i z M⋅ + ⋅ + =  (1) 

where TM  is the fixed-end moment caused by the temperature difference T∆  in a single span beam, 

and TM  is positive if it makes the bottom of the beam stretched. According to Appendix A, TM  is: 

 T
TM EI

h
α ⋅∆

=  (2) 

At joint 2, 3, , 1k u= − : 

 0 1 0 0 12 8 2 0k k ki z i z i z− +⋅ + ⋅ + ⋅ =  (3) 

At joint u : 

 ( )0 1 0 1 1 12 4 4 2 0u u ui z i i z i z− +⋅ + + ⋅ + ⋅ =  (4) 

Due to symmetry of both the structural configuration and temperature action, the beam deforms 

in a symmetric pattern, which leads to 2 1k u kz z + −= −  ( 1, 2, ,k u=  ). Therefore, 1u uz z+ = −  and Eq. 

(4) becomes: 

 ( )0 1 0 12 4 2 0u ui z i i z−⋅ + + ⋅ =  (5) 

The rotation at joints 2, 3, , 2k u u u= + +   can then be obtained from those at joints 

1, 2, ,1k u u= − −  , respectively. The number of independent unknowns as well as simultaneous 

equations is u. 

To solve for kz  ( 1, 2, ,k u=  ), we introduce a sequence ka  with the recurrent form: 

 
1

1
4k

k

a
a −

=
−

 (6) 

and 0 2a ξ= − . Then Eq. (5) can be rewritten as: 

 0
1 1 1 1

0 1

2 1
4 2 2u u u u

iz z z a z
i i ξ− − −= − = − = − ⋅
+ +

 (7) 

By substituting 1 1u uz a z −= − ⋅  into Eq. (3) with k  being 1u − , 2u − ,  , and 2  in 
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sequence, we have the following recurrent formula: 

 0
1 1 1 1

0 0

2 1
8 2 4k k k u k k

u k u k

iz z z a z
i i a a− − − + −

− −

= − = − = − ⋅
− ⋅ −

 (8) 

According to Appendix B, the general expression of ka  ( 1, 2, , 1k u= − ) can be solved as: 

 
1 1

1 1 2

1 1 2

k k

k k ka λϕ ϕ
λϕ ϕ

− −+
=

+
 (9) 

where the constants ( ) ( )1 3 3λ ξ ξ= + − , 1 2 3ϕ = + , and 2 2 3ϕ = − . 

By substituting 2 1 1uz a z−= − ⋅  into Eq. (1), 1z  can be solved as: 

 
1 1

0 1 1 2
1 1 1

1 1 22 3

u u

u u
l Tz

h
α λϕ ϕ

λϕ ϕ

− −

− −
⋅ ∆ +

= − ⋅
−⋅

 (10) 

Applying the recurrence relation in Eq. (8) yields 

 ( ) 0 1 1 2
1 1

1 1 2
1

2 3

u k u k
k

k u u
l Tz

h
α λϕ ϕ

λϕ ϕ

− −

− −
⋅ ∆ +

= − ⋅
−⋅

 (11) 

The above equation applies to 1, 2, ,k u=  . 

According to the slope-deflection equations [26], the end moments of each span beam can be 

expressed analytically. There is no concentrated moment acting at the joints, so the left end moment 

of the kth ( 2, 3, ,k u=  ) span beam is equal to the right end moment of the ( 1k − )th span beam. 

Therefore, we just present the joint moment, which is assumed to be positive if it stretches the beam 

bottom side. The moment at joint k ( 1, 2, , 1k u= − ) is  

 ( ) 1 1 2
0 0 1 T 1 1

1 1 2

4 2 1 1
u k u k

k
k k k u u

EI TM i z i z M
h

λϕ ϕ α
λϕ ϕ

− −

+ − −

 − ⋅∆
= ⋅ + ⋅ + = + − ⋅ ⋅ − 

 (12) 

The moment at joint u  is 

 ( ) 1
1 1 T 1 1

1 1 2

14 2 1 1
3

u
u u u u u

EI TM i z i z M
h

ξ λ α
λϕ ϕ− −

 + ⋅∆
= ⋅ − ⋅ + = + − ⋅ ⋅ − 

 (13) 

Eq. (13) is the same as Eq. (12) when k u= . Therefore, Eq. (12) is the unified formula to calculate 

the joint moment for 1, 2, ,k u=  . With the symmetric condition, we have 2 1u k kM M+ − =  

( 1, 2, ,k u=  ). 

The downward displacement of the beam is defined to be positive. The mid-span deflection of 

the kth ( 1, 2, , 1k u= − ) span beam can be calculated by the method of virtual work combined with 

the graphical “Product Integrals” method [26]: 
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( )

( )( )

0 0 1 0 0

12
1 1 20

1 1
1 1 2

1
4 2 2 2 4

1 3
1

16

k k
k

u k u k
k

u u

l l M M T l lD
EI h

l T
h

α

λϕ ϕα
λϕ ϕ

+

− − −

− −

+ ⋅∆
= ⋅ ⋅ ⋅ − ⋅

+ +⋅∆
= − ⋅

−

 (14) 

For the uth span beam, the mid-span deflection is 

 
( )

1 1 1 1

2
0 1

1 1
1 1 2

1
4 2 2 2 4

11
8 3

u u
u

u
u u

l l M M T l lD
EI h

l T
h

α

α λ
λϕ ϕξ − −

+ ⋅∆
= ⋅ ⋅ ⋅ − ⋅

⋅∆ +
= − ⋅

−⋅ ⋅

 (15) 

The symmetric condition gives the result of the ( )th2u k−  span beam as 2u k kD D− =  

( 1, 2, , 1k u= − ). 

Furthermore, when the main and side spans have identical span length, i.e., 1ξ =  and 

( ) ( )1 13 1 3 1λ ϕ= + − = , Eqs. (14) and (15) can be unified into one formula ( 1, 2, ,k u=  ): 

 ( )
( )( )2

1 20
1

1 2

1 3
1

16

u k u k
k

k u u

l TD
h

ϕ ϕα
ϕ ϕ

− −

−

+ +⋅∆
= − ⋅

−
 (16) 

The formulas to calculate the joint rotation kz  (Eq. (11)), joint moment kM  (Eq. (12)), and 

mid-span deflection kD  (Eqs. (14)–(16)) are valid for any positive integer u . For a simply 

supported beam, i.e., 1n =  and 1u = , these equations generate correct results with 1ξ = .  

 

2.2 Even-numbered n 

For a beam with an even number of spans, as shown in Figure 1(b), the foregoing procedure in Section. 

2.1 can also be conducted with slight modification. The moment equilibrium equations at joint 1  and 

joint k  ( 2, 3, , 1k u= − ) are identical to Eqs. (1) and (3), respectively. Due to symmetry, we have

2 2k u kz z + −= −  ( 1, 2, ,k u=  ) and 1 0uz + = . The equilibrium equation at joint u  thus becomes 

 ( )0 1 0 12 4 4 0u ui z i i z−⋅ + + ⋅ =  (17) 

The number of independent unknowns as well as simultaneous equations is also u. 

Similar to the case of odd-numbered n, the relation between kz  and 1kz −  can also be expressed 

by 1 1k u k kz a z− + −= − ⋅  ( 2, 3, ,k u=  ), where the sequence ka  satisfies the condition of Eq. (6) but 

with 0 2 2a ξ= − . From Appendix B, we have the general expression of ka  ( 1, 2, , 1k u= − ): 

 
1 1

2 1 2

2 1 2

k k

k k ka λ ϕ ϕ
λ ϕ ϕ

− −+
=

+
 (18) 
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where the constant ( ) ( )2 3 2 3 2λ ξ ξ= + − .  

Replacing 1λ  with 2λ  in Eq. (11), we obtain the joint rotation for the even-numbered n case: 

 ( ) 0 2 1 2
1 1

2 1 2
1

2 3

u k u k
k

k u u
l Tz

h
α λ ϕ ϕ

λ ϕ ϕ

− −

− −
⋅ ∆ +

= − ⋅
−⋅

 (19) 

where 1, 2, ,k u=  .  

According to the slope-deflection equations, the joint moment at joint k ( 1, 2, ,k u=  ) is  

 ( ) 2 1 2
0 0 1 T 1 1

2 1 2

4 2 1 1
u k u k

k
k k k u u

EI TM i z i z M
h

λ ϕ ϕ α
λ ϕ ϕ

− −

+ − −

 − ⋅∆
= ⋅ + ⋅ + = + − ⋅ ⋅ − 

 (20) 

and at joint 1u + : 

 ( ) 1 2
1 1 1 1 T 1 1

2 1 2

12 4 1 1
3

u
u u u u u

EI TM i z i z M
h

ξ λ α
λ ϕ ϕ

+
+ + − −

 + ⋅∆
= − ⋅ − ⋅ + = + − ⋅ ⋅ ⋅ − 

 (21) 

Due to symmetry, we have 2 2u k kM M+ − =  ( 1, 2, ,k u=  ). 

The mid-span deflection of the kth ( 1, 2, , 1k u= − ) span beam is similarly calculated as: 

 
( )

( )( )

0 0 1 0 0

12
2 1 20

1 1
2 1 2

1
4 2 2 2 4

1 3
1

16

k k
k

u k u k
k

u u

l l M M T l lD
EI h

l T
h

α

λ ϕ ϕα
λ ϕ ϕ

+

− − −

− −

+ ⋅∆
= ⋅ ⋅ ⋅ − ⋅

+ +⋅∆
= − ⋅

−

 (22) 

and for the uth span beam: 

 
( )

1 1 1 1 1

2
0 2

1 1
2 1 2

1
4 2 2 2 4

11
16 3

u u
u

u
u u

l l M M T l lD
EI h

l T
h

α

α λ
λ ϕ ϕξ

+

− −

+ ⋅∆
= ⋅ ⋅ ⋅ − ⋅

⋅∆ +
= − ⋅

−⋅ ⋅

 (23) 

The symmetric condition leads to 2 1u k kD D+ − =  ( 1, 2, ,k u=  ). 

Furthermore, when the main and side spans are equal in length, i.e., 1ξ =  and 

( ) ( ) 2
2 13 2 3 2λ ϕ= + − = − , the joint moment at joint k has a unified formula for 1, 2, , 1k u= + : 

 ( )
1 1

1 2

1 2

1 1
u k u k

k
k u u

EI TM
h

ϕ ϕ α
ϕ ϕ

− + − + + ⋅∆
= + − ⋅ ⋅ + 

 (24) 

So does the mid-span deflection of the kth span beam for 1, 2, ,k u=  : 

 ( )
( )( )12

1 20

1 2

1 3
1

16

u k u k
k

k u u

l TD
h

ϕ ϕα
ϕ ϕ

− − +− +⋅∆
= − ⋅

+
 (25) 

Also, Eq. (19) applies to 1k u= +  as it produces 1 0kz + =  at 1ξ = . 

For a two-span continuous beam, i.e., 2n =  and 1u = , the above formulas for calculating the 
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joint rotation, joint moment, and mid-span deflection are still valid with 1ξ = .  

 

3 Parametric analysis and discussions 

This section discusses the physical meanings of the derived formulasequations in Section 2 through 

parametric analysis. As the beam deforms symmetrically, we focus on the left half structure only. 

3.1 Contributing factors 

Since the beams consisting of an odd or even number of spans correspond to different formulas, the 

parity of the span number n matters. Besides, the beam deformation and moment are also closely 

related to the material properties, structural geometry, and temperature difference.  

From Eqs. (11), (12), (14), (15), and (19)–(23), the joint rotation kz , joint moment kM , and 

mid-span deflection kD  are directly proportional to the linear expansion coefficient α  and 

temperature difference T∆ , but inversely proportional to the beam depth h . The temperature 

dependent rotation kz  and deflection kD  are independent of the flexural stiffness EI , and in 

proportion to 0l  and 2
0l , respectively.  

The joint moment kM  has no relation with the absolute value of the span length, but depends 

on the span length ratio ξ  implicitly, which is incorporated in the parameters 1λ  and 2λ . 

Meanwhile, kM  is directly proportional to EI , which implies that the strain ε  of the beam is 

independent of EI  as a result of ( )kM EIε ∝ .  

These temperature difference induced responses of the beam (the joint rotation, moment, strain, 

and deflection) differ from the external force induced responses. In general, the force induced global 

deformation or local strain in a beam is inversely proportional to the flexural stiffness, while the 

internal moment not. Therefore, the temperature difference action has different characteristics from 

the force action.  

Additionally, kz , kM , and kD  also vary with the ordinal number k , cardinal number u , and 

span ratio ξ . For brevity, the dependency of kD  on k , u , and ξ  is investigated in Sections 3.3 

to 3.5. 

 

3.2 Deflection shape 

The deflection direction of the kth span beam depends on the sign of kD . Assuming a positive 
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temperature difference ( 0T∆ > ), the sign of kD  is only determined by the leading term ( )1 k−  or 

( )1 u−  in Eqs. (14), (15), (22), and (23). To prove this statement, we can define a quadratic function 

( )1f x  as 

 ( ) ( )( )1 1
1 1 21 u uf x x x ϕ ϕ− −= + ⋅ −  (26) 

where 1u ≥ . The roots of ( )1 0f x =  are 1 1x = −  and ( )2 1
2 2

ux ϕ −=  (as 1
1 2ϕ ϕ−= ). As 

2 2 3 0.268 1ϕ = − ≈ < , we have 20 1x< ≤ . As 1 2 3 0ϕ = + > , the graph of ( )1f x  is a parabola 

opening upward. Therefore, ( )1 0f x >  outside the region [ ]1,1x∈ − .  

On the other hand, recalling ( ) ( )1 3 3λ ξ ξ= + −  and ( ) ( )2 3 2 3 2λ ξ ξ= + − , we have 

1 1λ >  and 2 1λ >  with 0ξ > . As a result, ( )1 1 0f λ >  and ( )1 2 0f λ > , which imply that the 

fractions ( ) ( )1 1
1 1 1 21 u uλ λ ϕ ϕ− −+ ⋅ −  and ( ) ( )1 1

2 2 1 21 u uλ λ ϕ ϕ− −+ ⋅ −  in Eqs. (15) and (23) are positive, 

and the sign of kD  is solely dependent on ( )1 u− .  

Likewise, we introduce the following quadratic function ( )2f x : 

 ( ) ( )( )1 1 1
2 1 2 1 2

u k u k u uf x x xϕ ϕ ϕ ϕ− − − − −= ⋅ + ⋅ −  (27) 

The roots of ( )2f x  are ( )2 1
1 2

u kx ϕ − −= −  and ( )2 1
2 2

ux ϕ −= . As 1u ≥  and 20 1ϕ< < , we have 

2 1 21 0 1x xϕ− < − ≤ < < ≤  for 1, 2, , 1k u= − , and ( )2f x  corresponds to a similar parabola as that 

of ( )1f x . When 1x > , ( )2 0f x > , so ( )2 1 0f λ >  and ( )2 2 0f λ > . Consequently, the fractions 

( ) ( )1 1 1
1 1 2 1 1 2

u k u k u uλ ϕ ϕ λ ϕ ϕ− − − − −⋅ + ⋅ −  and ( ) ( )1 1 1
2 1 2 2 1 2

u k u k u uλ ϕ ϕ λ ϕ ϕ− − − − −⋅ + ⋅ −  in Eqs. (14) and (22) 

are always larger than zero, and the sign of kD  is determined by ( )1 k− . 

It can be seen from the above discussion that the positive temperature difference T∆  always 

induces an upward deflection in the outermost span beam ( 1k =  and n ), while the deflection shape 

of the middlemost span beam ( k u= ) depends on whether u  is an odd or even number. From the 1st 

to uth spans, the beams deflect upward and downward alternately, and the deflection shape of the 

(u+1)th to nth span beams can be determined by symmetry condition with respect to the vertical centre 

line of the entire beam. Therefore, for a beam with an odd number of spans, i.e., 2 1n u= − , the 

deflection of each span is always opposite to the adjacent spans, whereas for a beam with 2n u= , the 

uth and (u+1)th span beams deflect in identical direction but the remaining spans keep the span-by-span 

alternation pattern on deflection shape (Figure 2). 

 

 
(a) 1n = , 1u =  
 

1.000
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(b) 2n = , 1u =  

 

 
(c) 3n = , 2u =  

 

 
(d) 4n = , 2u =  
 

 
(e) 5n = , 3u =  
 

 
(f) 6n = , 3u =  

 

Figure 2 Thermal deflection of continuous beams with 1–6 spans ( 0T∆ > ; 1ξ = ; Not to scale) 

 

3.3 Deflection magnitude of each span 

To facilitate the discussion, we consider in Sections 3.3 and 3.4 that all the spans are of equal length 

by setting 1ξ = , while the influence of side-to-main span ratio ξ  is investigated in Section 3.5.  

When the beam consists of an odd number of spans with 1ξ = , the mid-span deflection of the kth 

( 1, 2, ,k u=  ) span beam can be calculated by Eq. (16). Given a certain u , the deflection kD  is 

proportional to the item 1 2
u k u kϕ ϕ− −+ . As 2 11ϕ ϕ= , we introduce two functions ( )3 1f x x x= +  and 

( )4 1
u xf x ϕ −=  to define a composite function, which produces ( )( )3 4 1 2

u k u kf f k ϕ ϕ− −= + . For 

1, 2, ,k u=  , ( )4f k  decreases with increasing k  and ( )4 1f k ≥ . Meanwhile, the derivative of 

( )3f x  is ( ) 2
3 1 1f x x′ = − , which is positive for 1x ≥ . Consequently, ( )3f x  is a monotonically 

increasing function in the region. As a result, the composite function ( )( )3 4f f k  decreases as k  

increases, which means the outermost span ( 1k = ) and the middlemost span ( k u= ) respectively have 

the largest and smallest magnitudes of the mid-span deflection.  

When the beam contains an even number of spans of equal length, the mid-span deflection kD  

is proportional to the item 1
1 2
u k u kϕ ϕ− − +− , as shown in Eq. (25). In this regard, a new function 

0.250

0.400

0.200

0.357

0.071

0.368

0.105

0.053

0.365
0.019

0.096
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( )5 2f x x xϕ= −  is introduced and composed with ( )4 1
u xf x ϕ −= , and then we have 

( )( ) 1
5 4 1 2

u k u kf f k ϕ ϕ− − += − . As aforementioned, for 1, 2, ,k u=  , ( )4f k  is a monotonically 

decreasing function and ( )4 1f k ≥ , whereas the derivative of ( )5f x  is ( ) 2
5 21 0f x xϕ′ = + > . 

Therefore, the composite function ( )( )5 4f f k  decreases with the increase of k , indicating that the 

outermost span beam experiences the largest thermal deflection at mid-span and the middlemost span 

has the least. This finding is consistent with that for the beams with odd-numbered spans. 

The rotational restraints on the beam end significantly affect the beam deflection. The outermost 

joint receives the least rotational restraints, and thus the outermost span has the largest deflection. 

 

3.4 Influence of number of spans on deflection magnitude 

This section examines the deflection of the 1st and uth span beams in terms of u . The discussion still 

focuses on beams with equal spans. 

When the span number n  is odd, substituting 1k =  into Eq. (16) gives the largest deflection 

of all spans: 

 
( )( ) ( )1 12

1 2odd 0 1
1 01 2 1

1 2 1

1 3 3 1 11
16 2 1

u u

u u u

l TD D
h

ϕ ϕα ϕ
ϕ ϕ ϕ

− −

− −

+ + − ⋅∆ +
= − ⋅ = ⋅ + − − 

 (28) 

where ( )2
0 0 8D l T hα= − ⋅∆  represents the mid-span deflection of a simply supported beam with the 

span 0l , depth h , linear expansion coefficient α , and temperature difference T∆ . From Eq. (28), 

the magnitude of odd
1D , i.e., odd

1D , becomes smaller with the increase of u . This is attributed to the 

rotational restraint on the right end of the 1st span beam due to the additional spans.  

When n  is even, the largest deflection can be found by substituting 1k =  into Eq. (25): 

 
( )( ) ( )12

1 2even 0 1
1 02

1 2 1

1 3 3 1 11
16 2 1

u u

u u u

l TD D
h

ϕ ϕα ϕ
ϕ ϕ ϕ

− − + − ⋅∆ +
= − ⋅ = ⋅ − + + 

 (29) 

In contrary to the case of odd-numbered n , even
1D  becomes larger as u  increases. This is because 

the deflection of the beam is symmetric about the middlemost support 1u + . Therefore, the support is 

equivalent to a fixed support without any rotation. With the increase of u, the outermost span is far 

away from the fixed support and is less restrained against rotation from the latter. The span thus 

deflects more. 

As u  approaches infinity, odd
1D  and even

1D  converge, though in opposite directions, to the 

same value: 
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( )lim

1 0

3 1

2
D D

−
=  (30) 

Therefore, 0D  and lim
1 00.366D D≈  are respectively the upper and lower limits of the 1st span 

deflection of odd-numbered-span beams; while lim
1D  and 0 4D  are the corresponding limits of 

even-numbered-span beams. The conclusions are illustrated in Figure 2. An interesting observation is 

that both odd
1D  and even

1D  are a rational number multiple of 0D  (see Appendix C), whereas their 

limit lim
1D  is an irrational number times 0D .  

Similarly, the deflection of the middlemost span can be obtained by substituting k u=  into Eqs. 

(16) and (25), which represents the smallest mid-span deflection of all spans: 

 ( )
( )

( )
( )2

1odd 0
01 1

1 2 1 2

1 3 1 3
1 1

8
u u

u u u u u

l TD D
h

α
ϕ ϕ ϕ ϕ

−

− −

+ +⋅∆
= − ⋅ = − ⋅

− −
 (31) 

 ( ) ( )
2

1even 0
0

1 2 1 2

1 11 1
8

u u
u u u u u

l TD D
h

α
ϕ ϕ ϕ ϕ

−⋅∆
= − ⋅ = − ⋅

+ +
 (32) 

It can be observed that both odd
uD  and even

uD  decrease monotonically with the increase of u , and 

they approach to zero as u  goes infinity. Therefore, the limit of the uth span beam deflection at mid-

span is zero. This indicates that as u →+∞ , the middlemost span is actually equivalent to a fixed-end 

beam that has no thermal deflection under the vertical temperature difference (see Figure A1(a) in 

Appendix A). 

In fact, the convergence of 1D  and uD  to their limits is fairly quick. The deflection ratio of the 

outermost span beam, denoted as 1 0D D , can be obtained from Eqs. (28) and (29). It is a function 

of the span number n , as shown in Figure 3. When 5n ≥  or 3u ≥ , the oscillation in 1 0D D  is 

almost invisible, thereby demonstrating a quick convergence. 

For the middlemost span, the absolute value of the deflection ratio 0uD D  can be derived from 

Eqs. (31) and (32). Figure 3 shows that 0uD D  converges to zero quickly in a monotonically 

decreasing manner as n  increases.  
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Figure 3 Variation in relative deflection of the 1st and uth spans with span number n 

 

3.5 Influence of ξ on deflection magnitude 

Due to the quick convergence of the thermal deflection with the increasing span number, we consider 

the beams with 2u = , i.e., the 3-span and 4-span beams, as examples to investigate the influence of 

the side-to-main span ratio ξ  on the deflection magnitude. In this regard, 1k =  corresponds to the 

side span, while 2k =  represents the main span. 

By substituting 1k = , 2u = , and ( ) ( )1 3 3λ ξ ξ= + −  into Eq. (14), we obtain the side-

span deflection 3
1
nD =  for the 3-span beam: 

 
( )( )2 2

1 23 0 0
1 0

1 1 2

1 3 3 1 31
16 16 2 3 4 2 3

n l T l TD D
h h

λ ϕα α ξ
λϕ ϕ ξ ξ

=
+ + ⋅∆ ⋅∆ +

= − ⋅ = − ⋅ = ⋅ + − + + 
 (33) 

Here, we assume the side span length 0l  is a constant, while the main span length 1 0l l ξ=  varies 

with ξ . From Eq. (33), the magnitude of 3
1
nD =  decreases with the increase of ξ  with the following 

limits: 

 3 0
10

lim
2

n DD
ξ +

=

→
=  (34) 

 3 0
1lim

4
n DD

ξ

=

→+∞
=  (35) 

ξ → +∞  means that the main span length is negligible. In this situation, the beam deforms like a 2-

span beam, and the main span can be regarded as a fixed support to restrain the end rotation of the side 

span beam. This is equivalent to Figure 2(b).  

For the main span deflection, substituting 2k = , 2u = , and ( ) ( )1 3 3λ ξ ξ= + −  into Eq. 

(15) yields: 
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( ) ( )1

2 2 2
3 0 1 1

2 0
1 1 2

1 1 31
8 2 3 2 2 38 3

n
l

l T l TD D
hh

α λ α ξ
λϕ ϕ ξ ξ ξξ

= ⋅∆ + ⋅∆
= ⋅ = ⋅ = − ⋅ − − + +⋅ ⋅  

 (36) 

where ( ) ( )
1

2
10 8lD l T hα= − ⋅∆  represents the mid-span deflection of a simply supported beam of span 

1l . Here, the main span length 1l  is assumed to be a constant, and the side span length 0 1l lξ= ⋅  

varies with ξ . From Eq. (36), 3
2
nD =  increases with the increase of ξ , and approaches to zero and 

( )10 2lD−  respectively as 0ξ +→  and ξ → +∞ . 

Based on Eqs. (33) and (36), the deflection ratio of the side to main spans is found to depend on 

the side-to-main span ratio ξ  only, i.e.: 

 ( )3
1

3
2

3
2

n

n

D
D

ξ ξ=

=

+ ⋅
= −  (37) 

As ξ  is always greater than 0, the magnitude of the deflection ratio 3 3
1 2
n nD D= =  exhibits quadratic 

growth with ξ . 

For the 4-span beam, the relation between 4
1
nD =  or 4

2
nD =  and ξ  have the same expressions as 

Eqs. (33)(33) and (36)(36) except replacing ξ  by 2ξ . 

 
( )( )2

2 24 0
1 0

2 1 2

1 3 1 31
16 4 4 3

n l TD D
h

λ ϕα
λ ϕ ϕ ξ

=
+ + ⋅∆

= − ⋅ = ⋅ + − + 
 (38) 

 ( )1

2
4 0 2

2 0
2 1 2

1 1 31
2 4 316 3

n
l

l TD D
h

α λ
λ ϕ ϕ ξξ

= ⋅∆ +
= ⋅ = − ⋅ − − +⋅ ⋅  

 (39) 

Therefore, 4
1
nD =  and 4

2
nD =  possessexhibit similar characteristics as their counterparts for 3-span 

beams with the variation in ξ . The corresponding side-to-main-span deflection ratio can be calculated 

by ( )4 4
1 2 2 3n nD D ξ ξ= = = − + ⋅ . As ξ  increases, the magnitude of 4 4

1 2
n nD D= =  increases 

approximately four times as fast as 3 3
1 2
n nD D= =  does.  

 

3.6 Comparisoned with beam deflection limits 

This section compares the thermal deflection of beams with the design limits to discuss the relative 

influence of temperature effects. According to Section 3.4, the maximum possible thermal deflection 

in equal-span beams is ( )2
0 0 8D l T hα= − ⋅∆ , which corresponds to a simply supported beam. 0D  

can be rewritten as a dimensionless parameter as: 

 0 0

0

1
8

D lT
l h

α= − ⋅∆ ⋅  (40) 
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where 0 0D l  is the deflection-to-span ratio and 0l h  is the span-to-depth ratio. A typical value of 

0l h  in bridges is around 20 [27]. With 0 20l h = , Eq. (40)(39) leads to 0 0 2.5D l Tα= ⋅∆ . As the 

thermal expansion coefficient α  is in the order of 5 110 C− −°  and the temperature difference T∆  

for bridges is generally about 10 C° , the temperature difference-induced deflection of beams is in the 

order 410−  of the span length.  

The bridge serviceability usually defines a maximum acceptable deflection-to-span ratio of about 
310−  [27], which is much larger than the thermal effects. However, if such a maximum deflection is 

assumed to result from progressive accumulation of deterioration in bridges during a long operational 

period, e.g., over 10 years, then the annual change rate of the deflection would be comparable with the 

temperature-induced one [22]. In this respect, the thermal deflection must be taken into consideration 

in order to track the long-term evolution of bridge deflection.  

Additionally, the maximum allowable deflection during the serviceability limit state of beams is 

determined for extremely overloaded cases, rather than the actual operation. Therefore, the live load 

effects during normal operational conditions and the temperature effects can be comparable. In this 

situation, the temperature effect must be considered to quantify the live load effects correctly. 

 

4 Conclusions 

This paper derives explicit solutions to the temperature difference induced deflection of a prismatic 

beam with any number of spans. Based on the parametric analysis, the following conclusions can be 

drawn. 

(1)  The thermal deformation, including the deflection, rotation, and strain, is independent of the 

absolute value of the beam flexural stiffness; however, the temperature-related moment is directly 

proportional to EI . All the concerned thermal responses are directly proportional to T hα ⋅∆ . The 

temperature- and force-induced responses have different dependency on structural properties.The 

parity of the span number n has significant influence on the thermal behaviour of beam structures. The 

thermal responses of the odd- and even-numbered-span beams in this study are respectively dependent 

on the dimensionless parameters ( ) ( )1 3 3λ ξ ξ= + −  and ( ) ( )2 3 2 3 2λ ξ ξ= + − . 

(2) For a prismatic beam with n spans, the thermal deflection is symmetric about the centreline 

of the entire structure. For the 1st to uth spans, each span beam bends oppositely to its adjacent spans, 

and the 1st span always moves upward under the positive temperature difference. The deflection shape 

of the (u+1)th to nth spans can be determined by symmetry condition.  
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(3) For an equal-span beam, the outermost (1st or nth) span has the largest thermal deflection of 

all spans. For odd-numbered-span beams, the mid-span deflection 1D  of the outermost span 

decreases from 0D  to ( )0 3 1 2D ⋅ −  as u  increases from 1 to +∞ ; whereas for even-numbered-

span beams, 1D  increases from 0 4D  to ( )0 3 1 2D ⋅ −  with the increasing u . 

(4) For an n-span beam of equal spans, the middlemost span has the smallest deflection of all 

spans ( 3n ≥ ), and its deflection at mid-span converges quickly to zero as n increases. 

 

The analytical formulas proposed in this study are of both theoretical and practical values. They 

provide not only deep insights into the fundamental relation between thermal deflection and structural 

properties, but also a convenient way to calculate the thermal deformation of beams. The influence of 

shear deformations in the Timoshenko beams deserves a further study.  
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Appendix A 

This part derives the fixed-end moments of a beam subjected to the temperature difference T∆  across 

the depth, as shown in Figure A1(a). The beam has a constant cross section along the length with the 

span, depth, moment of inertia, elastic modulus, and linear expansion coefficient being L , h , I , 

E , and α , respectively. 

 

   
(a) Original beam (b) Left half beam with a redundant 

moment 
(c) Moments produced by a unit 

redundant moment 

Figure A1 Analytical model of a fixed-end beam subjected to temperature difference T∆  

 

Taking advantage of symmetry, the left half of the original beam is considered, which is a 

cantilever beam of length 2L . With the axial deformation neglected, the mid-span moment denoted 

as 1X  is the only redundant for the cantilever beam in Figure A1(b). Here, the moment stretching the 

beam bottom is assumed to be positive. Under the action of the temperature difference T∆  and the 

redundant moment 1X , the slope of the cantilever beam at the free end is zero.  

By the flexibility method (also known as the force method), the compatibility equation of the 

cantilever beam is written as 
 11 1 1P 0Xδ + ∆ =  (A1) 

where the flexibility coefficient 11δ  can be evaluated using the virtual work method by applying a 

unit virtual moment 1 1X = , as shown in Figure A1(c): 

 11
1 1 1

2 2
L L

EI EI
δ = ⋅ ⋅ ⋅ =  (A2) 

and 1P∆  is the free-end slope produced by the temperature difference T∆ : 

 1P 1
2 2

T L L T
h h

α α⋅∆ ⋅∆∆ = − ⋅ = − 
 

 (A3) 

The redundant moment 1X  is solved from Eq. (A1) as 

 1 1P 11
TX EI

h
αδ ⋅∆

= −∆ =  (A4) 

1X  is equal to the fixed-end moment of the beam in Figure A1(a), which is independent of span L . 
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In fact, the fixed-fixed beam in Figure A1(a) has no deformation but is subject to a constant moment 

1X  along the span. 

 

Appendix B 

This part derives the general formula of ka , which has the following recurrence relation: 

 
1

1
4k

k
a

a −

=
−

 (B1) 

Subtracting a constant ϕ  from both sides of Eq. (B1) yields:  

 
1

1
4k

k
a

a
ϕ ϕ

−

− = −
−

 (B2) 

The right hand side of Eq. (B2) is equivalent to 

 ( ) ( ) 2
1 11

1 1 1 1

1 4 1 41 41
4 4 4 4

k kk

k k k k

a aa
a a a a

ϕ ϕ ϕ ϕ ϕϕ ϕϕ − −−

− − − −

− − − + − ++ −
− = = =

− − − −
 (B3) 

Let 21 4 0ϕ ϕ− + = , and the solutions to this quadratic equation are 1 2 3ϕ = +  and 2 2 3ϕ = − . 

According to Eqs. (B2) and (B3), we obtain the following two equations:  

 ( )1 1 1
1

14
k

k
k

a
a

a
ϕ ϕ

ϕ −

−

−
− =

−
 (B4) 

 ( )2 1 2
2

14
k

k
k

a
a

a
ϕ ϕ

ϕ −

−

−
− =

−
 (B5) 

Dividing Eq. (B4) by Eq. (B5) leads to 

 1 1 11

2 2 1 2

k k

k k

a a
a a

ϕ ϕϕ
ϕ ϕ ϕ

−

−

− −
= ⋅

− −
 (B6) 

Therefore, the sequence ( ) ( )1 2k ka aϕ ϕ− −  is a geometric sequence with common ratio 1 2ϕ ϕ . As the 

initial value is ( ) ( )0 1 0 2a aϕ ϕ− − , the kth term of this geometric sequence is 

 1 0 11

2 2 0 2

k
k

k

a a
a a

ϕ ϕϕ
ϕ ϕ ϕ

− −
= ⋅− − 

 (B7) 

For odd-numbered-span beams, 0 2a ξ= −  and ka  can be solved from Eq. (B7) as 

 
1 1

1 1 2

1 1 2

k k

k k ka λϕ ϕ
λϕ ϕ

− −+
=

+
 (B8) 

where ( ) ( )1 3 3λ ξ ξ= + − . As 0 2 2a ξ= −  for even-numbered-span beams, ka  becomes 

 
1 1

2 1 2

2 1 2

k k

k k ka λ ϕ ϕ
λ ϕ ϕ

− −+
=

+
 (B9) 
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where ( ) ( )2 3 2 3 2λ ξ ξ= + − . 

 

Appendix C 

This part demonstrates that Eqs. (16) and (25) produce the results in the form of 0c D⋅ , where c  is 

a rational number.  

Eq. (16) can be rewritten as: 

 
( )

( )( )
( )

( )( )( )
( ) ( )

( ) ( ) ( )

2
1 2 1 2 210 0

1 1
1 2 1 2 2

1 1 2
0 1 1

1 2 1 2

1 3 1 3 1
1 1

16 2 1

1

u k u k u k u k
k k

k u u u u

u k u k
k

u u u u

l T DD
h

D

ϕ ϕ ϕ ϕ ϕα
ϕ ϕ ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ ϕ ϕ

− − − −
−

− −

− −
−

− −

+ + + + −⋅∆
= − ⋅ = − ⋅

− − ⋅ −

+
= − ⋅

+ − +

 (C1) 

Note that ( )( )21 3 1 2ϕ+ − =  in Eq. (C1). The binomial expansion of the item 1 2
u uϕ ϕ+  gives: 

 ( ) ( ) ( ) ( )1 2
0 0

2 3 2 3 2 3 2 3
u uu u j ju u u j u j

j j

ϕ ϕ − −

= =

+ = + + − = ⋅ + ⋅ −∑ ∑  (C2) 

In Eq. (C2), when j  is odd, the ( )3
j
 and ( )3

j
−  related items cancel out; when j  is even, 

both ( )3
j
 and ( )3

j
−  are integers. Consequently, 1 2

u uϕ ϕ+  produces an integer. Similarly, the 

items 1 2
u k u kϕ ϕ− −+  and 1 1

1 2
u uϕ ϕ− −+  in Eq. (C1) are also integers, which means the coefficient of 0D  

is a ratio of integers, i.e., a rational number. 

Likewise, Eq. (25) can be rewritten as: 

 
( )

( )( )
( ) ( )( )

( ) ( ) ( )

1 12
1 2 1 1 2 10 0

1 2 1 2

1 1
1 1 2 1 20

1 2

1 3 1
1 1

16 2

1
2

u k u k u k u k
k k

k u u u u

u k u k u k u k
k

u u

l T DD
h

D

ϕ ϕ ϕ ϕ ϕα
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
ϕ ϕ

− − + − − +
−

− + − + − −
−

− + − −⋅∆
= − ⋅ = − ⋅

+ +

+ − +
= − ⋅

+

 (C3) 

Similarly, the coefficient of 0D  in Eq. (C3) is also a rational number. 
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