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Abstract

This paper investigates a Pareto optimal insurance problem, where the insured
maximizes her rank-dependent utility preference and the insurer is risk neutral
and employs the mean-variance premium principle. To eliminate potential moral
hazard issues, we only consider the so-called moral-hazard-free insurance contracts
that obey the incentive compatibility constraint. The insurance problem is first for-
mulated as a non-concave maximization problem involving Choquet expectation,
then turned into a concave quantile optimization problem and finally solved by the
calculus of variations method. The optimal contract is expressed by a second-order
ordinary integro-differential equation with nonlocal operator. An effective numeri-
cal method is proposed to compute the optimal contract assuming the probability
weighting function has a density. Also, we provide an example which is analytically
solved.

Keywords: Optimal insurance; moral-hazard-free insurance; rank-dependent
utility theory; mean-variance premium principle; quantile optimization

1 Introduction.

Insurance is a widely used tool that transfers a part of a risk from an innocent party
(the insured) to an insurance carrier (the insurer, an insurance or reinsurance company)
at the cost of paying a premium. The well-known insurance contracts include quota
share, deductible and full coverage. In practice, a fundamental challenge for insurers is
how to design insurance contracts that achieve Pareto optimality/efficiency (PO/PE, for
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short) between the insurer and the insured. This paper focuses on such a risk-sharing
insurance design problem.

The diversity of insurer’s and insured’s premium principles and goals results in various
PO insurance contracts. The expected-value, standard derivation, and variance premium
principles are the most widely used premium principles in the insurance study and prac-
tice. The most popular goals of the insured include maximizing the expected utility (EU)
of the net wealth in the static setting, maximizing the discounted dividend payout and
minimizing the probability of ruin in the dynamic setting. In this paper, we consider
a static model and assume the insurer employs the mean-variance premium principle, a
combination of the expected-value and variance premium principles; while the insured
aims at maximizing the rank-dependent utility (RDU, developed by Quiggin [26]) pref-
erence of her net wealth. Because the RDU preference involves a probability weighting
function (also called probability distortion function), the target of the insured becomes
a nonlinear Choquet expectation, making our problem being a challenging non-concave
maximization problem. Besides the RDU theory, probability weighting function also
plays a key role in many other behavioral theories of choice under uncertainty, such as
Kahneman and Tversky’s [19, 27] cumulative prospect theory, Yaari’s [35] dual model,
Lopes’ [22] SP/A model. These behavioral theories provide satisfactory answers to many
paradoxes for which the EU theory fails to explain (see, e.g. Friedman and Savage [10],
Allais [1], Ellsberg [9], Mehra and Prescott [23]). In this paper, we consider general prob-
ability weighting functions which are allowed to be discontinuous. By contrast, many
existing insurance models only consider differentiable probability weighting functions;
see, Jin and Zhou [18], Xu [31], Xu, Zhou and Zhuang [34], Xu [32], among many others.

The present paper is a follow-up study of the author’s previous work [32]. In the
previous work, we assume the insurer uses the expected-value premium principle, whereas
in the present model the insurer employs the more practical mean-variance premium
principle. The former principle is linear so that it is additive; by contrast, the latter
is nonlinear and non-additive, which leads to a more challenging problem. The mean-
variance premium principle is a combination of the expected-value and variance premium
principles. It contains each of them as a special case. Also, it takes into account the
variability of the insurer’s share, so it is less problematic in practice than some other
premium principles such as the expected-value premium principle. See Deprez and Gerber
[8], Kaluszka [20], Hipp and Taksar [15], Yao, Yang and Wang [36], Liang, Liang and
Young [21] with mean-variance or standard deviation premium principles in either static
or dynamic settings. As mentioned above, another difference between this paper and
existing works is that we consider quite general probability weighting functions rather
than only those absolutely continuous ones as in Xu [32]. The new setup not only covers
more practical cases, but also brings a lot of mathematical challenges. Mathematically
speaking, it leads to a new semi-linear second-order ordinary integro-differential equation
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(OIDE) with nonlocal operator, which is not easy to solve, even numerically. If the
probability weighting function has a density, we further reduce the OIDE to a well-studied
ordinary differential equation (ODE) of two unknown functions with local operator. It is
an initial value ODE problem and can be numerically solved effectively. Unfortunately,
we cannot find a way to do this when the probability weighting function has no density.
We leave this to experts in numerical OIDEs.

An important feature of our model (same as Xu [32]) is that we take the so-called
incentive compatibility constraint into account. In the insurance literature, many works
ignore this constraint intentionally or unintentionally; see, Deprez and Gerber [8], Gajek
and Zagrodny [11], Kaluszka [20], Liang, Liang and Young [21], Guan, Xu and Zhou [12],
to name a few. We believe it is mainly due to the mathematical challenges arising from
the constraint to force the authors to ignore this constraint. In some existing models, the
optimal contracts turn out to be quota share or stop loss so that the incentive compatibil-
ity constraint is automatically satisfied. But more often, in particular when probability
weighting function is involved, the optimal contracts may suffer from some serious moral
hazard issues such as hiding or exaggerating losses; see, e.g., Bernard et al. [2]. A large
proportion of existing works do not discuss if their optimal contracts are free of moral
hazard issues. Economically speaking, when modeling insurance problems, concerns from
both the insurer and the insured should be taken into account simultaneously; so, to avoid
the potential moral hazard issues, both compensation and retention functions shall be
a prior increasing1 for the optimal contracts. This simple fact is called the incentive
compatibility constraint by Huberman, Mayers and Smith Jr [17] and Picard [25]. We
call an insurance contract moral-hazard-free if it obeys this constraint. We only focus
on the moral-hazard-free contracts in this paper, so the optimal contracts automatically
avoids the potential moral hazard issues. Mathematically speaking, this constraint leads
to the second-type quantile optimization problem defined by Xu [32]. The decision quan-
tiles are subject to a bounded derivative constraint, an infinity-dimensional constraint.
This usually leads to a double-obstacle OIDE/ODE problem. It is quite different from
the first-type quantile optimization problem where the decision quantiles are subject to a
one-side derivative constraint. If one ignores the incentive compatibility constraint when
designing PO contracts, the problem reduces to a single-obstacle OIDE/ODE problem.
In fact, the first-type quantile optimization problem can be solved by a simple relaxation
method; please refer to Xu [31] and Hou and Xu [16] for the latest development of the
relaxation method.

Our approach to solving the insurance design problem in this paper consists of several
steps: we first transform the problem into a quantile optimization problem; and then
show the latter is a concave problem; the calculus of variations method (or equivalently,
the first order condition) is then applied to get an equivalent optimality condition; we

1In this paper, “increasing” means non-decreasing and “decreasing” means non-increasing.
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further derive an equivalent condition in terms of a semi-linear second order OIDE with
nonlocal operator. Eventually, the optimal solution to the original problem is expressed
by the solution to the OIDE. In this process, we show the OIDE has an almost classical
solution. This is the best possible smoothness result, since the OIDE has no classical
solution in general, which can be seen from our example in Section 4.1. To the best of
our knowledge, it is the first time that this type of OIDE with nonlocal operator appears
in the insurance and financial economics literature.

The above approach is introduced by the author in [32]. The linear expected-value pre-
mium principle is assumed for the insurer in [32], so the quantile optimization problem is
naturally a concave optimization problem. Hence, the calculus of variations method gives
an equivalent optimality condition. This paper considers the nonlinear mean-variance
premium principle, in order to get an equivalent optimality condition from the first order
condition, we must show that the quantile optimization problem is concave. We have
successfully shown this, so the approach proposed in [32] still works. Other methods to
deal with risk-sharing problems under the incentive compatibility constraint are available
in the literature. For instance, Carlier and Lachapelle [4] use a probabilistic method to
study a class of risk-sharing problems. They provide an iteration method to get the nu-
merical solution. They show the convergence of their scheme, but do not give the speed
of convergence, which seems to be a very hard problem. By contrast, our method reduces
the problem to solve an OIDE/ODE problem, where the solvability is well-established in
the numerical differential equation literature. The most up-to-date numerical methods to
solve differential equations such as neural networks and deep learning might be applied
to them as well.

The rest of this paper is organized as follows. In Section 2, we introduce a PO
insurance problem. In Section 3, the problem is turned into a quantile optimization
problem via change of variables. We also show the quantile optimization problem is a
concave one in this part. Section 4 is devoted to solving the quantile optimization problem
by the calculus of variations method. We express the optimal solution to the original
problem by the solution of some OIDE/ODE. An example with an explicit solution is
provided as well. Section 5 concludes the paper.

Notation.

Throughout the paper, we fix an atom-less probability space. For any random variable
Y in the probability space, we denote its probability distribution function by FY ; and
define its quantile function (or the left-continuous inverse function of FY ) by

F−1
Y (p) = inf

{
z ∈ R

∣∣∣ FY (z) > p
}
, p ∈ (0, 1],
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with the convention that inf ∅ = +∞ and set

F−1
Y (0) = lim

p→0+
F−1
Y (p).

By this definition, F−1
Y (0) = ess inf Y and F−1

Y (1) = ess sup Y . So Y is a bounded random
variable if and only if

−∞ < F−1
Y (0) 6 F−1

Y (1) <∞.

By definition, all the quantile functions (or simply called quantiles, for short) are
increasing and left-continuous. Generally speaking, quantile functions may be discontin-
uous, but because of the presence of the incentive compatibility constraint in our model,
we will face absolutely continuous quantiles only in this paper. This will simplify our
arguments in many circumstances.

For p > 1, let Lp([0, 1]) be the set of measurable functions f : [0, 1]→ R such that∫ 1

0
|f(t)|p dt <∞.

Let AC([0, 1]) be the set of absolutely continuous functions f : [0, 1]→ R. Let C2−([0, 1])
be the set of functions f : [0, 1] → R that are differentiable with derivatives f ′ ∈
AC([0, 1]). Clearly C2([0, 1]) ⊆ C2−([0, 1]) ⊆ C1([0, 1]).

In what follows, “almost everywhere” (a.e.) and “almost surely” (a.s.) may be sup-
pressed for notation simplicity in most circumstances if no confusion would occur.

2 Problem formulation.

In the Pareto optimal (also called Pareto efficient) insurance problem, one seeks the
best way to share a potential loss between an insurer (“He”, an insurance or reinsurance
company) and an insured (“She”) to achieve Pareto optimality/efficiency.

We use the same notation as in Xu [32]. We use a random variable X > 0 to
represent the potential loss covered by the insurance contract. Let I(x) and R(x) be
the loss borne by the insurer and the insured when a real loss X = x occurs. They are
respectively called the compensation (also called indemnity) and retention functions in
the insurance literature. A contract is called full coverage if I(x) ≡ x; called deductible
(with deductible d) if I(x) ≡ max{x − d, 0}. Economically speaking, both the insurer
and the insured should bear a greater financial responsibility when a larger loss would
occur, otherwise moral hazard issue may arise (see more discussions in Bernard et al. [2]
and Xu, Zhou and Zhuang [34]). This is called the incentive compatibility constraint by
Huberman, Mayers and Smith Jr [17] and Picard [25]. Mathematically speaking, because
I(x) + R(x) ≡ x and both I and R are increasing, the set of acceptable compensations
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is2

C =
{
I : [0,∞)→ [0,∞)

∣∣∣ I is absolutely

continuous with I(0) = 0 and 0 6 I ′ 6 1 a.e.
}
,

and the set of acceptable retentions is

R =
{
R : [0,∞)→ [0,∞)

∣∣∣ R is absolutely

continuous with R(0) = 0 and 0 6 R′ 6 1 a.e.
}
.

Clearly R = C . We call the compensations in C and the retentions in R moral-hazard-free
and will only consider them in the sequel.

An insurance contract is a pair (π, I), where π ∈ R is a premium that the insured
pays to the insurer at initial time and I is a moral-hazard-free compensation in C . We
assume the insurer uses the mean-variance premium principle

Uinsurer(π, I) = π − θE[I(X)]− σVar(I(X)) , (2.1)

where θ and σ are nonnegative constants. In practice, there is usually a safety loading
θ for the insurer (see, e.g., Daykin et al., [7]), and σ is used to control the volatility
of the insurer’s share. When σ = 0, the mean-variance premium principle reduces to
the classical expected-value premium principle that is considered by Xu [32], we will not
investigate this case again, hence assume σ > 0 from now on. Meanwhile, we assume the
insured evaluates contracts by the rank-dependent utility preference

Uinsured(π, I) = E
(
u
(
βinsured − π −X + I(X)

))
. (2.2)

Here the constant βinsured stands for the final wealth of the insured, so βinsured− π−X +
I(X) is the insured’s net wealth after deducting claims. The insured’s utility function u
is concave, strictly increasing and differentiable on R, which implies u′ is a continuous
positive function. The expectation E for a random variable Y is defined as

E (Y ) =
∫

[0,1]
F−1
Y (p)µ(dp), (2.3)

where µ is a (probability) measure on [0, 1] with µ({0}) = 0. In our presentation below,
Y will represent bounded random variables, so E (Y ) are always well-defined. The ex-
pectation E is nonlinear (indeed it is a Choquet expectation) except for the trivial case
µ(dp) = dp where E reduces to the classical linear mathematical expectation E.

Remark 2.1. In He et al. [13], −E (Y ) is called the weighted VaR (WVaR) risk measure
for Y , which is a generalization of Value-at-Risk (VaR) and Expected Shortfall (ES), and

2We refer to Xu [32] for a detailed discussion.
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encompasses many well-known risk measures that are widely used in finance and actuarial
sciences, such as spectral risk measures and distortion risk measures; see Wei [28] for a
review.

Remark 2.2. In many existing works such as [31], [34], [32], the expectation E is defined
as

E (Y ) =
∫

[0,∞)
z d
(
1− w(1− FY (z))

)
,

where w is a probability weighting function that is absolutely continuous, increasing and
one-to-one maps [0, 1] to itself. By change of variable, we get

E (Y ) =
∫

[0,1]
F−1
Y (z)w′(1− p) dp.

Hence, the probability measure µ in (2.3) in this case is given by

dµ = w′(1− p) dp.

When w is not absolutely continuous, we can take

µ([0, p]) = 1− w(1− p).

A contract (π∗, I∗) is called Pareto optimal/efficient if there is no other one feasible
contract (π, I) such that

Uinsured(π, I) > Uinsured(π∗, I∗), Uinsurer(π, I) > Uinsurer(π∗, I∗)

and
Uinsured(π, I) + Uinsurer(π, I) > Uinsured(π∗, I∗) + Uinsurer(π∗, I∗).

In other words, it is impossible to increase one of the insurer’s and the insured’s valuations
for a PO contract without reducing the other one. All the PO contracts form a set, called
the Pareto frontier.

A contract (π∗, I∗) is PO if and only if there exists a γ ∈ R such that (π∗, I∗) is an
optimal solution to the problem

sup
π∈R, I∈C

Uinsured(π, I)

s.t. Uinsurer(π, I) > γ.

Under our specific setting, the above becomes

sup
π∈R, I∈C

E
(
u
(
βinsured − π −X + I(X)

))
s.t. π − θE[I(X)]− σVar(I(X)) > γ.
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Notice the objective E
(
u
(
βinsured−π−X+I(X)

))
is decreasing in π, so any PO contract

(π∗, I∗) shall make the constraint tight, namely

π∗ − θE[I∗(X)]− σVar(I∗(X)) = γ.

Therefore, by removing π∗ from the above problem, it suffices to study the problem

sup
I∈C

E
(
u
(
βinsured − γ − θE[I(X)]− σVar(I(X))−X + I(X)

))
. (2.4)

If I∗γ is an optimal solution to the above problem (2.4), then(
γ + θE

[
I∗γ(X)

]
+ σVar

(
I∗γ(X)

)
, I∗γ

)
is a PO contract. Conversely, every PO contract is of the above form with certain γ.
Hence, it suffices to solve the problem (2.4). Without confusion, we also call its solution
(which is indeed an optimal compensation) a PO moral-hazard-free contract. In the
same spirit, a PO contract is called deductible if the compensation in the contract is a
deductible one.

Following Xu [32], we put the following technical assumptions on X throughout the
paper.

Assumption 2.1. The quantile function F−1
X of the potential loss X satisfies F−1

X (0) =
ess inf X = 0 and F−1

X (1) = ess supX < ∞. Furthermore, F−1
X ∈ AC([0, 1]) and(

F−1
X

)′
(p) > 0 for a.e. p ∈ (m0, 1), where m0 = FX(0) < 1.

If m0 > 0, then X has a positive mass at 0, so Assumption 2.1 covers the most common
and important case with loss having a positive mass at 0 in insurance practice. Under
Assumption 2.1, we only need to deal with bounded random variables throughout this
paper, which will simplify our subsequent arguments. Remark that our method can be
also applied to the case of unbounded potential loss X, but it requires more careful
mathematical derivations such as on integrations. This is out of the main goal of this
paper, so we leave it to the interested readers.

Under Assumption 2.1, the probability distribution function FX is continuous on
[0, 1] and strictly increasing on [m0, 1]. Moreover, we have F−1

X (FX(x)) = x for all
ess inf X 6 x 6 ess supX, F−1

X (p) = 0 for p 6 m0 and F−1
X (p) > 0 for p > m0.

These facts will be used frequently in the subsequent analysis without claim.

3 Quantile optimization problem.

Generally speaking, the probability measure µ in (2.3) makes the preference E a
nonlinear expectation (in fact, it is a Choquet expectation), so the problem (2.4) is a
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challenging non-concave optimization problem. To tackle the problem (2.4), we use the
so-called quantile optimization method; see [5, 6, 3, 18, 14, 33, 2, 31, 16, 29, 28, 34, 32, 24]
for the recent development of this method.

Our approach was introduced by Xu [31]. Following Xu [31], we first make change
of variables to find an equivalent quantile optimization problem to the problem (2.4),
then use the quantile optimization techniques to study it, and finally recover the optimal
solution to the problem (2.4).

Because our probability space is atom-less, there exists a random variable U , which is
uniformly distributed on (0, 1), such that X = F−1

X (U) almost surely (see, e.g. Xu [30]).
For R ∈ R, let

G(p) = R
(
F−1
X (p)

)
, p ∈ [0, 1]. (3.1)

Then G is an increasing function and satisfies

G(U) = R
(
F−1
X (U)

)
= R(X) = X − I(X). (3.2)

Furthermore, using the fact F−1
X (FX(x)) = x,

R(x) = R
(
F−1
X (FX(x))

)
= G(FX(x)), x ∈

[
ess inf X, ess supX

]
. (3.3)

Writing

Y = βinsured − γ − θE[I(X)]− σVar(I(X))−X + I(X)

= βinsured − γ − θE[I(X)]− σVar(I(X))−G(U),

it is not hard to verify that the quantile function of Y is given by

F−1
Y (p) = βinsured − γ − θE[I(X)]− σVar(I(X))−G(1− p), a.e. p ∈ [0, 1].

Inserting it into (2.2), we get

E
(
u
(
βinsured − γ − θE[I(X)]− σVar(I(X))−X + I(X)

))
=
∫

[0,1]
u
(
βinsured − γ − θE[I(X)]− σVar(I(X))−G(1− p)

)
µ(dp).

Thanks to (3.2), we have

E[I(X)] = E[X −G(U)] = E[X]−
∫ 1

0
G(t) dt
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and

Var(I(X)) = Var(X −G(U))

= Var(G(U))− 2E[XG(U)] + 2E[X]E[G(U)] + Var(X)

= E
[
G(U)2

]
−
(
E[G(U)]

)2
− 2E

[
F−1
X (U)G(U)

]
+ 2E[X]E[G(U)] + Var(X)

=
∫ 1

0
G(t)2 dt−

( ∫ 1

0
G(t) dt

)2
− 2

∫ 1

0
F−1
X (t)G(t) dt

+ 2E[X]
∫ 1

0
G(t) dt+ Var(X) ,

so

E
(
u
(
βinsured − γ − θE[I(X)]− σVar(I(X))−X + I(X)

))
=
∫

[0,1]
u
(
LG −G(1− p)

)
µ(dp).

where the operator L : L2([0, 1])→ R is defined as

Lf(·) = σ
( ∫ 1

0
f(t) dt

)2
− σ

∫ 1

0
f(t)2 dt+ 2σ

∫ 1

0
F−1
X (t)f(t) dt

+ (θ − 2σ E[X])
∫ 1

0
f(t) dt+ βinsured − γ − θE[X]− σVar(X) .

For any constant c, we have

Lf(·)+c = Lf(·) + cθ. (3.4)

We now rewrite the compatibility constraint on R ∈ R in terms of the new decision
variable G. It is not hard to show that R ∈ R if and only if G ∈ G ,3 where

G =
{
G : [0, 1]→ [0,∞)

∣∣∣ G is absolutely

continuous with G(0) = 0 and 0 6 G′ 6 h a.e.
}
,

and

h(p) =
(
F−1
X

)′
(p) > 0, a.e. p ∈ [0, 1]. (3.5)

Thanks to Assumption 2.1,∫ 1

0
h(t) dt = F−1

X (1) = ess supX <∞. (3.6)

3For more details we refer to Xu, Zhou and Zhuang [34].
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As a consequence, we have

0 6 G 6 ess supX, G ∈ G . (3.7)

The preceding change of variables reduces the optimization problem (2.4) under com-
patibility constraint to the following second-type quantile optimization problem

sup
G∈G

∫
[0,1]

u
(
LG −G(1− p)

)
µ(dp). (3.8)

At first sight, because of the nonlinear term σ
( ∫ 1

0 G(t) dt
)2
−σ

∫ 1
0 G(t)2 dt in LG, it seems

that the problem (3.8) is not a concave optimization problem. But it is indeed a concave
optimization problem, which will be shown by the following lemma.

Lemma 3.1. Suppose 0 < ε < 1 and f1, f2 ∈ L2([0, 1]). Then

εLf1(·) + (1− ε)Lf2(·) 6 Lεf1(·)+(1−ε)f2(·).

Moreover, the identity holds if and only if f1 − f2 is a constant function in L2([0, 1]).

Proof. Clearly,

Lεf1(·)+(1−ε)f2(·) − εLf1(·) − (1− ε)Lf2(·)

= σ

[( ∫ 1

0
εf1(t) + (1− ε)f2(t) dt

)2
−
∫ 1

0

(
εf1(t) + (1− ε)f2(t)

)2
dt
]

− σε
[( ∫ 1

0
f1(t) dt

)2
−
∫ 1

0
f1(t)2 dt

]
− σ(1− ε)

[( ∫ 1

0
f2(t) dt

)2
−
∫ 1

0
f2(t)2 dt

]

= σε(1− ε)
[ ∫ 1

0
f1(t)2 dt−

( ∫ 1

0
f1(t) dt

)2
+
∫ 1

0
f2(t)2 dt−

( ∫ 1

0
f2(t) dt

)2

+ 2
∫ 1

0
f1(t) dt

∫ 1

0
f2(t) dt− 2

∫ 1

0
f1(t)f2(t) dt

]

= σε(1− ε)
[ ∫ 1

0

(
f1(t)− f2(t)

)2
dt−

( ∫ 1

0

(
f1(t)− f2(t)

)
dt
)2
]

= σε(1− ε)
[ ∫ 1

0

(
f1(t)− f2(t)−

∫ 1

0

(
f1(s)− f2(s)

)
ds
)2

dt
]

> 0.

The above inequality becomes an equation if and only if

f1(t)− f2(t) =
∫ 1

0

(
f1(s)− f2(s)

)
ds, for a.e. t ∈ [0, 1],

which is equivalent to saying that f1 − f2 is a constant function in L2([0, 1]). This
completes the proof.
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Thanks to the above lemma and the concavity and monotonicity of u, we see that

ε
∫

[0,1]
u
(
LG1(·) −G1(1− p)

)
µ(dp) + (1− ε)

∫
[0,1]

u
(
LG2(·) −G2(1− p)

)
µ(dp)

6
∫

[0,1]
u
(
εLG1(·) − εG1(1− p) + (1− ε)LG2(·) − (1− ε)G2(1− p)

)
µ(dp)

6
∫

[0,1]
u
(
LεG1(·)+(1−ε)G2(·) − (εG1(1− p) + (1− ε)G2(1− p))

)
µ(dp). (3.9)

This shows that (3.8) is a concave optimization problem, which is expected to be easier
to study than the non-concave optimization problem (2.4).

Since (3.8) is a concave optimization problem, the calculus of variations method (or
equivalently, the first-order condition) will provide not only a necessary and but also a
sufficient optimality condition. Without concavity, we may not be able to deduce an
equivalent optimality condition by the first order condition.

The next result is about the existence and uniqueness of the solution to the problem
(3.8).

Lemma 3.2. The problem (3.8) admits a unique optimal solution.

Proof. Thanks to (3.7), all the admissible solutions to the problem (3.8) are uniformly
bounded, hence the optimal value is finite. Therefore, there exists a sequence of admissible
solutions {Gn}n to the problem (3.8) such that∫

[0,1]
u
(
LGn −Gn(1− p)

)
µ(dp) > sup

G∈G

∫
[0,1]

u
(
LG −G(1− p)

)
µ(dp)− 1

n
.

For any n and 0 6 p1 < p2 6 1, we have

|Gn(p2)−Gn(p1)| =
∫ p2

p1
G′n(t) dt 6

∫ p2

p1
h(t) dt,

so, by virtue of (3.6), the sequence {Gn}n is uniformly equicontinuous. By the Arzelà-
Ascoli theorem, we conclude {Gn}n has a subsequence (still denoted by {Gn}n) that
converges uniformly to some G. It is easy to verify that G ∈ G . By the dominated
convergence theorem,∫

[0,1]
u
(
LG −G(1− p)

)
µ(dp) = lim

n→∞

∫
[0,1]

u
(
LGn −Gn(1− p)

)
µ(dp)

> sup
G∈G

∫
[0,1]

u
(
LG −G(1− p)

)
µ(dp).

This shows that G is an optimal solution to (3.8).
To prove the uniqueness, we suppose, on the contrary, that the problem (3.8) has

two different optimal solutions G1 and G2. Notice G1(0) − G2(0) = 0 and G1 − G2 is
continuous but not identical to zero, so G1 −G2 is not a constant function in L2([0, 1]).
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Hence, by Lemma 3.1,

εLG1
+ (1− ε)LG2

< LεG1+(1−ε)G2
,

for any 0 < ε < 1. Because u is strictly increasing, the last inequality in (3.9) is strict,
giving

ε
∫

[0,1]
u
(
LG1

−G1(p)
)
µ(dp) + (1− ε)

∫
[0,1]

u
(
LG2

−G2(p)
)
µ(dp)

<
∫

[0,1]
u
(
LεG1+(1−ε)G2

− (εG1(1− p) + (1− ε)G2(1− p))
)
µ(dp).

This clearly contradicts the optimality of G1 and G2 and confirms the uniqueness.

4 Optimal solution.

As the problem (3.8) is a concave optimization problem, we can apply the calculus of
variations method to solve it. This method leads to the following result, which completely
characterizes the unique optimal solution to the problem (3.8).

Lemma 4.1 (Optimality condition I). Suppose G ∈ Q. Then G is the optimal solu-
tion to the problem (3.8) if and only if it satisfies∫

[0,1]

[ ∫ 1

0

(
2σ
∫ 1

0
G(t) dt− 2σG(t) + 2σF−1

X (t) + θ − 2σ E[X]
)

(G(t)−G(t)) dt

− (G(1− p)−G(1− p))
]
u′
(
LG(·) −G(1− p)

)
µ(dp) 6 0 for any G ∈ Q.

(4.1)

Proof. Suppose G is the optimal solution to the problem (3.8). For any G ∈ Q, ε ∈ (0, 1),
define

Gε(p) = G(p) + ε(G(p)−G(p)), p ∈ [0, 1].

Then Gε ∈ G . Because G is the optimal solution to the problem (3.8), applying Fatou’s
lemma, we get

0 > lim inf
ε→0+

1
ε

[ ∫
[0,1]

u
(
LGε(·) −Gε(1− p)

)
− u

(
LG(·) −G(1− p)

)
µ(dp)

]

>
∫

[0,1]
lim inf
ε→0+

1
ε

[
u
(
LGε(·) −Gε(1− p)

)
− u

(
LG(·) −G(1− p)

)]
µ(dp)

=
∫

[0,1]

(
u
(
LGε(·) −Gε(1− p)

))′∣∣∣∣
ε=0

µ(dp).

A simple calculation shows that the last integrand is equal to the integrand of (4.1). So
we proved (4.1).
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On the other hand side, suppose G ∈ Q and it satisfies (4.1) but is not optimal to
the problem (3.8). Then there exist a function G1 ∈ Q and a constant c > 0 such that∫

[0,1]
u
(
LG1(·) −G1(1− p)

)
µ(dp) >

∫
[0,1]

u
(
LG(·) −G(1− p)

)
µ(dp) + c.

For ε ∈ (0, 1), let
Gε(p) = εG1(p) + (1− ε)G(p), p ∈ [0, 1].

By virtue of (3.9), we have∫
[0,1]

u
(
LGε(·) −Gε(1− p)

)
µ(dp)

> ε
∫

[0,1]
u
(
LG1(·) −G1(1− p)

)
µ(dp) + (1− ε)

∫
[0,1]

u
(
LG(·) −G(1− p)

)
µ(dp)

>
∫

[0,1]
u
(
LG(·) −G(1− p)

)
µ(dp) + cε,

so

lim inf
ε→0+

1
ε

[ ∫
[0,1]

u
(
LGε(·) −Gε(1− p)

)
− u

(
LG(·) −G(1− p)

)
µ(dp)

]
> c > 0.

But the dominated convergence theorem and (4.1) lead to

lim inf
ε→0+

1
ε

[ ∫
[0,1]

u
(
LGε(·) −Gε(1− p)

)
− u

(
LG(·) −G(1− p)

)
µ(dp)

]
=
∫ 1

0
lim inf
ε→0+

1
ε

[
u
(
LGε(·) −Gε(1− p)

)
− u

(
LG(·) −G(1− p)

)]
µ(dp)

=
∫

[0,1]

(
u
(
LGε(·) −Gε(1− p)

))′∣∣∣∣
ε=0

µ(dp)

6 0,

contradicting the above inequality. This completes the proof.

By this result, we see that solving the problem (3.8) reduces to the problem of finding
a Q ∈ Q that satisfies the condition (4.1). But one cannot find such a Q easily from
(4.1), because it requires to compare Q with all the quantiles in Q. Intuitively speaking,
this does not reduce the difficulty of solving the problem (3.8).

Our next goal is to find an equivalent condition to (4.1) that can be easily verified.
To this end, we define a function

Φ(p) =

∫
(1−p,1]

u′
(
LG(·) −G(1− t)

)
µ(dt)∫

[0,1]
u′
(
LG(·) −G(1− t)

)
µ(dt)

, p ∈ [0, 1].

Thanks to µ({0}) = 0, one can see Φ is a probability distribution function. Also, we
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define

Ψ(p) =
(

2σ
∫ 1

0
G(t) dt+ θ − 2σ E[X]

)
(p− 1)

+ 2σ
∫ 1

p

(
G(t)− F−1

X (t)
)

dt+ 1, p ∈ [0, 1].

Then it is easy to verify Ψ(0) = 1− θ and Ψ(1) = 1.
In terms of these new notations, the inequality in (4.1) can be written as∫

[0,1]

[ ∫ 1

0
Ψ′(t)(G(t)−G(t)) dt− (G(1− p)−G(1− p))

]
d
(
1− Φ(1− p)

)
6 0,

that is,∫ 1

0
Ψ′(t)(G(t)−G(t)) dt−

∫
[0,1]

(
G(1− p)−G(1− p)

)
d
(
1− Φ(1− p)

)
6 0.

Applying integration by parts to the second integral, the above becomes∫ 1

0
Ψ′(t)

(
G(t)−G(t)

)
dt+

∫ 1

0
(Φ(p)− 1)

(
G′(p)−G′(p)

)
dp 6 0,

thanks to Φ(1) = 1, G(0) = 0 and G(0) = 0. By virtue of G(0) = 0, G(0) = 0 and
Ψ(1) = 1, and applying integration by parts to the first integral in above, it becomes∫ 1

0
(1−Ψ(t))

(
G′(t)−G′(t)

)
dt+

∫ 1

0
(Φ(p)− 1)

(
G′(p)−G′(p)

)
dp 6 0,

or ∫ 1

0

(
Φ(p)−Ψ(p)

)(
G′(p)−G′(p)

)
dp 6 0. (4.2)

Because G′, G′ ∈ [0, h(p)], we conclude that G satisfies

G(0) = 0;

G
′(p) = h(p), if Ψ(p)− Φ(p) < 0;

G
′(p) ∈ [0, h(p)], if Ψ(p)− Φ(p) = 0;

G
′(p) = 0, if Ψ(p)− Φ(p) > 0,

for a.e. p ∈ [0, 1]. (4.3)

The preceding arguments are reversible, so (4.3) is equivalent to (4.1). The key point is
that the condition (4.3) is much easier to verify than (4.1) since it only depends on G

itself.
Although (4.3) is easier to verify, it is still uneasy to find or compute G from it.

We now express the condition (4.3) through an ordinary integro-differential equation by
virtue of the following technical lemma. This OIDE can be further reduced to an ordinary
differential equation later in some special cases.
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Lemma 4.2 (Lemma 4.2, [32]). Suppose a, b, c, d are real quantities with b 6 c. Then

min{max{a− c, d}, a− b} = 0

if and only if 
a = c, if d < 0;

a ∈ [b, c], if d = 0;

a = b, if d > 0.

Lemma 4.3 (Optimality condition II). Suppose G : [0, 1]→ R is an absolutely con-
tinuous function. Then G is the optimal solution to the problem (3.8) if and only if it
satisfies G(0) = 0 and the following OIDE

min
{

max
{
G
′(p)− h(p), Ψ(p)− Φ(p)

}
, G

′(p)
}

= 0, a.e. p ∈ [0, 1], (4.4)

where

Φ(p) =

∫
(1−p,1]

u′
(
LG(·) −G(1− t)

)
µ(dt)∫

[0,1]
u′
(
LG(·) −G(1− t)

)
µ(dt)

, (4.5)

and

Ψ(p) =
(

2σ
∫ 1

0
G(t) dt+ θ − 2σ E[X]

)
(p− 1) + 2σ

∫ 1

p

(
G(t)− F−1

X (t)
)

dt+ 1. (4.6)

Proof. This is an immediate consequence of the optimality condition (4.3) and Lemma
4.2.

There are three unknown functions G, Φ and Ψ in (4.4), so it is not easy to solve. We
want to further simplify (4.4). To this end, define an operator

Kf(·)(p) =
∫

(1−p,1] u
′
(
LF−1

X (·)+ 1
2σ (f(0)−f(·)) − F

−1
X (1− t)− 1

2σ (f(0)− f(1− t))
)
µ(dt)∫

[0,1] u
′
(
LF−1

X (·)+ 1
2σ (f(0)−f(·)) − F

−1
X (1− t)− 1

2σ (f(0)− f(1− t))
)
µ(dt)

.

(4.7)

Note that Kf(·) can be regarded as a probability distribution function which may be
discontinuous at the mass or singular points of µ. If µ has a density, then so is Kf(·).

Now introduce the following OIDE of one unknown Ψ:
min

{
max

{
−Ψ′′(p), Ψ(p)−KΨ′(·)(p)

}
, 2σh(p)−Ψ′′(p)

}
= 0, a.e. p ∈ [0, 1],

Ψ(0) = 1− θ, Ψ(1) = 1.
(4.8)
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By virtue of Lemma 4.3, we can link it to the optimal solution to the problem (3.8). The
following simple technical result will be critical and used frequently in this process.

Lemma 4.4 (Lemma 4.4, [32]). Suppose a, b, c are real numbers. Then min{max{a, b}, c} =
0, if and only if min{max{ak, b`}, cm} = 0 for any k, `,m > 0.

Theorem 4.5 (Optimal solution). We have the following assertions.

(1). If G is the optimal solution to the problem (3.8). Then

Ψ(p) =
(

2σ
∫ 1

0
G(t) dt+ θ − 2σ E[X]

)
(p− 1) + 2σ

∫ 1

p

(
G(t)− F−1

X (t)
)

dt+ 1

(4.9)

is a solution to (4.8) in C2−([0, 1]).

(2). If Ψ is a solution to (4.8) in C2−([0, 1]). Then

G(p) = F−1
X (p) + 1

2σ (Ψ′(0)−Ψ′(p)), (4.10)

and

R(x) = G(FX(x)) (4.11)

are optimal solutions to the problems (3.8) and (2.4), respectively.

As a consequence, (4.8) admits a unique solution in C2−([0, 1]).

Proof. (1). Since G is absolutely continuous on [0, 1], by the definition (4.9) we have
Ψ ∈ C2−([0, 1]) and Ψ(0) = 1−θ and Ψ(1) = 1. Differentiating (4.9) and rearranging
the terms, we get

G(p) = F−1
X (p) +

∫ 1

0
G(t) dt− E[X] + 1

2σ (θ −Ψ′(p)).

Thanks to G(0) = 0 and F−1
X (0) = 0, it follows

G(p) = F−1
X (p) + 1

2σ (Ψ′(0)−Ψ′(p)).

Setting

Φ(p) =

∫
(1−p,1]

u′
(
LG(·) −G(1− t)

)
µ(dt)∫

[0,1]
u′
(
LG(·) −G(1− t)

)
µ(dt)

, (4.12)
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it yields

Φ(p) =
∫
(1−p,1] u

′
(
LF−1

X (·)+ 1
2σ (Ψ′(0)−Ψ′(·)) − F

−1
X (1− t)− 1

2σ (Ψ′(0)−Ψ′(1− t))
)
µ(dt)∫

[0,1] u
′
(
LF−1

X (·)+ 1
2σ (Ψ′(0)−Ψ′(·)) − F

−1
X (1− t)− 1

2σ (Ψ′(0)−Ψ′(1− t))
)
µ(dt)

= KΨ′(·)(p).

As G is the optimal solution to the problem (3.8), thanks to Lemma 4.3, we have
(4.4) which can be written as

min
{

max
{
− 1

2σΨ′′(p), Ψ(p)−KΨ′(·)(p)
}
, h(p)− 1

2σΨ′′(p)
}

= 0.

By virtue of Lemma 4.4, we deduce that Ψ is a solution to (4.8) in C2−([0, 1]).

(2). Because Ψ ∈ C2−([0, 1]), the definition (4.10) implies thatG is absolutely continuous,
G(0) = 0 and

G
′(p) = h(p)− 1

2σΨ′′(p), a.e. p ∈ [0, 1].

Setting Φ(p) = KΨ′(·)(p), it follows

Φ(p) =
∫
(1−p,1] u

′
(
LF−1

X (·)+ 1
2σ (Ψ′(0)−Ψ′(·)) − F

−1
X (1− t)− 1

2σ (Ψ′(0)−Ψ′(1− t))
)
µ(dt)∫

[0,1] u
′
(
LF−1

X (·)+ 1
2σ (Ψ′(0)−Ψ′(·)) − F

−1
X (1− t)− 1

2σ (Ψ′(0)−Ψ′(1− t))
)
µ(dt)

=

∫
(1−p,1]

u′
(
LG(·) −G(1− t)

)
µ(dt)∫

[0,1]
u′
(
LG(·) −G(1− t)

)
µ(dt)

,

which confirms (4.5). We now show (4.4) and (4.6) are also satisfied. By virtue of
Lemma 4.4, the OIDE in (4.8) can be written as

min
{

max
{
G
′(p)− h(p), Ψ(p)− Φ(p)

}
, G

′(p)
}

= 0,

proving (4.4). It follows from Ψ(1) = 1 and (4.10) that

Ψ(p) = c(p− 1) + 2σ
∫ 1

p

(
G(t)− F−1

X (t)
)

dt+ 1

for some constant c. This together with the boundary condition Ψ(0) = 1 − θ

confirms (4.6). Now applying Lemma 4.3, we conclude that G is an optimal solution
to the problem (3.8). Consequently, R is the optimal solution to the problem (2.4)
by (3.3).

Suppose Ψ1 and Ψ2 are two solutions in C2−([0, 1]) to the OIDE (4.8). We then get
two optimal solutions to the problem (3.8) from the relationship (4.10). But by Lemma
3.2, the optimal solution to (3.8) is unique, so we conclude Ψ′1(0)−Ψ′1(p) = Ψ′2(0)−Ψ′2(p)
for p ∈ [0, 1], which implies that Ψ1−Ψ2 is a linear function. Because Ψ1(0)−Ψ2(0) = 0
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and Ψ1(1) − Ψ2(1) = 0, we conclude that Ψ1 − Ψ2 is identical to zero. Therefore, the
OIDE (4.8) admits a unique solution in C2−([0, 1]).

One may wonder if we always have a classical C2 solution to the OIDE (4.8). Generally
speaking, this is not true. Because the optimal retention to the problem (2.4), R (such as
deductible contracts), may not be a C1 function, so is the optimal solution to the problem
(3.8). From (4.10), we conclude that the OIDE (4.8) may not have a C2 function. In the
following section, we give an example to show this fact.

4.1 An example with explicit solution.

In this section, we provide an example whose solution will be derived from Theorem
4.5 explicitly. In this example, the probability measure µ is highly nonlinear, so the
problem (2.4) is indeed a behavioral model (see Remark 2.2), resulting in a non-classical
PO insurance contract.

Let

FX(x) = x+ 1
2 , x ∈ [0, 1]; θ = 13

12 , σ = 1
2 , u(x) = −e−x.

Let the probability measure µ : [0, 1] → [0, 1] to be an absolutely continuous function
that satisfies the following condition:

µ′(1− p) =


ce

8
9
(
2p− 1

9

)
, p ∈

(
1
2 ,

2
3

)
c
(
p+ 5

9

)
exp

(
− p+ 14

9

)
, p ∈

(
2
3 , 1

)
,

where

c−1 = 13
36e

− 8
9 +

∫
[ 1

2 ,
2
3 ]
e

8
9
(
2t− 1

9
)

dt+
∫

[ 2
3 ,1]

(
t+ 5

9
)

exp
(
− t+ 14

9
)

dt.

We do not put any constraint on µ′(1− p), p ∈ (0, 1
2). Also, because u is an exponential

utility, the wealth position βinsured−γ of the insured does not affect the optimal contract,
so we do not give them explicitly.

It is easy to verify that

E[X] = 1
4 , F−1

X (p) = (2p− 1)+, h(p) = 21p∈( 1
2 ,1],

where 1S is the indicator function for a statement S, so 1S = 1 if S is true and 1S = 0
otherwise.

If we can show that

Ψ(p) = 8
9p−

1
12 −

1
2
(
p− 2

3
)2
1p∈[ 2

3 ,1] +
(
p− 1

2
)2
1p∈[ 1

2 ,1], p ∈ [0, 1], (4.13)
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is a solution to the OIDE (4.8) in C2−([0, 1]) (but it clearly does not belong to C2([0, 1])).
It then follows from Theorem 4.5 that

G(p) = F−1
X (p) + 1

2σ (Ψ′(0)−Ψ′(p)) =
(
p− 2

3

)+
, p ∈ [0, 1],

is the optimal solution to the problem (3.8) and

R(x) = G(FX(x)) = 1
6(3x− 1)+, x ∈ [0, 1],

is an optimal retention to the problem (2.4). This contract is neither a classical PO
deductible, nor a proportional insurance contract. It is indeed because the nonlinear
probability measure µ makes the problem (2.4) a behavioral model under probability
distortion (see Remark 2.2).

We now show that Ψ defined by (4.13) is a solution to (4.8). It is evident that
Ψ(0) = − 1

12 = 1− θ and Ψ(1) = 1, so the two boundary conditions in (4.8) are satisfied.
Also, trivially,

min
{

max
{
−Ψ′′(p), Ψ(p)−KΨ′(·)(p)

}
, 2σh(p)−Ψ′′(p)

}
= min

{
max

{
0, Ψ(p)−KΨ′(·)(p)

}
, 0
}

= 0, p ∈
(
0, 1

2

)
,

so Ψ satisfies the OIDE in (4.8) on (0, 1
2). If we can now show

Ψ(p)−KΨ′(·)(p) = 0, p ∈
(

1
2 , 1

)
, (4.14)

then it follows that

min
{

max
{
−Ψ′′(p), Ψ(p)−KΨ′(·)(p)

}
, 2σh(p)−Ψ′′(p)

}
= min

{
max

{
− 2, 0

}
, 2− 2

}
= min

{
0, 0

}
= 0, p ∈

(
1
2 ,

2
3

)
,

and

min
{

max
{
−Ψ′′(p), Ψ(p)−KΨ′(·)(p)

}
, 2σh(p)−Ψ′′(p)

}
= min

{
max

{
− 1, 0

}
, 2− 1

}
= min

{
0, 1

}
= 0, p ∈

(
2
3 , 1

)
,

so we can conclude that Ψ is a solution to (4.8).
It suffices to prove (4.14). Because Ψ(1) = 1 = KΨ′(·)(1), we only need to prove

d
dpKΨ′(·)(p) = Ψ′(p), p ∈

(
1
2 , 1

)
.
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Because u(x) = −e−x, we have

KΨ′(·)(p) =
∫
(1−p,1] u

′
(
LF−1

X (·)+ 1
2σ (Ψ′(0)−Ψ′(·)) − F

−1
X (1− t)− 1

2σ (Ψ′(0)−Ψ′(1− t))
)
µ(dt)∫

[0,1] u
′
(
LF−1

X (·)+ 1
2σ (Ψ′(0)−Ψ′(·)) − F

−1
X (1− t)− 1

2σ (Ψ′(0)−Ψ′(1− t))
)
µ(dt)

=
∫
(1−p,1] exp

(
F−1
X (1− t)−Ψ′(1− t)

)
µ′(t) dt∫

[0,1] exp
(
F−1
X (1− t)−Ψ′(1− t)

)
µ′(t) dt

= d−1
∫

[0,p)
exp

(
F−1
X (t)−Ψ′(t)

)
µ′(1− t) dt,

where

d =
∫

[0,1]
exp

(
F−1
X (1− t)−Ψ′(1− t)

)
µ′(t) dt =

∫
[0,1]

exp
(
F−1
X (t)−Ψ′(t)

)
µ′(1− t) dt.

It follows that

d
dpKΨ′(·)(p) = d−1 exp

(
F−1
X (p)−Ψ′(p)

)
µ′(1− p)

= d−1 exp
(
2p− 1−

(
2p− 1

9
))
ce

8
9
(
2p− 1

9
)

= cd−1
(
2p− 1

9
)

= cd−1Ψ′(p), p ∈
(

1
2 ,

2
3

)
,

and

d
dpKΨ′(·)(p) = d−1 exp

(
F−1
X (p)−Ψ′(p)

)
µ′(1− p)

= d−1 exp
(
2p− 1−

(
p+ 5

9
))
c
(
p+ 5

9
)

exp
(
− p+ 14

9
)

= cd−1
(
p+ 5

9
)

= cd−1Ψ′(p), p ∈
(

2
3 , 1

)
.

Hence, it suffices to show c = d. Using the above equations, we see

d =
∫

[0,1]
exp

(
F−1
X (t) + Ψ′(t)

)
µ′(1− t) dt

=
∫

[0, 1
2 ]

exp
(
F−1
X (t) + Ψ′(t)

)
µ′(1− t) dt

+
∫

( 1
2 ,1]

exp
(
F−1
X (t) + Ψ′(t)

)
µ′(1− t) dt

=
∫

[0, 1
2 ]
e

8
9µ′(1− t) dt+

∫
( 1

2 ,1]
cΨ′(t) dt

= e
8
9 (1− µ([0, 1/2])) + c(1−Ψ(1/2))

= e
8
9 (1− µ([0, 1/2])) + 23

36c.
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Also, it follows from definitions of c and µ′ that

1− 13
36e

− 8
9 c = c

∫
[ 1

2 ,
2
3 ]
e

8
9
(
2t− 1

9
)

dt+ c
∫

[ 2
3 ,1]

(
t+ 5

9
)

exp
(
− t+ 14

9
)

dt

=
∫

[ 1
2 ,1]

µ′(1− t) dt = µ([0, 1/2]).

As a by-product, it implies 0 < µ([0, 1/2]) < 1, so µ is a well-defined probability measure.
Moreover, the above two equations lead to

d = e
8
9 (1− µ([0, 1/2])) + 23

36c = 13
36c+ 23

36c = c.

This completes the proof.

4.2 Special case: when µ has a density.

Generally speaking, the OIDE problem (4.8) is not easy to solve, even numerically,
because the operator KΨ′(·) is non-local. But when µ has a density, we can further reduce
the OIDE problem to an initial value ODE problem of two unknown functions that can
be effectively numerically solved.

Theorem 4.6 (Optimal solution when µ has a density). Suppose the probability mea-
sure µ has a density µ′. Then Ψ is the solution to (4.8) in C2−([0, 1]) if and only if it
can be expressed as

Ψ(p) = 2σ
∫ p

0
(F−1

X (t)− Γ(t)) dt+ ρp+ 1− θ, (4.15)

where (Λ,Γ, c, d, ρ) is the unique solution to the following ODE system

min
{

max
{

Γ′(p)− h(p), Λ(p)
}
, Γ′(p)

}
= 0,

Λ′(p) = 2σ(F−1
X (p)− Γ(p)) + ρ− cu′(d− Γ(p))µ′(1− p), a.e. p ∈ [0, 1],

Λ(0) = 1− θ, Λ(1) = 0, Γ(0) = 0, LΓ(·) = d, ρ = θ + 2σ
∫ 1

0 Γ(t) dt− 2σ E[X] ,
(4.16)

in the sense that Λ, Γ ∈ AC([0, 1]), and (c, d, ρ) ∈ (0,∞) × R×R. Moreover, Γ is the
optimal solution to the problem (3.8).
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Proof. Suppose Ψ is the solution to (4.8) in C2−([0, 1]). Set

Λ(p) = Ψ(p)−KΨ′(·)(p),

Γ(p) = F−1
X (p) + 1

2σ (Ψ′(0)−Ψ′(p)),

c−1 =
∫

[0,1]
u′
(
LF−1

X (·)+ 1
2σ (Ψ′(0)−Ψ′(·)) − Γ(1− p)

)
µ(dt),

d = LF−1
X (·)+ 1

2σ (Ψ′(0)−Ψ′(·)),

ρ = Ψ′(0).

By virtue of Lemma 4.4, it is easy to check that (Λ,Γ, c, d, ρ) is a solution to (4.16) except
for the last boundary condition

ρ = θ + 2σ
∫ 1

0
Γ(t) dt− 2σ E[X] .

Integrating both sides of

Γ(p) = F−1
X (p) + 1

2σ (ρ−Ψ′(p))

over [0, 1] and using Ψ(1) − Ψ(0) = θ, we get the last boundary condition in (4.16). By
(4.10), we see that Γ is the optimal solution to the problem (3.8).

To show the reverse implication, we suppose (Λ,Γ, c, d, ρ) is a solution to (4.16). Set
Ψ by (4.15), then Ψ ∈ C2−([0, 1]) and Ψ(1) = 1 by virtue of the last boundary condition
of (4.16). Thanks to (4.15) and the boundary condition Γ(0) = 0, we get

Γ(p) = F−1
X (p) + 1

2σ (Ψ′(0)−Ψ′(p)).

So

Γ′(p) = h(p)− 1
2σΨ′′(p),

and
d = LΓ(·) = LF−1

X (·)+ 1
2σ (Ψ′(0)−Ψ′(·)).

Writing the second ODE in (4.16) as

Λ′(p) = Ψ′(p)− cu′(d− Γ(p))µ′(1− p),

and using Ψ(0) = Λ(0), we obtain

Ψ(p)− Λ(p) = c
∫

(1−p,1]
u′(d− Γ(1− t))µ′(t) dt

= c
∫

(1−p,1]
u′
(
LF−1

X (·)+ 1
2σ (Ψ′(0)−Ψ′(·)) − F

−1
X (1− t)− 1

2σ (Ψ′(0)−Ψ′(1− t))
)
µ(dt).
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By virtue of Ψ(1)− Λ(1) = 1, it yields

c−1 =
∫

[0,1]
u′
(
LF−1

X (·)+ 1
2σ (Ψ′(0)−Ψ′(·)) − F

−1
X (1− t)− 1

2σ (Ψ′(0)−Ψ′(1− t))
)
µ(dt) > 0,

and consequently,
Ψ(p)− Λ(p) = KΨ′(·)(p).

Replacing Λ and Γ in the first ODE in (4.16), we conclude that Ψ is a solution to (4.8)
in C2−([0, 1]). By (4.10), Γ is the optimal solution to the problem (3.8). Because (4.8)
admits a unique solution in C2−([0, 1]), the above equivalency shows that (4.16) admits
a unique solution.

Finally, we propose a numerical scheme to solve (4.16). To solve (4.16), one can try,
for each triple (c, d, ρ) ∈ (0,∞) × R×R, to get the numerical solution to the following
initial value problem

min
{

max
{

Γ′(p)− h(p), Λ(p)
}
, Γ′(p)

}
= 0,

Λ′(p) = 2σ(F−1
X (p)− Γ(p)) + ρ− cu′(d− Γ(p))µ′(1− p), a.e. p ∈ [0, 1],

Λ(0) = 1− θ, Γ(0) = 0,

until its solution (Λ,Γ) satisfies Λ(1) = 0, LΓ(·) = d and ρ = θ + 2σ
∫ 1

0 Γ(t) dt− 2σ E[X].
Then (Λ,Γ, c, d, ρ) is the solution to (4.16).

The above scheme can be further optimized. For instance, because Γ is optimal to the
problem (3.8), Γ is bounded in [0, ess supX] by virtue of (3.7). Using this fact, one can
establish explicit bounds for c, d, and ρ. Therefore, one just needs to look for the desired
tuple (c, d, ρ) in a known bounded region rather than in the whole space (0,∞)×R×R.

5 Concluding remarks.

In this paper, we have considered the PO moral-hazard-free insurance contract prob-
lem for an insurer using the mean-variance premium principle and an insured using rank-
dependent utility preference. We have mainly focused on the theoretical study of the
problem and proposed a numerical scheme to solve the associated ODE problem. We
believe the most up-to-date numerical methods to solve differential equations such as
neural networks and deep learning might be applied to our OIDE and ODE problems.
We encourage experts in the relevant fields to study them. We also encourage the in-
terested readers to extend our model to incorporate other premium principles such as
the standard deviation premium principle. We believe our method should be effective
whenever the premium principle has certain concavity.

24



References

[1] Allais, M. (1953): Le comportement de l’homme rationnel devant le risque: cri-
tique des postulats et axiomes de l’ecole americaine, Econometrica, Vol. 21(4), pp.
503-546.

[2] Bernard, C., He, X.D., Yan, J.-A., and Zhou, X.Y. (2015): Optimal insur-
ance design under rank-dependent expected utility, Mathematical Finance, Vol. 25,
pp. 154-186.

[3] Carlier, G., and Dana, R.-A. (2008): Two-persons efficient risk-sharing and
equilibria for concave law-invariant utilities, Economic Theory, Vol. 36(2), pp. 189-
223.

[4] Carlier, G., and Lachapelle, A. (2011): A numerical approach for a class of
risk-sharing problems, Journal of Mathematical Economics, Vol. 47, pp. 1-13.

[5] Chateauneuf, A., Dana, R.-A., and Tallon. J.-M. (2000): Optimal risk-
sharing rules and equilibria with Choquet-expected-utility, Journal of Mathematical
Economics , Vol. 34(2), pp. 191-214.

[6] Dana, R.-A., and Scarsini, M. (2007): Optimal risk sharing with background
risk, Journal of Economic Theory, Vol. 133(1), pp. 152-176.

[7] Daykin, C.D., Pentikainen, T., and Pesonen, M. (1994). Practical Risk
Theory for Actuaries, Chapman & Hall, London.

[8] Deprez, O., and Gerber, U. (1985): On convex principles of premium calcula-
tion, Insurance: Mathematics and Economics, Vol. 4, pp. 179-189.

[9] Ellsberg, D. (1961): Risk, ambiguity and the Savage axioms, Quarterly Journal
of Economics, Vol. 75(4), pp. 643-669.

[10] Friedman, M., and Savage, L.J. (1948): The utility analysis of choices involv-
ing risk, Journal of Political Economy, Vol. 56(4), pp. 279-304.

[11] Gajek, L., Zagrodny, D. (2000): Insurer’s optimal reinsurance strategies. In-
surance: Mathematics and Economics, Vol. 27, pp. 105-112.

[12] Guan, C., Xu, Z. Q., and Zhou, R. (2022): Dynamic optimal reinsurance
and dividend-payout in finite time horizon, to appear in Mathematics of Operations
Research, https://doi.org/10.1287/moor.2022.1276 and https://arxiv.org/
abs/2008.00391

25

https://doi.org/10.1287/moor.2022.1276
https://arxiv.org/abs/2008.00391
https://arxiv.org/abs/2008.00391


[13] He, X. D., Jin, H., and Zhou, X. Y. (2015): Dynamic portfolio choice when
risk is measured by Weighted VaR, Mathematics of Operations Research, Vol. 40,
pp. 773-796.

[14] He, X. D., and X. Y. Zhou (2011): Portfolio choice via quantiles, Mathematical
Finance, Vol. 21, pp. 203-231.

[15] Hipp, C., Taksar, M, (2010): Optimal non-proportional reinsurance, Insurance
Math. Econom., Vol. 47 (2), pp. 246-254.

[16] Hou, D., and Z. Q. Xu (2016): A robust Markowitz mean–variance portfolio
selection model with an intractable claim, SIAM Journal on Financial Mathematics,
Vol.7, 124-151.

[17] Huberman, G., Mayers, D., and Smith Jr, C.W. (1983): Optimal insurance
policy indemnity schedules, The Bell Journal of Economics, Vol. 14(2), pp. 415-426.

[18] Jin, H., and X. Y. Zhou (2008): Behavioral portfolio selection in continuous
time, Mathematical Finance, Vol. 18, pp. 385-426

[19] Kahneman, D., and A. Tversky (1979): Prospect theory: An analysis of deci-
sion under risk, Econometrica, Vol. 46, pp. 171-185

[20] Kaluszka, M. (2001): Optimal reinsurance under mean-variance premium prin-
ciples, Insurance: Mathematics and Economics, Vol. 28, pp. 61-67.

[21] Liang, X., Liang, Z, and Young, V. (2020): Optimal reinsurance under the
mean-variance premium principle to minimize the probability of ruin, Insurance:
Mathematics and Economics, Vol. 92, pp. 128-146.

[22] Lopes, L. L. (1987): Between hope and fear: The psychology of risk, Advances in
experimental social psychology, Vol. 20, pp.255-295

[23] Mehra, R., and Prescott, E.C. (1985): The equity premium: A puzzle, Jour-
nal of Monetary Economics, Vol. 15(2), pp. 145-161

[24] Mi, H., and X, Z.Q. (2021): Optimal portfolio selection with VaR and portfolio
insurance constraints under rank-dependent expected utility theory, working paper,
http://ssrn.com/abstract=3880289.

[25] Picard, P. (2000): On the design of optimal insurance policies under manipulation
of audit cost, International Economic Review, Vol. 41(4), pp. 1049-1071.

[26] Quiggin (1982): A theory of anticipated utility, Journal of Economic and Behav-
ioral Organization, Vol. 3(4), pp. 323-343

26

http://ssrn.com/abstract=3880289


[27] Tversky, A., and D. Kahneman (1992): Advances in prospect theory: Cumu-
lative representation of uncertainty, J. Risk Uncertainty, Vol. 5, pp. 297-323

[28] Wei, P. (2018): Risk management with weighted VaR, Mathematical Finance, Vol.
28(4), 1020-1060

[29] Xia, J. M., and X. Y. Zhou (2016): Arrow-Debreu equilibria for rank-dependent
utilities, Mathematical Finance, Vol. 26, pp. 558-588

[30] Xu, Z. Q. (2014): A new characterization of comonotonicity and its application
in behavioral finance, J. Math. Anal. Appl., Vol. 418, pp. 612-625

[31] Xu, Z. Q. (2016): A note on the quantile formulation, Mathematical Finance,
Vol.26, No. 3, 589-601

[32] Xu, Z. Q. (2021): Pareto optimal moral-hazard-free insurance contracts in behav-
ioral finance framework, working paper, https://arxiv.org/abs/1803.02546

[33] Xu, Z. Q., and X. Y. Zhou (2013): Optimal stopping under probability distor-
tion, Annals of Applied Probability, Vol. 23, pp. 251-282

[34] Xu, Z. Q., X. Y. Zhou, and S. Zhuang (2019): Optimal insurance under rank-
dependent utility and incentive compatibility, Mathematical Finance, Vol. 29(2), pp.
659-692

[35] Yaari, M.E. (1987): The dual theory of choice under risk, Econometrica, Vol.
55(1), pp. 95-115

[36] Yao, D., Yang, H., and Wang, R. (2014): Optimal risk and dividend control
problem with fixed costs and salvage value: Variance premium principle Economic
Modelling, Vol. 37, pp. 53-64.

27

https://arxiv.org/abs/1803.02546

	Introduction.
	Problem formulation.
	Quantile optimization problem.
	Optimal solution.
	An example with explicit solution.
	Special case: when  has a density.

	Concluding remarks.



