This is the Pre-Published Version.

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1617/s11527-022-01991-z.

1	Physicochemical investigation of Portland cement pastes
2	prepared and cured with seawater
3	Yangyang Zhang, Yanjie Sun, Peiliang Shen,
4	Jianxin Lu, Yamei Cai, Chi Sun Poon*
5	(Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University,
6	Hung Hom, Kowloon, Hong Kong, China)
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	*Corresponding author
37	E-mail: cecspoon@polyu.edu.hk (C.S. Poon)
38	

40 The direct use of both seawater and sea sand in concrete production has been becoming attractive for 41 some marine and coastal engineering where the availabilities of freshwater and river sand are limited. 42 To further expand the use of seawater (e.g., using seawater as both mixing and curing water), this work 43 provided fundamental research regarding the effects of using seawater as the mixing and curing water 44 on the physicochemical properties of Portland cement pastes. The sub-samples at different depths of 45 the seawater mixing and curing samples were extracted and separately analyzed. The chemical changes 46 were quantitatively investigated, and the relation between the physical behaviors and the chemical 47 changes was studied. The results showed that in the outer region of the samples, the ettringite content 48 was significantly increased, but the content of Friedel's salt was slightly reduced. Moreover, a large 49 amount of calcium hydroxide was dissolved, but correspondingly, magnesium hydroxide (MH) crystals 50 with various particle sizes were formed. Also, the sodium ions in the seawater were incorporated into 51 the structure of calcium silicate hydrate gel, resulting in the formation of silica dimers with a shorter 52 silica chain and the increase of nanopore volume (increasing by 22% in the inner region and 36% in the 53 outer region). In addition, seawater increased the ion transport rate, but the blocking effect of the MH 54 crystals on the samples largely decreased the rate. The changes in the crystalline and amorphous 55 hydration products potentially influenced the strength development.

56 Keywords: Seawater; Quantitative characterization; Chemical evolution; Physical change

57

58 **1.** Introduction

59 Concrete is the most widely used construction material owing to its characteristically positive 60 attributes, e.g., (i) low cost, (ii) convenient maintenance, (iii) flexible workability, (iv) good 61 strength and durability, (v) excellent resistance to weather and erosion, etc. **[1, 2]**. The amount of freshwater required for concrete mixing reaches about 1.5 billion tonnes per year [3, 4]. As the World Meteorological Organization estimated [5], over 50% population worldwide will have difficulties accessing enough freshwater for daily life by 2050. Thus, the consumption of freshwater for concrete production would further exacerbate the freshwater shortage.

66

72

Besides freshwater, the huge consumption of river sand for concrete production also poses a continuing threat to river ecosystems, flood control, and navigation [3]. Desalted sea sand, as an alternative to river sand, has been used as the fine aggregate in concrete production in many countries around the world. However, the usage of sea sand in steel-reinforced concrete raises safety and durability problems owing to the immature technology and inadequate monitoring [3].

73 Seawater sea-sand concrete (SSC), as a novel and potentially sustainable construction material, is 74 receiving increasing interest across the world [3, 6]. But the ions in seawater and sea sand would 75 easily cause steel corrosion in steel-reinforced concrete, which poses a great threat to marine and 76 coastal infrastructures [7, 8]. Thus, SSC can only be applied in limited applications, including 77 plain concrete, and ordinary structural concrete using corrosion inhibitors for protecting steel; 78 however, with the invention and application of fiber-reinforced polymer (FRP), the replacement of 79 steel reinforcement in concrete with FRP has provided the potential to develop SSC, due to the 80 good corrosion resistance to seawater of FRP [9-11]. Research on the SSC structures reinforced 81 with FRP is being actively pursued in several research groups. But most of the work mainly focused on the structural behavior of FRP-SSC and the durability of FRP bars in SSC 82 83 environments. Regarding plain cement paste, mortar, or concrete using seawater or sea sand, the 84 research findings of their properties are inconsistent, including whether the compressive strength 85 is similar, higher, or lower when compared with the freshwater mixed counterparts [3, 6, 11-14]. 86 Generally, most researchers agreed that the compressive strength of seawater or/and sea-sand 87 concrete was increased at an early age, but became slightly lower in the medium and long term 88 compared to the freshwater concrete [3, 11-13].

90 This work is based on a research project aiming to provide recommendations for the design of 91 SSC structures for marine infrastructure, i.e., fiber-reinforced polymer-seawater sea sand concrete 92 (FRP-SSC), especially for the development of some coastal areas and remote islands where the 93 availabilities of river sand and fresh water are limited. FRP-SSC structures, as a new and 94 environment-friendly structure, are proposed and are of great practical relevance. Also, marine 95 concrete would be exposed to seawater soon after it is cast.

96

97 Previous works, focusing on seawater corrosion, found that the main hydration products include 98 ettringite (AFt), calcium hydroxide (Ca(OH)₂, CH), C-S-H gel, magnesium silicate hydrate (M-S-H) gel, Friedel's salt, magnesium hydroxide (Mg(OH)₂, MH), and CaCO₃ [15-18]. According to 99 100 thermodynamic modeling, when hydrated in low levels of seawater, Friedel's salt would be 101 formed instead of monocarboaluminate (C4AĈH11). But C-S-H and AFt would be decomposed 102 probably due to low pH, and the total volume of the hydrated phases would be reduced in very 103 high levels of seawater, along with the additional formation of M-S-H, hydrotalcite, MH, and 104 CaCO₃ [17].

105

106 Concerning the seawater mixed Portland cement pastes, it is generally agreed that seawater would 107 accelerate the heat flow and increase the hydration heat. It was reported that about 40% of 108 chloride in seawater would be bound by Friedel's salt [14], but Montanari et al. [19] found that the 109 Friedel's salt content was negligible in the seawater OPC paste, at ~0.47 wt.% at 28 d using TG-110 DTG measurement; and more Cl⁻ was physically absorbed by C-S-H gel.

111

For areas where freshwater is scarce, seawater may also be used as curing water. To essentially design high-performance SSC applied in marine structures, this work provides a fundamental understanding of Portland pastes prepared and cured with seawater. Different depth regions in the paste were chosen to quantify the phase evolution. The changes in hydration products were quantitatively characterized, and the long-term products were simulated by thermodynamic modeling. The relation between physical behaviors and chemical changes was studied.

119 2. Experimental procedure

120 2.1. Materials

121	A commercially sourced OPC (CEM 52.5) with a specific gravity of 3.15 was used. Fig. S1 shows
122	the different physicochemical properties of this OPC. X-ray fluorescence (XRF) measurement of
123	OPC was done using a Supermin200 instrument (Rangaku Corporation, Japan). The Rietveld
124	refinement result (Fig. S1 (b)) shows that the mineral composition of OPC was composed of 66.4
125	wt.% of C ₃ S, 11.9 wt.% of C ₂ S, 6.0 wt.% of C ₃ A, 7.2 wt.% of C ₄ AF, 2.7 wt.% of CŠH ₂ (gypsum)
126	and 5.8 wt.% of CaCO ₃ . The ICSD database used in this work was shown in Table S1. Fig. S1 (c)
127	shows the particle size distribution of OPC determined by using a Malvern MS3000 laser particle
128	analyzer, and the mean particle size was 16.95 um. The NMR result (Fig. S1 (d)) shows there was
129	only one Si-O signal (Q0) present in the OPC, corresponding to the presence of C ₃ S and C ₂ S.
130	
131	A C ₃ S produced from a laboratory was also used. It had a 90.7 wt. % purity tested by XRD and
132	calculated by Rietveld refinement, and the other materials were 8.9 wt% C ₂ S and 0.4 wt% CaO.
133	
134	Glenium SP8S, polycarboxylate-based superplasticizers produced by BASF Co. Ltd, was used in
135	this work with a specific gravity of 1.05. The compositions of the artificial seawater, prepared
136	according to ASTM D1141-98 (2013), are shown in Table S2.
137	
138	2.2. Specimen preparation
139	To evaluate the influence of using seawater as mixing and curing water on the physicochemical
140	properties of OPC pastes, two OPC pastes were prepared: mixed and cured with either seawater

141	(SS sample) or deionized (DI) water (DD sample as the reference sample). OPC paste cubes with
142	a W/C ratio of 0.38 were prepared for microstructure analysis. OPC powder was mixed with DI
143	water or seawater for 1 minute at a low speed and mixed for 1 minute at a high speed. Then the
144	OPC pastes were cast in 40 mm \times 40 mm \times 40 mm cubes, vibrated for 30 seconds by an
145	electromagnetic vibration generator system, covered by a plastic wrap, and placed in the
146	laboratory at 23 ± 2 °C for 1 day. Afterward, the specimens were demoulded and cured in DI water
147	or seawater at 23 \pm 2 °C until test ages. For each curing age, three 2 mm thick slices from the
148	samples (i.e., the outer region (0 mm - 2 mm), the middle region (10 mm - 12 mm), and the inner
149	region (20 mm - 22 mm)) were cut by a diamond saw. The samples used for microstructure tests
150	were taken from the middle zone of each cut slice, were subsequently ground, immersed in
151	isopropanol to avoid further hydration, and then dried in a vacuum desiccator [20].

153 To more accurately determine the composition of the C-S-H gel formed in DI water and seawater, a simplification by analyzing the C-S-H gel formed by the hydration of a synthesized C₃S was 154 155 used since (i) C₃S is the dominant mineral and it controls the early hydration of OPC, and (ii) the 156 C-S-H formed by the OPC pastes in this study would be inevitably intermixed with other complex hydration products and largely influence the FE-SEM/EDS analysis. The C₃S was mixed with DI 157 158 water and seawater separately using a W/C ratio of 10 to easily separate the C-S-H gel from other hydration products. After the initial mixing, the hydrated samples were sealed in a PE bottle and 159 160 cured for 28 days at 23 \pm 2 °C. Then the solids were obtained using a 0.45 μ m membrane filter 161 paper, immersed in isopropanol, and then dried in a vacuum desiccator.

163	To evaluate the macro-performances of the cement pastes prepared with different strength grades,
164	the specimens were prepared with two water-to-cement (W/C) ratios (viz. 0.28 (0.5%)
165	Superplasticizer (SP8S) was added) and 0.38 (no superplasticizer)). The preparation and curing
166	procedures were the same as those mentioned above. At each curing age, three cubes of each batch
167	of the specimen were removed and tested for compressive strength using a loading rate of 0.96
168	kN/s.

170 2.3. Microstructure characterizations

Electrochemical impedance spectroscopy (EIS) was performed by a Multi-AutolabM 204 instrument with a frequency of 1 Hz to 1 MHz and an AC signal magnitude of 10 mV. A twoelectrode system was used in this work. The impedance spectra were analyzed using Nova 1.11 software.

X-ray diffraction (XRD) data were obtained by a Rigaku Smartlab high-resolution X-ray 176 diffractometer, operating with a tube voltage of 45 kV and a tube current of 200 mA. The whole 177 data acquisition time was 30 minutes at 5.0°-80.0° 20 with a 0.020° step size, ensuring a good 178 signal-to-noise ratio. The mineral and hydration product compositions were quantified by Rietveld 179 180 refinement using TOPAS 5.0 software. 10 wt% α-Al₂O₃ (Aladdin, 99.99% purity), as an internal standard, was well mixed with the samples to calculate the crystalline and noncrystalline (Acn) 181 182 phases. The global refined parameters were set, including background coefficients, phase scale factors, zero-shift error, Chebyshev polynomial correction, Lorentz polarization factor, cell 183 parameters, and crystal structures. Table S1 shows the ICSD codes used for quantitative analysis. 184

186 Thermogravimetric curves (TG) were recorded by a Rigaku Thermo Plus EVO2 instrument. The 187 heating procedure was from 30°C to 1000°C with a heating rate of 10°C/min. ~10 mg hydrated powder was placed in an open corundum crucible and tested under an N₂ atmosphere. 188 189 The Mercury intrusion porosimeter (MIP) test was done by a Micromeritics AutoPore IV 9500 190 Series instrument with a maximum mercury intrusion pressure of 207 MPa. The slices cut from 191 192 the specimens were broken into small fragments manually, and particles with dimensions of ~ 5 193 mm were chosen, soaked in isopropanol, and dried in a vacuum desiccator before the MIP analysis. 194 Field-emission scanning electron microscopy (FE-SEM) observations were performed by a Tescan 195 196 MAIA3 with an accelerating voltage of 5 kV. Energy dispersive spectroscopy (EDS) 197 measurements were also carried out with an accelerating voltage of 20 kV. 198 ²⁹Si magic angle spinning nuclear magnetic resonance (²⁹Si MAS-NMR) measurements were 199 carried out by a GEOL 500 MHz spectrometer equipped with a probe of 7-mm CP/MAS, a 200 rotation rate of 4500 Hz, and a resonance frequency of 79.5 MHz. The ²⁹Si MAS-NMR spectra 201 per sample were recorded using a relaxation delay of 30 seconds and the scans of over 2000. 202 203 Nitrogen adsorption and desorption measurements were done by an ASAP 2020 Micromeritics 204 Accelerated Surface Area and Porosimetry instrument. The bath temperature was -196 °C. The 205 sample powders were firstly preheated at 60 °C for 24 hours. The pore size distribution was 206

207 obtained by Barrett-Joyner-Halenda (BJH) analysis.

209	Gibbs free energy minimization software (GEMS) was used to simulate the evolution process of
210	the equilibrium phases for the seawater mixed and cured cement paste. During this calculation
211	process, the PSI-Nagra database [21] and Cemdata 18 database [22] were used. This seawater
212	mixed and cured cement paste was simulated in the modeling through the progressive addition of
213	seawater to the seawater mixed cement paste. The quantity of seawater in this calculation varied
214	from 0 to 32,000 mL per 100 g of anhydrous cement. It assumed that the surface of the seawater
215	mixed cement paste was in contact with an infinite amount of seawater, and the inner part of the
216	paste was exposed to a very low amount of external seawater.
217	
218	3. Results
219	3.1 Quantitative change of crystalline hydration products
220	Firstly, the compositions of crystalline products in different regions of DD and SS pastes changed
221	significantly, as shown in Fig. 1 and Fig. S2. During the hydration of the DD sample at 1 day, CH
222	crystals and AFt crystals were detected, along with the four unreacted clinkers. For OPC mixed
223	with seawater, Friedel's salt was formed in the SS sample at 1 day. This crystalline phase had also
224	been widely reported by others [14, 16, 23]. The compositions of crystalline products in the
225	specimens cured in DI water or seawater differed noticeably. Regarding the DD sample,
226	hemicarboaluminate, a new crystalline product, was formed after 7 days of hydration. However,
227	the ettringite (AFt) peak decreased after 7 days and was hardly detected at 28 days. For the SS
228	sample, the XRD peak of AFt formed in the outer region increased after 7 days, and was
229	significantly higher at 28 days, indicating that using seawater as the curing water significantly

affected the chemical properties of the exposed surface of the SS sample. Previous studies using seawater as the mixing water but not seawater curing only reported the formation of AFt but did not observe the evolution process [14, 24]. In this work, for the SS samples, the content of AFt obviously increased in the outer region due to the presence of SO_4^{2-} ion in the curing seawater. However, the trend for Friedel's salt was dramatically different as the content of Friedel's salt did not show an increase in the outer region although seawater contained a large amount of Cl⁻ ion.

Fig. 1 XRD patterns of DD and SS pastes at 1, 7 and 28 days. (Legend: E: ettringite (AFt); F: Friedel's salt; Hc:

241 hemicarboaluminate; P: CH; A: C₃S; B: C₂S; T: C₃A; I: C₄AF; C: Calcite)

242

243 Secondly, the changes in crystalline hydration products and unhydrated clinker minerals were 244 further quantitatively characterized, as shown in Table 1. The Rietveld plots for the outer region of the SS sample at 28 days, as a quintessential example, as shown in Fig. S3. C₃S, as the main early-245 hydration mineral, was quantified to assess the influence of seawater on the hydration degree 246 247 (Table 1 and Fig. S4). The hydration degree of C₃S increased in all regions of DD and SS samples as the curing age increased. In addition, the hydration degrees of C₃S in all the regions of the SS 248 sample at all hydration ages were higher compared to the DD sample, which directly confirmed 249 250 the acceleration effect of seawater. But the acceleration effect was slight at a later age.

251

The changes in CH content in DD and SS samples were different, as shown in Table 1. Owing to the accelerated effect of seawater, a larger amount of CH was formed in all the regions of SS pastes compared to the DD pastes at 1 day. But after subjecting to DI or seawater curing for 7 days,

255	the CH content of the SS samples, especially in the outer region, was lower than that in the DD
256	sample. The changes in mass loss of CH in the TG-DTG results (Fig. S2) also confirmed the
257	quantitative XRD results. In addition, as shown in Table 1, the 1-day AFt contents were similar for
258	the DD and SS pastes, and the AFt contents were also similar in the inner and middle regions of
259	the two pastes at 7 days. But there were obvious differences in AFt contents in the outer regions of
260	the two pastes after the specimens were cured in DI water and seawater respectively. In addition,
261	this difference became more obvious at 28 days as the AFt in the DD sample was transformed into
262	hemicarboaluminate. However, AFt in the SS sample was present in all regions. For Friedel's salt,
263	it was only formed in the SS sample, but its content in the outer region was slightly lower
264	compared to the other two regions. Thus, for the later-age samples prepared with seawater curing,
265	sulphate attack would contribute to the formation of gypsum formed by the reaction of CH and
266	sulphate ions, and then the formed gypsum reacted with aluminate phase to form AFt, along with a
267	decrease of Friedel's salt [25]. This phenomenon was more evident on the surface of samples
268	where the seawater attack was more serious.
269	
270	
271	
272	
273	
274	
275	
276	

2	7	0
2	1	0

of DD and SS samples at 1, 7, and 28 days. (%)

Sample	C_3S	C_2S	C ₃ A	C ₄ AF	Calcite	СН	AFt	Friedel's salt	Acn ^a	Rwp ^b
DD-in-1d	21.7	12.0	2.9	8.1	6.5	14.3	1.8	-	32.7	11.9
SS-in-1d	18.8	13.7	3.8	6.2	8.7	15.0	1.5	3.8	28.4	12.9
DD-mid-1d	22.5	13.8	4.3	7.3	6.4	13.7	1.5	-	30.6	12.7
SS-mid-1d	18.8	11.6	2.7	6.6	8.9	15.2	1.4	5.1	29.5	11.1
DD-out-1d	21.8	12.6	3.1	6.9	6.2	13.0	1.9	-	34.5	11.1
SS-out-1d	20.2	13.4	2.6	6.7	9.8	14.8	1.6	5.4	25.7	10.3
DD-in-7d	17.9	13.4	1.7	5.1	7.2	20.1	1.1	-	33.5	13.4
SS-in-7d	17.3	9.3	2.0	3.5	7.7	19.3	1.1	6.2	33.5	12.6
DD-mid-7d	17.0	11.9	2.0	7.0	6.5	20.5	1.1	-	29.7	13.4
SS-mid-7d	15.2	10.6	2.1	4.4	8.3	18.9	0.9	7.0	32.7	11.0
DD-out-7d	14.9	12.7	2.0	5.1	7.5	21.8	1.4	-	34.7	12.4
SS-out-7d	13.0	11.0	1.8	6.5	8.5	14.9	3.4	6.2	34.6	11.7
DD-in-28d	10.7	10.2	1.4	3.0	5.4	20.9	-	-	48.3	12.8
SS-in-28d	9.7	9.3	1.3	2.2	6.6	16.7	1.3	7.0	46.0	12.3
DD-mid-28d	10.3	10.9	0.6	3.3	5.7	20.6	-	-	48.6	13.3
SS-mid-28d	9.7	10.8	0.7	3.1	6.3	16.0	1.6	6.5	45.3	12.6
DD-out-28d	10.3	9.3	0.9	2.7	6.1	22.6	-	-	48.2	12.7
SS-out-28d	9.3	9.9	0.5	2.5	8.5	14.4	5.4	5.7	43.8	11.4

-: not present.

- 280 ^a: amorphous and non-quantified crystalline phase
- 281 ^b: weighted-profile R value
- 282 3.2 Change of C-S-H gel

Fig. 2 shows the ²⁹Si MAS-NMR spectra of two hydrated pastes at 28 days. The deconvoluted

data were obtained using Gauss's formula and the geometric area method by the Peakfit 4.12

- software. Table 2 shows the Si distribution, polymerization degree, mean molecular chain length,
- and fraction of vacant tetrahedral sites of C-S-H gel. Generally, the ²⁹Si MAS-NMR spectra of
- 287 OPC pastes might have five signals of Q^n structural units, i.e., Q^0 , Q^1 , Q^2 , Q^3 , and Q^4 [26-28]. No
- 288 Q^3 or Q^4 signals were detected in Fig. 2, confirming that the amorphous SiO₂ gel was not present.

The structure of C-S-H gel in DD and SS samples differed substantially. Table 2 shows that the polymerization degree and mean molecular chain length of C-S-H gel in the SS sample were smaller than that in the DD sample, but an opposite trend was found in the fraction of vacant tetrahedral sites. Thus, the polymerization degree and mean molecular chain length of C-S-H gel obviously decreased, and the vacant tetrahedral sites increased with using seawater as the mixing and curing water.

296

297 Nitrogen adsorption and desorption measurements were carried out to analyze the change of 298 nanopores of the C-S-H gel. Fig. 3 shows the BJH adsorption dV/dD pore volume of DD and SS 299 samples at 28 days. Generally, the gel pore between C-S-H particles is below 10 nm [29, 30]. The 300 results showed the pore volume below 10 nm of SS sample was obviously larger compared to DD 301 sample. In addition, the pore volume in the outer region of SS sample was significantly larger compared to the inside region, i.e., the total pore volume of SS-in sample was 0.066 cm³/g, 302 303 increasing by 22% compared with the DD-in sample (0.054 cm³/g), and that of SS-out sample was 304 $0.076 \text{ cm}^3/\text{g}$, largely increasing by 36% compared with DD-out sample ($0.056 \text{ cm}^3/\text{g}$).

different Ca/Si ratios equilibrated in sodium hydroxide solutions, found that sodium would replace
calcium, and was present at the surface or in the interlayer space of C-S-H, resulting in a
reorganization of C-S-H structure, further reducing the mean molecular chain length of C-S-H gel.
This result was also further confirmed in this study, i.e., the mean molecular chain length of the CS-H gel formed by seawater mixing and curing OPC pastes also decreased due to the uptake of
sodium, as shown in Fig. 4 and Table 2.

318

321 322

Table 2 Population distribution of Q⁰, Q¹, and Q² resonances and characterization parameters of deconvoluted ²⁹Si

323	MAS-NMR spectra, with a peak-fitting error ~2%.							
	Sample	Q ⁰ (%)	Q ¹ (%)	Q ² (%)	PD ^a	MCL ^b	v^{c}	
	DD	36.30	39.86	23.84	0.598	3.20	0.238	
	SS	20.20	53.43	26.37	0.493	2.99	0.251	

324 ^a Polymerization degree of C-S-H, $PD = Q^2/Q^1$. [26]

325 ^bMean molecular chain length of C-S-H, MCL=2(Q¹+Q²)/Q¹. [26, 27]

326 ° Fraction of vacant tetrahedral sites, v = 1/(MCL+1). [36]

Fig. 3 BJH adsorption dV/dD pore volume of DD and SS samples

331

332

Fig. 4 SEM-EDS data of C-S-H gel in two C₃S pastes with a W/C ratio of 10

- determined the amount of Friedel's salt in different regions of the sample. As shown above, the
- amount of Friedel's salt was similar in the outer, middle, and inner regions.

```
338 On the other hand, Mg(OH)_2 (MH) crystals with different particle sizes were formed. Firstly, the
```

- 339 two cement pastes showed different physical external appearances, as shown in Fig. S5, i.e., the
- 340 DD sample exhibited the common characteristic appearances. However, a white powder could be

^{333 3.3} New hydration products

³³⁴ Friedel's salt, a new Cl-containing crystal phase, was formed in the SS sample. This work further

341 clearly observed on the surface and in the seawater cured SS sample.

342

343 The white powder deposited in the solution of the SS sample was collected and analyzed, as 344 shown in Fig. 5. Fig. 5b shows that the white powder was mainly consisted of MH, as well as 345 some calcite, aragonite, and huntite. Previous works also reported the formation of MH on concrete surfaces subjected to seawater corrosion or immersed in Mg-containing solutions [16, 23, 346 37-39], but few studies adequately characterized the formed MH and compared the differences 347 348 between the MH formed in the solution and the MH grew on the concrete surface. And the main 349 weight loss was located at about 360°C in the TG-DTG curves (Fig. 5c) corresponding to the dehydration of MH. In addition, bundles of agglomerated MH crystals, proven by SEM-EDS data 350 351 (Fig. 5f), grew together and formed some large globules, as shown in Fig. 5d. The formed MH 352 crystals exhibited a lamellar morphology with a relatively small particle size of about 500 nm (Fig. 5e). 353

355 The white powder found on the surface of the SS sample was also analyzed, as shown in Fig. 6. 356 The XRD result, as shown in Fig. 6b, indicated that MH crystal was the main product of the white 357 powder on the surface of the SS sample, along with some small XRD peaks of calcite. Meanwhile, the mass loss of MH was also detected in the TG-DTG curves (Fig. 6c). The results of SEM and 358 359 EDS images (Fig. 6d-f) also further confirmed the presence of MH. Compared with the MH crystal found in the solution (Fig. 6e), the MH crystals formed on the surface exhibited a larger 360 361 particle size, about 2 µm; and the thickness of the MH crystal layer increased significantly, as shown in Fig. 6e, although these MH crystals were also formed with a lamellar morphology. And 362

- 363 the dehydration temperature of this MH was 390°C, which was significantly higher than the MH
- 364 formed in the solution (at 360°C), and confirmed that the particle size of the MH crystal formed
- 365 on the surface was larger than that formed in the solution.
- 366

Fig. 5 (a) Region of interest in the SS sample, in which the microstructure tests were carried out; (b) XRD pattern
of the white powder in the solution, legend: M: MH(Mg(OH)₂); CC: calcite; CC': aragonite; MC: huntite; (c) TGDTG curves of the white powder in the solution; (d) SEM image of the white powder in the solution; (e) Enlarged

- 371 region on SEM image; (f) EDS image of the white powder in the solution.
- 372

373

Fig. 6 (a) Region of interest in the SS sample, in which the microstructure tests were carried out; (b) XRD pattern
of the white powder on the surface, legend: M: MH(Mg(OH)₂); CC: calcite; (c) TG-DTG curves of the white
powder on the surface; (d) SEM image of the white powder on the surface; (e) Enlarged region on SEM image; (f)
EDS image of the white powder on the surface.

379 Normally, CH crystals are continuously precipitated, indicating that the pore solution is initially

- 380 supersaturated with respect to CH, and CH gradually stabilizes at the equilibrium concentration.
- 381 The pH of the saturated CH solution is around 12.5 [40]. But the pH of the saturated MH solution
- is around 10.5 [41]. When the SS sample was cured in seawater, the concentration of OH⁻ ion with

respect to MH in seawater increased dramatically, the ion activity product (K_{s0}) with respect to 383 MH increased correspondingly, and the saturation index (SI) with respect to MH was greater than 384 zero. Thus, Mg²⁺ ions in the seawater rapidly reacted with OH⁻ ion on the surface of the SS sample, 385 resulting in the formation of MH on the surface or in the solution. For CH, as the pH of the pore 386 387 solution in the outer section of the SS sample dropped, the OH⁻ ion, and K_{s0} with respect to CH decreased correspondingly, and thus the pore solution was unsaturated with respect to CH, which 388 rendered the formed CH gradually dissolved to release OH⁻ ion. Thus, the CH content in the outer 389 region of the SS sample dramatically decreased, as shown in Table 1 and Fig. S2. The excess Ca²⁺ 390 would transfer to (i) the surface to react with CO_3^{2-} and form calcite (Fig. 6b), or (ii) the solution 391 to form metastable aragonite or stable calcite (Fig. 5b). In addition, the slight decrease of pH in the 392 393 outer section also favored the formation of AFt [34, 42], which was also verified by the XRD 394 result (Fig. 1) and TG-DTG result (Fig. S2).

395

396 3.4 Change of physical properties

Fig. 7 shows the compressive strength of DD and SS samples using two W/C ratios at different curing ages. The compressive strength of the SS sample was higher than that of the DD sample at 1 day since the hydration degree of OPC pastes was effectively improved by seawater. However, the compressive strength of the SS sample prepared with both W/C ratios obviously decreased starting from 7 days, compared to the DD sample. Thus, the changes in the outer exposed parts had an obviously negative impact on the compressive strength when the samples were cured in seawater. Moreover, the MIP result at 28 days shows that the porosity (above 10 nm) of the SS

Fig. 7 Compressive strength of seawater OPC pastes

409 Fig. 8 shows the EIS results of DD and SS samples at 1, 7 and 28 days. Impedance modulus, as an index evaluating the durability of concrete, is denoted by the intersection value between the bulk 410 arc and electrode arc in the x-axis of EIS curves [43]. With an increase in the impedance modulus, 411 412 the ion transport becomes more difficult, suggesting that external ions are harder to enter the internal zone of the sample. The impedance modulus of DD and SS specimens at each W/C 413 414 increased with increasing hydration age. And the impedance modulus of both samples improved at all curing ages with the use of a lower W/C ratio. In addition, the SS sample had a lower 415 416 impedance modulus at 1 day compared to the DD sample. Interestingly, the impedance modulus of 417 the SS sample using the W/C ratio of 0.28 decreased more than that of the W/C 0.38 sample. However, the impedance modulus of the SS sample became higher at 28 days; in addition, the 418 419 impedance modulus of the SS sample with the W/C ratio of 0.38 was much higher than the DD

426 4. Further discussion

427 4.1 Further influences of seawater used as both mixing and curing water compared428 with using seawater as mixing water only

429

The macro-performances and microstructures of Portland specimens using seawater as the mixing water only had been reported in previous works. With respect to the compressive strength, the seawater mixed pastes, mortar, or concrete had high early-age strength and slightly low or similar later-age strength compared to freshwater mixed concrete [3, 6, 11-13]. In this work, a high earlyage strength was also found; but an obvious decrease in strength was observed starting from 7

435 days when the pastes were cured in seawater (Fig. 7).

436

437 The ions in seawater can accelerate the hydration rate of Portland cement, making the hardened 438 pastes show a high early-age strength [4, 14, 19]. In Fig. S4, seawater obviously improved the hydration degree at 1 day, by about 5.6%; and this accelerating effect was still obvious at 28 days 439 although it became lower (about 1.3%). Also, the change of CH content was unsuitable for 440 441 assessing the hydration degree at the later age owing to the dissolution of CH in the SS sample (discussed in Section 3.3), and thus the determination of the hydration degree of C₃S by the 442 443 Rietveld method was the most direct and accurate method to assess the acceleration effect of 444 seawater on the hydration of cement at the later age.

Comparing the use of seawater as only the mixing water [6, 14, 44] with using seawater as both mixing and curing water, MH, as a new hydration product, was obviously formed with a lamellar morphology on the surface of the paste where its particle size was larger compared to that formed

in the cured seawater. Furthermore, the CH contents in the outer region of the paste were also 449 significantly lower while MH was formed. A larger amount of AFt was also formed in the outer 450 451 region, but the Friedel's salt contents barely changed. These results indicated that when there were sufficient SO₄²⁻ and Cl⁻ ions in the seawater curing environment, SO₄²⁻ ion would preferentially 452 combine with Ca²⁺ and Al³⁺ ions, compared with Cl⁻ ion, forming AFt. With respect to the 453 amorphous hydration products, the structure of C-S-H gel was seriously affected by using 454 seawater as the curing water, i.e., the pore volume of C-S-H in the outer region, as shown in Fig. 3, 455 456 was largely increased compared to the inner region.

457 4.2 Relation between the physical properties and the chemical changes

Firstly, the impedance modulus changed with the change of ion transport properties. The active ions in the seawater effectively contributed to the transport of electric current, and thus the impedance modulus of the SS sample was lower at 1 day than that of the DD sample. However, the MH crystals deposited on the concrete surface (Fig. 6) would influence the current transport, and thus the SS sample had a higher impedance modulus at 7 and 28 days. Also, the formed MH crystals increasingly grew and significantly blocked the surface, leading to the further increase of the impedance modulus of the SS sample at 28 days, compared to the results at 7 days.

465

Secondly, the inferior later-age strength of SS samples compared to DD samples was related to the chemical changes. The present study revealed that on one hand, the change of crystalline hydration products negatively affected the mechanical strength of the SS sample. Firstly, more ettringite crystals were formed at the later age in the outer region and lowered the compressive

470	strength of the SS sample. In Table 1, the AFt contents formed in the inner and middle regions of
471	SS samples were similar, but that in the outer region of the SS sample dramatically increased to
472	about three times (7 days) and four times (28 days) the AFt content in the other regions. In this
473	work, curing in seawater enabled AFt to quickly form in the outer region of the SS sample. The
474	high supersaturation of the pore solution with respect to AFt may explain the expansion and
475	cracking [45]. In this work, the unlimited sulfate supply in the seawater caused AFt to form in the
476	outside region of the SS sample, and a high total volume of AFt formed generated potential
477	crystallization pressure [45], and subsequently affected the mechanical strength. Since the SS
478	sample had a dense pore structure at a later age, the mechanical strength of the SS sample was
479	negatively affected when more AFt crystals formed, grew, and induced expansion crack at the later
480	stage. Secondly, the conversion between AFt crystal and Friedel's salt in the outer region, as
481	shown in Table 1, might also be unfavorable to mechanical strength. Lastly, the formation of
482	$Mg(OH)_2$ and the dissolution of $Ca(OH)_2$ further decreased the mechanical strength of the SS
483	sample. According to the results in section 3.3, (i) the dissolution of CH would result in the
484	increase of porosity in the outer section, and (ii) fresh MH was only formed on the surface or in
485	the solution, and had no contribution to the mechanical strength, both of which seriously affected
486	the bonding ability of SS sample. On the other hand, the change in the structure of the C-S-H gel
487	might further decrease the compressive strength of the SS sample. As shown in Table 2, the mean
488	molecular chain length and polymerization degree of C-S-H gel were decreased, which would
489	further result in inferior bonding ability. In addition, amounts of nano-pores or gel pores of the SS
490	sample significantly increased compared with the DD sample (Fig. 3), especially in the outer
491	region, which would further affect the mechanical properties of the specimens.

493 Thermodynamic modeling was used to predict the long-term hydration product compositions of 494 the seawater mixing and curing OPC pastes, as shown in Fig. 9. Furthermore, this GEMS model 495 can predict the relative amounts of hydration products located in different regions of the specimen, 496 i.e., the left-hand side of the figure represents the hydration product compositions on the surface or dissolved in the pore solution of the specimen. Progressively the right-hand side of the figure 497 represents the product evolution at different depths of the specimen. The long-term phase 498 499 compositions and contents in the outer region of the SS sample would further evolve compared 500 with that at 28 days (Fig. 1 and Table 1), at which time a large amount of MH was formed, CH 501 was absent, AFt content would further increase, and Friedel's salt was decomposed, which might 502 further degrade the compressive strength of SS sample. On the surface of the SS sample which 503 was exposed to higher levels of seawater, AFt and C-S-H phase would disappear; and correspondingly, a large amount of M-S-H, MH, and OH-hydrotalcite would be formed. The latter 504 505 phases would be dissolved in the seawater environment, further reducing the strength of the 506 cement paste.

507

De Weerdt et al. [17] also reported similar thermodynamic modeling, which mainly focuses on the seawater corrosion of cement paste mixed with freshwater. However, when seawater was used for both of mixing water and curing water, the product compositions changed, i.e., Friedel's salt would be present continuously in the inner region of the sample. Additionally, the experimental results in this work could further confirm the accuracy of the thermodynamic modeling, i.e., by comparing the other regions with the outer region of the 28 days SS sample, (i) the CH content

decreased and MH was formed (Table 1 and Figs. 5 and 6), and (ii) Friedel's salt content decreased and AFt content increased (Table 1), which were consistent with the results shown in

519 Fig. 9 Predicted volume of hydration products formed in the seawater mixed OPC paste exposed to seawater.

520

518

521 4. Conclusions

522 In this work, seawater was used for directly mixing and curing OPC pastes. The chemical changes 523 were analyzed, and the relation between physical properties and chemical changes was further 524 investigated. The main conclusions are summarized as follows.

525

1. The evolution of crystalline hydration products in different regions of the seawater mixing and curing OPC pastes was quantified. The AFt content in the outer region of the seawater mixed and cured (SS) specimen dramatically increased starting from 7 days, compared to the inner and middle regions. However, the Friedel's salt contents in the outer regions decreased slightly. A large amount of CH crystal in the outer region was dissolved while (Mg(OH)₂ (MH) crystal was formed on the surface with a lamellar morphology, exhibiting a much larger particle size compared to that formed in the solution.

534 2. The change in C-S-H structure was characterized. The polymerization degree and mean 535 molecular chain length of C-S-H gel obviously decreased. Cl⁻ and Na⁺ ions in seawater were 536 incorporated into the interlayer of C-S-H gel, and the incorporation of Na⁺ would form more 537 silica dimers with a shorter silica chain. Moreover, the total pore volume of the SS sample 538 increased by 22% in the inner region and 36% in the outer region compared with the DI water 539 mixed and cured (DD) sample.

540

3. The change of physical properties was related to the chemical evolution. Firstly, the use of 541 542 seawater increased the ion transport, but the MH crystals blocked the surface of the SS sample, largely reducing the ion transport. Secondly, the use of both mixing seawater and curing 543 544 seawater influenced the strength development of the SS sample starting from 7 days. A higher 545 amount of AFt crystal was formed in the outer region at a later age, which would generate potential expansion cracks since the samples had become hardened. The dissolution of CH 546 547 would increase the porosity, and the formed MH had little contribution to the compressive strength. The change of C-S-H gel might also induce strength degradation. The C-S-H gel was 548 549 formed with a shorter silica chain, which increased the total pore volume, especially in the outer 550 region, and thus potentially decreased the cross-linking ability and compressive strength.

551

552 Acknowledgments

553 We wish to thank the financial support of the Research Grants Council Theme-Based Research

554 Scheme (Project No. T22-502/18-R). We acknowledge the help of Dr. Kenneth and the support of

the University Research Facility on Chemical and Environmental Analysis (UCEA) of PolyU.

556

557 **References**

- 558 [1] F. Zou, K. Shen, C. Hu, F. Wang, L. Yang, S. Hu, Effect of sodium sulfate and C-S-H Seeds on
 559 the reaction of fly ash with different amorphous alumina contents, ACS Sustainable Chem. Eng. 8
 560 (3) (2019) 1659-1670.
- [2] W. Song, J. Yi, H. Wu, X. He, Q. Song, J. Yin, Effect of carbon fiber on mechanical properties
 and dimensional stability of concrete incorporated with granulated-blast furnace slag, J. Clean.
 Prod. 238 (2019) 117819.
- [3] J. Xiao, C. Qiang, A. Nanni, K. Zhang, Use of sea-sand and seawater in concrete construction:

- [4] M. Guo, B. Hu, F. Xing, et al., Characterization of the mechanical properties of eco-friendly
 concrete made with untreated sea sand and seawater based on statistical analysis, Constr. Build.
 Mater. 234 (2020) 117339.
- [5] T. Nishida, N. Otsuki, H. Ohara, et al. Some considerations for applicability of seawater as
 mixing water in concrete, J. Mater. Civ. Eng. 27 (7) (2015). B4014004-1-7.
- [6] P. Li, W. Li, T. Yu, F. Qu, V.W.Y. Tam, Investigation on early-age hydration, mechanical
 properties and microstructure of seawater sea sand cement mortar, Constr. Build. Mater. 249
 (2020) 118776.
- 574 [7] Y. Chen, C. Xia, Z. Shepard, et al., Self-Healing Coatings for Steel-Reinforced Concrete, ACS
 575 Sustainable Chem. Eng. 5 (5) (2017) 3955-3962.
- [8] F. Wang, S. Lei, J. Ou, et al., Superhydrophobic calcium aluminate cement with super mechanical
 stability, Ind. Eng. Chem. Res. 58 (24) (2019) 10373-10382.
- [9] Z. Wang, X. Zhao, G. Xian, et al., Long-term durability of basalt- and glass-fiber reinforced
 polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment, Constr. Build. Mater.
 139 (2017) 467-489.
- [10] M. Bazli, Y. Li, X. Zhao, et al., Durability of seawater and sea sand concrete filled filament
 wound FRP tubes under seawater environments, Compos B Eng 202 (2020) 108409.
- [11] J. Teng, Y. Xiang, T. Yu, Z. Fang, Development and mechanical behaviour of ultra-high performance seawater sea-sand concrete, Adv. Struct. Eng. 22 (14) (2019) 3100-3120.
- [12] S.K. Kaushik, S. Islam, Suitability of sea water for mixing structural concrete exposed to a marine
 environment, Cem. Concr. Compos. 17 (3) (1995) 177-185.
- [13] A. Younis, U. Ebead, P. Suraneni, A. Nanni, Fresh and hardened properties of seawater-mixed
 concrete, Constr. Build. Mater. 190 (2018) 276-286.
- [14] J. Wang, E. Liu, L. Li, Multiscale investigations on hydration mechanisms in seawater OPC paste,
 Constr. Build. Mater. 191 (2018) 891-903.
- [15] R. Ragoug, O.O. Metalssi, F. Barberon, et al., Durability of cement pastes exposed to external
 sulfate attack and leaching: Physical and chemical aspects, Cem. Concr. Res. 116 (2019) 134-145.
- 593 [16] G. Li, A. Zhang, Z. Song, C. Shi, Y. Wang, J. Zhang, Study on the resistance to seawater
 594 corrosion of the cementitious systems containing ordinary Portland cement or/and calcium
 595 aluminate cement, Constr. Build. Mater. 157 (2017) 852-859.
- [17] K. De Weerdt, B. Lothenbach, M.R. Geiker, Comparing chloride ingress from seawater and NaCl
 solution in Portland cement mortar, Cem. Concr. Res. 115 (2019) 80-89.
- [18] X. Huang, S. Hu, F. Wang, L. Yang, M. Rao, Y. Tao, Enhanced sulfate resistance: the importance
 of iron in aluminate hydrates, ACS Sustainable Chem. Eng. 7 (7) (2019) 6792-6801.
- [19] L. Montanari, P. Suraneni, M. Tsui-Chang, et al., Hydration, pore solution, and porosity of
 cementitious pastes made with seawater. J. Mater. Civ. Eng. 31(8) (2019) 04019154.
- [20] J. Zhang, G.W. Scherer, Comparison of methods for arresting hydration of cement, Cem. Concr.
 Res. (10) (2011) 1024-1036.
- [21] W. Hummel, U. Berner, E. Curti, F. Pearson, T. Thoenen, Nagra/PSI chemical thermodynamic
 data base 01/01, Radiochimica Acta, 90 (2002) 805-813
- [22] B. Lothenbach, D.A. Kulik, T. Matschei, et al., Cemdata18: A chemical thermodynamic database
 for hydrated Portland cements and alkali-activated materials, Cem. Concr. Res. 115 (2019) 472506.

⁵⁶⁵ Current status and future opportunities, Constr. Build. Mater. 155 (2017) 1101-1111.

- [23] M. Santhanam, M. Cohen, J. Olek, Differentiating seawater and groundwater sulfate attack in
 Portland cement mortars, Cem. Concr. Res. 36 (12) (2006) 2132-2137.
- [24] Z. Shi, Z. Shui, Q. Li, H. Geng, Combined effect of metakaolin and sea water on performance and
 microstructures of concrete, Constr. Build. Mater. 74 (2015) 57-64.
- [25] K. De Weerdt, H. Justnes, M.R. Geiker, Changes in the phase assemblage of concrete exposed to
 sea water, Cem. Concr. Compos. 47 (2014) 53-63.
- [26] J. Wang, B. Han, Z. Li, et al., Effect investigation of nanofillers on CSH gel structure with Si
 NMR, J. Mater. Civ. Eng. 31(2018) 04018352.
- 617 [27] D. Wang, Y. Fang, Y. Zhang, J. Chang, Changes in mineral composition, growth of calcite crystal,
 618 and promotion of physico-chemical properties induced by carbonation of β-C₂S, J. CO₂ Util. 34
 619 (2019) 149-162.
- [28] D. Da Silva Andrade, J.H. Da Silva Rêgo, P.C. Morais, et al., Investigation of C-S-H in ternary
 cement pastes containing nanosilica and highly-reactive supplementary cementitious materials
 (SCMs): Microstructure and strength, Constr. Build. Mater. 198 (2019) 445-455.
- [29] Z. Jiang, Y. Xi, X. Gu, Q. Huang, W. Zhang, Modelling of water vapour sorption hysteresis of
 cement-based materials based on pore size distribution, Cem. Concr. Res. 115 (C) (2019) 8-19.
- [30] Y. Dhandapani, M. Santhanam, Assessment of pore structure evolution in the limestone calcined
 clay cementitious system and its implications for performance, Cem. Concr. Compos. 84 (2017)
 36-47.
- [31] C. Qiao, P. Suraneni, T. Nathalene Wei Ying, A. Choudhary, J. Weiss, Chloride binding of
 cement pastes with fly ash exposed to CaCl₂ solutions at 5 and 23 °C, Cem. Concr. Compos. 97
 (2019) 43-53.
- [32] H. Hirao, K. Yamada, H. Takahashi, H. Zibara, Chloride binding of cement estimated by binding
 isotherms of hydrates, J. Adv. Concr. Technol. 3 (1) (2005) 77-84.
- [33] M.V.A. Florea, H.J.H. Brouwers, Chloride binding related to hydration products, Cem. Concr.
 Res. 42 (2) (2012) 282-290.
- [34] K. De Weerdt, A. Colombo, L. Coppola, H. Justnes, M.R. Geiker, Impact of the associated cation
 on chloride binding of Portland cement paste, Cem. Concr. Res. 68 (2015) 196-202.
- [35] B. Lothenbach, A. Nonat, Calcium silicate hydrates: Solid and liquid phase composition, Cem.
 Concr. Res. 78 (2015) 57-70.
- [36] I.G. Richardson, Model structures for C-(A)-S-H(I), Acta Crystallogr. B 70 (2014) 903-923
- [37] D. Palin, H.M. Jonkers, V. Wiktor, Autogenous healing of sea-water exposed mortar:
 Quantification through a simple and rapid permeability test, Cem. Concr. Res. 84 (2016) 1-7.
- [38] M. Abd El. Aziz, S. Abd El. Aleem, M. Heikal, H. El. Didamony, Hydration and durability of
 sulphate-resisting and slag cement blends in Caron's Lake water, Cem. Concr. Res. 35 (8) (2005)
 1592-1600.
- [39] D. Bonen, M. D. Cohen. Magnesium sulfate attack on portland cement paste-II. Chemical and
 mineralogical analyses, Cem. Concr. Res. 22 (4) (1992) 707-718
- [40] Y. Wang, G. Kong, C. Che, Corrosion behavior of Zn-Al alloys in saturated Ca(OH)₂ solution,
 Corros. Sci. 112 (2016) 679-686.
- [41] D. Buggio, M. Trueba, S.P. Trasatti, Corrosion of Mg alloy in the presence of ammonium ion.
 Evidence of hydride sub-products, Corros. Sci. 104 (2016) 173-186.
- [42] M. Malbois, B. Nedjar, S. Lavaud, et al., On DEF expansion modelling in concrete structures
 under variable hydric conditions, Constr. Build. Mater. 207 (2019) 396-402.

- [43] Y. Cai, D. Xuan, C.S. Poon, Effects of nano-SiO₂ and glass powder on mitigating alkali-silica
 reaction of cement glass mortars, Constr. Build. Mater. 201 (2019) 295-302.
- [44] Y. Zhang, Y. Sun, H. Zheng, Y. Cai, W.L. Lam, C.S. Poon, Mechanism of strength evolution of
 seawater OPC pastes, Adv. Struct. Eng. 24 (6) (2021) 1256-1266.
- [45] J. Bizzozero, C. Gosselin, K.L. Scrivener, Expansion mechanisms in calcium aluminate and
 sulfoaluminate systems with calcium sulfate, Cem. Concr. Res. 56 (2014) 190-202.