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Stabilization parameter analysis of a second order linear numerical
scheme for the nonlocal Cahn-Hilliard equation
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A second order accurate (in time) and linear numerical scheme is proposed and analyzed for the nonlocal
Cahn-Hilliard equation. The backward differentiation formula (BDF) is used as the temporal discretiza-
tion, while an explicit extrapolation is applied to the nonlinear term and the concave expansive term. In
addition, an O(∆ t2) artificial regularization term, in the form of A∆N(φ

n+1 −2φ n +φ n−1), is added for
the sake of numerical stability. The resulting constant-coefficient linear scheme brings great numerical
convenience; however, its theoretical analysis turns out to be very challenging, due to the lack of higher
order diffusion in the nonlocal model. In fact, a rough energy stability analysis can be derived, where
an assumption on the ℓ∞ bound of the numerical solution is required. To recover such an ℓ∞ bound, an
optimal rate convergence analysis has to be conducted, which combines a high order consistency analysis
for the numerical system and the stability estimate for the error function. We adopt a novel test function
for the error equation, so that a higher order temporal truncation error is derived to match the accuracy
for discretizing the temporal derivative. Under the view that the numerical solution is actually a small
perturbation of the exact solution, a uniform ℓ∞ bound of the numerical solution can be obtained, by
resorting to the error estimate under a moderate constraint of the time step size. Therefore, the result of
the energy stability is restated with a new assumption on the stabilization parameter A. Some numerical
experiments are carried out to display the behavior of the proposed second order scheme, including the
convergence tests and long-time coarsening dynamics.

Keywords: nonlocal Cahn-Hilliard equation; second order accurate scheme; higher order consistency
analysis; rough error estimate and refined error estimate; energy stability.

1. Introduction

The nonlocal Cahn-Hilliard (NCH) equation is taken into consideration, which turns out to be the H−1

gradient flow with respect to the free energy functional with nonlocal interaction effect as follows (Bates,
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2006; Bates et al., 2006, 2009; Bates & Han, 2005a,b; Guan et al., 2014a,b, 2017):

E(φ) =
∫

Ω

(1
4

φ
4 − 1

2
φ

2 +
ε2

4

∫
Ω

J(x−y)(φ(x)−φ(y))2 dy
)

dx, (1.1)

where ε > 0 is an interfacial parameter and Ω = ∏
d
i=1(−Xi,Xi) is a rectangular domain in Rd . The

kernel function J is required to satisfy the following conditions (Du et al., 2018; Li et al., 2021):

(a) J(x)⩾ 0 for any x ∈ Ω , and
∫

Ω
J(x)dx > 0;

(b) J is Ω -periodic and even, i.e., J(−x) = J(x) for any x ∈ Rd ;

(c) 1
2
∫

Ω
J(x)|x|2dx = 1,

where condition (c) means that J has a finite second moment in Ω . A nonlocal linear operator is
introduced as L : ψ(x) 7→

∫
Ω

J(x − y)(ψ(x)− ψ(y))dy. Then, using condition (a), it is clear that
L ψ = (J ∗1)ψ − J ∗ψ with the following periodic convolution (Guan et al., 2014a):

(J ∗ψ)(x) =
∫

Ω

J(x−y)ψ(y)dy =
∫

Ω

J(y)ψ(x−y)dy.

By condition (c), a careful calculation yields an equivalent form of the energy (1.1) as

E(φ) =
∫

Ω

F(φ)dx+
ε2

2
(L φ ,φ)L2 , with F(φ) =

1
4

φ
4 − 1

2
φ

2, (1.2)

and the chemical potential becomes

µ := δφ E(φ) = φ
3 −φ + ε

2L φ .

As a consequence, the corresponding NCH equation turns out to be

∂tφ = ∆ µ = ∆(φ 3 −φ + ε
2L φ) = ∆ [φ 3 −φ + ε

2((J ∗1)φ − J ∗φ)], (1.3)

subject to the periodic boundary condition. The mass conservation of φ is obvious in the sense that
d
dt
∫

Ω
φ(x, t)dx = 0. In addition, the following diffusivity condition is taken:

γ0 := ε
2(J ∗1)−1 > 0. (1.4)

Without such a condition, the solution may exhibit some singular behaviors.
As a nonlocal variant of the classic Cahn-Hilliard equation (Cahn & Hilliard, 1958), the NCH equa-

tion has increasingly attracted attention and been widely used in various areas ranging from chem-
istry, material science to finance and image processing. The well-posedness of the NCH equation (1.3)
equipped with Neumann or Dirichlet boundary condition was studied in Bates & Han (2005a,b), and
it was pointed out in Guan et al. (2014a) that the existence and uniqueness of the solution to the NCH
equation subject to the periodic boundary condition may also be established by using a similar technique.
A brief review of some parabolic-like evolution equations was made in Fife (2003), including nonlocal
and pattern-formation problems, along with a comparison between the local and nonlocal equations.

Numerical investigations of nonlocal models have also attracted much attention in recent years. For
a family of nonlocal diffusion equations equipped with various boundary conditions, finite difference,
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finite element and spectral approximations were discussed in Du et al. (2018, 2019a); Tian & Du (2014);
Zhou & Du (2010). Bates et al. (2006, 2009) studied ℓ∞ stable and convergent numerical schemes for
the nonlocal Allen-Cahn equation and related equation. An exponential time differencing method was
applied to the nonlocal Allen-Cahn equation to establish first and second order accurate, ℓ∞ stable linear
numerical schemes in Du et al. (2019b), and further extended to a class of semilinear parabolic equations
in Du et al. (2021). In particular, the energy stability (induced by the energetic variational formulation)
has played a very important role in the numerical approximations. A theoretical justification of energy
stability has been provided for a few first order numerical schemes (Guan et al., 2014a; Li et al., 2021),
based on the convex splitting and linearized stabilization ideas, respectively. For the second order nu-
merical schemes, the only existing energy stability and convergence analysis has been reported for a
higher order convex splitting method (Guan et al., 2014b, 2017). Meanwhile, the computational cost for
such a numerical approach turns out to be expensive, because of an implicit treatment for the nonlinear
term (to ensure the energy stability).

Consequently, a second order accurate, linear and energy stable numerical scheme is highly desired
for the NCH equation. In fact, this effort has been successful for the classic Cahn-Hilliard model (Li &
Qiao, 2017a,b), in which a stabilization term is added in the numerical scheme and a modified energy
stability is theoretically established. However, these works rely heavily on the higher order surface
diffusion term in the classic Cahn-Hilliard model, so that the reported methodology is hardly applicable
to the NCH model. In this paper, we propose and analyze a second order accurate and linear numerical
scheme for the NCH equation, with the energy stability and convergence analysis theoretically justified.
In more details, the second order backward differentiation formula (BDF2) is chosen as the temporal
discretization, combined with an implicit treatment of the nonlocal term, as well as explicit extrapolation
for the nonlinear term and concave expansive term. Moreover, an O(∆ t2) artificial stabilization term is
added in the form of A∆N(φ

n+1−2φ n+φ n−1). In turn, this numerical scheme can be solved by using the
fast Fourier transform, so that the nonlocal term does not cause much computation in comparison with
the Laplacian term in the classic Cahn-Hilliard equation. To establish the energy stability, a uniform
ℓ∞ bound of the numerical solution is assumed and the requirement for the stabilizing constant turns
out to depend on the unknown numerical solution. Subsequently, we conduct a novel convergence
analysis of the proposed stabilized BDF2 scheme to recover such a requirement, by applying the high
order consistency analysis, so that the uniform ℓ∞ bound of the numerical solution can be theoretically
justified. A crucial difference with the standard error estimate is that, we adopt (−∆N)

−1(ên+1 − ên) to
test the error equation with respect to the numerical error function ên, instead of testing (−∆N)

−1ên+1 as
in a recent work (Li et al., 2021) for the first order scheme (where (−∆N)

−1 is a spatial discrete operator
to be defined in the next section). In other words, the key point is to use the discrete temporal derivative
of the error function as the test function, rather than the error function directly, which would provide
a higher order temporal truncation error to match the BDF2 discretization for the temporal derivative.
Resorting to the convergence result, we obtain a uniform ℓ∞ bound of the numerical solution by viewing
it as a perturbation of the exact solution. As a result, the a priori assumption is recovered and a new
condition is derived for the stabilizing constant in the energy stability analysis.

The rest of the paper is organized as follows. In Section 2, the stabilized BDF2 scheme is presented
in the fully discrete form and an energy stability is established with respect to a modified energy under
an assumption of the uniform ℓ∞ bound of the numerical solution. Convergence analysis is presented in
Section 3, which is the main part of the paper, including the high order consistency analysis, a rough er-
ror estimate based on the stability analysis, and a refined error estimate based on a priori bound obtained
by the rough estimate. Consequently, the uniform ℓ∞ bound of the numerical solution is recovered and
the energy stability result is restated under a new requirement on the stabilizing constant. In Section 4,
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some numerical experiments are carried out to display the behavior of the proposed numerical scheme.
Finally, some concluding remarks are given in Section 5.

2. The numerical scheme and energy stability analysis

2.1 The Fourier pseudo-spectral spatial discretization

We adopt the 2-D Fourier pseudo-spectral method. An extension to the 3-D spatial discretization is
straightforward. To simplify the notations in the later analysis, we assume that the domain is given by
Ω = (−1,1)2 and denote by Cm

per(Ω) the set of all Cm-functions with period 2, along each coordinate
direction. Let N be an even number: N = 2K for some K ∈N; the analyses for more general cases are a
bit more tedious, but can be carried out without essential difficulty. The spatial variables are evaluated
on the standard 2-D numerical grid ΩN , which is defined by grid points (xi,y j) with xi = −1+ ih,
y j =−1+ jh, 0 ⩽ i, j ⩽ N, and h = 2/N = 1/K.

The grid function space is defined as

Mh := { f : Z2 → R | f is ΩN-periodic}.

For any grid functions f ,g ∈ Mh, the ℓ2 inner product and norm are defined as

⟨ f ,g⟩ := h2
N−1

∑
i, j=0

fi, j ·gi, j, ∥ f∥2 :=
√

⟨ f , f ⟩.

The zero-mean grid function subspace is denoted as M 0
h := { f ∈ Mh | f = 0} with f := 1

4 ⟨ f ,1⟩. For
f ∈ Mh, we have the discrete Fourier expansion

fi, j =
K

∑
ℓ,m=−K+1

f̂ N
ℓ,m exp(πi(ℓxi +my j)), f̂ N

ℓ,m :=
1

N2

N−1

∑
i, j=0

fi, j exp(−πi(ℓxi +my j)).

The Fourier pseudo-spectral first and second order derivatives of f are defined as

Dx fi, j :=
K

∑
ℓ,m=−K+1

(πiℓ) f̂ N
ℓ,m exp(πi(ℓxi +my j)),

D2
x fi, j :=

K

∑
ℓ,m=−K+1

(−π
2ℓ2) f̂ N

ℓ,m exp(πi(ℓxi +my j)).

The differentiation operators in the y direction, Dy and D2
y , can be defined in the same fashion. In turn,

for any f ∈Mh and fff = ( f 1, f 2)∈Mh×Mh, the discrete gradient, divergence and Laplacian operators
are given respectively by

∇N f =
(

Dx f
Dy f

)
, ∇N · fff = Dx f 1 +Dy f 2, ∆N f = D2

x f +D2
y f .

Moreover, the following summation-by-parts formulas are valid (Cheng et al., 2016; Gottlieb et al.,
2012; Gottlieb & Wang, 2012; Li et al., 2021): for any periodic grid functions f ,g ∈ Mh and ggg ∈
Mh ×Mh,

⟨ f ,∇N ·ggg⟩=−⟨∇N f ,ggg⟩, ⟨ f ,∆Ng⟩=−⟨∇N f ,∇Ng⟩= ⟨∆N f ,g⟩.
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In addition, −∆N is self-adjoint and positive definite, and thus invertible, on M 0
h .

Since the NCH equation (1.3) is an H−1 gradient flow of (1.2), we need a discrete version of the
H−1 norm defined on M 0

h . For any f ,g ∈ M 0
h , we define

⟨ f ,g⟩−1,N := ⟨ f ,(−∆N)
−1g⟩= ⟨(−∆N)

− 1
2 f ,(−∆N)

− 1
2 g⟩,

then the discrete H−1
h norm ∥ · ∥−1,N can be introduced as

∥ f∥−1,N :=
√
⟨ f , f ⟩−1,N = ∥(−∆N)

− 1
2 f∥2, f ∈ M 0

h .

In addition to the standard ℓ2 norm, we also introduce the ℓp, 1 ⩽ p < ∞, and ℓ∞ norms for a grid
function f ∈ Mh:

∥ f∥
∞

:= max
i, j

| fi, j|, ∥ f∥p :=
(

h2
N−1

∑
i, j=0

| fi, j|p
) 1

p
, 1 ⩽ p < ∞.

The definition of the discrete convolution follows similar notations in Guan et al. (2014a) and Li
et al. (2021). For any ψ, f ∈ Mh, the discrete convolution ψ ∗⃝ f ∈ Mh is introduced at a component-
wise level:

(ψ ∗⃝ f )i j = h2
N−1

∑
m,n=0

ψi−m, j−n fmn, 0 ⩽ i, j ⩽ N −1.

In addition, the following preliminary estimate is needed in the convergence analysis; the detailed proof
has been provided in a recent work (Li et al., 2021), and the finite difference version has been analyzed
in Guan et al. (2014a).

LEMMA 2.1 (Li et al., 2021) Suppose J∈C1
per(Ω) and define its grid restriction by Ji j := J(xi,y j). Then

for any φ ,ψ ∈ Mh and any α > 0, we have

|⟨J ∗⃝φ ,∆Nψ⟩|⩽ α∥φ∥2
2 +

CJ

α
∥∇Nψ∥2

2,

where CJ is a positive constant depending on J and Ω , but independent of h.

Given a kernel J satisfying conditions (a)–(c), the discrete version of the nonlocal operator L can
be represented as

LN f = (J ∗⃝1) f − J ∗⃝ f , f ∈ Mh.

It is easy to verify that LN commutes with ∆N and is self-adjoint and positive semi-definite. Meanwhile,
the discrete version of the energy (1.2) is introduced as

EN(v) = ⟨F(v),1⟩+ ε2

2
⟨LNv,v⟩, v ∈ Mh.

For the sake of brevity, we use ∗, instead of ∗⃝ , to denote the discrete convolutions below and the
meaning depends on the functions on both sides of the notation.
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2.2 The fully discrete scheme and energy stability analysis

Set ∆ t as a uniform time step size, and {tk = k∆ t} as the sequence of discrete time instants. Denote φ k

(k ⩾ 0) as the numerical solution of the phase variable at time step tk. The stabilized BDF2 scheme is
proposed as follows: given φ n,φ n−1 ∈ M 0

h , find φ n+1 ∈ M 0
h such that

3
2 φ n+1 −2φ n + 1

2 φ n−1

∆ t
= ∆N

(
(φ̆ n+1)3 − φ̆

n+1 +A(φ n+1 −2φ
n +φ

n−1)+ ε
2LNφ

n+1
)
, (2.1)

where φ̆ n+1 = 2φ n −φ n−1.
Since the proposed numerical scheme (2.1) is a two-step algorithm, an accurate approximation for

the phase variable value at t1 is needed in the initialization process. It is well-known that a single step
numerical method would create a numerical solution with higher order temporal accuracy (than the order
of truncation error) in the first step, if the exact initial data is imposed. Also see the detailed analysis
in the related works Guo et al. (2016, 2021) for local Cahn-Hilliard equation, in which a single step,
first order semi-implicit algorithm creates a second order accurate numerical solution in the first step.
For the NCH equation, a higher order approximation at time step t1 is more preferred, to facilitate the
higher order asymptotic consistency analysis presented in the later sections. For example, the second
order Runge-Kutta (RK2) method could be applied in the first step, which in turn gives an O(∆ t3 +hm)
approximation at t1, if an exact initial data is imposed.

We have the following result on the energy stability with respect to a modified energy.

PROPOSITION 2.1 For the stabilized BDF2 scheme (2.1), a modified energy dissipation property is
available:

ẼN(φ
n+1,φ n)⩽ ẼN(φ

n,φ n−1), (2.2)

where
ẼN(φ

n+1,φ n) := EN(φ
n+1)+

A+1
2

∥φ
n+1 −φ

n∥2
2 +

1
4∆ t

∥φ
n+1 −φ

n∥2
−1,N ,

if the following constraints are valid with CJ dependent only on the kernel J and Ω :

A ⩾
9

2γ0
(∥2φ

n −φ
n−1∥2

∞ +∥φ
n+1∥2

∞)
2 −1, CJε

4
∆ t ⩽ γ0. (2.3)

Proof. Taking a discrete inner product with (2.1) by (−∆N)
−1(φ n+1 −φ n) gives

1
∆ t

〈3
2

φ
n+1 −2φ

n +
1
2

φ
n−1,φ n+1 −φ

n
〉
−1,N

+A⟨φ n+1 −2φ
n +φ

n−1,φ n+1 −φ
n⟩

=−⟨(φ̆ n+1)3,φ n+1 −φ
n⟩+ ⟨φ̆ n+1,φ n+1 −φ

n⟩− ε
2⟨LNφ

n+1,φ n+1 −φ
n⟩, (2.4)

in which summation-by-parts formulas have been repeatedly applied.
For the left-hand side term associated with the temporal stencil, the following estimate is straight-

forward: 〈3
2

φ
n+1 −2φ

n +
1
2

φ
n−1,φ n+1 −φ

n
〉
−1,N

=
〈3

2
(φ n+1 −φ

n)− 1
2
(φ n −φ

n−1),φ n+1 −φ
n
〉
−1,N

⩾
3
2
∥φ

n+1 −φ
n∥2

−1,N − 1
4
(∥φ

n+1 −φ
n∥2

−1,N +∥φ
n −φ

n−1∥2
−1,N)
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=
5
4
∥φ

n+1 −φ
n∥2

−1,N − 1
4
∥φ

n −φ
n−1∥2

−1,N . (2.5)

For the artificial regularization term, the following identity is valid:

⟨φ n+1 −2φ
n +φ

n−1,φ n+1 −φ
n⟩= 1

2
(∥φ

n+1 −φ
n∥2

2 −∥φ
n −φ

n−1∥2
2 +∥φ

n+1 −2φ
n +φ

n−1∥2
2). (2.6)

For the second linear term on the right-hand side, noticing that

φ̆
n+1 = φ

n+1 − (φ n+1 −2φ
n +φ

n−1), (2.7)

we have

⟨φ̆ n+1,φ n+1 −φ
n⟩= ⟨φ n+1,φ n+1 −φ

n⟩−⟨φ n+1 −2φ
n +φ

n−1,φ n+1 −φ
n⟩

=
1
2
(∥φ

n+1∥2
2 −∥φ

n∥2
2 +∥φ

n+1 −φ
n∥2

2)

− 1
2
(∥φ

n+1 −φ
n∥2

2 −∥φ
n −φ

n−1∥2
2 +∥φ

n+1 −2φ
n +φ

n−1∥2
2). (2.8)

The nonlocal diffusion term on the right-hand side can be rewritten as follows:

ε
2⟨LNφ

n+1,φ n+1 −φ
n⟩= ε2

2
(⟨LNφ

n+1,φ n+1⟩−⟨LNφ
n,φ n⟩)

+
ε2

2
(J ∗1)∥φ

n+1 −φ
n∥2

2 −
ε2

2
⟨J ∗ (φ n+1 −φ

n),φ n+1 −φ
n⟩. (2.9)

For the term ε2⟨J ∗ (φ n+1 −φ n),φ n+1 −φ n⟩, we apply Lemma 2.1 and obtain

ε
2⟨J ∗ (φ n+1 −φ

n),φ n+1 −φ
n⟩=−ε

2⟨J ∗ (φ n+1 −φ
n),∆N((−∆N)

−1(φ n+1 −φ
n))⟩

⩽
1
2

CJε
4
∆ t∥φ

n+1 −φ
n∥2

2 +
2

∆ t
∥∇N(−∆N)

−1(φ n+1 −φ
n)∥2

2

=
1
2

CJε
4
∆ t∥φ

n+1 −φ
n∥2

2 +
2

∆ t
∥φ

n+1 −φ
n∥2

−1,N , (2.10)

where CJ depends only on J and Ω . Subsequently, a combination of (2.9)-(2.10) yields

ε
2⟨LNφ

n+1,φ n+1 −φ
n⟩⩾ ε2

2
(⟨LNφ

n+1,φ n+1⟩−⟨LNφ
n,φ n⟩)

+
(

ε2

2
(J ∗1)− 1

4
CJε

4
∆ t

)
∥φ

n+1 −φ
n∥2

2 −
1

∆ t
∥φ

n+1 −φ
n∥2

−1,N . (2.11)

For the nonlinear inner product, we begin with the following decomposition:

(φ̆ n+1)3 − (φ n+1)3 =−((φ̆ n+1)2 + φ̆
n+1

φ
n+1 +(φ n+1)2)(φ n+1 −2φ

n +φ
n−1),

where we have used the identity (2.7) again. In turn, the following estimate can be derived:

⟨(φ̆ n+1)3 − (φ n+1)3,φ n+1 −φ
n⟩

⩾−∥(φ̆ n+1)2 + φ̆
n+1

φ
n+1 +(φ n+1)2∥∞ · ∥φ

n+1 −2φ
n +φ

n−1∥2 · ∥φ
n+1 −φ

n∥2
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⩾−3
2
(∥φ̆

n+1∥2
∞ +∥φ

n+1∥2
∞) · ∥φ

n+1 −2φ
n +φ

n−1∥2 · ∥φ
n+1 −φ

n∥2

⩾− 9
4γ0

(∥φ̆
n+1∥2

∞ +∥φ
n+1∥2

∞)
2∥φ

n+1 −2φ
n +φ

n−1∥2
2 −

γ0

4
∥φ

n+1 −φ
n∥2

2. (2.12)

Meanwhile, the following estimate is straightforward:

⟨(φ n+1)3,φ n+1 −φ
n⟩⩾ 1

4
(∥φ

n+1∥4
4 −∥φ

n∥4
4), (2.13)

which comes directly from the convexity of ∥φ∥4
4 (in term of φ ). Therefore, a combination of (2.12)-

(2.13) yields

⟨(φ̆ n+1)3,φ n+1 −φ
n⟩⩾ 1

4
(∥φ

n+1∥4
4 −∥φ

n∥4
4)−

γ0

4
∥φ

n+1 −φ
n∥2

2

− 9
4γ0

(∥φ̆
n+1∥2

∞ +∥φ
n+1∥2

∞)
2∥φ

n+1 −2φ
n +φ

n−1∥2
2. (2.14)

Finally, a substitution of (2.5), (2.6), (2.8), (2.11) and (2.14) into (2.4) gives

1
4∆ t

(∥φ
n+1 −φ

n∥2
−1,N −∥φ

n −φ
n−1∥2

−1,N)+
A+1

2
(∥φ

n+1 −φ
n∥2

2 −∥φ
n −φ

n−1∥2
2)

+EN(φ
n+1)−EN(φ

n)+
(1

2
(ε2(J ∗1)−1)− γ0

4
− 1

4
CJε

4
∆ t

)
∥φ

n+1 −φ
n∥2

2

+
(A+1

2
− 9

4γ0
(∥φ̆

n+1∥2
∞ +∥φ

n+1∥2
∞)

2
)
∥φ

n+1 −2φ
n +φ

n−1∥2
2 ⩽ 0.

Making use of the assumption γ0 = ε2(J ∗1)−1 > 0 (given by (1.4)), we get

ẼN(φ
n+1,φ n)− ẼN(φ

n,φ n−1)+
(

γ0

4
− 1

4
CJε

4
∆ t

)
∥φ

n+1 −φ
n∥2

2

+
(A+1

2
− 9

4γ0
(∥φ̆

n+1∥2
∞ +∥φ

n+1∥2
∞)

2
)
∥φ

n+1 −2φ
n +φ

n−1∥2
2 ⩽ 0.

Consequently, under the constraint (2.3), a modified energy stability estimate (2.2) is valid. This com-
pletes the proof of Proposition 2.1. □

Note that the right-hand side of (2.3) involves the ℓ∞ norms of the numerical solutions φ n−1, φ n

and φ n+1. Therefore, we have to justify the lower bound of A by estimating these ℓ∞ norms. As
mentioned before, a direct analysis given in Li & Qiao (2017a,b); Li et al. (2016) for the classic Cahn-
Hilliard equation may be difficult to be extended to (2.1) due to the lack of higher order diffusion terms.
Instead, by resorting to the idea that the numerical solution can be regarded as a perturbation of the exact
solution, we will perform a local-in-time convergence analysis of (2.1) and then give the ℓ∞ bound of
the numerical solution by using the convergence result.

3. Convergence analysis

We use Φ to denote the exact solution to the NCH equation (1.3). The existence and uniqueness of Φ

may be established in a similar technique adopted in Bates & Han (2005a,b), and one can obtain

∥Φ∥L∞(0,T ;L∞)+∥Φt∥L∞(0,T ;L∞) ⩽C, (3.1)
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for any T > 0. Without loss of generality, we consider the 2-D case.
First, we introduce the (spatial) Fourier projection of the exact solution, which satisfies the discrete

mass-conserving property. Let BK be the space of trigonometric polynomials of degree up to K = N/2.
For a fixed time t, let ΦN( · , t) := PNΦ( · , t) be the Fourier projection of the exact solution into BK .
Since 1 ∈ BK , we have a useful property for the Fourier projection:∫

Ω

ΦN( · , t)dx =
∫

Ω

Φ( · , t)dx. (3.2)

If Φ ∈ L∞(0,T ;Hℓ
per) for some ℓ ∈ N, the projection approximation is standard:

∥ΦN −Φ∥L∞(0,T ;Hk) ⩽Chℓ−k∥Φ∥L∞(0,T ;Hℓ), 0 ⩽ k ⩽ ℓ. (3.3)

Then, the rest of the work is to estimate the difference between the numerical solution and the projection
solution ΦN .

Denote Φk
N = ΦN( · , tk). We denote by φ k

N := PhΦN( · , tk) the values of ΦN at discrete grid points
at time tk. By (3.2) and the fact that the exact solution Φ is mass conservative at the continuous level,
we have ∫

Ω

ΦN(·, tk)dx =
∫

Ω

Φ(·, tk)dx =
∫

Ω

Φ(·, tk−1)dx =
∫

Ω

ΦN(·, tk−1)dx, ∀ k ∈ N.

Meanwhile, since ΦN ∈ BK and (3.2), the mass conservative property is available at the discrete level:

φ k
N =

1
|Ω |

∫
Ω

ΦN(·, tk)dx =
1
|Ω |

∫
Ω

ΦN(·, tk−1)dx = φ
k−1
N , ∀ k ∈ N.

For the initial value φ 0 of the numerical scheme (2.1), we apply the mass conservative projection:
φ 0 = PhΦN( · , t = 0), that is, φ 0

i, j := ΦN(xi,y j, t = 0). Then, the solution of the numerical scheme (2.1)
is mass conservative, i.e.,

φ k = φ k−1, ∀ k ∈ N.

And also, corresponding to the regularity (3.1), we have

max
1⩽ j⩽Nk

∥∥∥φ
j

N

∥∥∥
∞

+ max
1⩽ j⩽Nk

∥∥∥∥∥φ
j

N −φ
j−1

N
∆ t

∥∥∥∥∥
∞

<C∗.

Notice that the constant C∗ depends on ∥Φ∥C1(0,T ;H2), with an application of 2-D Sobolev inequality.
Since φ k

N and Φk
N have the same values on the discrete grid points, we just use the notation Φk

N in the
following discussions, for the sake of brevity.

With initial data of sufficient regularity, we can assume that the exact solution has regularity as

Φ ∈ R := H5(0,T ;C0
per)∩H4(0,T ;C2

per)∩L∞(0,T ;Cm+2
per ), m ⩾ 3.

The following theorem is the main result on the error estimates of the stabilized BDF2 scheme (2.1).

THEOREM 3.1 Suppose the unique, smooth, periodic solution for the NCH equation (1.3), given by
Φ(x,y, t) on Ω for 0 < t < ∞, is of regularity class R. In addition, the constant A is assumed to satisfy

A ⩾
18(M0 +1)4

γ0
−1, with M0 = 1+C∗, C∗ = max

1⩽ j⩽Nk
(∥Φ

j
N∥∞ +∥∂tΦ

j
N∥∞). (3.4)
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Then, if ∆ t and h are sufficiently small, under linear refinement path constraint C1h ⩽ ∆ t ⩽ C2h with
fixed constants C1 and C2, we have

∥Φ
n
N −φ

n∥2 ⩽C(∆ t2 +hm), (3.5)

for all positive integers n such that n∆ t ⩽ T , where C is independent of h and ∆ t.

The detailed proof will be presented in the following subsections. First, we will conduct the higher
order consistency analysis to provide a high order truncation error so that the desired order of error can
be recovered by using the inverse inequality. In fact, this approach has been adopted for the numerical
analysis of a large family of nonlinear PDEs, see, e.g., Baskaran et al. (2013); Duan et al. (2021, 2020);
E & Liu (1995); Guan et al. (2017, 2014a); Liu et al. (2021); Samelson et al. (2003); Wang et al. (2004,
2015). Subsequently, we carry out the stability estimates for the numerical error function. Due to the
complexity of the nonlinear term, it seems difficult to obtain the expected results directly, so we have
to divide this part into two steps: a rough estimate is first performed in order to give the ℓ∞ norms of
the numerical solution; a refined estimate is then given, combined with the ℓ∞ bound obtained by the
rough estimate, to derive the desired result of convergence rate. In addition, instead of testing the error
equation by (−∆N)

−1ên+1 as usual, we adopt a novel test function (−∆N)
−1(ên+1 − ên) so that a higher

order temporal truncation error can be obtained to match the second order BDF discretization of the
temporal derivative. This part is significantly different from the stability estimate in a recent work (Li
et al., 2021).

3.1 Higher order consistency analysis

By consistency, the Fourier projection solution ΦN satisfies the discrete equation

3
2 Φ

n+1
N −2Φn

N + 1
2 Φ

n−1
N

∆ t
= ∆N

(
(Φ̆n+1

N )3 − Φ̆
n+1
N +A(Φn+1

N −2Φ
n
N +Φ

n−1
N )+ ε

2LNΦ
n+1
N

)
+ τ

n+1
0 ,

where Φ̆
n+1
N = 2Φn

N −Φ
n−1
N and τ

n+1
0 is the truncation error satisfying ∥τ

n+1
0 ∥−1,N ⩽C(∆ t2+hm). With

the standard stability estimates, one can bound the H−1
h norm of the numerical error Φn

N − φ n by the
same order O(∆ t2 +hm). However, this convergence order is not enough to recover the ℓ∞ bound of the
numerical solution and its discrete temporal derivative after the inverse inequality is used. To overcome
this difficulty, we will construct a supplementary field to correct ΦN so that a higher O(∆ t3 + hm)
consistency can be obtained, which is enough to recover the ℓ∞ bound of the numerical solution.

According to the consistency, applying the temporal discretization in (2.1) to the Fourier projection
solution ΦN , we can get

3
2 Φ

n+1
N −2Φn

N + 1
2 Φ

n−1
N

∆ t
= ∆

(
(Φ̆n+1

N )3 − Φ̆
n+1
N +A(Φn+1

N −2Φ
n
N +Φ

n−1
N )+ ε

2L Φ
n+1
N

)
+∆ t2(g(2))n+1 +O(∆ t3)+O(hm), (3.6)

where the function g(2)(x,y, t) is sufficiently smooth and depends only on the higher order partial deriva-
tives of ΦN by using the Taylor expansion in time.

With given profile (ΦN)
2, we define the temporal correction function Φ

(2)
∆ t as the solution of the

equation

∂tΦ
(2)
∆ t = ∆

(
3(ΦN)

2
Φ

(2)
∆ t −Φ

(2)
∆ t + ε

2L Φ
(2)
∆ t

)
−g(2), (3.7)
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subject to the zero initial value and the periodic boundary condition. Note that (3.7) is a linear parabolic
equation, so that the existence and uniqueness of Φ

(2)
∆ t can be guaranteed by conducting the Galerkin

approximation and Sobolev estimates (Temam, 2001). In addition, the solution Φ
(2)
∆ t is smooth enough

and depends only on ΦN . Then, applying the temporal discretization to (3.7), we get

3
2 (Φ

(2)
∆ t )

n+1 −2(Φ (2)
∆ t )

n + 1
2 (Φ

(2)
∆ t )

n−1

∆ t

= ∆

(
3(Φ̆n+1

N )2(Φ̆
(2)
∆ t )

n+1 − (Φ̆
(2)
∆ t )

n+1 +A((Φ (2)
∆ t )

n+1 −2(Φ (2)
∆ t )

n +(Φ
(2)
∆ t )

n−1)

+ ε
2L (Φ

(2)
∆ t )

n+1
)
− (g(2))n+1 +O(∆ t2), (3.8)

where (Φ̆
(2)
∆ t )

n+1 = 2(Φ (2)
∆ t )

n − (Φ
(2)
∆ t )

n−1. Subsequently, a correction of Φ is defined as

Φ̂ = ΦN +∆ t2PNΦ
(2)
∆ t . (3.9)

It is clear that Φ̂( · , t) ∈ BK and Φ̂ satisfies the mass conservation property. Multiplying the Fourier
projection of (3.8) by ∆ t2 and its sum with (3.6) leads to

3
2 Φ̂n+1 −2Φ̂n + 1

2 Φ̂n−1

∆ t
= ∆

(
( ˘̂
Φ

n+1)3 − ˘̂
Φ

n+1 +A(Φ̂n+1 −2Φ̂
n + Φ̂

n−1)+ ε
2L Φ̂

n+1
)

+O(∆ t3)+O(hm),

where ˘̂
Φn+1 = 2Φ̂n − Φ̂n−1 and we have used the fact that

( ˘̂
Φ

n+1)3 =
(
Φ̆

n+1
N +∆ t2PN(Φ̆

(2)
∆ t )

n+1)3

= (Φ̆n+1
N )3 +3∆ t2(Φ̆n+1

N )2PN(Φ̆
(2)
∆ t )

n+1 +O(∆ t4)+O(hm)

= (Φ̆n+1
N )3 +3∆ t2PN

(
(Φ̆n+1

N )2PN(Φ̆
(2)
∆ t )

n+1)+O(∆ t4)+O(hm).

Finally, applying the spatial Fourier pseudo-spectral approximation, we obtain

3
2 Φ̂n+1 −2Φ̂n + 1

2 Φ̂n−1

∆ t
= ∆N

(
( ˘̂
Φ

n+1)3 − ˘̂
Φ

n+1 +A(Φ̂n+1 −2Φ̂
n + Φ̂

n−1)+ ε
2LNΦ̂

n+1
)
+ τ

n+1
2 ,

(3.10)

where τ
n+1
2 is the truncation error satisfying ∥τ

n+1
2 ∥−1,N ⩽C(∆ t3 +hm). Note that ∥τ

n+1
2 ∥−1,N is well-

defined since τ
n+1
2 ∈ M 0

h , which is because Φ̂ is mass-conserving.
For the correction Φ̂ defined by (3.9), a detailed analysis implies that

∥Φ̂ −ΦN∥∞ ⩽ C̆0(∆ t2 +hm),

since ∥PNΦ
(2)
∆ t ∥∞ ⩽C. Moreover, when ∆ t and h are sufficiently small so that

C̆0(∆ t2 +hm)⩽
1
2
,

2C̆0(∆ t2 +hm)

∆ t
⩽

1
2
, i.e. ∆ t ⩽

1
8C̆0

, h ⩽
( C1

4C̆0

) 1
m−1

, C1h ⩽ ∆ t ⩽C2h,
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we have the following estimates:

∥Φ̂ −ΦN∥∞ ⩽C(∆ t2 +hm)⩽
1
2

⇒ ∥Φ̂∥∞ ⩽ ∥ΦN∥∞ +∥Φ̂ −ΦN∥∞ ⩽C∗+
1
2
, (3.11)∥∥∥ Φ̂ j − Φ̂ j−1

∆ t
−

Φ
j

N −Φ
j−1

N
∆ t

∥∥∥
∞

⩽
1
2

⇒
∥∥∥ Φ̂ j − Φ̂ j−1

∆ t

∥∥∥
∞

⩽C∗+
1
2
. (3.12)

In particular, an O(∆ t3 + hm) bound between the numerical solution φ and the projection solution
ΦN could be obtained at the first time step t1:

φ
1 −Φ

1 = O(∆ t3 +hm), Φ
1 −Φ

1
N = O(hm), so that φ

1 −Φ
1
N = O(∆ t3 +hm),

in which the first estimate, φ 1 −Φ1 = O(∆ t3 +hm), comes from the fact that the RK2 numerical algo-
rithm creates a third order accurate numerical solution in the first step. Meanwhile, since a trivial zero
initial data is imposed for Φ

(2)
∆ t , we observe that

(Φ
(2)
∆ t )

1 = O(∆ t +hm).

In turn, the construction formula (3.9) implies that

Φ̂
1 = Φ

1
N +∆ t2PN(Φ

(2)
∆ t )

1 = Φ
1
N +O(∆ t3 +hm).

Then we arrive at the following estimate at the first time step t1:

φ
1 − Φ̂

1 = O(∆ t3 +hm), i.e. ∥φ
1 − Φ̂

1∥2 ⩽C(∆ t3 +hm). (3.13)

3.2 A rough error estimate

We analyze the error between the numerical solution and the constructed solution Φ̂ to obtain a higher
order convergence in the ℓ2 norm. Define the error function êk := Φ̂k − φ k, then êk ∈ M 0

h and thus
∥êk∥−1,N is well-defined for any k. The difference between (2.1) and (3.10) gives

3
2 ên+1 −2ên + 1

2 ên−1

∆ t
= ∆N

(
( ˘̂
Φ

n+1)3 − (φ̆ n+1)3 − ˘̂en+1 +A(ên+1 −2ên + ên−1)+ ε
2LN ên+1

)
+ τ

n+1
2 ,

(3.14)

where ˘̂en+1 = 2ên − ên−1. To estimate the nonlinear terms, we make an assumption for the numerical
error function in the ℓ2 and H−1

h norms at the previous time steps tn, tn−1:

∥êk∥2 ⩽ ∆ t
19
8 +hm− 3

4 (k = n,n−1),
1

∆ t
1
2
∥ên − ên−1∥−1,N ⩽ ∆ t

19
8 +hm− 3

4 . (3.15)

Under the linear constraint ∆ t ⩽C2h enforced in Theorem 3.1, an application of 2-D inverse inequality
reveals that

∥êk∥∞ ⩽
C∥êk∥2

h
⩽C(∆ t

11
8 +hm− 7

4 ), k = n,n−1. (3.16)

Consequently, the ℓ∞ bound for the numerical solutions at tn and tn−1, as well as their discrete temporal
derivative, becomes available:

∥φ
k∥∞ ⩽ ∥Φ̂

k∥∞ +∥êk∥∞ ⩽C∗+
1
2
+

1
2
= M0 (k = n,n−1), (3.17)
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∥∥∥φ n −φ n−1

∆ t

∥∥∥
∞

⩽
∥∥∥ Φ̂n − Φ̂n−1

∆ t

∥∥∥
∞

+
∥∥∥ ên − ên−1

∆ t

∥∥∥
∞

⩽C∗+
1
2
+C(∆ t

3
8 +hm− 11

4 )⩽C∗+
1
2
+

1
2
= M0,

(3.18)

where (3.11) and (3.12) have been used. The a priori assumption (3.15) will be recovered in the con-
vergence analysis presented later.

It is noticed that, the a priori ∥ · ∥∞ assumption (3.15) is valid at k = 0,1, and n = 1, which comes
from the fact that ê0 ≡ 0, and the initial error estimate (3.13) (at the first time step t1), combined with
the linear refinement requirement, C1h ⩽ ∆ t ⩽C2h.

Taking a discrete inner product with (3.14) by (−∆N)
−1(ên+1 − ên) leads to

1
∆ t

〈3
2

ên+1 −2ên +
1
2

ên−1, ên+1 − ên
〉
−1,N

+A⟨ên+1 −2ên + ên−1, ên+1 − ên⟩

=−⟨( ˘̂
Φ

n+1)3 − (φ̆ n+1)3, ên+1 − ên⟩+ ⟨ ˘̂en+1, ên+1 − ên⟩− ε
2⟨LN ên+1, ên+1 − ên⟩

+ ⟨τn+1
2 , ên+1 − ên⟩−1,N . (3.19)

For the left-hand side term associated with the temporal stencil, the following estimate is straightfor-
ward:〈3

2
ên+1 −2ên +

1
2

ên−1, ên+1 − ên
〉
−1,N

=
〈3

2
(ên+1 − ên)− 1

2
(ên − ên−1), ên+1 − ên

〉
−1,N

⩾
3
2
∥ên+1 − ên∥2

−1,N − 1
4
(∥ên+1 − ên∥2

−1,N +∥ên − ên−1∥2
−1,N)

⩾
5
4
∥ên+1 − ên∥2

−1,N − 1
4
∥ên − ên−1∥2

−1,N . (3.20)

For the artificial regularization term, we have the following identity:

⟨ên+1 −2ên + ên−1, ên+1 − ên⟩= 1
2
(∥ên+1 − ên∥2

2 −∥ên − ên−1∥2
2 +∥ên+1 −2ên + ên−1∥2

2).

The last term on the right-hand side of (3.19) can be bounded by

⟨τn+1
2 , ên+1 − ên⟩−1,N ⩽ ∥ên+1 − ên∥−1,N · ∥τ

n+1
2 ∥−1,N ⩽

1
4∆ t

∥ên+1 − ên∥2
−1,N +∆ t∥τ

n+1
2 ∥2

−1,N .

For the second linear term on the right-hand side, a direct computation gives

⟨ ˘̂en+1, ên+1 − ên⟩= ⟨ên+1, ên+1 − ên⟩−⟨ên+1 −2ên + ên−1, ên+1 − ên⟩

=
1
2
(∥ên+1∥2

2 −∥ên∥2
2 +∥ên+1 − ên∥2

2)

− 1
2
(∥ên+1 − ên∥2

2 −∥ên − ên−1∥2
2 +∥ên+1 −2ên + ên−1∥2

2), (3.21)

where we have used the fact that

˘̂en+1 = ên+1 − (ên+1 −2ên + ên−1). (3.22)

The nonlocal linear term on the right-hand side can be rewritten as

−ε
2⟨LN ên+1, ên+1 − ên⟩=−ε

2⟨(J ∗1)ên+1 − J ∗ ên+1, ên+1 − ên⟩
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=−ε
2(J ∗1)⟨ên+1, ên+1 − ên⟩+ ε

2⟨J ∗ ên+1, ên+1 − ên⟩. (3.23)

For the first term appearing in above, the following identity is obvious:

⟨ên+1, ên+1 − ên⟩= 1
2
(∥ên+1∥2

2 −∥ên∥2
2 +∥ên+1 − ên∥2

2).

Meanwhile, for the term ε2⟨J ∗ ên+1, ên+1 − ên⟩, we apply Lemma 2.1 and obtain

ε
2⟨J ∗ ên+1, ên+1 − ên⟩=−ε

2⟨J ∗ ên+1,∆N((−∆N)
−1(ên+1 − ên))⟩

⩽C3∆ t∥ên+1∥2
2 +

1
4∆ t

∥∇N(−∆N)
−1(ên+1 − ên)∥2

2

⩽C3∆ t∥ên+1∥2
2 +

1
4∆ t

∥ên+1 − ên∥2
−1,N , (3.24)

where C3 depends only on CJ and ε . Subsequently, a combination of (3.23)-(3.24) yields

−ε
2⟨LN ên+1, ên+1 − ên⟩⩽−1

2
ε

2(J ∗1)(∥ên+1∥2
2 −∥ên∥2

2 +∥ên+1 − ên∥2
2)

+C3∆ t∥ên+1∥2
2 +

1
4∆ t

∥ên+1 − ên∥2
−1,N . (3.25)

For the nonlinear inner product on the right-hand side of (3.19), we begin with the following nonlinear
expansion:

( ˘̂
Φ

n+1)3 − (φ̆ n+1)3 = (( ˘̂
Φ

n+1)2 + ˘̂
Φ

n+1
φ̆

n+1 +(φ̆ n+1)2) ˘̂en+1. (3.26)

The consistency estimates (3.11), (3.12) and a priori estimates (3.17), (3.18) indicate that

∥ ˘̂
Φ

n+1∥∞ ⩽C∗+
1
2
+

1
2
= M0, ∥ ˘̂

φ
n+1∥∞ ⩽C∗+1+

1
2
⩽ M0 +1,

which in turn leads to

∥( ˘̂
Φ

n+1)2 + ˘̂
Φ

n+1
φ̆

n+1 +(φ̆ n+1)2∥∞ ⩽ 3(M0 +1)2. (3.27)

Then, we arrive at

∥( ˘̂
Φ

n+1)3 − (φ̆ n+1)3∥2 ⩽ ∥( ˘̂
Φ

n+1)2 + ˘̂
Φ

n+1
φ̆

n+1 +(φ̆ n+1)2∥∞ · ∥ ˘̂en+1∥2 ⩽ 3(M0 +1)2∥ ˘̂en+1∥2.

As a consequence, the following rough estimate is available:

−⟨( ˘̂
Φ

n+1)3 − (φ̆ n+1)3, ên+1 − ên⟩⩽ ∥( ˘̂
Φ

n+1)3 − (φ̆ n+1)3∥2 · ∥ên+1 − ên∥2

⩽ 3(M0 +1)2∥ ˘̂en+1∥2 · ∥ên+1 − ên∥2

⩽ 9(M0 +1)4
γ
−1
0 ∥ ˘̂en+1∥2

2 +
γ0

4
∥ên+1 − ên∥2

2. (3.28)

Therefore, by substituting (3.20)-(3.21), (3.25), and (3.28) into (3.19), we obtain

3
4∆ t

∥ên+1 − ên∥2
−1,N − 1

4∆ t
∥ên − ên−1∥2

−1,N +
A+1

2
(∥ên+1 − ên∥2

2 −∥ên − ên−1∥2
2)



STABILIZED BDF2 SCHEME FOR THE NONLOCAL CAHN-HILLIARD EQUATION 15 of 23

+
1
2
(ε2(J ∗1)−1)(∥ên+1∥2

2 −∥ên∥2
2 +∥ên+1 − ên∥2

2)−
γ0

4
∥ên+1 − ên∥2

2

⩽C3∆ t∥ên+1∥2
2 +9(M0 +1)4

γ
−1
0 ∥ ˘̂en+1∥2 +∆ t∥τ

n+1
2 ∥2

−1,N . (3.29)

Making use of the assumption γ0 = ε2(J ∗1)−1 > 0 (given by (1.4)), we get

γ0

2
∥ên+1∥2

2 ⩽
1

4∆ t
∥ên − ên−1∥2

−1,N +
A+1

2
∥ên − ên−1∥2

2 +
γ0

2
∥ên∥2

2

+C3∆ t∥ên+1∥2
2 +9(M0 +1)4

γ
−1
0 ∥ ˘̂en+1∥2

2 +∆ t∥τ
n+1
2 ∥2

−1,N .

Meanwhile, with the application of the a priori error estimate (3.15), we arrive at

γ0

4
∥ên+1∥2

2 ⩽C4(∆ t
9
2 +h2m− 3

2 ),

by combining with A+1
2 ⩽ ∆ t−

1
2 and C3∆ t ⩽ γ0

4 provided that ∆ t and h are sufficiently small, with a
linear refinement constraint C1h ⩽ ∆ t ⩽ C2h. Subsequently, an application of 2-D inverse inequality
implies that

∥ên+1∥∞ ⩽
C∥ên+1∥2

h
⩽ Ĉ1(∆ t

5
4 +hm− 7

4 )⩽ ∆ t, with Ĉ1 :=C(4C4γ
−1
0 )1/2,

provided that ∆ t ⩽
( 1

2Ĉ1

)4
, h ⩽

( C1

2Ĉ1

) 1
m− 11

4 , and C1h ⩽ ∆ t ⩽C2h,
(3.30)

under the same linear refinement requirement. As a consequence, the following a priori bounds can be
derived:

∥φ
n+1∥∞ ⩽ ∥Φ̂

n+1∥∞ +∥ên+1∥∞ ⩽C∗+
1
2
+

1
2
= M0, (3.31)∥∥∥φ n+1 −φ n

∆ t

∥∥∥
∞

⩽
∥∥∥ Φ̂n+1 − Φ̂n

∆ t

∥∥∥
∞

+
∥∥∥ ên+1 − ên

∆ t

∥∥∥
∞

⩽C∗+
1
2
+

1
2
= M0. (3.32)

These bounds will play a crucial role in the refined error estimate.

3.3 A refined error estimate

In this subsection, we perform a more refined error estimate for the nonlinear term to improve the
estimate (3.28), under the a priori estimate (3.32). As a result, an inductive argument can be applied to
the inequality (3.29).

The following nonlinear expansion (3.26) is still available. We begin with the following rewritten
form

⟨( ˘̂
Φ

n+1)3 − (φ̆ n+1)3, ên+1 − ên⟩

= ⟨(( ˘̂
Φ

n+1)2 + ˘̂
Φ

n+1
φ̆

n+1 +(φ̆ n+1)2)ên+1, ên+1 − ên⟩

−⟨(( ˘̂
Φ

n+1)2 + ˘̂
Φ

n+1
φ̆

n+1 +(φ̆ n+1)2)(ên+1 −2ên + ên−1), ên+1 − ên⟩, (3.33)

where we have used the identity (3.22). For the second term in (3.33), an application of (3.27) indicates
that

−⟨(( ˘̂
Φ

n+1)2 + ˘̂
Φ

n+1
φ̆

n+1 +(φ̆ n+1)2)(ên+1 −2ên + ên−1), ên+1 − ên⟩
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⩾−3(M0 +1)2∥ên+1 −2ên + ên−1∥2 · ∥ên+1 − ên∥2

⩾−9(M0 +1)4
γ
−1
0 ∥ên+1 −2ên + ên−1∥2

2 −
γ0

4
∥ên+1 − ên∥2

2. (3.34)

For the first term in (3.33), we begin with the following obvious identity

ên+1(ên+1 − ên) =
1
2
((ên+1)2 − (ên)2 +(ên+1 − ên)2),

which in turn implies that

⟨(( ˘̂
Φ

n+1)2 + ˘̂
Φ

n+1
φ̆

n+1 +(φ̆ n+1)2)ên+1, ên+1 − ên⟩

⩾
1
2
(
⟨( ˘̂

Φ
n+1)2 + ˘̂

Φ
n+1

φ̆
n+1 +(φ̆ n+1)2,(ên+1)2⟩−⟨( ˘̂

Φ
n+1)2 + ˘̂

Φ
n+1

φ̆
n+1 +(φ̆ n+1)2,(ên)2⟩

)
=

1
2
⟨( ˘̂

Φ
n+1)2 + ˘̂

Φ
n+1

φ̆
n+1 +(φ̆ n+1)2,(ên+1)2⟩− In

nl , (3.35)

where In
nl := 1

2 ⟨(
˘̂

Φn+1)2+ ˘̂
Φn+1φ̆ n+1+(φ̆ n+1)2,(ên)2⟩. However, we observe that the first term in (3.35),

1
2 ⟨(

˘̂
Φn+1)2 + ˘̂

Φn+1φ̆ n+1 +(φ̆ n+1)2,(ên+1)2⟩, is not equal to In+1
nl . To apply the induction analysis in

later steps, we have to estimate their difference. The following inequalities come from the consistency
estimate (3.12) and a priori estimates (3.18), (3.32):

∥Φ̂
n − Φ̂

n−1∥∞, ∥Φ̂
n+1 − Φ̂

n∥∞, ∥φ
n −φ

n−1∥∞, ∥φ
n+1 −φ

n∥∞ ⩽ M0∆ t,

which in turn imply that

∥ ˘̂
Φ

n+2 − ˘̂
Φ

n+1∥∞ ⩽ 3M0∆ t, ∥φ̆
n+2 − φ̆

n+1∥∞ ⩽ 3M0∆ t.

Moreover, the following estimates are available:

∥( ˘̂
Φ

n+2)2 − ( ˘̂
Φ

n+1)2∥∞ ⩽ ∥ ˘̂
Φ

n+2 + ˘̂
Φ

n+1∥∞ · ∥ ˘̂
Φ

n+2 − ˘̂
Φ

n+1∥∞ ⩽ 2M0 ·3M0∆ t = 6M2
0 ∆ t.

With similar arguments, we get

∥ ˘̂
Φ

n+2
φ̆

n+2 − ˘̂
Φ

n+1
φ̆

n+1∥∞ ⩽ 6M2
0 ∆ t, ∥(φ̆ n+2)2 − (φ̆ n+1)2∥∞ ⩽ 6M2

0 ∆ t.

Then we arrive at

∥(( ˘̂
Φ

n+2)2 + ˘̂
Φ

n+2
φ̆

n+2 +(φ̆ n+2)2)− (( ˘̂
Φ

n+1)2 + ˘̂
Φ

n+1
φ̆

n+1 +(φ̆ n+1)2)∥∞ ⩽ 18M2
0 ∆ t.

As a direct consequence, the following bound is available:∣∣∣In+1
nl − 1

2
⟨( ˘̂

Φ
n+1)2 + ˘̂

Φ
n+1

φ̆
n+1 +(φ̆ n+1)2,(ên+1)2⟩

∣∣∣⩽ 9M2
0 ∆ t∥ên+1∥2

2.

Its substitution into (3.35) yields

⟨(( ˘̂
Φ

n+1)2 + ˘̂
Φ

n+1
φ̆

n+1 +(φ̆ n+1)2)ên+1, ên+1 − ên⟩⩾ In+1
nl − In

nl −9M2
0 ∆ t∥ên+1∥2

2.
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Combining with (3.33) and (3.34), we obtain a refined error estimate for the nonlinear inner product:

⟨( ˘̂
Φ

n+1)3 − (φ̆ n+1)3, ên+1 − ên⟩

⩾ In+1
nl − In

nl −9(M0 +1)4
γ
−1
0 ∥ên+1 −2ên + ên−1∥2

2 −
γ0

4
∥ên+1 − ên∥2

2 −9M2
0 ∆ t∥ên+1∥2

2. (3.36)

As a result, a substitution of (3.20)-(3.21), (3.25) and (3.36) into (3.19) results in

3
4∆ t

∥ên+1 − ên∥2
−1,N − 1

4∆ t
∥ên − ên−1∥2

−1,N

+
A+1

2
(∥ên+1 − ên∥2

2 −∥ên − ên−1∥2
2)+

A+1
2

∥ên+1 −2ên + ên−1∥2
2 + In+1

nl − In
nl

+
1
2
(ε2(J ∗1)−1)(∥ên+1∥2

2 −∥ên∥2
2 +∥ên+1 − ên∥2

2)−
γ0

2
∥ên+1 − ên∥2

2

⩽ 9(M0 +1)4
γ
−1
0 ∥ên+1 −2ên + ên−1∥2

2 +(C3 +9M2
0)∆ t∥ên+1∥2

2 +∆ t∥τ
n+1
2 ∥2

−1,N .

Considering γ0 = ε2(J ∗1)−1 > 0 and condition (3.4) for the parameter A, we get

1
4∆ t

(∥ên+1 − ên∥2
−1,N −∥ên − ên−1∥2

−1,N)

+
A+1

2
(∥ên+1 − ên∥2

2 −∥ên − ên−1∥2
2)+ In+1

nl − In
nl +

γ0

2
(∥ên+1∥2

2 −∥ên∥2
2)

⩽ (C3 +9M2
0)∆ t∥ên+1∥2

2 +∆ t∥τ
n+1
2 ∥2

−1,N .

The following quantity is introduced:

Fn+1 :=
1

4∆ t
∥ên+1 − ên∥2

−1,N +
A+1

2
∥ên+1 − ên∥2

2 + In+1
nl +

γ0

2
∥ên+1∥2

2.

Then we get the following estimate:

Fn+1 −Fn ⩽C5∆ tFn+1 +∆ t∥τ
n+1
2 ∥2

−1,N , with C5 = 2(C3 +9M2
0)γ

−1
0 .

Using the discrete Gronwall inequality results in the desired convergence estimate:

Fn+1 ⩽ Ĉ2(∆ t6 +h2m),

since ∥τ
j

2∥−1,N ⩽C(∆ t3 +hm) for j ⩽ n+1. In particular, we see that

∥ên+1∥2,
1

∆ t
1
2
∥ên+1 − ên∥−1,N ⩽CĈ2(∆ t3 +hm)⩽ ∆ t

19
8 +hm− 3

4 , (3.37)

so that the a priori assumption (3.15) has been recovered at time instant tn+1. In turn, the analysis can be
carried out in the induction style. This completes the error estimate for ê, the numerical error between
the numerical solution φ and the constructed approximation solution Φ̂ .

Finally, the error estimate (3.5) is a direct consequence of the following identity

Φ
k
N −φ

k = êk −∆ t2(PNΦ
(2)
∆ t )

k,

which comes from the construction (3.9), as well as the fact that ∥(PNΦ
(2)
∆ t )

k∥2 ⩽C for any k ⩾ 0. The
proof of Theorem 3.1 is finished.
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REMARK 3.1 The proof of Theorem 3.1 can be extended to the 3-D case without any essential difficulty.
A key difference is an application of the 3-D inverse inequality, i.e.,

∥ψ∥∞ ⩽
C

h
3
2
∥ψ∥2, ∀ψ ∈ Mh,

to revise the inequalities (3.16) and (3.30) accordingly. In addition, the quantities on the right-hand
side of the inequalities in (3.15) have to be replaced by ∆ t

11
4 +hm− 1

4 . As a result, following the similar
derivations as the 2-D case, the last step of (3.37) can also be obtained by the same quantity, so that the
induction process is completed.

3.4 Theoretical justification of the energy stability

As proved in Proposition 2.1, the numerical scheme (2.1) is energy stable under the condition (2.3),
which involves the ℓ∞ bound of the numerical solution. The proof of Theorem 3.1 implies that the ℓ∞

bounds (3.17) and (3.31) for the numerical solution are available as long as another constraint (3.4) for
A is valid. Thus, we can give a theoretical justification of the energy stability as follows.

COROLLARY 3.1 Under the assumptions of Theorem 3.1, the energy stability, namely ẼN(φ
n+1,φ n)⩽

ẼN(φ
n,φ n−1), is valid under the constraint (3.4) for the regularization parameter A, combined with a

trivial constraint for ∆ t: C2ε4∆ t ⩽ γ0.

4. Numerical experiments

In this section, we conduct some numerical experiments by using the proposed stabilized BDF2 scheme
(2.1) for solving the NCH equation (1.3) in the 2-D space. For the kernel involved in the nonlocal diffu-
sion operator, as reported in (Du et al., 2018), we use a family of Gauss-type functions, parameterized
by a constant δ > 0, taking the form

Jδ (x) =
4

πδ 4 e−
|x|2

δ2 , x ∈ R2. (4.1)

Since Jδ ∗1 = 4/δ 2, the condition (1.4) is equivalent to δ < 2ε .

4.1 Convergence tests

First, we test the temporal convergence rate of the proposed scheme with different values of the param-
eters ε and δ .

EXAMPLE 4.1 Consider the NCH equation (1.3) in Ω = (−1,1)× (−1,1) subject to periodic boundary
condition and the initial value φ0(x,y) = 0.5sinπxsinπy+ 0.1 for the cases ε2 = 0.1 and ε2 = 0.01.
The kernel (4.1) is adopted with δ 2 = ε2, δ 2 = 2ε2, and δ 2 = 3ε2, respectively. We test the temporal
convergence rate of the scheme (2.1) by calculating the numerical solution at t = 0.05.

We adopt the uniform 1024× 1024 spatial mesh. According to our observation in the numerical
tests, such a spatial mesh is sufficiently fine so that the errors caused by the spatial approximation
can be ignored. We compute the numerical solutions with various time step sizes ∆ t = 2−k∆ , with
k = 0,1, . . . ,8 and ∆ = 0.005, which are the same as those in Du et al. (2018). The benchmark solution
for the computing errors is taken as the approximated solution obtained with a smaller time step size
∆ t = 2−8∆/5. The stabilizing constant is set to be A = 5.
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FIG. 1 plots the discrete ℓ2 errors of the numerical solutions with various values of ε and δ . The
second order convergence rates are obvious in each case. In comparison with the corresponding results
presented in Du et al. (2018), we find the numerical errors generated by the BDF2 scheme are less
sensitive to the value of δ , especially for large ε , than the ones computed by the Crank-Nicolson version.

10-5 10-4 10-3 10-2

time step size

10-8

10-6

10-4

10-2

L
2
 e

rr
or

FIG. 1. Temporal convergence rates in Example 4.1.

4.2 Coarsening dynamics

It is known (Dai & Du, 2016) that the energy corresponding to the classic Cahn-Hilliard equation sat-
isfies the − 1

3 power law for the rate of decay, that is, E(t) ∼ t−
1
3 for large t, while there is no similar

theoretical result for the NCH equation (1.3). In the following experiment, we will simulate the power
law for the NCH equation (1.3) numerically. In fact, the constraints on the time step size declared in
the theoretical results are sufficient but not necessary, and a moderately larger time step will not lead
to the violation of the energy stability in practical computations. Thus, to accelerate the simulation of
the power law, we will use variable time step sizes in the following experiment without sacrificing the
numerical accuracy, as done by Chen et al. (2014) and Ju et al. (2018).

EXAMPLE 4.2 Setting Ω = (−2π,2π)× (−2π,2π), we simulate the coarsening dynamics of phase
transition process with various values of ε and δ shown later. The initial configuration is set to be a
random initial data ranging uniformly in [−0.1,0.1] on each grid point in a uniform mesh. The time step
size is set as: ∆ t = 0.001 on the time interval [0,1000), ∆ t = 0.01 on [1000,10000), and ∆ t = 0.1 for
t ⩾ 10000 if needed. The stabilizing constant is given by A = 5.

First, we choose δ = 0.05 and N = 512, and set ε decreasing from 0.1 to 0.04. FIG. 2 displays the
evolution of the computed solutions at t = 1, 3, 10, 100, 400, and 5000 for the case ε = 0.04. It is
obviously observed that the dynamic evolves from the initial disorder state to the ordered states rapidly
and then reaches the steady state around t = 5000. FIG. 3 (left) presents of the energy evolution curves
for ε = 0.1, 0.08, 0.06, and 0.04. In comparison with the reference line corresponding to Ct−

1
3 , it can

be observed that the rates of energy decay comply with the − 1
3 power law well for all cases. Table 1

presents the digits of the coefficients of the linear fitting of the energy in the form E(t)∼ betme . In fact,
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this scaling function is nonlinear, while the linear fitting is applied to ln(E(t)), in terms of ln t. All the
values of me approach to − 1

3 , which also implies the expected power law.
Then, we set δ = 0.005 and N = 1024, and still let ε decrease from 0.1 to 0.04. Paralleled to the

first case, FIG. 3 (right) and Table 2 show the evolution curves and the coefficients of the fitting of the
energies, respectively. Again, the − 1

3 power law of the energy decay rate is verified.

FIG. 2. Computed solutions at t = 1, 3, 10, 100, 400, and 5000 for the case δ = 0.05 and ε = 0.04 in Example 4.2.
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FIG. 3. Evolutions of the energies for case δ = 0.05 (left) and δ = 0.005 (right) in Example 4.2.
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Table 1. Coefficients of the linear fitting E(t)∼ betme for the case δ = 0.05.
ε 0.1 0.09 0.08 0.07 0.06 0.05 0.04

me −0.326 −0.314 −0.331 −0.321 −0.327 −0.341 −0.332
be 22.763 21.511 19.737 18.312 16.240 14.214 12.365

Table 2. Coefficients of the linear fitting E(t)∼ betme for the case δ = 0.005.
ε 0.1 0.09 0.08 0.07 0.06 0.05 0.04

me −0.334 −0.324 −0.341 −0.337 −0.334 −0.344 −0.343
be 11.274 10.604 9.675 8.821 7.938 6.943 6.020

5. Conclusion

In this paper, we study a second order (in time) stabilized BDF-type numerical scheme for the non-
local Cahn-Hilliard equation, where the Fourier spectral collocation method is adopted for the spatial
approximation. The main theoretical results consist of the convergence analysis, by performing a high
order consistency analysis, combined with rough error estimate and refined error estimate. In turn, a
modified energy stability becomes available. In comparison with a previous work (Li et al., 2021), we
apply the second order convergence estimate to recover an ℓ∞ bound of the numerical solution, i.e., the
numerical solution can be regarded as a small perturbation of the exact solution. The crucial different
technique used for the error estimate is that, we use (−∆N)

−1(ên+1− ên) as the test function, rather than
the standard form (−∆N)

−1ên+1, for the error equation, so that a higher order temporal truncation error
is provided to match the BDF2 discretization.

The spectral accuracy order in the spatial discretization, as indicated by the estimate (3.3), has
greatly facilitated the convergence analysis, provided that m is large enough. Of course, one can also
adopt the finite difference or other local approaches of spatial discretization. Due to the periodic bound-
ary condition, the matrix for the discrete Laplacian is circulant, and the product of such a circulant
matrix and a vector can also be implemented by the fast Fourier transform. In other words, the evalua-
tion of the discrete Laplacian in the central difference method has more or less the same computational
cost as the spectral method. However, the central difference yields a truncation error of order O(h2),
which is not high enough to ensure the ℓ∞ bound of the discrete temporal derivative, i.e., (3.18) with
only m = 2. To overcome this difficulty, one needs to conduct a higher order asymptotic analysis to
supplement the consistency order in both time and space, by constructing a correction field with the
truncation error of order O(∆ t3 +h4). This technique is similar to the analysis presented in Section 3.1;
also see related works Guan et al. (2014a,b, 2017).

Another natural way to develop the second order numerical schemes is to consider the Crank-
Nicolson approximation combined with an appropriate extrapolation for the nonlinear term. However,
whether the second order stabilized linear scheme proposed in Du et al. (2018) can be proved to be
energy stable with respect to a modified energy is still an open question, which will be our future work.
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