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ABSTRACT
Soil moisture (SM) is of paramount importance in irrigation scheduling, infiltration, runoff, and agri-
cultural drought monitoring. This work aimed at evaluating the performance of the classical ANFIS
(Adaptive Neuro-Fuzzy Inference System) model as well as ANFIS coupled with three bio-inspired
metaheuristic optimizationmethods includingwhaleoptimizationalgorithm (ANFIS-WOA), krill herd
algorithm (ANFIS-KHA) and firefly algorithm (ANFIS-FA) in estimating SM. Daily air temperature, rel-
ative humidity, wind speed and sunshine hours data at Istanbul Bolge station in Turkey and soil
temperature values measured over 2008–2009 were fed into the models under six different sce-
narios. ANFIS-WOA (RMSE = 1.68, MAPE = 0.04) and ANFIS (RMSE = 2.55, MAPE = 0.07) exhibited
the best and worst performance in SM estimation, respectively. All three hybrid models (ANFIS-
WOA, ANFIS-KHA and ANFIS-FA) improved SM estimates, reducing RMSE by 34, 28 and 27% relative
to the base ANFIS model, respectively. A more detailed analysis of model performances in esti-
mating moisture content over three intervals including [15–25), [25–35) and ≥ 35% revealed that
ANFIS-WOA has had the lowest errors with RMSEs of 1.69, 1.89 and 1.55 in the three SM intervals,
respectively. From the perspective of under- or over-estimation of moisture values, ANFIS-WOA
(RMSE = 1.44, MAPE = 0.03) in under-estimation set and ANFIS-KHA (RMSE = 1.94, MAPE = 0.05)
in over-estimation set showed the highest accuracies. Overall, all three hybrid models performed
better in the underestimation set compared to overestimation set.
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1. Introduction

Moisture is one of the most important soil properties and
plays a substantial role in energy partitioning between
topsoil and atmosphere (Kornelsen & Coulibaly, 2014;
Maroufpoor et al., 2019; Wang et al., 2011). This param-
eter is dramatically affected by the interactions occurring
within the soil profile – such as changes in physical and
chemical properties of the soil – or by such external fac-
tors as evaporation, irrigation, precipitation and vegeta-
tion (Elshorbagy&Parasuraman, 2008; Gaur&Mohanty,
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2013; Lee et al., 2019). It is one of themain input parame-
ters fed into soil-vegetation-atmosphere transfer (SVAT)
models (Ridler et al., 2012). SM is also a very important
indicator in agricultural drought monitoring (Koley &
Jeganathan, 2020; Shahabfar et al., 2012; Zormand et al.,
2017).

SM data are quite vital in several areas such as runoff
estimation, climate modeling, flood control, geotechni-
cal engineering, slope failure prediction andwater quality
assessment. It is considered one of the principal factors
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in irrigation scheduling, and determines irrigation water
requirement and irrigation timing. Over recent years,
the idea of precision agriculture on the farm scale has
been very popular among researchers and farmers. One
of the approaches in precision agriculture is determina-
tion of irrigation water requirement and the appropriate
irrigation time, which has been realized with the use
of moisture sensors and by accurate determination of
SM. However, spatial and temporal variability, which is
a characteristic feature of SM, complicates its monitoring
(Dobriyal et al., 2012).

The significance of SM in irrigation scheduling
becomes much more apparent on the small scale of a
farm. Accordingly, several studies have been conducted
to estimate SM at field capacity (FC) and permanent wilt-
ing point (PWP). Application of moisture sensors for
exact irrigation timing based on real-time SM measure-
ment has been also developed under the concept of ‘pre-
cision agriculture’ and with the aim of optimizing water
consumption and minimizing the water stress imposed
on plants (Seneviratne et al., 2010; Zhou et al., 2019). The
role of this parameter is obvious on a large scale, as in
catchments, where it plays a part in controlling such pro-
cesses as infiltration, runoff and evapotranspiration and
eventually the water balance of catchments.

Gravimetric and volumetric methods, neutron probes
and time domain reflectometers (TDR) are some of the
methods and tools used for measuring SM. Capacitance-
based sensors, which measure the moisture content in
real-time and allow measurements to be recorded and
stored by data loggers, have also attracted the atten-
tion of researchers in recent years (Jimenez et al., 2019).
Although these methods provide measurements close
to actual values – apart from measurement and instru-
mentation errors – they do have limitations such as
being time consuming, labor intensive, expensive, or
complex.

In the unsaturated phase, moisture is a function of
matric potential and soil hydraulic properties and varies
by soil depth and time. One of the best equations incor-
porating these variations is Richard’s equation, which can
be solved either numerically or analytically with certain
boundary conditions (Abbasi et al., 2003; Sadeghi et al.,
2011; Sadeghi & Jones, 2012). Two general approaches
can be used for estimating SM. In the first approach, SM is
regarded as a function of matric potential and estimated
by pedotransfer functions. In parametric functions, the
parameters of an equation describing (θ − h) relation are
expressed in the form of pedotransfer functions (Javan-
shir et al., 2020). Point transfer functions are a class of
functions which explicitly estimate moisture content for
a particular suction (Dobarco et al., 2019), most impor-
tantly at −33 kPa and −1500 kPa (Ghorbani et al., 2017;

Vaheddoost et al., 2020). In the second approach, SM is
estimated regardless of the magnitude of suction by vari-
ous techniques and using the soil physical, chemical and
hydraulic parameters.

Two approaches can be adopted for improving SM
estimation. The first is to better understand the physics
governing the relationships which occur in the soil pro-
file. This, however, appears to be very difficult and com-
plex due to the considerable diversity of the variables con-
trolling the soil environment; although researchers who
work in the pure branch of soil science have always shoul-
dered this task (Amente et al., 2000; Chanasyk & Neath,
1996; Elliott & Price, 2020; Gao et al., 2013; Jung et al.,
2019; Pan et al., 2015; Pan & Nieswiadomy, 2016; Par-
dossi et al., 2009; Pires et al., 2005). The second approach,
which has been taken by engineers from different dis-
ciplines, seeks improvement of the tools employed and
application ofmore efficient techniques, so that soil prop-
erties can be better approximated with the least complex-
ity (Zhang, Shao, et al., 2017; Maroufpoor et al., 2019;
Moazenzadeh & Mohammadi, 2019; Pezij et al., 2019;
Penghui et al., 2020).

SM is also one of the pivotal components used in
agricultural drought assessment, and various SM-based
indicators have been developed for drought monitoring
(e.g. normalized differencemoisture index or NDMI, soil
adjusted vegetation index or SAVI, moisture stress index
or MSI, and soil wetness deficit index or SWDI). The
use of satellite images and various algorithms which have
enabled SMmonitoring on different temporal and spatial
scales (Kolassa et al., 2018; Lees et al., 2021; Mishra et al.,
2021; Moran et al., 2004; Sadeghi et al., 2015; Sadeghi
et al., 2020; Schnur et al., 2010; Vergopolan et al., 2020;
Wang et al., 2011; Yang et al., 2019), application of AI-
based models (Ahmad et al., 2010; Srivastava et al., 2015;
Im et al., 2016; Karandish & Simnek, 2016; Brandhorst
et al., 2017; Zhang, Zhang, et al., 2017 ; Han et al., 2018;
Shin et al., 2018), or simultaneous application of both
options have led to significant improvements in SM esti-
mation studies. An AI-based model with meteorological
variables including air temperature, wind speed, relative
humidity and solar radiation as inputs was developed by
Tsang and Jim (2016) to determine irrigation time and
depth based on SM. Coopersmith et al. (2016) estimated
SM at a depth of 5 cm by a machine learning technique
using measured moisture contents at 10 cm depth and
antecedent precipitation in 2010 and 2013, and reported
RMSEs of 0.0173 and 0.0215m3.m−3, respectively. Using
dynamic variables (albedo, NDVI (normalized differ-
ence vegetation index), and LST (land surface tempera-
ture)) extracted from satellite images as well as steady-
state variables (DEM, longitude, and latitude), Liu et al.
(2020) investigated the capability of six machine learning
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algorithms for SM spatial downscaling in four regions in
North America, Spain, China, and Australia. Their find-
ings showed that the RF (random forest) model has had
the best performance and has been mostly affected by
DEM, LST andNDVI variables. Effectiveness ofAI-based
models has been also proved in various areas of study
including soil temperature estimation (Moazenzadeh &
Mohammadi, 2019), water resources engineering (Deo
et al., 2017) and solar energy management (Feng et al.,
2018;Moazenzadeh et al., 2022;Qin et al., 2018;Qin et al.,
2019; Qiu et al., 2022; Wang et al., 2016; Wang et al.,
2019).

The SM content in the rhizosphere is important from
the viewpoint of irrigation scheduling. On the one hand,
the moisture required by a plant is mainly absorbed
from topsoil and on the other, topsoil is the layer from
which evaporation occurs, and it plays an important role
in energy exchange with the atmosphere. A review of
the literature shows that SM estimation is impacted by
complexities associated with nonlinear changes in both
space and time. Meteorological parameters, physico-
chemical parameters of the soil and interactions that
occur in this environment will control soil moisture
variations. Although pedotransfer functions (at specific
matric potentials) and satellite imagery have been suc-
cessfully used for SM estimation, the need for a database
of soil physical and chemical properties in the former,
and the constraints of obtaining appropriate images and
complexity of algorithms in the latter case do limit the
application of these methods. Therefore, using the main
meteorological parameters (which are measured at most
stations) and AI models (which possess a remarkable
ability to simulate nonlinear phenomena) can be an effec-
tive solution worth examining. As a novel contribution
in terms of applied algorithms, this study scrutinizes
the applicability of three bio-inspired metaheuristic opti-
mization algorithms for hybridization with ANFIS to
construct robustmodels for SM computation usingmete-
orological variables as model inputs.

2. Materials andmethods

2.1. Study area and data collection

Istanbul is the largest city in the north-west of Turkey and
the Strait of Istanbul (the Bosphorus) bridges Asia and
Europe. Its climate is a combination of the Black Sea and
Mediterranean climate types, with warm summers and
cold winters. According to the European Commission
andEuropean Soil BureauNetwork (2006), four soil types
including calisols, cambisols, leptosols and fluvisols are
found in Turkey. Istanbul Bolge weather station is located
in the Kartal district of Istanbul at 40°54’ N, 29°09’ E.

Most of the agricultural soils in the region are classified
as leptosols.With an area of about 5540 km2 and 815mm
of precipitation per year (Cuceloglu et al., 2017), Istan-
bul has approximately 74100 hectares of cultivated land.
Wheat, barley, oats, paddy, corn, broad beans, chickpeas,
beans, vetch, sugar beet, sunflower, potato and alfalfa are
produced in Istanbul. Wheat, sunflower and barley are
the most important plant products in the region. In addi-
tion, although the production of vegetables such as toma-
toes, lettuce, beans, watermelon and spinach is dominant
in Istanbul, almost all other vegetables are also grown
such as cucumber, lettuce and spring onion. According
to theMinistry of Agriculture and Forestry (2017) report,
between 1975 and 2015, 1209 floods took place in Turkey
which caused almost $100million economic losses annu-
ally. As Istanbul is the most populated city in Turkey,
it is a high-risk region in terms of flood hazard. The
flood taken place in Marmara region of Istanbul is 2009
resulted in a death of at least 31 people in Istanbul and
considerable economic losses (Altunkaynak & Bizimana,
2020; Ekmekcioğlu et al., 2021). Therefore, the study
area is important both in terms of agriculture (from the
perspective of irrigation scheduling and drought moni-
toring in the region) and water balance management at
the catchment level (through controlling the infiltration
component and surface runoff) as well as in terms of
flood control.

In the present study, SM content and soil tempera-
ture were measured once a day at a depth of 20 cm in
different parts of the study area at various time inter-
vals totaling 490 days between 2008 and 2009. SM was
measured by the volumetric method using a Campbell
Scientific CS616 device which measures the volumetric
water content of porous media from zero to saturation
by vertically inserting its probe rods into the soil. This
device gives an indication of the water content in the
upper 30 cm of soil. In this study, measurements were
performed at 20 cm below the soil surface. The main
meteorological variables including air temperature (min-
imum and maximum), relative humidity, wind speed
and sunshine hours measured at Istanbul Bolge station
over these same time intervals were also obtained from
the Turkish StateMeteorological Service, a governmental
bureau authorized with collecting climatic and meteo-
rological data throughout the country. The study area is
shown in Figure 1.

Statistical indices for measured parameters (soil tem-
perature and moisture at 20 cm depth as well as meteo-
rological data) are given in Table 1, and distribution of
moisture contents of the soil samples is plotted in Figure
2. As can be seen in Figure 2, the highest density of SM
contents falls in the range above 35% (by volume). Mois-
ture contents of about 16% of samples are in the range
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Figure 1. Location of the study area.

Table 1. Statistical profiles of the data utilized for SM estimation.

Variables Min Max Mean SD SV Kurtosis Skewness

SM (%) 18.00 43.00 32.35 6.29 39.58 −0.67 −0.70
ST (°C) 4.40 30.90 15.39 8.29 68.66 −1.16 0.53
RH (%) 39.20 96.30 69.74 10.23 104.60 −0.26 −0.12
U2 (m/s) 0.40 5.70 2.04 0.80 0.64 1.91 1.11
Tmax (°C) 1.20 38.10 17.73 8.51 72.49 −0.99 0.32
Tmin (°C) −5.10 25.10 10.07 7.03 49.43 −0.97 0.43
SSH (h) 0.00 10.80 4.69 3.65 13.31 −1.54 −0.004

SD: Standard deviation, SV: Sample variance.

[15–25), about 31% of samples have moisture contents in
the range [25–35), and about 53% havemoisture contents
higher than 35%.

2.2. Estimating SM

2.2.1. ANFISmodel
Introduced by Jang (1993), ANFIS is a combination of
ANNs and fuzzy inference systems (FISs). This intelli-
gence system uses a non-linear process from input to
output and has a multi-layer form with three sections
connected with a number of nodes (Leski & Czogala,
1999). In the first part, a rule-based approach includ-
ing fuzzy rules is selected. The second part contains
the database. A learning algorithm with the compatible
membership functions (MFs) is used to create a set of
fuzzy if–then laws from certain input-output subsets. For
this purpose, ANFIS receives the primary FIS and mod-
ifies it with a propagation algorithm. Finally, in the last
section, a logical inference system is used to remove it
from the rules and input data to reach an acceptable out-
put. The most famous models used in fuzzy systems are
Mamdani, Sugeno and Takagimodels. Figure 3 illustrates
an ANFIS structure with two inputs (x1, x2) and one out-
put (F) in which a circle represents a stable node and
a square shows an adaptive node (Mohammadi et al.,
2020).

2.2.2. Hybridmodels
In the present study, classical ANFIS model’s ability was
improved by three bio-inspired optimization algorithms

in the form of hybrid models. The algorithms included
Firefly Algorithm (FA), Krill Herd Algorithm (KHA),
andWhale Optimization Algorithm (WOA). These algo-
rithms find the optimal ANFIS parameters considering
the lowest error rate (Devi & Vijayalakshmi, 2020).
Hybrid models were implemented in three steps: (i)
Calculating error rates with optimal ANFIS parameters
(ii) Computing the series values (iii) Fitting the ANFIS
model to the values computed in previous steps.

2.2.2.1. Firefly algorithm (FA). FA was initially pre-
sented by Yang (2009), and its main idea was inspired by
the real life of fireflies (Yang, 2009). It can be considered a
newmanifestation of swarm intelligence, which has been
widely used as a boosting tool in hydrological model-
ing (Moazenzadeh & Mohammadi, 2019). Researchers
have found that fireflies use flashing lights as a protective
mechanism, alerting their conspecifics in the environ-
ment. The rhythm or frequency of flashing light, the rate
at which light flashes, and the duration of light blinking
by fireflies form the different parts of the communication
system of these insects (Yang, 2009). Since the attrac-
tiveness of a firefly is proportional to the light intensity
seen by adjacent (neighboring) fireflies, the attractiveness
parameter can be defined by the following equation:

β(r) = β◦e−γ rz
(1)

where β◦ is attractiveness of the brighter insect at r = 0.
The fireflies find the optimized value of each objective
function.
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Figure 2. Distribution of measured moisture contents in the soil samples.

Figure 3. ANFIS structure used in the present study.

2.2.2.2. Krill Herd Algorithm (KHA). KHA was intro-
duced by Gandomi and Alavi (2012) as a solution for
optimization problems. It is a metaheuristic population-
based algorithm and was inspired by the natural behav-
ior of krill herds. The fitness function of each krill is
unique and equals the distance from food to the high-
est congestion density. Types of krill movement include:
(1) Herd movement; (2) Activity to find food; (3) Ran-
dom displacement. If a herd is attacked by predators, a
group of krill will be removed, resulting in a reduction in
their density. Krill shrinkage is a multi-purpose process
with twomain purposes: increasing density and reaching
food. Each shrimp moves toward the best possible solu-
tion, which is the shortest distance to the highest density
and maximum food (Gandomi & Alavi, 2012).

2.2.2.3. Whale Optimization Algorithm (WOA). WOA
is another bio-inspired algorithm that mimics the hunt-
ing behavior of whales in nature (Mirjalili & Lewis, 2016).
It is performed in three phases as follows: (i) Siege hunt-
ing; (ii) Operation phase: the method of attacking the net
bubble; (iii) Exploration phase: Hunting search. WOA
starts with a set of random solutions. In each repetition,

the search agents update their position using the three
aforementioned operators (Vaheddoost et al., 2020). This
algorithm supposes that the best answer at the moment
(the best solution) is prey, so it recognizes the prey and
then surrounds it. Once the best search agents are identi-
fied, other search agents will update their location to the
best search agent. This behavior is expressed by Equa-
tions (2) and (3) (Mirjalili & Lewis, 2016):

�D′ = |�C.�X∗(t) − �X(t)| (2)

�X(t + 1) = �X∗(t) − �A.�D (3)

where t denotes the present iteration, X is the location
vector, X∗ is the location vector of the best solution
obtained at the present time, and A and C are coeffi-
cient vectors. It should be noted that if there is a better
answer, then the parameter of X∗ should be updated in
each iteration. VectorsA and C are determined as follows
(Vaheddoost et al., 2020):

�A = 2�a.�r − �a (4)

�C = 2.�r (5)
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Figure 4. Schematic drawing of SMmodeling: meteorological variables (five parameters) and soil characteristics (one parameter) used
as inputs of AI-based models.

Figure 5. Flowchart of the base (ANFIS) and hybrid (ANFIS boosted by bio-inspired optimization algorithms)models used in the present
study for estimating SM.

where a decreases linearly from 2 to 0 during iterations
(in both exploration and extraction phases), and r is a
random vector ranging between 0–1.

Figure 4 depicts the general structure used in the
present study for estimating SM from meteorologi-
cal parameters in the form of the ANFIS model and
its hybrids with bio-inspired optimization algorithms.
Structure of the coupling process between ANFIS and
bio-inspired algorithms is shown in Figure 5 (Moham-
madi et al., 2020, 2021).

2.3. Scenario definition

In the present work, we first determined the best com-
bination of input variables for the base ANFIS model.

For this purpose, input variables were fed into ANFIS
through different scenarios and their performances eval-
uated according to SM estimation error rates in testing
set. The best results of each scenario based on the number
of input variables are given in Table 2. After selecting the
best combination of input parameters fed into the base

Table 2. Best input parameters in each scenario: scenarios with
one to six inputs (the best scenario is presented in bold type).

Scenario Number of inputs Best input parameters Output

1 1 ST SM
2 2 ST, Tmin SM
3 3 ST, Tmin, RH SM
4 4 ST, Tmin, RH, Tmax SM
5 5 ST, Tmin, RH, Tmax, SSH SM
6 6 ST, Tmin, RH, Tmax, SSH, U2 SM
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Table 3. Performance analysis of the ANFIS model and ANFIS coupled with bio-inspired optimization algorithms.

Training set Testing set

Models RMSE MAPE RRMSE NSE AI RMSE MAPE RRMSE NSE IA

ANFIS 2.63 0.07 8.15 0.80 0.95 2.55 0.07 7.85 0.79 0.95
ANFIS-WOA 1.69 0.04 5.22 0.92 0.98 1.68 0.04 5.18 0.91 0.98
ANFIS-KHA 2.01 0.05 6.23 0.89 0.97 1.83 0.05 5.62 0.90 0.98
ANFIS-FA 1.83 0.04 5.67 0.91 0.98 1.87 0.05 5.76 0.90 0.97

ANFIS model (Scenario 3), parameter values were opti-
mized for this model using the optimization algorithms
in the form of hybrid models.

2.4. Model evaluation

Five statistical indices including root mean square error
(RMSE), mean absolute percentage error (MAPE), rel-
ative root mean square error (RRMSE), Nash-Sutcliffe
Efficiency (NSE) and Index of Agreement (IA) were used
for assessing model performance as follows:

RMSE =
[ n∑
i=1

(SM(i,obs) − SM(i,est))
2 ÷ n

]0.5
(6)

MAPE =
[( n∑

i=1
|((SM(i,est) − SM(i,obs)) ÷ SM(i,obs))|

)
÷ n

]

(7)

RRMSE =
[
RMSE ÷ (

1
n

n∑
i=1

SM(i,obs))

]
(8)

NSE = 1 −
[ n∑
i=1

(SM(i,obs) − SM(i,est))
2

÷
n∑

i=1
(SMi,est − SMobs)

2
]

(9)

IA = 1 −
[ n∑
i=1

(SM(i,obs) − SM(i,est))
2

÷
n∑

i=1
(|SMi,est − SMobs| − |SMi,obs − SMobs|)2

]

(10)

where SMi,obs, SMi,est and SMobs are observed, estimated
and average of measured SM values, respectively, and n
refers to the number of data points. Ertekin and Yaldiz
(2000) proposed the following categories for rating mod-
els according to accuracy: A model is excellent if its
RRMSE is below 10%, good if 10% < RRMSE < 20%,
fair if 20% < RRMSE < 30%, and poor if RRMSE is
higher than 30%.

3. Results and discussions

3.1. SM estimation

Figure 6 shows measured SM values at 20 cm depth
as well as corresponding values estimated using ANFIS
as the base model and ANFIS coupled with three bio-
inspired optimization algorithms. Model performance
indicators are given in Table 3. In training set, application
of each of the three optimization algorithms to theANFIS
model improved SM estimates, and the best values of all
three indices (RMSE,MAPE, and RRMSE) were obtained
with ANFIS-WOA. According to the results, the lowest
and highest decreases in RMSE (RRMSE) were approxi-
mately 24% (ANFIS-KHA) and 36% (ANFIS-WOA), and
minimum andmaximum decreases inMAPEwere about
31% (ANFIS-KHA) and 43% (ANFIS-WOA), respec-
tively. In training phase, the increase in NSE from the
base ANFISmodel (NSE = 0.8) to hybridmodels ranged
from 11% (ANFIS-KHA model) to 15% (ANFIS-WOA
model); and the lowest IA was 0.95 for the base ANFIS
model, whereas all three hybrid models exhibited similar
performances with IA values of 0.97 and 0.98.

In testing set, all optimization algorithms improved
results when coupled with the base ANFIS model.
According to the results, the lowest and highest decreases
inRMSE (RRMSE) were about 27% (ANFIS-FA) and 34%
(ANFIS-WOA), and the lowest and highest decreases in
MAPE were about 30% (ANFIS-FA) and 41% (ANFIS-
WOA), respectively. In validation phase, the lowest NSE
(approximately 0.79) was again obtained with the base
ANFIS model as expected. ANFIS-KHA and ANFIS-FA
showed a similar performance with NSE = 0.9 (13.9%
higher than ANFIS) and ANFIS-WOA outperformed all
models with NSE = 0.91 (15.2% higher than ANFIS).
In this phase, the IA index was improved by about 3%
for ANFIS-WOA and ANFIS-KHA and by about 2%
for ANFIS-FA relative to the base model, indicating
the relatively similar performance of the hybrid mod-
els. There are two main reasons for the differences in
model performance: (1) Different results due to the dif-
ferences in training data (input values), (2) Different
results due to the differences in learning algorithms or
in optimizing method of the learning algorithm; and
differences in the models result from the mathemati-
cal equations behind them. ANFIS model uses fuzzy
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Figure 6. Measured versus estimated SM values using ANFISmodel, and ANFIS coupledwith three bio-inspired optimization algorithms
(regression equations and R2 values are presented for testing sets).

if–then rules by integrating neural networks technique.
Then ANFIS finds input-output pairs using its member-
ship functions. Regarding the membership functions of
ANFIS in the present study, the differences in ANFIS
results are caused by different meteorological variables.
The FA algorithm can be implemented for parallel prob-
lems and then the system can easily find optimum mini-
mum (Khan et al., 2016). The WOA is a capable method
in global search, has a suitable performance in terms
of convergence accuracy, and is able to solve complex
optimization problems (Ning & Cao, 2021). The KHA
considers the neighbor responses around possible opti-
mum response for analyzing all possible optimum val-
ues (Gandomi & Alavi, 2012). Therefore, differences in
the type and composition of the data used for train-
ing of the simulator models and differences in training
algorithms, how the parameters of the hybrid model
were optimized, andmathematical relationships and sim-
plifications in the course of implementation of each
optimization algorithm can be among the most impor-
tant reasons of the different performances of simulator
models.

As one of green water sources, SM is a highly impor-
tant factor in agricultural drought monitoring in any
region, to the extent that some drought indicators have

been developed based on it. Also on a large scale (e.g.
catchments), SM controls the rate of water infiltration
and thus can affect one of the main components of
water balance, namely surface runoff. All of the above
shows that accurate estimation of SM can greatly help in
proper management of water resources, both on the farm
scale by reducing water loss and on the catchment scale
by controlling water balance components. Using ERA-
interim data, Srivastava et al. (2015) compared perfor-
mance of theWRF-Noah LSMmodel (Weather Research
and Forecasting model coupled with Noah land sur-
face model) with PDM (Probability Distributed Model)
in estimating soil moisture deficit and reported NSEs
of 0.63 and 0.7 in calibration and validation phases,
respectively. Elliott and Price (2020) compared soil mois-
ture values measured by triplicate CS605 TDR probes
in different depths and in two profiles with those esti-
mated by three methods of determining van Genuchten
model parameters including RETC (SSL), inverse mod-
eling using HYDRUS-1D (TF) and alternate strategy for
TF parametrization (ALT) and obtained NSE values of
−1.4 and 0.24 for SSL, 0.89 and 0.91 for TF, and 0.89
and 0.79 for ALT in the two mentioned profiles. Using
a number of soil properties, performance of three AI-
based models (ANN, SVR (support vector regression),
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and ANFIS) and a hybrid model (ANFIS coupled with
Gray Wolf Optimization (GWO)) in simulating SM in
the northwest of Iran (Sanandaj, Dehgolan plain) was
investigated by Maroufpoor et al. (2019). According to
an approximately 50% improvement of estimation accu-
racy of ANFIS-GWO compared to ANFIS and SVR, they
proposed ANFIS-GWO as a powerful tool for SM esti-
mation. Capability of Random Forest (RF), a type of
learning machine with input variables including meteo-
rological, vegetation and soil parameters, was examined
for root zone soil moisture estimation in an agricul-
tural catchment by Carranza et al. (2021). With high
R2 values (>0.75) and low RMSEs (<0.06 m3.m−3),
they proved the accuracy of data-driven models in esti-
mating SM. Accuracy of an ANN-based model (with
climatic data and rooting depth as inputs) in estimat-
ing SM during the plant growing season from 2008 to
2010 was examined and compared to that of a process-
based model (RZWQM2), andNRMSEs of 7.64, 6.37 and
6.66 per cent were reported for the three years of the
experiment, respectively (Gu et al., 2021). With NRM-
SEs of 1.27 and 0.02 per cent for 0–15 and 150–200 cm
layers, respectively, the ANN-based model proved to be
more efficient for evaluating SM dynamics throughout
the growth season. Elshorbagy and Parasuraman (2008)
compared the performance of a higher-order neural net-
work (HONNs) with that of traditional ANNs and a
conceptual model (a site-specific system dynamic water-
shed, (SDW)) in estimating moisture in peat and till soils
of various depths. Inputs of their neural network model
included precipitation, air temperature, net radiation and
soil temperature at different depths. In a 35 cm deep soil,
the proposed HONNs model (with RMSEs of 0.05 and
0.01 cm3.cm3 in peat layer and till layer, respectively)
outperformed SDW (with corresponding RMSEs of 0.08
and 0.1, respectively). They concluded that application

Table 4. Performance analysis of theANFISmodel andANFIS coupledwithbio-inspiredoptimization algorithmsover the threediscussed
intervals, including [15–25), [25–35) and ≥ 35%, as well as the entire testing data set.

Models Intervals RMSE MAPE RRMSE% NSE IA

ANFIS [15–25)% 2.53 0.11 11.86 −0.47 0.49
[25–35)% 3.52 0.09 11.81 0.28 0.68
≥ 35% 1.80 0.04 4.86 −1.22 0.48
All data 2.55 0.07 7.85 0.79 0.95

ANFIS-WOA [15–25)% 1.69 0.06 7.90 0.44 0.79
[25–35)% 1.89 0.04 6.34 0.68 0.89
≥ 35% 1.55 0.03 4.19 −0.53 0.65
All data 1.68 0.04 5.18 0.91 0.98

ANFIS-KHA [15–25)% 1.78 0.07 8.34 0.51 0.80
[25–35)% 2.15 0.05 7.19 0.55 0.84
≥ 35% 1.63 0.04 4.41 −0.23 0.64
All data 1.83 0.05 5.62 0.9 0.98

ANFIS-FA [15–25)% 2.06 0.07 9.62 0.34 0.74
[25–35)% 2.11 0.06 7.08 0.59 0.85
≥ 35% 1.66 0.03 4.48 −0.18 0.65
All data 1.87 0.05 5.76 0.90 0.97

of neural networks in SM estimation is challenging but
achievable, and their performance is largely influenced
by the structure and formation of the soil covers. Ability
of SPoRT-LIS to provide accurate estimates of SM in the
0–10 cm layerwas examined byMcDonough et al. (2018),
with RMSEs of 0.1009, 0.1043, 0.1136 and 0.1102 at
5 cm depth for Summer, Fall, Winter and Spring, respec-
tively. CorrespondingRMSEs at 10 cmdepthwere 0.0879,
0.0917, 0.1071 and 0.1024, respectively.

For a more accurate analysis of the behavior of
each simulator model, model performances in estimat-
ing moisture over three different intervals including
[15–25)% (first interval), [25–35)% (middle interval)
and ≥35% (last interval) were examined separately in
testing set, with the results given in Table 4. Also, the
trend of RMSE variations over the same three intervals
along with RMSE values for the entire measured mois-
ture data set (‘All data’) in testing set are represented in
Figure 7.

Examination of the results showed that the lowest and
highest RMSE, MAPE and RRMSE values for all mod-
els have been obtained in the last interval (θS ≥35) and
the middle interval (25≤ θS < 35), respectively. In other
words, the trend of variations in error rates between
the three intervals has been first upward (from first
to middle interval) and then downward (from mid-
dle to last interval), so that the minimum increase in
error rate is 2.8% (ANFIS-FA) and its maximum is 39%
(ANFIS); and the lowest and highest decreases in error
rate are 18% (ANFIS-WOA) and 48.9% (ANFIS), respec-
tively. For all models, error reduction from middle inter-
val (25≤ θS < 35) to last interval (θS ≥35) is greater
than corresponding increase in error from first inter-
val (15≤ θS < 25) to middle interval (25≤ θS < 35),
although this trend is stronger for ANFIS-FA compared
to the other models.
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Figure 7. RMSE variations for ANFIS and ANFIS coupled with three bio-inspired optimization algorithms over the three discussed
intervals as well as the entire testing data set.

Figure 8. Measured versus estimated SM values for all models in under- and over-estimation sets (testing set).

According to the results shown in Table 4, mini-
mum and maximum RMSE increments between the last
interval (θS ≥35) and the entire testing set (All data)
are 8.4% (ANFIS-WOA) and 42% (ANFIS), respectively.
The highest difference in estimation error (�RMSE)
in the first interval (15≤ θS < 25), middle interval
(25≤ θS < 35) and last interval (θS ≥35) are also about
0.85, 1.63, and 0.25, respectively, between ANFIS and

ANFIS-WOA in all mentioned intervals. It can be
therefore concluded that the differences in performance
between the optimization algorithms, and particularly
their difference with the base ANFIS model, in the entire
testing set (All data) are caused by the differences in
how they simulate moisture in the first two intervals
(15≤ θS < 25 and 25≤ θS < 35), that is the same inter-
vals in which the base ANFIS model had the poorest
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Figure 9. Three particular points of inaccurate soil moisture esti-
mation by ANFIS in under-estimation set.

performance among all models with RMSEs of 2.534%
and 3.524%, respectively. According to the results (Table
4), the highest decreases in RMSE in the first, middle
and last intervals relative to the base ANFIS model are
33.4, 46.3 and 13.8 per cent, all of them obtained with
ANFIS-WOA.

3.2. Under- and over-estimation

Distribution of measured and estimated SM values for
all models in testing set and statistical indicators of
performance of models in under- and over-estimation
sets are given in Figure 8 and Table 5, respectively.

In under-estimation set, ANFIS-WOA has had the
best performance with RMSE, MAPE and RRMSE of
1.441, 0.032 and 4.288 per cent, respectively. In over-
estimation set, ANFIS-KHA has outperformed the other
models with RMSE and RRMSE of 1.936 and 6.155 per
cent, respectively. ANFIS-WOA and ANFIS-KHA share
the bestMAPE value (MAPE = 0.049), although it is not
much different from that of ANFIS-FA (MAPE = 0.053).
Comparison of the results shown in Table 5 reveals that
apart from the base ANFIS model, all other models have
performed better in under-estimation set, withminimum
and maximum increases in RMSE from under- to over-
estimation set being approximately 10.8 and 36 per cent,
for ANFIS-KHA and ANFIS-WOA, respectively. One of
the main reasons for the different performance of ANFIS

compared to other models (better performance in over-
estimation set) has been its moisture estimates at three
particular points which are marked in Figure 9. RMSE
of these three points alone is about 8.35%, while RMSE
of the whole under-estimated subset of the testing set for
the ANFIS model is about 2.72%; and the high error rate
in estimating these three particular points has decreased
the overall accuracy in under-estimation set.

In under-estimation set and in comparison to the
base ANFIS model, minimum and maximum decreases
in RMSE were 35.7% (ANFIS-KHA) and 47% (ANFIS-
WOA), respectively; whereas corresponding values in
over-estimation set were 13.8% (ANFIS-FA) and 19.3%
(ANFIS-KHA). These figures not only confirm better
performance of the models in under-estimation set com-
pared to the over-estimation set, but also show that the
percentage of error reduction in estimation of SM due to
application of each of the optimization algorithms to the
base ANFIS model has been higher in under- compared
to over-estimation set.

4. Conclusions

Soil moisture plays a key role in irrigation scheduling
as the goal of irrigation is to increase current soil mois-
ture until reaching field capacity. Therefore, knowing
SM content will be very helpful in determining irriga-
tion depth and frequency, which are effective in opti-
mal water consumption and prevention of water stress
to plants, respectively. This work examined the capabil-
ity of bio-inspired optimization algorithms in estimat-
ing SM over 2007–2008 in Turkey using meteorologi-
cal variables as model inputs. Hybridization of all bio-
inspired algorithms with ANFIS (ANFIS-WOA, ANFIS-
KHAandANFIS-FA) improved SM estimates in compar-
ison with the base ANFIS model, although ANFIS-WOA
performed best with anRMSE of 1.68. Allmodels showed
almost the same performance for measured moisture
contents higher than 35%, so it can be concluded that
the differences in performance among the optimization
algorithms and their differences with the base ANFIS
model in estimating SM has stemmed from the first two
intervals, i.e. [15–25) and [25–35)%. In terms of model

Table 5. Statistical indices for the base ANFIS model and ANFIS coupled with bio-inspired optimization algorithms in under- and over-
estimation sets (testing set).

Under-estimation set Over-estimation set

Models RMSE MAPE RRMSE NSE AI RMSE MAPE RRMSE NSE IA

ANFIS 2.72 0.06 7.89 0.78 0.93 2.40 0.07 7.78 0.84 0.96
ANFIS-WOA 1.44 0.03 4.29 0.94 0.98 1.96 0.05 6.32 0.89 0.97
ANFIS-KHA 1.75 0.04 5.26 0.92 0.98 1.94 0.05 6.16 0.87 0.97
ANFIS-FA 1.71 0.04 5.25 0.92 0.98 2.07 0.05 6.41 0.86 0.97
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performance from the viewpoint of under- or over-
estimation of SM, ANFIS-WOA in under-estimation set
and ANFIS-KHA in over-estimation set outperformed
the other models, with RMSEs of 1.44 and 1.94, respec-
tively. All models except ANFIS had lower errors in
under-estimation set compared to the over-estimation
set. Limitations of the present study are twofold. The first
is SM simulation in the form of AImodels, which, similar
to all modeling attempts, may be accompanied by uncer-
tainties. The structure of the ANFIS model is complex,
and the number and type of its membership functions
can add to this complexity. Metaheuristic optimization
algorithms also suffer such disadvantages as parameter
setting, high computational complexity, getting trapped
in local optimums, and high running time. The sec-
ond limitation is the constraints that affect the structures
defined in this study. For example, the authors tried to
estimate SM – which is one of the hard-to-measure soil
parameters and only measured in rare and special condi-
tions – using the main meteorological parameters which
are measured at all stations together with a single soil
parameter (soil temperature) as the inputs of AI models.
Obviously, the use of other readily available soil parame-
ters along with the parameters used in this study can lead
to a better understanding of SM dynamics and thus to
better SM estimates. The basic idea of the present work
can be evaluated more rigorously in further studies by
employing other AI models and optimization algorithms
under various climates, and using remote sensing indices
that indirectly indicate the SM status and can help in
making more accurate SM estimates across larger areas.
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